Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

 Scientific Event Alert Network Bulletin - Volume 11, Number 07 (July 1986)

Managing Editor: Lindsay McClelland

Aira (Japan)

Explosions; heavy ashfall

Arenal (Costa Rica)

Increased seismicity with gas/ash emissions & lava flows

Augustine (United States)

Slow lava dome growth; pyroclastic flows; vigorous fuming

Bagana (Papua New Guinea)

Ash emission declines, lava flow still active

Bezymianny (Russia)

Lava extrusion; pyroclastic flows

Fournaise, Piton de la (France)

Small pit crater eruption follows seismicity

Iliboleng (Indonesia)

800-m eruption cloud

Kavachi (Solomon Islands)

Submarine activity

Kilauea (United States)

Episode 48 from three new fissures

Langila (Papua New Guinea)

Weak seismicity and vapor emission

Lokon-Empung (Indonesia)

Small explosions eject daily ash clouds

Long Valley (United States)

Nearby earthquakes cause no pronounced seimicity and deformation change in caldera

Manam (Papua New Guinea)

Increased ash production, rumbling

Nyamuragira (DR Congo)

Reported S-flank eruption

Pavlof (United States)

Continued Strombolian activity and vigorous seismicity

Rabaul (Papua New Guinea)

Seismicity declines moderately, ground deformation low

Ruiz, Nevado del (Colombia)

Ash emissions preceded by B-type swarms and shallow events

Rumble III (New Zealand)

Submarine activity discolors water; hydrophone noise

Sangeang Api (Indonesia)

Ash clouds; red glow above crater

Sorikmarapi (Indonesia)

No new explosions

St. Helens (United States)

Activity remains at background levels

Suwanosejima (Japan)

Explosions cause 200 m plume

Talang (Indonesia)

Dark fume accompanies increased thermal activity

Aira (Japan) — July 1986 Citation iconCite this Report



31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)

Explosions; heavy ashfall

There were four recorded explosions . . . in July, on the 1st, 6th, 19th and 20th. Ashfall was heavy during the last part of the month, especially on the 28th and 30th. Some facilities of the National Railroad malfunctioned due to ashfall, causing delays in train operation on the 29th. Monthly ashfall accumulation was 1,533 g/m2, sixth highest since 1969 (when observation of ash accumulation started at KLMO). The maximum plume height over the crater was 3,000 m on 28 July.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: JMA.

Arenal (Costa Rica) — July 1986 Citation iconCite this Report


Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)

Increased seismicity with gas/ash emissions & lava flows

"Continuous eruptive activity at Arenal started in 1968 with a strong explosive phase and nuées ardentes, preceded by a seismic swarm lasting several days. The volcano then entered into an effusive phase with more or less continuous block lava flows and some small explosions. This activity was interrupted in 1975 by a new explosive phase that included hot avalanches. From 1976 through 1983 activity was mainly effusive, with numerous lava flows. In 1984, another moderate explosive phase lasted for 6 months. Normal effusive Strombolian activity occurred in 1985, with a moderate increase in October and November.

"This year, a moderate increase in Arenal's activity started 1 May, with a maximum of 25 volcanic earthquakes (B-type)/day associated with gas and ash eruptions, and with block lava flows. Countable events totalled 188 in May (figure 7). The maximum trace amplitudes of the earthquakes showed a rather important increase relative to previous months (figure 7), indicating an increase in the energy liberated by the volcano, perhaps due to the beginning of the rainy season. Activity was intermittent through mid-July; the number of events in June was 144 with a maximum of 16/day. Maximum daily amplitudes of volcanic tremor showed clear increases prior to days with a greater number of volcanic earthquakes (figure 7). So far the activity can be considered normal within the present active period."

Figure (see Caption) Figure 7. Seismicity at Arenal recorded at the FOR station during 1 May-15 July 1986. Daily number of B-type volcanic earthquakes (top), maximum daily amplitude of volcanic earthquakes (center), and maximum daily amplitude of volcanic tremor (bottom). Courtesy of R. Barquero.

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: R. Barquero, ICE.

Augustine (United States) — July 1986 Citation iconCite this Report


United States

59.363°N, 153.43°W; summit elev. 1252 m

All times are local (unless otherwise noted)

Slow lava dome growth; pyroclastic flows; vigorous fuming

Active degassing of Augustine continued following the major dome extrusion phase of 23-28 April. During field studies from late June through mid-July, no major changes were noted in the morphology of the new dome, although slow dome growth appeared to be continuing as seen by occasional dome-collapse pyroclastic flows and incandescent rockfalls. Merapi-type pyroclastic flows extending 1-2 km down the N flank were observed in late evening on 26 June, around noon 1 July, and at 2123 on 17 July. Inspection of seismic records suggested that they occurred on other occasions as well. A coarse debris flow, 1-2 m thick at its terminus, was observed on 2 July and was probably emplaced during a rainstorm the previous night. It stopped 2 km from the summit within the axial levees of the NW pyroclastic flow. The terminus of the blocky 1986 lava flow (figure 13) appeared to be at the same elevation (~600 m) as on 6 May. Active fumaroles covered much of its surface, and incandescent cracks were observed.

Figure (see Caption) Figure 13. Annotated telephoto view of Augustine from the N on 14 July 1986. Portions of the area labeled "1986 Dome" may be remnants of the 1976 dome. Fumaroles obscure the E margin of the 1986 dome; remnants of the 1976 and 1964 domes on the S side of the summit crater are not visible in this view. Courtesy of Lee Siebert, SI.

