Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Ulawun (Papua New Guinea) Explosions on 26 June and 3 August 2019 send plumes above 19 km altitude

Sarychev Peak (Russia) Ash plume on 11 August; thermal anomalies from late May to early October 2019

Asamayama (Japan) Ashfall from phreatic eruptions on 7 and 25 August 2019

Villarrica (Chile) Strombolian activity continued during March-August 2019 with an increase in July

Reventador (Ecuador) Daily ash emissions and incandescent block avalanches continue, February-July 2019

Raikoke (Russia) Short-lived series of large explosions 21-23 June 2019; first recorded activity in 95 years

Sinabung (Indonesia) Large ash explosions on 25 May and 9 June 2019

Semisopochnoi (United States) Small explosions detected between 16 July and 24 August 2019

Krakatau (Indonesia) Repeated Surtseyan explosions with ash and steam during February-July 2019

Tengger Caldera (Indonesia) Ash emissions on 19 and 28 July 2019; lahar on the SW flank of Bromo

Unnamed (Tonga) Submarine eruption in early August creates pumice rafts that drifted west to Fiji

Popocatepetl (Mexico) Frequent explosions continue during March-August 2019



Ulawun (Papua New Guinea) — September 2019 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Explosions on 26 June and 3 August 2019 send plumes above 19 km altitude

Typical activity at Ulawun consists of occasional weak explosions with ash plumes. During 2018 explosions occurred on 8 June, 21 September, and 5 October (BGVN 43:11). The volcano is monitored primarily by the Rabaul Volcano Observatory (RVO) and Darwin Volcanic Ash Advisory Centre (VAAC). This report describes activity from November 2018 through August 2019; no volcanism was noted during this period until late June 2019.

Activity during June-July 2019. RVO reported that Real-time Seismic-Amplitude Measurement (RSAM) values steadily increased during 24-25 June, and then sharply increased at around 0330 on 26 June. The RSAM values reflect an increase in seismicity dominated by volcanic tremor. An eruption began in the morning hours of 26 June with emissions of gray ash (figure 17) that over time became darker and more energetic. The plumes rose 1 km and caused minor ashfall to the NW and SW. Local residents heard roaring and rumbling during 0600-0800.

Figure (see Caption) Figure 17. Photograph of a small ash plume rising from the summit crater of Ulawun taken by a helicopter pilot at 1030 local time on 26 June 2019. According to the pilot, the amount of ash observed was not unusual. Image has been color adjusted from original. Courtesy of Craig Powell.

The Darwin VAAC issued several notices about ash plumes visible in satellite data. These stated that during 1130-1155 ash plumes rose to altitudes of 6.7-8.5 km and drifted W, while ash plumes that rose to 12.8-13.4 km drifted S and SW. A new pulse of activity (figures 17 and 18) generated ash plumes that by 1512 rose to an altitude of 16.8 km and drifted S and SE. By 1730 the ash plume had risen to 19.2 km and spread over 90 km in all directions. Ash from earlier ejections continued to drift S at an altitude of 13.4 km and W at an altitude of 8.5 km. RVO stated that RSAM values peaked at about 2,500 units during 1330-1600, and then dropped to 1,600 units as the eruption subsided.

Figure (see Caption) Figure 18. Photograph of Ulawun taken by a helicopter pilot at 1310 local time on 26 June 2019 showing a tall ash plume rising from the summit crater. Image has been color adjusted from original. Courtesy of Craig Powell.
Figure (see Caption) Figure 19. Photograph of Ulawun taken by a helicopter pilot at 1350 local time on 26 June 2019 showing a close-up view of the ash plume rising from the summit crater along with an area of incandescent ejecta. According to the pilot, this was the most active phase. Image has been color adjusted from original. Courtesy of Craig Powell.

According to RVO, parts of the ash plume at lower altitudes drifted W, causing variable amounts of ashfall in areas to the NW and SW. A pyroclastic flow descended the N flank. Residents evacuated to areas to the NE and W; a news article (Radio New Zealand) noted that around 3,000 people had gathered at a local church. According to another news source (phys.org), an observer in a helicopter reported a column of incandescent material rising from the crater, residents noted that the sky had turned black, and a main road in the N part of the island was blocked by volcanic material. Residents also reported a lava flow near Noau village and Eana Valley. RVO reported that the eruption ceased between 1800 and 1900. Incandescence visible on the N flank was from either a lava flow or pyroclastic flow deposits.

On 27 June diffuse white plumes were reported by RVO as rising from the summit crater and incandescence was visible from pyroclastic or lava flow deposits on the N flank from the activity the day before. The seismic station 11 km NW of the volcano recorded low RSAM values of between 2 and 50. According to the Darwin VAAC a strong thermal anomaly was visible in satellite images, though not after 1200. Ash from 26 June explosions continued to disperse and became difficult to discern in satellite images by 1300, though a sulfur dioxide signal persisted. Ash at an altitude of 13.7 km drifted SW to SE and dissipated by 1620, and ash at 16.8 km drifted NW to NE and dissipated by 1857. RVO noted that at 1300 on 27 June satellite images captured an ash explosion not reported by ground-based observers, likely due to cloudy weather conditions. The Alert Level was lowered to Stage 1 (the lowest level on a four-stage scale).

RSAM values slightly increased at 0600 on 28 June and fluctuated between 80 to 150 units afterwards. During 28-29 June diffuse white plumes continued to rise from the crater (figure 20) and from the North Valley vent. On 29 June a ReliefWeb update stated that around 11,000 evacuated people remained in shelters.

Figure (see Caption) Figure 20. Photograph of the steaming summit crater at Ulawun taken by a helicopter pilot at 0730 local time on 29 June 2019. Image has been color adjusted from original. Courtesy of Craig Powell.

According to RVO, diffuse white plumes rose from Ulawun's summit crater and the North Valley vent during 1-4 July and from the summit only during 5-9 July. The seismic station located 11 km NW of the volcano recorded three volcanic earthquakes and some sporadic, short-duration, volcanic tremors during 1-3 July. The seismic station 2.9 km W of the volcano was restored on 4 July and recorded small sub-continuous tremors. Some discrete high-frequency volcanic earthquakes were also recorded on most days. Sulfur dioxide emissions were 100 tonnes per day on 4 July. According to the United Nations in Papua New Guinea, 7,318 people remained displaced within seven sites because of the 26 June eruption.

Activity during August 2019. During 1-2 August RVO reported that white-to-gray vapor plumes rose from the summit crater and drifted NW. Incandescence from the summit crater was visible at night and jetting noises were audible for a short interval. RSAM values fluctuated but peaked at high levels. During the night of 2-3 August crater incandescence strengthened and roaring noises became louder around 0400. An explosion began between 0430 and 0500 on 3 August; booming noises commenced around 0445. By 0600 dense light-gray ash emissions were drifting NW, causing ashfall in areas downwind, including Ulamona Mission (10 km NW). Ash emissions continued through the day and changed from light to dark gray with time.

The eruption intensified at 1900 and a lava fountain rose more than 100 m above the crater rim. A Plinian ash plume rose 19 km and drifted W and SW, causing ashfall in areas downwind such as Navo and Kabaya, and as far as Kimbe Town (142 km SW). The Darwin VAAC reported that the ash plume expanded radially and reached the stratosphere, rising to an altitude of 19.2 km. The plume then detached and drifted S and then SE.

The Alert Level was raised to Stage 3. The areas most affected by ash and scoria fall were between Navo (W) and Saltamana Estate (NW). Two classrooms at the Navo Primary School and a church in Navo collapsed from the weight of the ash and scoria; one of the classroom roofs had already partially collapsed during the 26 June eruption. Evacuees in tents because of the 26 June explosion reported damage. Rabaul town (132 km NE) also reported ashfall. Seismicity declined rapidly within two hours of the event, though continued to fluctuate at moderate levels. According to a news source (Radio New Zealand, flights in and out of Hoskins airport in Port Moresby were cancelled on 4 August due to tephra fall. The Alert Level was lowered to Stage 1. Small amounts of white and gray vapor were emitted from the summit crater during 4-6 August. RVO reported that during 7-8 August minor emissions of white vapor rose from the summit crater.

Additional observations. Seismicity was dominated by low-level volcanic tremor and remained at low-to-moderate levels. RSAM values fluctuated between 400 and 550 units; peaks did not go above 700. Instruments aboard NASA satellites detected high levels of sulfur dioxide near or directly above the volcano on 26-29 June and 4-6 August 2019.