Intense fuming prevented ground observations of the dome while geologists were at the summit, but an overflight confirmed that the 1986 dome was emplaced within a crater in a remnant of the 1976 dome. The top of the new dome was lower than the crescent-shaped remnant of the 1964 dome on the S side of the crater, and was roughly comparable to the elevation of the 1935 dome remnant on the NW side. The most vigorous fuming originated from vents in the moat between the new dome and a ramp below the 1964 dome.

Maximum gas temperatures measured by Bob Symonds at summit crater fumaroles were 625-645°C. Fumarole condensates had a pH of between 0 and 0.5. Measured fumarole temperatures on 1986 pyroclastic flow deposits on the N flank varied from about 200 to 250°C; pH values ranged from 0 to 1. During an overflight on 24 July at about noon, COSPEC measurements by Symonds indicated that the SO2 flux of the plume was 380 ± 45 t/d, a value comparable to that observed at Mt. St. Helens in December 1980.

Heat flow measurements from steel pipes inserted in the pyroclastic flows recorded a maximum temperature of 525°C at 6.16 m depth on the NW flow on 12 July. An adjacent hole showed isothermal convection at the boiling point for the upper 1.20 m and apparently penetrated through the flow, producing a reverse temperature gradient (figure 14). NE flow holes encountered large lithic blocks at shallow depths; 3l5°C temperatures were measured at the maximum depth of 2.58 m on 16 July.

Figure (see Caption) Figure 14. Temperature profiles from NW (top) and NE (bottom) pyroclastic flow lobes. The data were obtained from just NW of point 1 and at point 2, respectively, of figure 7. Note that both depth and temperature scales are different. Courtesy of Juergen Kienle.

Since 10 May the daily number of rockfall avalanches or Merapi-type pyroclastic flows declined to about a half dozen/day (see 11:04 for pre- 10 May data). A modest increase in daily events to 30-40/day was noted beginning 13-14 August. At press time continuous noise on seismic records from 0006 to 0200 on 20 August indicated that an explosive eruption had taken place. Pilots reported ash and steam emission that afternoon and noted new pyroclastic flows extending 3/4 of the way down the N and NE flanks.

Geologic Background. Augustine volcano, rising above Kamishak Bay in the southern Cook Inlet about 290 km SW of Anchorage, is the most active volcano of the eastern Aleutian arc. It consists of a complex of overlapping summit lava domes surrounded by an apron of volcaniclastic debris that descends to the sea on all sides. Few lava flows are exposed; the flanks consist mainly of debris-avalanche and pyroclastic-flow deposits formed by repeated collapse and regrowth of the volcano's summit. The latest episode of edifice collapse occurred during Augustine's largest historical eruption in 1883; subsequent dome growth has restored the volcano to a height comparable to that prior to 1883. The oldest dated volcanic rocks on Augustine are more than 40,000 years old. At least 11 large debris avalanches have reached the sea during the past 1800-2000 years, and five major pumiceous tephras have been erupted during this interval. Historical eruptions have typically consisted of explosive activity with emplacement of pumiceous pyroclastic-flow deposits followed by lava dome extrusion with associated block-and-ash flows.

Information Contacts: J. Kienle and Tony Limke, Geophysical Institute, University of Alaska, Fairbanks; Robert Symonds, Michigan Technological Univ; Lee Siebert, SI.

Bagana (Papua New Guinea) — July 1986 Citation iconCite this Report


Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)

Ash emission declines, lava flow still active

"The phase of stronger activity weakened during the second half of July. Activity during the first half of the month was similar to that of the latter part of June, with 20-40 seismic events/day (probably rockfalls off the active lava flow). Occasional summit incandescence was reported. Emissions consisted of moderate to strong white vapours and moderate brown ash clouds. For the second half of the month, the activity appeared to be declining as the seismicity decreased to 10-20 events/day.

"During an aerial inspection on the 29th, moderate emissions of off-white vapour were observed. Although voluminous, the emissions were being released gently and no emission column was formed. A faint brown tint in the emission plume suggested that it contained some ash. This ash was not being produced by explosive shattering and fragmentation of lava, but is believed to result from fine comminution of fragments broken off relatively cool blocks on the surface of the active lava mound in the summit crater.

"In contrast to previous reports, no true lava dome was observed in the crater. Several rockfalls from the margins of the active lava flow were observed during the inspection flight. The lava channel on the upper flank was full, and several terraces were observed in the distal parts of the flow where new lava units had overridden older units. Arcuate pressure ridges were common on the distal part of the lava flow.

"During the 1986 phase of stronger activity, spillover of lava from the summit crater has been occurring on the upper E flanks. Two adjacent scree deposits were observed there. This observation tends to confirm occasional reports of incandescence on this part of the volcano."

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: J. Mori and C. McKee, RVO.

Bezymianny (Russia) — July 1986 Citation iconCite this Report



55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)

Lava extrusion; pyroclastic flows

Based on observations from A.I. Malyshev, a new eruption . . . began in June with the extrusion of a block ~80 m high. From 22 to 29 June, a viscous lava flow ~500-550 m long poured out onto the E flank of the dome. During the night of 24-25 June two small pyroclastic flows were produced, with a volume of ~7.5 x 105 m3 of material covering an area of ~0.25 km2.

Further Reference. Maksimov, A.P., Firstov, P.P., Girina, O.A., and Malyshev, A.I., 1992, The Bezymianny volcano eruption in June 1986: Volcanology and Seismology, no. 1, p. 3-20 (in Russian); 1992, v. 13, p. 1-20 (in English).

Geologic Background. Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: P. Firstov, A. Maksimov, and O. Girina, IV.