Thermal anomalies, based on MODIS satellite instruments analyzed using the MODVOLC algorithm, were observed at Ulawun only on 26 June 2019 (8 pixels by the Terra satellite, 4 pixels by the Aqua satellite). The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected three anomalies during the reporting period, one during the last week of June 2019 and two during the first week of August, all three within 3 km of the volcano and of low to moderate energy.

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it); ReliefWeb (URL: https://reliefweb.int/); Radio New Zealand (URL: https://www.rnz.co.nz); phys.org (URL: https://phys.org); United Nations in Papua New Guinea (URL: http://pg.one.un.org/content/unct/papua_new_guinea/en/home.html).


Sarychev Peak (Russia) — November 2019 Citation iconCite this Report

Sarychev Peak

Russia

48.092°N, 153.2°E; summit elev. 1496 m

All times are local (unless otherwise noted)


Ash plume on 11 August; thermal anomalies from late May to early October 2019

Sarychev Peak, located on Matua Island in the central Kurile Islands of Russia, has had eruptions reported since 1765. Renewed activity began in October 2017, followed by a major eruption in June 2009 that included pyroclastic flows and ash plumes (BGVN 43:11 and 34:06). Thermal anomalies, explosions, and ash plumes took place between September and October 2018. A single ash explosion occurred in May 2019. Another ash plume was seen on 11 August, and small thermal anomalies were present in infrared imagery during June-October 2019. Information is provided by the Sakhalin Volcanic Eruption Response Team (SVERT) and the Tokyo Volcanic Ash Advisory Center (VAAC), with satellite imagery from Sentinel-2.

Satellite images from Sentinel-2 showed small white plumes from Sarychev Peak during clear weather on 4 and 14 August 2019 (figure 27); similar plumes were observed on a total of nine clear weather days between late June and October 2019. According to SVERT and the Tokyo VAAC, satellite data from HIMAWARI-8 showed an ash plume rising to an altitude of 2.7 km and drifting 50 km SE on 11 August. It was visible for a few days before dissipating. No further volcanism was detected by SVERT, and no activity was evident in a 17 August Sentinel-2 image (figure 27).

Figure (see Caption) Figure 27. Small white plumes were visible at Sarychev Peak in Sentinel-2 satellite images on 4 and 14 August 2019 (left and center). No activity was seen on 17 August (right). All three Sentinel-2 images use the "Natural Color" (bands 4, 3, 2) rendering; courtesy of Sentinel Hub Playground.

Intermittent weak thermal anomalies were detected by the MIROVA system using MODIS data from late May through 7 October 2019 (figure 28). Sentinel-2 satellite imagery from 28 June, 13 and 23 July, 9 August, and 21 October showed a very small thermal anomaly, but on 28 September a pronounced thermal anomaly was visible (figure 29). No additional thermal anomalies were identified from any source after 7 October through the end of the month.

Figure (see Caption) Figure 28. Thermal anomalies detected at Sarychev Peak by the MIROVA system (Log Radiative Power) using MODIS data for the year ending on 9 October 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 29. Sentinel-2 satellite images of Sarychev Peak on 23 June and 28 September 2019. A small thermal anomaly is visible on the eastern side of the crater on 23 June (left, indicated by arrow), while the thermal anomaly is more pronounced and visible in the middle of the crater on 28 September (right). Both Sentinel-2 satellite images use the "False Color (Urban)" (bands 12, 11, 4) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Sarychev Peak, one of the most active volcanoes of the Kuril Islands, occupies the NW end of Matua Island in the central Kuriles. The andesitic central cone was constructed within a 3-3.5-km-wide caldera, whose rim is exposed only on the SW side. A dramatic 250-m-wide, very steep-walled crater with a jagged rim caps the volcano. The substantially higher SE rim forms the 1496 m high point of the island. Fresh-looking lava flows, prior to activity in 2009, had descended in all directions, often forming capes along the coast. Much of the lower-angle outer flanks of the volcano are overlain by pyroclastic-flow deposits. Eruptions have been recorded since the 1760s and include both quiet lava effusion and violent explosions. Large eruptions in 1946 and 2009 produced pyroclastic flows that reached the sea.

Information Contacts: Sakhalin Volcanic Eruption Response Team (SVERT), Institute of Marine Geology and Geophysics, Far Eastern Branch, Russian Academy of Science, Nauki st., 1B, Yuzhno-Sakhalinsk, Russia, 693022 (URL: http://www.imgg.ru/en/, http://www.imgg.ru/ru/svert/reports); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Asamayama (Japan) — September 2019 Citation iconCite this Report

Asamayama

Japan

36.406°N, 138.523°E; summit elev. 2568 m

All times are local (unless otherwise noted)


Ashfall from phreatic eruptions on 7 and 25 August 2019

Asamayama (also known as Asama), located in the Kanto-Chubu Region of Japan, previously erupted in June 2015. Activity included increased volcanic seismicity, small eruptions which occasionally resulted in ashfall, and SO2 gas emissions (BGVN 41:10). This report covers activity through August 2019, which describes small phreatic eruptions, volcanic seismicity, faint incandescence and commonly white gas plumes, and fluctuating SO2 emissions. The primary source of information for this report is provided by the Japan Meteorological Agency (JMA).

Activity during October 2016-May 2019. From October 2016 through December 2017, a high-sensitivity camera captured faint incandescence at night accompanied by white gas plumes rising above the crater to an altitude ranging 100-800 m (figure 44). A thermal anomaly and faint incandescence accompanied by a white plume near the summit was observed at night on 6-7 and 21 January 2017. These thermal anomalies were recorded near the central part of the crater bottom in January, February, and November 2017, and in May 2019. After December 2017 the faint incandescence was not observed, with an exception on 18 July 2018.

Figure (see Caption) Figure 44. A surveillance camera observed faint incandescence at Asamayama in February 2017. Left: Onimushi surveillance camera taken at 0145 on 5 February 2017. Right: Kurokayama surveillance camera taken at 0510 on 1 February 2017. Courtesy of JMA (Monthly Report for February 2017).

Field surveys on 6, 16, and 28 December 2016 reported an increased amount of SO2 gas emissions from November 2016 (100-600 tons/day) to March 2017 (1,300-3,200 tons/day). In April 2017 the SO2 emissions decreased (600-1,500 tons/day). Low-frequency shallow volcanic tremors decreased in December 2016; none were observed in January 2017. From February 2017 through June 2018 volcanic tremors occurred more intermittently. According to the monthly JMA Reports on February 2017 and December 2018 and data from the Geographical Survey Institute's Global Navigation Satellite Systems (GNSS), a slight inflation between the north and south baseline was recorded starting in fall 2016 through December 2018. This growth become stagnant at some of the baselines in October 2017.

Activity during August 2019. On 7 August 2019 a small phreatic eruption occurred at the summit crater and continued for about 20 minutes, resulting in an ash plume that rose to a maximum altitude of 1.8 km, drifting N and an associated earthquake and volcanic tremor (figure 45). According to the Tokyo Volcanic Ash Advisory (VAAC), this plume rose 4.6 km, based on satellite data from HIMAWARI-8. A surveillance camera observed a large volcanic block was ejected roughly 200 m from the crater. According to an ashfall survey conducted by the Mobile Observation Team on 8 August, slight ashfall occurred in the Tsumagoi Village (12 km N) and Naganohara Town (19 km NE), Gunma Prefecture (figure 46 and 47). About 2 g/m2 of ash deposit was measured by the Tokyo Institute of Technology. Immediately after the eruption on 7 August, seismicity, volcanism, and SO2 emissions temporarily increased and then decreased that same day.

Figure (see Caption) Figure 45. Surveillance camera images of Asamayama showing the small eruption at the summit crater on 7 August 2019, resulting in incandescence and a plume rising 1.8 km altitude. Both photos were taken on 7 August 2019.Courtesy of JMA (Monthly Report for August 2019).
Figure (see Caption) Figure 46. A photomicrograph of fragmented ejecta (250-500 µm) from Asamayama deposited roughly 5 km from the crater as a result of the eruption on 7 August 2019. Courtesy of JMA (Monthly Report for August 2019).
Figure (see Caption) Figure 47. Photos of ashfall in a nearby town NNE of Asamayama due to the 7 August 2019 eruption. Courtesy of JMA (Daily Report for 8 August 2019).

Another eruption at the summit crater on 25 August 2019 was smaller than the one on 7 August. JMA reported the resulting ash plume rose to an altitude of 600 m and drifted E. However, the Tokyo VAAC reported that the altitude of the plume up to 3.4 km, according to satellite data from HIMAWARI-8. A small amount of ashfall occurred in Karuizawa-machi, Nagano (4 km E), according to interview surveys and the Tokyo Institute of Technology.