Piton de la Fournaise (France) — July 1986 Citation iconCite this Report

Piton de la Fournaise


21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)

Small pit crater eruption follows seismicity

"During June and July, seismic activity was semi-continuous. Shallow events, always located under the summit craters, were frequent (1-5/day). Some deep events (3-5 km) under the E part of the caldera were also noted but were less frequent. Since the end of May, some rare deeper events have been recorded, but were located less precisely.

"A small eruption occurred during the night of 13-14 July (between 1810 and 0010) after only two very shallow seismic events (at 1710, 500 m under the summit, M 1.1-1.5). A very minor amount of lava was emitted inside the 29 March pit crater. Small fountains produced 10-15,000 m3 of lava. Access to the lava is still prevented by continuous wall collapse of the 85-m-deep pit crater.

"Since the beginning of June, small tilt variations have been observed (maximum 24 µrads). The permanent tiltmeter network (Bory station on the summit and Chapelle in the caldera) recorded neither progressive nor irregular variations during the 10 previous days. After the eruption, seismic activity remained at a low level."

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: H. Delorme and J-F. Delarue, OVPDLF; J-L. Le Mouel, J-.L. Cheminee, A. Hirn, P. Blum, and J. Zlotnicki, IPGP; J. Lenat, Centre des Recherches Volcanologiques and Observatoire de Physique du Globe de Clermont Ferrand.

Iliboleng (Indonesia) — July 1986 Citation iconCite this Report



8.342°S, 123.258°E; summit elev. 1659 m

All times are local (unless otherwise noted)

800-m eruption cloud

Iliboleng erupted on 18 July at 1234, ejecting a cloud to ~ 800 m above the summit.

Geologic Background. Iliboleng stratovolcano was constructed at the SE end of Adonara Island across a narrow strait from Lomblen Island. The volcano is capped by multiple, partially overlapping summit craters. Lava flows modify its profile, and a cone low on the SE flank, Balile, has also produced lava flows. Historical eruptions, first recorded in 1885, have consisted of moderate explosive activity, with lava flows accompanying only the 1888 eruption.

Information Contacts: L. Pardyanto, Olas, Kaswanda, Suratman, A. Sudradjat, and T. Casadevall, VSI.

Kavachi (Solomon Islands) — July 1986 Citation iconCite this Report


Solomon Islands

8.991°S, 157.979°E; summit elev. -20 m

All times are local (unless otherwise noted)

Submarine activity

Eruptive activity . . . was reported on 5, 16, and 21 July. On 5 July at 1000, Solair Captain Brian Smith observed jets of water and volcanic debris being ejected to 60-90 m, forming a cone. In the center of the cone, incandescent magma could be seen. Two days later, Pilot Bill Watts reported discolored water and bubbles, but no explosions. On 8 July Pilot Tas Laurie observed steam and discolored water.

A week later, on 21 July, ejection of water and steam to 60-90 m was again reported, lasting 2-3 minutes at a time, but not forming a cone. Activity continued for ~2 days, then subsided.

Geologic Background. Named for a sea-god of the Gatokae and Vangunu peoples, Kavachi is one of the most active submarine volcanoes in the SW Pacific, located in the Solomon Islands south of Vangunu Island about 30 km N of the site of subduction of the Indo-Australian plate beneath the Pacific plate. Sometimes referred to as Rejo te Kvachi ("Kavachi's Oven"), this shallow submarine basaltic-to-andesitic volcano has produced ephemeral islands up to 1 km long many times since its first recorded eruption during 1939. Residents of the nearby islands of Vanguna and Nggatokae (Gatokae) reported "fire on the water" prior to 1939, a possible reference to earlier eruptions. The roughly conical edifice rises from water depths of 1.1-1.2 km on the north and greater depths to the SE. Frequent shallow submarine and occasional subaerial eruptions produce phreatomagmatic explosions that eject steam, ash, and incandescent bombs. On a number of occasions lava flows were observed on the ephemeral islands.

Information Contacts: P. Dereni, Ministry of Natural Resources, Honiara.

Kilauea (United States) — July 1986 Citation iconCite this Report


United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)

Episode 48 from three new fissures

Episode 48 (E-48). "After 22 days of repose, E-48 . . . began on 18 July with a local earthquake swarm and eruptions from new fissures on both the uprift and downrift sides of the Pu`u `O`o cone. At the time of the swarm, the magma column had reached the top of the conduit and was emitting spatter from a 15-m-high cone within Pu`u `O`o, but as fissures opened, the column subsided, the top of the spatter cone collapsed, and only burning gas issued from the small opening for the duration of the activity. After nearly 23 hours, activity ended temporarily on 19 July at around 0930. Mostly pahoehoe flows were produced. The longest flow moved rapidly SE for 7.5 km through a forested part of the Hawaii Volcanoes National Park to within 2.5 km of the sea. The Chain of Craters road was closed briefly until the flow stagnated, and ~4 km2 of forest were burned.

"On 20 July at about 0830, following 23 hours of inactivity, low fountains on the downrift fissure ("B" on figure 44) were first observed by a National Park Service overflight while the "A" fissure and the main Pu`u `O`o conduit remained quiet. By 0950, the "B" fissure had shut down and a new fissure ("C" on figure 44) had begun to erupt along a line parallel to, and ~150 m N of, the original January 1983 fissure. Low fountains, a few meters high, played intermittently along the 1100-m-long fissure, which eventually shortened to a pair of vents, < 50 m apart, that have continuously produced lava at a low rate. A pahoehoe shield, ~1.2 km2 in area and > 25 m high, has been built around the vents and a branching tube-fed pahoehoe and aa flow has moved ~4.5 km SE toward the sea. By the end of July, it had stagnated and remained ~6 km upslope from the nearest developed area. As of 8 August, lava was still welling out of one main vent without fountaining and was spreading over the summit of the growing shield. The new basalt flows have sparse small (<1 mm) olivine phenocrysts, similar to those of recent eruptions.