Geologic Background. Asamayama, Honshu's most active volcano, overlooks the resort town of Karuizawa, 140 km NW of Tokyo. The volcano is located at the junction of the Izu-Marianas and NE Japan volcanic arcs. The modern Maekake cone forms the summit and is situated east of the horseshoe-shaped remnant of an older andesitic volcano, Kurofuyama, which was destroyed by a late-Pleistocene landslide about 20,000 years before present (BP). Growth of a dacitic shield volcano was accompanied by pumiceous pyroclastic flows, the largest of which occurred about 14,000-11,000 BP, and by growth of the Ko-Asama-yama lava dome on the east flank. Maekake, capped by the Kamayama pyroclastic cone that forms the present summit, is probably only a few thousand years old and has an historical record dating back at least to the 11th century CE. Maekake has had several major plinian eruptions, the last two of which occurred in 1108 (Asamayama's largest Holocene eruption) and 1783 CE.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/).


Villarrica (Chile) — September 2019 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Strombolian activity continued during March-August 2019 with an increase in July

Villarrica is a frequently active volcano in Chile with an active lava lake in the deep summit crater. It has been producing intermittent Strombolian activity since February 2015, soon after the latest reactivation of the lava lake; similar activity continued into 2019. This report summarizes activity during March-August 2019 and is based on reports from the Southern Andes Volcano Observatory (Observatorio Volcanológico de Los Andes del Sur, OVDAS), part of Chile's National Service of Geology and Mining (Servicio Nacional de Geología y Minería, SERNAGEOMIN), Projecto Observación Villarrica Internet (POVI), part of the Fundacion Volcanes de Chile research group, and satellite data.

OVDAS-SERNAGEOMIN reported that degassing continued through March with a plume reaching 150 m above the crater with visible incandescence through the nights. The lava lake activity continued to fluctuate and deformation was also recorded. POVI reported sporadic Strombolian activity throughout the month with incandescent ejecta reaching around 25 m above the crater on 17 and 24 March, and nearly 50 m above the crater on the 20th (figure 76).

Figure (see Caption) Figure 76. A webcam image of Villarrica at 0441 on 20 March 2019 shows Strombolian activity and incandescent ejecta reaching nearly 50 m above the crater. People are shown for scale in the white box to the left in the blue background image that was taken on 27 March. Photos taken about 6 km away from the volcano, courtesy of POVI.

There was a slight increase in Strombolian activity reported on 7-8 April, with incandescent ballistic ejecta reaching around 50 m above the crater (figure 77). Although seismicity was low during 14-15 April, Strombolian activity produced lava fountains up to 70 m above the crater over those two days (figure 78). Activity continued into May with approximately 12 Strombolian explosions recorded on the night of 5-6 May erupting incandescent ejecta up to 50 m above the crater rim. Another lava fountaining episode was observed reaching around 70 m above the crater on 14 May (figure 79). POVI also noted that while this was one of the largest events since 2015, no significant changes in activity had been observed over the last five months. Throughout May, OVDAS-SERNAGEOMIN reported that the gas plume height did not exceed 170 m above the crater and incandescence was sporadically observed when weather allowed. SWIR (short-wave infrared) thermal data showed an increase in energy towards the end of May (figure 80).

Figure (see Caption) Figure 77. Strombolian activity at Villarrica on 7-8 April 2019 producing incandescent ballistic ejecta reaching around 50 m above the crater. Courtesy of POVI.
Figure (see Caption) Figure 78. Images of Villarrica on 15 April show a lava fountain that reached about 70 m above the crater. Courtesy of POVI.
Figure (see Caption) Figure 79. These images of Villarrica taken at 0311 and 2220 on 14 May 2019 show lava fountaining reaching 70-73 m above the crater. Courtesy of POVI.
Figure (see Caption) Figure 80. This graph shows the variation in short-wave infrared (SWIR) energy with the vertical scale indicating the number of pixels displaying high temperatures between 23 June 2018 and 29 May 2019. Courtesy of POVI.

Ballistic ejecta were observed above the crater rim on 17 and 20 June 2019 (figure 81), and activity was heard on 20 and 21 June. Activity throughout the month remained similar to previous months, with a fluctuating lava lake and minor explosions. On 15 July a thermal camera imaged a ballistic bomb landing over 300 m from the crater and disintegrating upon impact. Incandescent material was sporadically observed on 16 July. Strombolian activity increased on 22 July with the highest intensity activity in four years continuing through the 25th (figure 82).

Figure (see Caption) Figure 81. Ballistic ejecta is visible above the Villarrica crater in this infrared camera (IR940 nm) image taken on 17 June 2019. Courtesy of POVI.
Figure (see Caption) Figure 82. Strombolian activity at Villarrica on 22, 23, and 24 July with incandescent ballistic ejecta seen here above the summit crater. Courtesy of POVI.

On 6 August the Alert Level was raised by SERNAGEOMIN from Green to Yellow (on a scale of Green, Yellow, Orange, and Red indicating the greatest level of activity) due to activity being above the usual background level, including ejecta confirmed out to 200 m from the crater with velocities on the order of 100 km/hour (figure 83). The temperature of the lava lake was measured at a maximum of 1,000°C on 25 July. POVI reported the collapse of a segment of the eastern crater rim, possibly due to snow weight, between 9 and 12 August. The MIROVA system showed an increase in thermal energy in August (figure 84) and there was one MODVOLC thermal alert on 24 July.

Figure (see Caption) Figure 83. Observations during an overflight of Villarrica on 25 July 2019 showed that ballistic ejecta up to 50 cm in diameter had impacted out to 200 m from the crater. The velocities of these ejecta were likely on the order of 100 km/hour. The maximum temperature of the lava lake measured was 1,000°C, and 500°C was measured around the crater. Courtesy of SERNAGEOMIN.
Figure (see Caption) Figure 84. Thermal activity at Villarrica detected by the MIROVA system shows an increase in detected energy in August 2019. Courtesy of MIROVA.

Geologic Background. Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: Proyecto Observación Villarrica Internet (POVI) (URL: http://www.povi.cl/); Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Reventador (Ecuador) — August 2019 Citation iconCite this Report

Reventador

Ecuador

0.077°S, 77.656°W; summit elev. 3562 m

All times are local (unless otherwise noted)


Daily ash emissions and incandescent block avalanches continue, February-July 2019

The andesitic Volcán El Reventador lies east of the main volcanic axis of the Cordillera Real in Ecuador and has historical eruptions with numerous lava flows and explosive events going back to the 16th century. An eruption in November 2002 generated a 17-km-high eruption cloud, pyroclastic flows that traveled 8 km, and several lava flows. Eruptive activity has been continuous since 2008. Daily explosions with ash emissions and ejecta of incandescent blocks rolling hundreds of meters down the flanks have been typical for many years. Alameida et al. (2019) provide an excellent summary of recent activity (2016-2018) and monitoring. Activity continued during February-July 2019, the period covered in this report, with information provided by Ecuador's Instituto Geofisico (IG-EPN), the Washington Volcano Ash Advisory Center (VAAC), and infrared satellite data.

Persistent thermal activity accompanied daily ash emissions and incandescent block avalanches during February-July 2019 (figure 111). Ash plumes generally rose 600-1,200 m above the summit crater and drifted W or NW; incandescent blocks descended up to 800 m down all the flanks. On 25 February an ash plume reached 9.1 km altitude and drifted SE, causing ashfall in nearby communities. Pyroclastic flows were reported on 18 April and 19 May traveling 500 m down the flanks. Small but distinct SO2 emissions were detectible by satellite instruments a few times during the period (figure 112).

Figure (see Caption) Figure 111. The thermal energy at Reventador persisted throughout 4 November 2018 through July 2019, but was highest in April and May. Courtesy of MIROVA.
Figure (see Caption) Figure 112. Small SO2 plumes were released from Reventador and detected by satellite instruments only a few times during February-July 2019. Columbia's Nevada del Ruiz produced a much larger SO2 signal during each of the days shown here as well. Top left: 26 February; top right: 27 February; bottom left: 3 April; bottom right: 4 April. Courtesy of NASA Goddard Space Flight Center.

The Washington VAAC issued multiple daily ash advisories on all but two days during February 2019. IGEPN reported daily ash emissions rising from 400 to over 1,000 m above the summit crater. Incandescent block avalanches rolled 400-800 m down the flanks on most nights (figure 113). Late on 8 February the Washington VAAC reported an ash plume moving W at 5.8 km altitude extending 10 km from the summit. Plumes rising more than 1,000 m above the summit were reported on 9, 13, 16, 18, 19, and 25 February. On 25 February the Washington VAAC reported an ash plume visible in satellite imagery drifting SE from the summit at 9.1 km altitude that dissipated quickly, and drifted SSE. It was followed by new ash clouds at 7.6 km altitude that drifted S. Ashfall was reported in San Luis in the Parish of Gonzalo Díaz de Pineda by UMEVA Orellana and the Chaco Fire Department.

Figure (see Caption) Figure 113. Emission of ash from Reventador and incandescent blocks rolling down the cone occurred daily during February 2019, and were captured by the COPETE webcam located on the S rim of the caldera. On 1 February (top left) incandescent blocks rolled 600 m down the flanks. On 13 February (top right) ash plumes rose 800 m and drifted W. On 16 February (bottom left) ash rose to 1,000 m and drifted W. On 18 February (bottom right) the highest emission exceeded 1,000 m above the crater and was clearly visible in spite of meteoric clouds obscuring the volcano. Courtesy of IGEPN (Daily reports 2019-32, 44, 47, and 49).

Ash plumes exceeded 1,000 m in height above the summit almost every day during March 2019 and generally drifted W or NW. The Washington VAAC reported an ash plume visible above the cloud deck at 6.7 km altitude extending 25 km NW early on 3 March; there were no reports of ashfall nearby. Incandescent block avalanches rolled 800 m down all the flanks the previous night; they were visible moving 300-800 m down the flanks most nights throughout the month (figure 114).

Figure (see Caption) Figure 114. Ash plumes and incandescent block avalanches occurred daily at Reventador during March 2019 and were captured by the COPETE webcam on the S rim of the caldera. On 3 March (top left) a possible pyroclastic flow traveled down the E flank in the early morning. Ash plumes on 17 and 18 March (top right, bottom left) rose 900-1,000 m above the summit and drifted W. On 23 March (bottom right) ash plumes rose to 1,000 m and drifted N while incandescent blocks rolled 600 m down the flanks. Courtesy of IGEPN (Daily reports 2019 62, 76, 77, and 82).

During April 2019 ash plume heights ranged from 600 to over 1,000 m above the summit each day, drifting either W or NW. Incandescent avalanche blocks rolled down all the flanks for hundreds of meters daily; the largest explosions sent blocks 800 m from the summit (figure 115). On 18 April IGEPN reported that a pyroclastic flow the previous afternoon had traveled 500 m down the NE flank.

Figure (see Caption) Figure 115. Ash plumes and incandescent block avalanches occurred daily at Reventador during April 2019. On 3 April, ash emissions were reported drifting W and NW at 1,000 m above the summit (top left). On 14 April ash plumes rose over 600 m above the summit crater (top right). The 3 and 14 April images were taken from the LAVCAM webcam on the SE flank. Incandescent block avalanches descended 800 m down all the flanks on 15 April along with ash plumes rising over 1,000 m above the summit (bottom left), both visible in this image from the COPETE webcam on the S rim of the caldera. A pyroclastic flow descended 500 m down the NE flank on 17 April and was captured in the thermal REBECA webcam (bottom right) located on the N rim of the caldera. Courtesy of IGEPN (Daily reports 2019-93, 104, 105, and 108).

On most days during May 2019, incandescent block avalanches were observed traveling 700-800 m down all the flanks. Ash plume heights ranged from 600 to 1,200 m above the crater each day of the month (figure 116) they were visible. A pyroclastic flow was reported during the afternoon of 19 May that moved 500 m down the N flank.

Figure (see Caption) Figure 116. Even on days with thick meteoric clouds, ash plumes can be observed at Reventador. The ash plumes reached 1,000 m above the crater on 8 May 2019 (top left). The infrared webcam REBECA on the N rim of the caldera captured a pyroclastic flow on the N flank on the afternoon of 19 May (top right). Strong explosions on 23 May sent incandescent blocks and possible pyroclastic flows at least 800 m down all the flanks (bottom left). Ash plumes reached 1,000 m above the summit on 27 May and drifted W (bottom right). Images on 8, 23, and 27 May taken from the COPETE webcam on the S rim of the caldera. Courtesy of IGEPN (Daily Reports 2019-128, 140, 143, and 147).

Activity diminished somewhat during June 2019. Ash plumes reached 1,200 m above the summit early in June but decreased to 600 m or less for the second half of the month. Meteoric clouds prevented observation for most of the third week of June; VAAC reports indicated ash emissions rose to 5.2 km altitude on 19 June and again on 26 June (about 2 km above the crater). Incandescent blocks were reported traveling down all of the flanks, generally 500-800 m, during about half of the days the mountain was visible (figure 117). Multiple VAAC reports were also issued daily during July 2019. Ash plumes were reported by IGEPN rising over 600 m above the crater every day it was visible and incandescent blocks traveled 400-800 m down the flanks (figure 118). The Darwin VAAC reported an ash emission on 9 July that rose to 4.9 km altitude as multiple puffs that drifted W, extending about 35 km from the summit.

Figure (see Caption) Figure 117. Activity diminished slightly at Reventador during June 2019. Incandescent material was visible on the N flank from infrared webcam REBECA on the N rim of the caldera on 6 June (top left). On 7 June ash rose over 1,000 m above the summit and drifted N and W (top right) as seen from the COPETE webcam on the S rim of the caldera. Incandescent block avalanches rolled 600 m down all the flanks on 8 June (bottom left) and were photographed by the LAVCAM webcam located on the SE flank. An ash plume rose to 1,000 m on 25 June and was photographed from the San Rafael waterfall (bottom right). Courtesy of IGEPN (Daily Reports 2019-157, 158, 159, and 176).
Figure (see Caption) Figure 118. Daily explosive activity was reported at Reventador during July 2019. On 9 and 10 July ash plumes rose over 600 m and drifted W and incandescent blocks descended 800 m down all the flanks (top row), as seen from the LAVCAM webcam on the SE flank. On 27 July many of the large incandescent blocks appeared to be several m in diameter as they descended the flanks (bottom left, LAVCAM). On 1 August, a small steam plume was visible on a clear morning from the CORTESIA webcam located N of the volcano. Courtesy of IGEPN Daily reports (2019-190, 191, 208, and 213).

References: Almeida M, Gaunt H E, and Ramón P, 2019, Ecuador's El Reventador volcano continually remakes itself, Eos, 100, https://doi.org/10.1029/2019EO117105. Published on 18 March 2019.

Geologic Background. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Information Contacts: Instituto Geofísico (IG-EPN), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec ); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Raikoke (Russia) — August 2019 Citation iconCite this Report

Raikoke

Russia

48.292°N, 153.25°E; summit elev. 551 m

All times are local (unless otherwise noted)


Short-lived series of large explosions 21-23 June 2019; first recorded activity in 95 years

Raikoke in the central Kuril Islands lies 400 km SW of the southern tip of Russia's Kamchatcka Peninsula. Two significant eruptive events in historical times, including fatalities, have been recorded. In 1778 an eruption killed 15 people "under the hail of bombs" who were under the command of Captain Chernyi, returning from Matua to Kamchatka. This prompted the Russian military to order the first investigation of the volcanic character of the island two years later (Gorshkov, 1970). Tanakadate (1925) reported that travelers on a steamer witnessed an ash plume rising from the island on 15 February 1924, observed that the island was already covered in ash from recent activity, and noted that a dense steam plume was visible for a week rising from the summit crater. The latest eruptive event in June 2019 produced a very large ash plume that covered the island with ash and dispersed ash and gases more than 10 km high into the atmosphere. The volcano is monitored by the Sakhalin Volcanic Eruption Response Team, (SVERT) part of the Institute of Marine Geology and Geophysics, Far Eastern Branch of the Russian Academy of Sciences (IMGG FEB RAS) and the Kamchatka Volcanic Eruption Response Team (KVERT) which is part of the Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences (IVS FEB RAS).

A brief but intense eruption beginning on 21 June 2019 sent major ash and sulfur dioxide plumes into the stratosphere (figures 1 and 2); the plumes rapidly drifted over 1,000 km from the volcano. Strong explosions with dense ash plumes lasted for less than 48 hours, minor emissions continued for a few more days; the SO2, however, continued to circulate over far eastern Russia and the Bering Sea for more than three weeks after the initial explosion. The eruption covered the island with centimeters to meters of ash and enlarged the summit crater. By the end of July 2019 only minor intermittent steam emissions were observed in satellite imagery.

Figure (see Caption) Figure 1. On the morning of 22 June 2019, astronauts on the International Space Station captured this image of a large ash plume rising from Raikoke in the Kuril Islands. The plume reached altitudes of 10-13 km and drifted E during the volcano's first known explosion in 95 years. Courtesy of NASA Earth Observatory.
Figure (see Caption) Figure 2. A large and very dense SO2 plume (measuring over 900 Dobson Units (DU)) drifted E from Raikoke in the Kuril Islands on 22 June 2019, about 8 hours after the first known explosion in 95 years. Courtesy of NASA Goddard Space Flight Center.