Figure (see Caption) Figure 44. Sketch map of eruptive fissures A-C and lava flows on Kilauea's East rift zone, July 1986. Courtesy of HVO.

"The earthquake swarm . . . began on 18 July at 1046 and progressed downrift. It was recorded by seismometers just uprift of Pu`u `O`o and N of Kalalua. High tremor amplitudes on the uprift seismometer characterized the early phase of activity. From 20 July on, the tremor on the uprift instrument decreased to background levels, while very low-amplitude tremor has continued on the downrift instrument nearest the eruption vent. Above-normal levels of long-period seismicity occurred following the early activity of E-48 (figure 45).

Figure (see Caption) Figure 45. Six-month summary of Kilauea's activity, July-December 1986, showing tilt, short- and long-period earthquakes, carbon/sulfur ratio of summit gases, lava volume, and the MgO content of lava. The intermediate depth swarm of 17-20 November are "C" type long-period (deeper) earthquakes and the caldera long-period earthquakes are "A" type (shallow) events, so the swarm is not shown on this summary.

"Deflationary summit tilt began on 18 July at about 1145, an hour after the onset of seismicity, and reached a record rate of nearly 3.1 µrad/hour between 1200 and 1300 (figure 45). The deflationary pattern reversed temporarily into an inflationary trend from about 0500 on 19 July, in concert with the short repose period. Since 20 July, tilt changes have been very small and no particular trend has been defined."

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: G. Ulrich, HVO.

Langila (Papua New Guinea) — July 1986 Citation iconCite this Report


Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)

Weak seismicity and vapor emission

"Activity was very low in July. Emissions were limited to weak white vapours. There were no reports of incandescence or audible sounds from the summit, and seismicity was at a very low level."

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: J. Mori and C. McKee, RVO.

Lokon-Empung (Indonesia) — July 1986 Citation iconCite this Report



1.358°N, 124.792°E; summit elev. 1580 m

All times are local (unless otherwise noted)

Small explosions eject daily ash clouds

Through July, as many as several small explosions/day continued to send ash clouds to 300-500 m above the crater. The lake within Tompaluan Crater has disappeared completely.

Geologic Background. The twin volcanoes Lokon and Empung, rising about 800 m above the plain of Tondano, are among the most active volcanoes of Sulawesi. Lokon, the higher of the two peaks (whose summits are only 2 km apart), has a flat, craterless top. The morphologically younger Empung volcano to the NE has a 400-m-wide, 150-m-deep crater that erupted last in the 18th century, but all subsequent eruptions have originated from Tompaluan, a 150 x 250 m wide double crater situated in the saddle between the two peaks. Historical eruptions have primarily produced small-to-moderate ash plumes that have occasionally damaged croplands and houses, but lava-dome growth and pyroclastic flows have also occurred. A ridge extending WNW from Lokon includes Tatawiran and Tetempangan peak, 3 km away.

Information Contacts: L. Pardyanto, Olas, Kaswanda, Suratman, A. Sudradjat, and T. Casadevall, VSI.

Long Valley (United States) — July 1986 Citation iconCite this Report

Long Valley

United States

37.7°N, 118.87°W; summit elev. 3390 m

All times are local (unless otherwise noted)

Nearby earthquakes cause no pronounced seimicity and deformation change in caldera

As of the end of July, no pronounced changes in seismicity and deformation had been observed ...after a series of moderate earthquakes began mid-July in the Chalfant Valley, ~20 km to the SE. [The largest event, 6.2 Ms/6.0 mb, occurred 21 July at 2142 (37.54°N, 118.45°W, 9 km depth). Small foreshocks were recorded two days earlier, and several moderate-sized aftershocks occurred the following week.] Some co-seismic deformation across the caldera was observed. The 2-color trilateration network showed uniaxial contraction in an E-W direction and the borehole dilatometer showed a compressional signal of comparable magnitude. Most of the borehole tiltmeters in the caldera showed a co-seismic offset coincident with the Chalfont Valley earthquakes. Stephen McNutt reported that no low-frequency earthquakes were recorded within the caldera by the California Division of Mines and Geology network.

Geologic Background. The large 17 x 32 km Long Valley caldera east of the central Sierra Nevada Range formed as a result of the voluminous Bishop Tuff eruption about 760,000 years ago. Resurgent doming in the central part of the caldera occurred shortly afterwards, followed by rhyolitic eruptions from the caldera moat and the eruption of rhyodacite from outer ring fracture vents, ending about 50,000 years ago. During early resurgent doming the caldera was filled with a large lake that left strandlines on the caldera walls and the resurgent dome island; the lake eventually drained through the Owens River Gorge. The caldera remains thermally active, with many hot springs and fumaroles, and has had significant deformation, seismicity, and other unrest in recent years. The late-Pleistocene to Holocene Inyo Craters cut the NW topographic rim of the caldera, and along with Mammoth Mountain on the SW topographic rim, are west of the structural caldera and are chemically and tectonically distinct from the Long Valley magmatic system.

Information Contacts: D. Hill, USGS Menlo Park; Stephen McNutt, California Division of Mines and Geology, 630 Bercutt, Sacramento, California 95814 USA.

Manam (Papua New Guinea) — July 1986 Citation iconCite this Report


Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)

Increased ash production, rumbling

"Activity . . . remained at a low level in July, although there appeared to be an increase in ash production from Southern Crater. Daily emissions from Southern Crater consisted of grey low-density [ash] clouds and white and blue vapours. On most days, light ashfalls were reported on the downwind areas of the island. From the 2lst through the 27th, there were more forceful emissions of black, higher-density ash clouds. From the 26th to the 30th, rumbling sounds were heard at Tabele . . . , although after the 27th the ash production appeared to have decreased to levels similar to those of the first half of the month. Emissions from Main Crater were limited to weak, white vapours. Seismicity remained at inter-eruptive levels with daily totals of ~1,200 events. There were no significant tilt changes recorded."

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: J. Mori and C. McKee, RVO.

Nyamuragira (DR Congo) — July 1986 Citation iconCite this Report


DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)

Reported S-flank eruption

An eruption began on 16 July at 1500 [but see 11:8] from a fissure near the 1976 eruption site of Harakandi, on the SSW flank at ~2,200 m elevation. High lava fountains produced a lava flow to the SW. By 18 July, lava fountains were still 200 m high, and at the end of one week, the lava flow had extended 10 km SW toward Lake Sake, before ponding and spreading. Degassing was abnormally high from the two vents formed on the eruptive fissure, compared to previous eruptions. Inspection of 11-20 July satellite imagery did not reveal an eruption plume, but heavy weather clouds obscured the area.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: M. Krafft and K. Krafft, Cernay, France; W. Gould, NOAA.

Pavlof (United States) — July 1986 Citation iconCite this Report


United States

55.417°N, 161.894°W; summit elev. 2493 m

All times are local (unless otherwise noted)

Continued Strombolian activity and vigorous seismicity

Eruptive activity accompanied by strong seismicity continued through early August. Poor weather usually obscured the volcano, but seismicity remained high with only slight day-to-day variations. A thin ash plume was visible during the late evening of 18 July and reached ~5.5 km altitude the next day. Little activity was evident on 20 July, but several explosions were heard 23 July. No changes in seismicity could be correlated with these observations.

Seismicity increased substantially on 31 July at 1845, and an airline pilot reported explosions an hour later. Pulses of seismicity that varied in amplitude from 5-6 mm to about 40 mm saturated instruments for about 20 hours, and were recorded by stations as far as 60 km from the volcano. Seismic activity declined somewhat on 2 August, remaining vigorous but detected only on the instrument 7.5 km from the summit. As of 5 August, discrete high-amplitude volcanic events averaging 30-40 seconds long continued to be recorded.

When visited by geologists on 7 August, snowfields at 800 m altitude about 4 km N of the summit were covered by 2.5-7.5 cm of pea-sized to fist-sized tephra. At a location 10-12 km WNW of the summit, 15 cm of ash had fallen since the previous visit 2 years earlier. Some ash was clearly fresh, as it was visible on top of snowfields in nearby ravines, but geologists were unable to sample or measure the thickness of ash deposits on the snow. Several booming explosions were heard during ½ hour at this site, and several more explosions were heard later that day from S of the summit. Airline pilots continued to report emission of vapor and ash through early August (table 1).

Table 1. Summary of reports describing activity at Pavlof, 14 June-15 September 1986, compiled by John Reeder. Observers (initials in brackets): FWS; Jean Shaul, Marcia Brown, and Clayton Brown, Cold Bay; Reeve Aleutian Airways; MarkAir; Peninsula Airways; Sand Point Air; NOAA aircraft; Clint Schoenleber and Jerry Chisum, Markair; John Reeder; Mike Whelan; Lee Goch, Don Munson, George Wooliver, Harold Black, Andy Livingston, and Edward Livingston, Reeve Aleutian Airways; Mary Maurer; Adrian Brown; Robert Adams; Steve Hakala; Guy Morgan; Chris Dan; John Sarnis; Mike and Peggy Blenden; Jeff Wilson; Jeff Backlund; Federal Aviation Administration; Wayne Russell; British sailors on the Ashley St. Mary; Theresa Dubber and Robert Senimore, FAA, Cold Bay; Steve Hakala, Sand Point.

[Skip text table]
    Date     Time    Activity Reported [Observers]