Summary of 2019 activity. A powerful eruption at Raikoke began at 1805 on 21 June 2019 (UTC). Volcano Observatory Notices for Aviation (VONA's) issued by KVERT described the large ash plume that rapidly rose to 10-13 km altitude and extended for 370 km NE within the first two hours (figure 3). After eight hours, the plume extended 605 km ENE; it had reached 1,160 km E by 13 hours after the first explosion (figure 4). The last strong explosive event, according to KVERT, producing an ash column as high as 10-11 km, occurred at 0540 UTC on 22 June. SVERT reported a series of nine explosions during the eruption. Over 440 lightning events within the ash plume were detected in the first 24 hours by weather-monitoring equipment. The Japanese Ministry of Transportation reported that almost 40 planes were diverted because of the ash plume (figure 5).

Figure (see Caption) Figure 3. A dense ash plume drifted E from Raikoke on 22 June 2019 from a series of large explosions that lasted for less than 24 hours, as seen in this Terra satellite image. The plume was detected in the atmosphere for several days after the end of the eruptive activity. Courtesy of NASA Earth Observatory.
Figure (see Caption) Figure 4. The ash plume from Raikoke volcano that erupted on 21 June 2019 drifted over 1,000 km E by late in the day on 22 June, as seen in this oblique, composite view based on data from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite. Courtesy of NASA Earth Observatory.
Figure (see Caption) Figure 5. Numerous airplanes were traveling on flight paths near the Raikoke ash plume (black streak at center) early on 22 June 2019. The Japanese Ministry of Transportation reported that almost 40 planes were diverted because of the plume. Courtesy of Flightradar24 and Volcano Discovery.

On 23 June (local time) the cruise ship Athena approached the island; expedition member Nikolai Pavlov provided an eyewitness account and took remarkable drone photographs of the end of the eruption. The ship approached the W flank of the island in the late afternoon and they were able to launch a drone and photograph the shore and the summit. They noted that the entire surface of the island was covered with a thick layer of light-colored ash up to several tens of centimeters thick (figure 6). Fresh debris up to several meters thick fanned out from the base of the slopes (figure 7). The water had a yellowish-greenish tint and was darker brown closer to the shore. Dark-brown steam explosions occurred when waves flowed over hot areas along the shoreline, now blanketed in pale ash with bands of steam and gas rising from it (figure 8). A dense brown ash plume drifted W from the crater, rising about 1.5 km above the summit (figure 9).

Figure (see Caption) Figure 6. The entire surface of the island of Raikoke was covered with a thick layer of light-colored ash up to several tens of centimeters thick on 23 June 2019 when photographed by drone from the cruise ship Athena about 36 hours after the explosions began. View is of the W flank. Photo by Nik Pavlov; courtesy of IVS FEB RAS.
Figure (see Caption) Figure 7. Fresh ash and volcanic debris up to several meters thick coated the flanks of Raikoke on 23 June 2019 after the large explosive eruption two days earlier. View is by drone of the W flank. Photo by Nik Pavlov; courtesy of IVS FEB RAS.
Figure (see Caption) Figure 8. The 21 June 2019 eruption of Raikoke covered the island in volcanic debris. The formerly vegetated areas (left, before eruption) were blanketed in pale ash with bands of steam and gas rising all along the shoreline (right, on 23 June 2019) less than two days after the explosions began. The open water area between the sea stack and the island was filled with tephra. Photos by Nik Pavlov; courtesy of IVS FEB RAS.
Figure (see Caption) Figure 9. At the summit of Raikoke on 23 June 2019, a dense brown ash plume drifted W from the crater, rising about 1.5 km, two days after a large explosive eruption. Drone photo by Nik Pavlov; courtesy of IVS FEB RAS.

Early on 23 June, the large ash cloud continued to drift E and then NE at an altitude of 10-13 km. At that altitude, the leading edge of the ash cloud became entrained in a large low pressure system and began rotating from SE to NW, centered in the area of the Komandorskiye Islands, 1,200 km NE of Raikoke. By then the farthest edge of ash plume was located about 2,000 km ENE of the volcano. Meanwhile, at the summit and immediately above, the ash plume was drifting NW on 23 June (figures 9 and 10). Ashfall was reported (via Twitter) from a ship in the Pacific Ocean 40 km from Raikoke on 23 June. Weak ashfall was also reported in Paramushir, over 300 km NE the same day. KVERT reported that satellite data from 25 June indicated that a steam and gas plume, possibly with some ash, extended for 60 km NW. They also noted that the high-altitude "aerosol cloud" continued to drift to the N and W, reaching a distance of 1,700 km NW (see SO2 discussion below). By 27 June KVERT reported that the eruption had ended, but the aerosols continued to drift to the NW and E. They lowered the Aviation Alert Level to Green the following day.

Figure (see Caption) Figure 10. The brown ash plume from Raikoke was drifting NW on 23 June 2019 (left), while the remnants of the ash from the earlier explosions continued to be observed over a large area to the NE on 25 June (right). The plume in the 23 June image extends about 30 km NW; the plume in the 25 June image extends a similar distance NE. Natural color rendering (bands 4, 3, 2) of Sentinel-2 imagery, courtesy of Sentinel Hub Playground.

Tokyo and Anchorage VAAC Reports. The Tokyo VAAC first observed the ash plume in satellite imagery at 10.4 km altitude at 1850 on 21 June 209, just under an hour after the explosion was first reported by KVERT. About four hours later they updated the altitude to 13.1 km based on satellite data and a pilot report. By the evening of 22 June the high-level ash plume was still drifting ESE at about 13 km altitude while a secondary plume at 4.6 km altitude drifted SE for a few more hours before dissipating. The direction of the high-altitude plume began to shift to the NNW by 0300 on 23 June. By 0900 it had dropped slightly to 12.2 km and was drifting NE. The Anchorage VAAC reported at 2030 that the ash plume was becoming obscured by meteorological clouds around a large and deep low-pressure system in the western Bering Sea. Ash and SO2 signals in satellite imagery remained strong over the region S and W of the Pribilof Islands as well as over the far western Bering Sea adjacent to Russia. By early on 24 June the plume drifted NNW for a few hours before rotating back again to a NE drift direction. By the afternoon of 24 June, the altitude had dropped slightly to 11.6 km as it continued to drift NNE.

The ash plume was still clearly visible in satellite imagery late on 24 June. An aircraft reported SO2 at 14.3 km altitude above the area of the ash plume. The plume then began to move in multiple directions; the northern part moved E, while the southern part moved N. The remainder was essentially stationary, circulating around a closed low-pressure zone in the western Bering Sea. The ash plume remained stationary and slowly dissipated as it circulated around the low through 25 June before beginning to push S (figure 11). By early on 26 June the main area of the ash plume was between 325 km WSW of St. Matthew Island and 500 km NNW of St. Lawrence Island, and moving slowly NW. The Anchorage VAAC could no longer detect the plume in satellite imagery shortly after midnight (UTC) on 27 June, although they noted that areas of aerosol haze and SO2 likely persisted over the western Bering Sea and far eastern Russia.

Figure (see Caption) Figure 11. This RGB image created from a variety of spectral channels from the GOES-17 (GOES-West) satellite shows the ash and gas plume from Raikoke on 25 June 2019. The brighter yellows highlight features that are high in SO2 concentration. Highlighted along the bottom of the image is the pilot report over the far southern Bering Sea; the aircraft was flying at an altitude of 11 km (36,000 feet), and the pilot remarked that there were multiple layers seen below that altitude which had a greyish appearance (likely volcanic ash). Courtesy of NOAA and Scott Bachmeier.

Sulfur dioxide emissions. A very large SO2 plume was released during the eruption. Preliminary total SO2 mass estimates by Simon Carn taken from both UV and IR sensors suggested around 1.4-1.5 Tg (1 Teragram = 109 Kg) that included SO2 columns within the ash plume with values as high as 1,000 Dobson Units (DU) (figure 12). As the plume drifted on 23 and 24 June, similar to the ash plume as described by the Tokyo VAAC, it moved in a circular flow pattern as a result of being entrained in a low-pressure system in the western Bering Sea (figure 13). By 25 June the NW edge of the SO2 had reached far eastern Russia, 1,700 km from the volcano (as described by KVERT), while the eastern edges reached across Alaska and the Gulf of Alaska to the S. Two days later streams of SO2 from Raikoke were present over far northern Siberia and northern Canada (figure 14). For the following three weeks high levels of SO2 persisted over far eastern Russia and the Bering Sea, demonstrating the close relationship between the prevailing weather patterns and the aerosol concentrations from the volcano (figure 15).