    14 Jun   1710    New vent on Se summit ejected blocks and magma to 35 m,
                       lava flow to ESE, ash plume towards SW.
    15 Jun   1200-   Incandescent blocks and lava fountains 30-60 m from new
              2000     SE vent, lava flow on SE flank, ash and steam from four
                       vents on SE summit, 3,300 m ash-and-steam plume 30 km
                       to NNW.
    16 Jun   1211    3,600-m ash plume 40 km to N.
    17 Jun   1325    3,300-m steam and light ash plume 8 km to NNE.
    18 Jun   1142-   3,000-4,600-m ash-and-steam plumes extending 80-120 km to
              1619     the NE and NNE.
    19 Jun           3,500-m steam plume with no detectable ash to NE.
    21 Jun   1330    4,200-m steam plume with streaks of ash 40 km to SW.
    22 Jun   1127    3,000-m steam plume with blue/brown haze 40 km to SW.
    23 Jun   1200    3,000-m light ash plume drifting E.
    24 Jun   1712    Wind-blown ash to 300 m above ground surface 9 km S of
    27 Jun   1045    3,300-m dark ash plume extending 40 km to SW.
    08 Jul   1500    3,950-m steam-and-ash plume 40 km to WSW.
    06-12 Jul        Explosions were heard and felt at canoe Bay, 45 km ENE of
                       Pavlof by U.S. Fish and Wildlife personnel working in
                       the area.
    13 Jul   1145    3,600-m ash plume 30 km to ENE.
    13-19 Jul        Almost continuous rumblings, 4-5 second intervals,
                       earthquakes and ground vibrations strong enough to
                       rattle windows, shake shelf items, and prevent sleep;
                       some ashfall at USF&W camp, 45 km ENE.
    16 Jul   1300    Extensive ash deposits in Cathedral Peaks region, 17.6 km
                       W of summit, Pavlof and Pavlof's Sister covered with
                       ash, SE vent ejected steam with dark vertical plume of
                       ash at 3-5-minute intervals, N vent quiet.
    17 Jul   1315    3,600-m ash plume to 30 km ENE.
    18 Jul           SE summit vent eruptions at several-minute intervals
                       caused pulsating plume and incandescent lava flowing
                       down SE flank that did not reach the ocean.
    19 Jul   1320    3,300-m ash plume extending 24 km to ENE.
    20 Jul           Several vents observed at SE summit, none with active
                       lava flows, one ejecting rocks and lava bombs tens of
                       meters high, three separate SE-flank flows, one still
                       steaming; none had entered the ocean.
    22 Jul   1200    3,600-m dark ash plume extending to ENE.
    29 Jul   1200    3,600-m steam-and-ash plume toward WSW.
    20-30 Jul        Very little rumbling and ground vibrations at USF&W camp.
    31 Jul   1217    Small puffs of ash and steam to 150 m from SE vent.
             1836    Active 600-m-long lava flow down E slope from SE vent
                       located 120 m below summit.
    01-03 Aug        Explosions heard from 55 km NE of Pavlof, 3-5-minute
                       intervals, heavy ash detected in streams and rivers in
                       Aghileen Pinnacles and Cathedral Valley areas, 17.5 to
                       W and NW of Pavlof.
    02 Aug   1240    3,000-m steam-and-ash plume extending to NE.
    05 Aug           4,500-m steam-and-ash pluem to E.
    08 Aug   1300    Dark ash clouds from N summit vent to 30-50 m at several-
                       minute intervals, SE near-summit vents emitting traces
                       of steam.
    13 Aug   evening Summit lava fountaining. [ASM]
    14 Aug   midday  Large white steam plume. [GW]
    18 Aug   0850    Dark ash to 3,600 m, drifting 80 km SE. [PA]
             1047    Steam-and-ash plume to 4,000 m, drifting 55 km ESE. [SP]
    20 Aug   1556    Ash plume to 3,600 m, drifting SE. [NOAA]
                     Sound heard just before emission of large ash puff. [JS]
    21 Aug   0900    Plume alternating steam and ash at 3-minute intervals to
                       3,000 m; visible for 15 minutes, then obscured by
                       weather. [TD & RS]
    22 Aug   1152    Ash plume to 3,600 m, drifting at least 16 km ESE. [RA]
             1241    Occasional steam plumes. [RA]
    05 Sep           300-m dark nearly vertical column, drifting slightly NE.
    10 Sep   1155    Ash and steam to 3,000 m, drifting NE for 8 km. [HB & AL]
    12 Sep   1100    Minor steam emission from 100-m region near summit. [JC]
    15 Sep   1430    White steam from old N vent did not rise above summit.
                       [MB & CB]

The active spatter-fed flow on the E flank and an inactive flow probably associated with April explosions were composed of individual tephra fragments, and moved downslope as debris flows. Airline pilots reported that the flow front on the E flank remained at about 600 m altitude as of 31 July.

On 8 August personnel aboard a Reeve Aleutian Airways plane reported that they sighted what may be a large bulge on the W side of the volcano about 2/3 of the way upslope. It appeared to have a diameter of about 300 m.

Geologic Background. The most active volcano of the Aleutian arc, Pavlof is a 2519-m-high Holocene stratovolcano that was constructed along a line of vents extending NE from the Emmons Lake caldera. Pavlof and its twin volcano to the NE, 2142-m-high Pavlof Sister, form a dramatic pair of symmetrical, glacier-covered stratovolcanoes that tower above Pavlof and Volcano bays. A third cone, Little Pavlof, is a smaller volcano on the SW flank of Pavlof volcano, near the rim of Emmons Lake caldera. Unlike Pavlof Sister, Pavlof has been frequently active in historical time, typically producing Strombolian to Vulcanian explosive eruptions from the summit vents and occasional lava flows. The active vents lie near the summit on the north and east sides. The largest historical eruption took place in 1911, at the end of a 5-year-long eruptive episode, when a fissure opened on the N flank, ejecting large blocks and issuing lava flows.

Information Contacts: T. Miller, USGS Anchorage; J. Taber, LDGO; J. Reeder, ADGGS.

Rabaul (Papua New Guinea) — July 1986 Citation iconCite this Report


Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)

Seismicity declines moderately, ground deformation low

"Seismicity was at a moderately high level in July with 1,312 events. A seismic swarm in the Sulphur Creek/Beehives/Northern Vulcan area on 12-13 July, included the largest earthquake of the month, an ML 2.5 event. The 227 events counted on the l2th yielded the highest daily total since May 1985. There was also a small swarm on the 8th, in the Beehives/Vulcan area. Toward the end of the month the seismicity appeared to be declining again with 10-20 events counted/day, compared to 20-100/day for the first half of the month.

"Levelling measurements on 29 July showed that Matupit Island continues to rise slowly. Results indicate that the southern part of the island has been uplifted ~15 mm since the last survey on 28 May. This uplift rate of ~8 mm/month is less than that measured during April and May and is approximately equivalent to pre-crisis rates. Horizontal distance measurements showed small inflationary changes of 5-10 microstrain in July. There were no significant tilt changes measured for the month. In summary, ground deformation rates in July remained low (at pre-crisis levels) and seismicity was declining."

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: J. Mori and C. McKee, RVO.

Nevado del Ruiz (Colombia) — July 1986 Citation iconCite this Report

Nevado del Ruiz


4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)

Ash emissions preceded by B-type swarms and shallow events

Activity during 11 July-13 August. "For the first time in the present period of increased activity (since 20 April), strong ash emissions occurred on 20 and 29 July. Harmonic tremor changed its pattern, especially after the prolonged ash emission of 29 July, becoming stronger and changing spectra. Deformation slowed after the 20 July emission. Under the microscope, ash samples from both emissions showed no signs of juvenile origin.

"The first emission, on 20 July at 0600, was short (~2 minutes) and more vigorous, rising to >4 km above Arenas Crater. It also contained a visible amount of vapor. The 29 July emission, detected at 0630, lasted longer. Pulses of ash were observed between 0635 and 0758, but were less vigorous than on 20 July and vapor was not visible. The ash cloud spilled over the crater and down the W flank (over the Farallones). After 0758 the tremor decreased. Ash emission continued, at a lower rate and more steadily, until about noon. Dominant dry-season winds carried ash from both emissions at least 30-40 km to the W, but no change was observed in W flank streams, although the snow was covered with ash.

"Vigorous phases of both emissions were accompanied by strong tremor that partially saturated instruments. The most interesting feature of the seismic activity, however, preceded both ash emissions. Swarms of small B-type events, most visible at Refugio station 3.6 km W of Arenas Crater, started 7-8 hours before the emissions. Attempts to link this station by telemetry have been impeded for several weeks by high levels of gas and lack of accessible shelter in the area. Both emissions were also preceded by shallow seismic events occurring 20-120 minutes in advance.

"Both emissions produced 4-6 Hz tremor. After the 29 July emission, several tens of hours of tremor with a dominant component of 0.6-1.0 Hz were recorded at Recio (4 km SE of Arenas) and less strongly at Olleta (4 km W). Following several days of intermittent tremor, the tremor frequency increased again after 7 August to 4-5 Hz and showed strong variations in amplitude, which could be correlated between the three nearest telemetering stations Rubi (4.6 km N of the crater), Olleta, and Recio.

"During a period of low-amplitude tremor on 8 August, several shallow events and one A-type swarm (>20 events) occurred, followed by ash emission. Ash emissions that were considerably smaller than those of 20 and 29 July were seen 9 and 10 August. Activity declined 11-12 August, but increased again on the morning of the 13th, when alternating emissions of pulsating ash plumes and vapor were observed.

"Deformation started to slow simultaneously with the 20 July emission, but still showed changes reflecting inflation at most stations."

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: H. Meyer, INGEOMINAS, Manizales.

Rumble III (New Zealand) — July 1986 Citation iconCite this Report

Rumble III

New Zealand

35.745°S, 178.478°E; summit elev. -220 m

All times are local (unless otherwise noted)

Submarine activity discolors water; hydrophone noise

The New Zealand Defence Scientific Establishment reported that hydrophones detected noise of probable volcanic origin, peaking on 15-16 June. About 1 July, hydrophones on Great Barrier Island, ~290 km SW of Rumble III, recorded noise of possible volcanic origin, but detected no activity by 13 July.

On 13-14 July, a Japanese fishing boat reported cream-colored steam rising from the ocean at 35.74°S, 178.49°E, and observed a 500 m2 sulfur slick. No explosions were reported. The New Zealand Meteorological office reported a satellite-derived sea surface temperature anomaly of possibly +2°C in the area 10-14 July.

On an overflight 5 August, Royal New Zealand Air Force observers saw a circular patch of discolored blue water ~40 m across, thought to be a zone of gas-rich water. The discolored water repeatedly vanished and reformed, then dispersed 4-6 km SW. Sonar buoys dropped into the area detected bubbling noises, but no low-frequency or pulsing noises.

Personnel on the HMNZS Tui examined the area of the volcano during the night or 7-8 August between 2300 and 0500. The sea was calm with no discoloration, sulfur smell, or steam. They found a minimum depth of 150 m [but see 15:03], and samples were dredged from ~300 m.

Geologic Background. The Rumble III seamount, the largest of the Rumbles group of submarine volcanoes along the South Kermadec Ridge, rises 2300 m from the sea floor to within about 200 m of the sea surface. Collapse of the edifice produced a horseshoe-shaped caldera breached to the west and a large debris-avalanche deposit. Fresh-looking andesitic rocks have been dredged from the summit and basaltic lava from its flanks. Rumble III has been the source of several submarine eruptions detected by hydrophone signals.

Information Contacts: J. Latter, DSIR Geophysics, Wellington; L. Hall, Defence Scientific Establishment, Auckland.

Sangeang Api (Indonesia) — July 1986 Citation iconCite this Report

Sangeang Api


8.2°S, 119.07°E; summit elev. 1949 m

All times are local (unless otherwise noted)

Ash clouds; red glow above crater

Sangeang Api has been in continuous eruption for a year. Activity in July included several explosions/day, producing eruption clouds . . . ~1 km above the summit. A persistent reddish glow was visible at night above the Doro Api crater.