Figure (see Caption) Figure 12. A contour map showing the mass and density of SO2 released into the atmosphere from Raikoke on 22 June 2019. Courtesy of Simon Carn.
Figure (see Caption) Figure 13. Streams of SO2 from Raikoke drifted around a complex flow pattern in the Bering Sea on 23 and 24 June 2019. Data from TROPOMI instrument on the Sentinel-5P satellite, courtesy of NASA Goddard Space Flight Center and Simon Carn.
Figure (see Caption) Figure 14. SO2 plumes from Raikoke dispersed over a large area of the northern hemisphere in late June 2019. By 25 June (top) the SO2 plumes had dispersed to far eastern Russia, 1,700 km from the volcano, while the eastern edges reached across Alaska and the Gulf of Alaska to the S. By 27 June (bottom) streams of SO2 were present over far northern Siberia and northern Canada, and also continued to circulate in a denser mass over far eastern Russia. Data from TROPOMI instrument on the Sentinel-5P satellite, courtesy of NASA Goddard Space Flight Center and Simon Carn.
Figure (see Caption) Figure 15. For the first two weeks of July 2019, high levels of SO2 from the 21 June 2019 eruption of Raikoke persisted over far eastern Russia and the Bering Sea entrained in a slow moving low-pressure system, demonstrating the close relationship between the prevailing weather patterns and the aerosol concentrations from the volcano. Data from TROPOMI instrument on the Sentinel-5P satellite, courtesy of NASA Goddard Space Flight Center.

Changes to the island. Since no known activity had occurred at Raikoke for 95 years, the island was well vegetated on most of its slopes and the inner walls of the summit crater before the explosion (figure 16). The first clear satellite image after the explosion, on 30 June 2019, revealed a modest steam plume rising from the summit crater, pale-colored ash surrounding the entire island, and new deposits of debris fans extending out from the NE, SW, and S flanks. Part of a newly enlarged crater was visible at the N edge of the old crater. Two weeks later only a small steam plume was present at the summit, making the outline of the enlarged crater more visible; the extensive shoreline deposits of fresh volcanic material remained. A clear view into the summit crater on 23 July revealed the size and shape of the newly enlarged summit crater (figure 17).

Figure (see Caption) Figure 16. Changes at Raikoke before and after the 21 June 2019 eruption were clear in Sentinel-2 satellite imagery. The island was heavily vegetated on most of its slopes and the inner walls of the summit crater before the explosion (top left, 3 June 2019). The first clear satellite image after the explosion, on 30 June 2019 revealed a steam plume rising from the summit crater, pale-colored ash surrounding the entire island, and new deposits of debris fans extending out from the NE, SW, and S flanks (top right). Part of a newly enlarged crater was visible at the N edge of the old crater. Two weeks later only a small steam plume was present at the summit, making the outline of the enlarged crater more visible; the extensive shoreline deposits of fresh volcanic material remained (bottom right, 13 July 2019). A clear view into the summit crater on 23 July revealed the new size and shape of the summit crater (bottom left). Natural Color rendering (bands 4, 3, 2), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 17. Sentinel-2 satellite imagery of the summit crater of Raikoke before (left) and after (right) the explosions that began on 21 June 2019. The old crater rim is outlined in red in both images. The new crater rim is outlined in yellow in the 23 July image. Natural Color rendering (bands 4, 3, 2), courtesy of Sentinel Hub Playground.

References: Gorshkov G S, 1970, Volcanism and the Upper Mantle; Investigations in the Kurile Island Arc, New York: Plenum Publishing Corp, 385 p.

Tanakadate H, 1925, The volcanic activity in Japan during 1914-1924, Bull Volc. v. 1, no. 3.

Geologic Background. A low truncated volcano forms the small barren Raikoke Island, which lies 16 km across the Golovnin Strait from Matua Island in the central Kuriles. The oval-shaped basaltic island is only 2 x 2.5 km wide and rises above a submarine terrace. An eruption in 1778, during which the upper third of the island was said to have been destroyed, prompted the first volcanological investigation in the Kuril Islands two years later. Incorrect reports of eruptions in 1777 and 1780 were due to misprints and errors in descriptions of the 1778 event (Gorshkov, 1970). Another powerful eruption in 1924 greatly deepened the crater and changed the outline of the island. Prior to a 2019 eruption, the steep-walled crater, highest on the SE side, was 700 m wide and 200 m deep. Lava flows mantle the eastern side of the island.

Information Contacts: Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Sakhalin Volcanic Eruption Response Team (SVERT), Institute of Marine Geology and Geophysics, Far Eastern Branch, Russian Academy of Science, Nauki st., 1B, Yuzhno-Sakhalinsk, Russia, 693022 (URL: http://www.imgg.ru/en/, http://www.imgg.ru/ru/svert/reports); Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: http://earthobservatory.nasa.gov/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NOAA, Cooperative Institute for Meteorological Satellite Studies (CIMSS), Space Science and Engineering Center (SSEC), University of Wisconsin-Madison, 1225 W. Dayton St. Madison, WI 53706, (URL: http://cimss.ssec.wisc.edu/); Simon Carn, Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: http://www.volcarno.com/, Twitter: @simoncarn); Scott Bachmeier, Cooperative Institute for Meteorological Satellite Studies (CIMSS), Space Science and Engineering Center (SSEC), University of Wisconsin-Madison, 1225 W. Dayton St. Madison, WI 53706; Flightradar24 (URL: https://www.flightradar24.com/51,-2/6); Volcano Discovery (URL: http://www.volcanodiscovery.com/).


Sinabung (Indonesia) — August 2019 Citation iconCite this Report

Sinabung

Indonesia

3.17°N, 98.392°E; summit elev. 2460 m

All times are local (unless otherwise noted)


Large ash explosions on 25 May and 9 June 2019

Indonesia's Sinabung volcano in north Sumatra has been highly active since its first confirmed Holocene eruption during August and September 2010. It remained quiet after the initial eruption until September 2013, when a new eruptive phase began that continued uninterrupted through June 2018. Ash plumes often rose several kilometers, avalanche blocks fell kilometers down the flanks, and deadly pyroclastic flows traveled more than 4 km repeatedly during the eruption. After a pause in eruptive activity from July 2018 through April 2019, explosions took place again during May and June 2019. This report covers activity from July 2018 through July 2019 with information provided by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), referred to by some agencies as CVGHM or the Indonesian Center of Volcanology and Geological Hazard Mitigation, the Darwin Volcanic Ash Advisory Centre (VAAC), and the Badan Nacional Penanggulangan Bencana (National Disaster Management Authority, BNPB). Additional information comes from satellite instruments and local news reports.

After the last ash emission observed on 5 July 2018, activity diminished significantly. Occasional thermal anomalies were observed in satellite images in August 2018, and February-March 2019. Seismic evidence of lahars was recorded almost every month from July 2018 through July 2019. Renewed explosions with ash plumes began in early May; two large events, on 24 May and 9 June, produced ash plumes observed in satellite data at altitudes greater than 15 km (table 9).

Table 9. Summary of activity at Sinabung during July 2018-July 2019. Steam plume heights from PVMBG daily reports. VONA reports issued by Sinabung Volcano Observatory, part of PVMBG. Satellite imagery from Sentinel-2. Lahar seismicity from PVMBG daily and weekly reports. Ash plume heights from VAAC reports. Pyroclastic flows from VONA reports.

Month Steam Plume Heights (m) Dates of VONA reports Satellite Thermal Anomalies (date) Seismicity indicating Lahars (date) Ash Plume Altitude (date and distance) Pyroclastic flows
Jul 2018 100-700 -- -- -- -- --
Aug 2018 50-700 -- 30 1, 20 -- --
Sep 2018 100-500 -- -- 1st week, 12, 29 -- --
Oct 2018 50-1,000 -- -- 1 -- --
Nov 2018 50-350 -- -- 14 -- --
Dec 2018 50-500 -- -- 30 -- --
Jan 2019 50-350 -- -- -- -- --
Feb 2019 100-400 -- 6, 21 -- -- --
Mar 2019 50-300 -- 3, 8 27 -- --
Apr 2019 50-400 -- -- 2, 4, 11 -- --
May 2019 200-700 7, 11, 12, 24, 26, 27 (2) -- 4, 14 7 (4.6 km), 24 (15.2 km), 25 (6.1 km) --
June 2019 50-600 9, 10 -- -- 9 (16.8 km), 10 (3.0 km) 9-3.5 km SE, 3.0 km S
July 2019 100-700 -- -- 10, 12, 14, 16, 4th week -- --

No eruptive activity was reported after 5 July 2018 for several months, however Sentinel-2 thermal imagery on 30 August indicated a hot spot at the summit suggestive of eruptive activity. The next distinct thermal signal appeared on 6 February 2019, with a few more in late February and early March (figure 66, see table 9).