Geologic Background. Sangeang Api volcano, one of the most active in the Lesser Sunda Islands, forms a small 13-km-wide island off the NE coast of Sumbawa Island. Two large trachybasaltic-to-tranchyandesitic volcanic cones, 1949-m-high Doro Api and 1795-m-high Doro Mantoi, were constructed in the center and on the eastern rim, respectively, of an older, largely obscured caldera. Flank vents occur on the south side of Doro Mantoi and near the northern coast. Intermittent historical eruptions have been recorded since 1512, most of them during in the 20th century.

Information Contacts: L. Pardyanto, Olas, Kaswanda, Suratman, A. Sudradjat, and T. Casadevall, VSI.

Sorikmarapi (Indonesia) — July 1986 Citation iconCite this Report



0.686°N, 99.539°E; summit elev. 2145 m

All times are local (unless otherwise noted)

No new explosions

The ash plume from the 5 July explosion reached 700 m above the summit. No additional explosions have been recorded.

Geologic Background. Sorikmarapi is a forested stratovolcano with a 600-m-wide summit crater containing a lake and substantial sulfur deposits. A smaller parasitic crater (Danau Merah) on the upper SE flank also contains a crater lake; these two craters and a series of smaller explosion pits occur along a NW-SE line. Several solfatara fields are located on the E flank. Phreatic eruptions have occurred from summit and flank vents during the 19th and 20th centuries.

Information Contacts: L. Pardyanto, Olas, Kaswanda, Suratman, A. Sudradjat, and T. Casadevall, VSI.

St. Helens (United States) — July 1986 Citation iconCite this Report

St. Helens

United States

46.2°N, 122.18°W; summit elev. 2549 m

All times are local (unless otherwise noted)

Activity remains at background levels

Activity remained at background levels through early August. Rates of SO2 emission ranged from ~10 to 40 t/d. No gas emission episodes were observed, and none were evident on seismic records. Frequent rockfalls occurred in the crater. Deformation of the lava dome remained minimal.

Geologic Background. Prior to 1980, Mount St. Helens formed a conical, youthful volcano sometimes known as the Fuji-san of America. During the 1980 eruption the upper 400 m of the summit was removed by slope failure, leaving a 2 x 3.5 km horseshoe-shaped crater now partially filled by a lava dome. Mount St. Helens was formed during nine eruptive periods beginning about 40-50,000 years ago and has been the most active volcano in the Cascade Range during the Holocene. Prior to 2200 years ago, tephra, lava domes, and pyroclastic flows were erupted, forming the older St. Helens edifice, but few lava flows extended beyond the base of the volcano. The modern edifice was constructed during the last 2200 years, when the volcano produced basaltic as well as andesitic and dacitic products from summit and flank vents. Historical eruptions in the 19th century originated from the Goat Rocks area on the north flank, and were witnessed by early settlers.

Information Contacts: S. Brantley, CVO; C. Jonientz-Trisler, University of Washington.

Suwanosejima (Japan) — July 1986 Citation iconCite this Report



29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)

Explosions cause 200 m plume

Explosive sounds were heard . . . twice on the morning of 28 July, and a 200-m-high plume was observed from an airplane at around 1200.

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: JMA.

Talang (Indonesia) — July 1986 Citation iconCite this Report



0.979°S, 100.681°E; summit elev. 2575 m

All times are local (unless otherwise noted)

Dark fume accompanies increased thermal activity

Increased thermal activity in the Gabuo Atas solfatara field continued through July, when dark-colored fume was noted. The temperatures of the solfataras have remained in their normal range, 92-97°C.

Geologic Background. Talang, which forms a twin volcano with the extinct Pasar Arbaa volcano, lies ESE of the major city of Padang and rises NW of Dibawah Lake. Talang has two crater lakes on its flanks; the largest of these is 1 x 2 km wide Danau Talang. The summit exhibits fumarolic activity, but which lacks a crater. Historical eruptions have mostly involved small-to-moderate explosive activity first documented in the 19th century that originated from a series of small craters in a valley on the upper NE flank.

Information Contacts: L. Pardyanto, Olas, Kaswanda, Suratman, A. Sudradjat, and T. Casadevall, VSI.

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in the Selected Bulletin tab.


The default month and year is the latest issue available.

 Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

View Atmospheric Effects Reports

 Special Announcements

Special announcements of various kinds and obituaries.

View Special Announcements Reports

 Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands

Floating Pumice (Kermadec Islands)

1986 Submarine Explosion

Tonga Islands

Floating Pumice (Tonga)

Fiji Islands

Floating Pumice (Fiji)

Andaman Islands

False Report of Andaman Islands Eruptions

Sangihe Islands

1968 Northern Celebes Earthquake

Southeast Asia

Pumice Raft (South China Sea)

Land Subsidence near Ham Rong

Ryukyu Islands and Kyushu

Pumice Rafts (Ryukyu Islands)

Izu, Volcano, and Mariana Islands

Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source

Kuril Islands

Possible 1988 Eruption Plume

Aleutian Islands

Possible 1986 Eruption Plume


False Report of New Volcano




La Lorenza Mud Volcano

Pacific Ocean (Chilean Islands)

False Report of Submarine Volcanism

Central Chile and Argentina

Estero de Parraguirre

West Indies

Mid-Cayman Spreading Center

Atlantic Ocean (northern)

Northern Reykjanes Ridge


Azores-Gibraltar Fracture Zone

Antarctica and South Sandwich Islands

Jun Jaegyu

East Scotia Ridge

 Additional Reports (database)

08/1997 (SEAN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (SEAN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (SEAN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (SEAN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (SEAN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube

False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption


7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)

False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.

False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption


3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)

Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.

False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption


40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)

UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.

Har-Togoo (Mongolia) — May 2003



48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)

Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.

Elgon (Uganda) — December 2005



1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)

False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).