Figure (see Caption) Figure 66. Sentinel-2 satellite imagery on 30 August 2018, 6 February, and 8 March 2019 showed distinct thermal anomalies suggestive of eruptive activity at Sinabung, although no activity was reported by PVMBG. Images rendered with Atmospheric Penetration, bands 12, 11, and 8A. Courtesy of Sentinel Hub Playground.

PVMBG reported the first ash emission in 11 months early on 7 May 2019. They noted that an ash plume rose 2 km above the summit and drifted ESE. The Sinabung Volcano Observatory (SVO) issued a VONA (Volcano Observatory Notice for Aviation) that described an eruptive event lasting for a little over 40 minutes. Ashfall was reported in several villages. The Jakarta Post reported that Karo Disaster Mitigation Agency (BPDB) head Martin Sitepu said four districts were affected by the eruption, namely Simpang Empat (7 km SE), Namanteran (5 km NE), Kabanjahe (14 km SE), and Berastadi (12 km E). The Darwin VAAC reported the ash plume at 4.6 km altitude and noted that it dissipated about six hours later (figure 67). The TROPOMI SO2 instrument detected an SO2 plume shortly after the event (figure 68).

Figure (see Caption) Figure 67. Images from the explosion at Sinabung on 7 May 2019. Left and bottom right photos by Kopi Cimbang and Kalak Karo Kerina, courtesy of David de Zabedrosky. Top right photo courtesy of Sutopo Purwo Nugroho, BNPB.
Figure (see Caption) Figure 68. The TROPOMI instrument on the Sentinel-5P satellite captured an SO2 emission from Sinabung shortly after the eruption on 7 May 2019. Courtesy of NASA Goddard Space Flight Center.

On 11 May 2019 SVO issued a VONA reporting a seismic eruption event with a 9 mm amplitude that lasted for about 30 minutes; clouds and fog prevented visual confirmation. Another VONA issued the following day reported an ash emission that lasted for 28 minutes but again was not observed due to fog. The Darwin VAAC did not observe the ash plumes reported on 11 or 12 May; they did report incandescent material observed in the webcam on 11 May. Sutopo Purwo Nugroho of BNPB reported that the 12 May eruption was accompanied by incandescent lava and ash, and the explosion was heard in Rendang (figure 69). The Alert Level had been at Level IV since 2 June 2015. Based on decreased seismicity, a decrease in visual activity (figure 70), stability of deformation data, and a decrease in SO2 flux during the previous 11 months, PVMBG lowered the Alert Level from IV to III on 20 May 2019.

Figure (see Caption) Figure 69. Incandescent lava and ash were captured by a webcam at Sinabung on 12 May 2019. Courtesy of Sutopo Purwo Nugroho, BNPB.
Figure (see Caption) Figure 70. The summit of Sinabung emitted only steam and gas on 18 May 2019, shortly before PVMBG lowered the Alert Level from IV to III. Courtesy of PVMBG (Decreased G. Sinabung activity level from Level IV (Beware) to Level III (Standby), May 20, 2019).

A large explosion was reported by the Darwin VAAC on 24 May 2019 (UTC) that produced a high-altitude ash plume visible in satellite imagery at 15.2 km altitude moving W; the plume was not visible from the ground due to fog. The Sinabung Volcano Observatory reported that the brief explosion lasted for only 7 minutes (figure 71), but the plume detached and drifted NW for about 12 hours before dissipating. The substantial SO2 plume associated with the event was recorded by satellite instruments a few hours later (figure 72, left). Another six-minute explosion late on 26 May (UTC) produced an ash plume that was reported by a ground observer at 4.9 km altitude drifting S (figure 72, right). About an hour after the event, the Darwin VAAC observed the plume drifting S at 6.1 km altitude; it had dissipated four hours later. Sumbul Sembiring, a resident of Kabanjahe, told news outlet Tempo.com that ash had fallen at the settlements. Two more explosions were reported on 27 May; the first lasted for a little over 12 minutes, the second (about 90 minutes later, 28 May local time) lasted for about 2.5 minutes. No ash plumes were visible from the ground or satellite imagery for either event.

Figure (see Caption) Figure 71. A brief but powerful explosion at Sinabung in the early hours of 25 May 2019 (local time) produced a seven-minute-long seismic signal and a 15.2-km-altitude ash plume. Courtesy of MAGMA Indonesia and Volcano Discovery.
Figure (see Caption) Figure 72. Two closely spaced eruptive events occurred at Sinabung on 24 and 26 May UTC (25 and 27 May local time). The 24 May event produced a significant SO2 plume recorded by the TROPOMI instrument a few hours afterwards (left), and a 15.2-km-altitude ash plume only recorded in satellite imagery. The event on 26 May produced a visible ash plume that was reported at 6.1 km altitude and was faintly visible from the ground (right). SO2 courtesy of NASA Goddard Space Flight Center, photograph courtesy of PVMBG and Øystein Lund Andersen.

An explosion on 9 June 2019 produced an ash plume, estimated from the ground as rising to 9.5 km altitude, that drifted S and E; pyroclastic flows traveled 3.5 km SE and 3 km S down the flanks (figure 73). The explosion was heard at the Sinabung Observatory. The Darwin VAAC reported that the eruption was visible in Himawari-8 satellite imagery, and reported by pilots, at 16.8 km altitude drifting W; about an hour later the VAAC noted that the detached plume continued drifting SW but lower plumes were still present at 9.1 km altitude drifting W and below 4.3 km drifting SE. They also noted that pyroclastic flows moving SSE were sending ash to 4.3 km altitude. Three hours later they reported that both upper level plumes had detached and were moving SW and W. After six hours, the lower altitude plumes at 4.3 and 9.1 km altitudes had dissipated; the higher plume continued moving SW at 12.2 km altitude until it dissipated within the next eight hours. Instruments on the Sentinel-5P satellite captured an SO2 plume from the explosion drifting W across the southern Indian Ocean (figure 74).

Figure (see Caption) Figure 73. A large explosion at Sinabung on 9 June 2019 produced an ash plume that rose to 16.8 km altitude and also generated pyroclastic flows (foreground) that traveled down the S and SE flanks. Left image courtesy of Sutopo Purwo Nugroho, Head of the BNPB Information and Public Relations Data Center. Right image photo source PVMBG/Mbah Rono/ Berastagi Nachelle Homestay, courtesy of Jaime Sincioco.
Figure (see Caption) Figure 74. An SO2 plume from the 9 June 2019 explosion at Sinabung drifted more than a thousand kilometers W across the southern Indian Ocean. Courtesy of Sentinel Hub and Annamaria Luongo.

The SVO reported continuous ash and gas emissions at 3.0 km altitude moving ESE early on 10 June; it was obscured in satellite imagery by meteoric clouds. There were no additional VONA's or VAAC reports issued for the remainder of June or July 2019. An image on social media from 20 June 2019 shows incandescent blocks near the summit (figure 75). PVMBG reported that emissions on 25 June were white to brownish and rose 200 m above the summit and drifted E and SE.

Figure (see Caption) Figure 75. Incandescent blocks at the summit of Sinabung were visible in this 20 June 2019 image taken from a rooftop terrace in Berastagi, 13 km E. Photo by Nachelle Homestay, courtesy of Jaime Sincioco.

PVMBG detected seismic signals from lahars several times during the second week of July 2019. News outlets reported lahars damaging villages in the Karo district on 11 and 13 July (figure 76). Detik.com reported that lahars cut off the main access road to Perbaji Village (4 km SW), Kutambaru Village (14 km S), and the Tiganderket connecting road to Kutabuluh (17 km WNW). In addition, Puskesmas Kutambaru was submerged in mud. Images from iNews Malam showed large boulders and rafts of trees in thick layers of mud covering homes and roads. No casualties were reported.

Figure (see Caption) Figure 76. Lahars on 11 and 13 July 2019 caused damage in numerous villages around Sinabung, filling homes and roadways with mud, tree trunks, and debris. No casualties were reported. Courtesy of iNews Malam.

Geologic Background. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. The youngest deposit is a SE-flank pyroclastic flow 14C dated by Hendrasto et al. (2012) at 740-880 CE. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); The Jakarta Post (URL: https://www.thejakartapost.com/news/2019/05/07/mount-sinabung-erupts-again.html); Detikcom (URL: https://news.detik.com/berita/d-4619253/hujan-deras-sejumlah-desa-di-sekitar-gunung-sinabung-banjir-lahar-dingin); iNews Malam (URL: https://tv.inews.id/, https://www.youtube.com/watch?v=uAI4CpSb41k); Tempo.com (URL:https://en.tempo.co/read/1209667/mount-sinabung-erupts-on-monday-morning); David de Zabedrosky, Calera de Tango, Chile (Twitter: @deZabedrosky, URL: https://twitter.com/deZabedrosky/status/1125814504867160065/photo/1, https://twitter.com/deZabedrosky/status/1125814504867160065/photo/2); Sutopo Purwo Nugroho, BNPB (Twitter: @Sutopo_PN, URL: https://twitter.com/Sutopo_PN); Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/); Øystein Lund Andersen? (Twitter: @OysteinLAnderse, URL: https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com image at https://twitter.com/OysteinLAnderse/status/1132849458142572544); Jaime Sincioco, Phillipines (Twitter: @jaimessincioca, URL: https://twitter.com/jaimessincioco); Annamaria Luongo, University of Padua, Venice, Italy (Twitter: @annamaria_84, URL:https://twitter.com/annamaria_84).


Semisopochnoi (United States) — September 2019 Citation iconCite this Report

Semisopochnoi

United States

51.93°N, 179.58°E; summit elev. 1221 m

All times are local (unless otherwise noted)


Small explosions detected between 16 July and 24 August 2019

The remote island of Semisopochnoi in the western Aleutians is dominated by a caldera measuring 8 km in diameter that contains a small lake (Fenner Lake) and a number of post-caldera cones and craters. A small (100 m diameter) crater lake in the N cone of Semisopochnoi's Cerberus three-cone cluster has persisted since January 2019. An eruption at Sugarloaf Peak in 1987 included an ash plume (SEAN 12:04). Activity during September-October 2018 included increased seismicity and small explosions (BGVN 44:02). The primary source of information for this reporting period of July-August 2019 comes from the Alaska Volcano Observatory (AVO), when there were two low-level eruptions.

Seismicity rose above background levels on 5 July 2019. AVO reported that data from local seismic and infrasound sensors likely detected a small explosion on 16 July. A strong tremor on 17 July generated airwaves that were detected on an infrasound array 260 km E on Adak Island. In addition to this, a small plume extended 18 km WSW from the Cerberus vent, but no ash signals were detected in satellite data. Seismicity decreased abruptly on 18 July after a short-lived eruption. Seismicity increased slightly on 23 July and remained elevated through August.

On 24 July 2019 AVO reported that satellite data showed that the crater lake was gone and a new, shallow inner crater measuring 80 m in diameter had formed on the crater floor, though no lava was identified. Satellite imagery indicated that the crater of the Cerberus N cone had been replaced by a smooth, featureless area of either tephra or water at a level several meters below the previous floor. Satellite imagery detected faint steam plumes rising to 5-10 km altitude and minor SO2 emissions on 27 July. Satellite data showed a steam plume rising from Semisopochnoi on 18 August and SO2 emissions on 21-22 August. Ground-coupled airwaves identified in seismic data on 23-24 August was indicative of additional explosive activity.

Geologic Background. Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is 1221-m-high Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked 774-m-high Mount Cerberus volcano was constructed during the Holocene within the caldera. Each of the peaks contains a summit crater; lava flows on the northern flank of Cerberus appear younger than those on the southern side. Other post-caldera volcanoes include the symmetrical 855-m-high Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented historical eruptions have originated from Cerberus, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone within the caldera could have been active during historical time.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).


Krakatau (Indonesia) — August 2019 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 813 m

All times are local (unless otherwise noted)


Repeated Surtseyan explosions with ash and steam during February-July 2019

Krakatau volcano in the Sunda Strait between Java and Sumatra, Indonesia experienced a major caldera collapse around 535 CE; it formed a 7-km-wide caldera ringed by three islands. Remnants of this volcano joined to create the pre-1883 Krakatau Island which collapsed during the major 1883 eruption. Anak Krakatau (Child of Krakatau), constructed beginning in late 1927 within the 1883 caldera (BGVN 44:03, figure 56), was the site of over 40 smaller episodes until 22 December 2018 when a large explosion and tsunami destroyed most of the 338-m-high edifice (BGVN 44:03). Subsequent activity from February-July 2019 is covered in this report with information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, referred to as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG). Aviation reports are provided by the Darwin Volcanic Ash Advisory Center (VAAC), and photographs from several social media sources.

The cyclical nature of the growth and destruction of Krakatau was made apparent again in the explosive events of 22 December 2018-6 January 2019, when much of the island of Anak Krakatau was destroyed in a series of events that included a deadly tsunami from a flank collapse, a Vulcanian explosion, and several days of Surtseyan phreatomagmatic activity (figure 83) (Gouhier and Paris, 2019). Due to the location of the volcano in the middle of Sunda Strait, surrounded by coastal communities, damage from the tsunami was once again significant; over 400 fatalities and 30,000 injuries were reported along with damage to thousands of homes, businesses, and boats (figure 84) (BGVN 44:03). After a small explosion on 8 January 2019, the volcano remained quiet until 14 February when a new seismic event was recorded. Intermittent explosions increased in frequency and continued through July 2019; images of Surtseyan explosions with ejecta and steam rising a few hundred meters were occasionally captured by authorities patrolling the Krakatau Islands Nature Preserve and Marine Nature Reserve (KPHK), and by a newly installed webcam.

Figure (see Caption) Figure 83. The dramatic morphologic changes of Anak Krakatau before and after the explosive events of 22 December 2019-6 January 2019 were apparent in these Planet Labs, Inc. images published by the BBC. Left: Planet Lab's Dove satellite captured this clear image of the 338-m-high cone with a summit crater on 17 December 2018. Center: The skies cleared enough on 30 December to reveal the new crater in place of the former cone after the explosions and tsunami of 22-23 December, and multiple subsequent explosions. Right: Surtseyan explosions continued daily through 6 January; Planet Labs captured this event on 2 January 2019. Courtesy of BBC and Planet Labs, Inc.
Figure (see Caption) Figure 84. The location of Anak Krakatau in the middle of Sunda Strait surrounded by populated coastal communities (left) places great risk on those communities from explosive events and tsunamis at the volcano, such as what occurred during the 22 December 2018-6 January 2019 destruction of Anak Krakatau. The village of Tanjung in South Lampung (right) was especially hard hit. Map courtesy of BBC News, and photo courtesy of Daily Mail.

Three explosions were reported on 14, 18, and 23 February. No ash plume was observed on 14 February. The event on 18 February produced a dense gray ash plume that rose 720 m and drifted SSW. On 23 February the plume was white and rose 500 m, drifting ENE. During most days, no emissions were observed; occasional plumes of steam rose 50-100 m above the crater. Authorities visited the island on 15 February and observed the new crater lake and ash-covered flank of the remnant cone (figure 85 and 86).

Figure (see Caption) Figure 85. The denuded slope and new crater at Anak Krakatau on 15 February 2019. Bright orange discoloration of the water on the W side of the volcano is from recent iron-rich discharge. The new summit was measured at 155 m high. Verlaten Island is in the background. Courtesy of Sutopo Purwo Nugroho, BNPB.
Figure (see Caption) Figure 86. The new crater at Anak Krakatau on 15 February 2019. Fumarolic activity is visible in the narrow strip between the crater and the bay; bright orange discoloration of the water on the W side of the volcano is from recent iron-rich discharge. Courtesy of Sutopo Purwo Nugroho, BNPB.

Activity increased during March 2019 with 14 seismic events recorded. Four events on 14 March were reported, with durations ranging from 30 seconds to 4 minutes; neither ash nor steam plumes were reported from these events. Events on 16, 17, and 18 March produced N-drifting white steam plumes that were reported at altitudes of 1.2 km, 650 m, and 350 m, respectively (figure 87). Multiple additional explosions were reported on 24, 30, and 31 March; dense white plumes drifted NE on 30 and 31 March. Nearby rangers for the KPHK who witnessed the explosions on 30 March reported material rising 500-1,000 m above the crater (figure 88). The duration of the seismic events associated with the explosions ranged from 40 seconds to 5 minutes during the second half of March. PVMBG lowered the Alert Level from III to II on 25 March, noting that while explosions continued, the intensity and frequency had decreased; none of the explosions were heard at the Pasauran-Banten (SE) or Kalianda-Lampung (NE) stations that were each about 50 km away.

Figure (see Caption) Figure 87. An eruption at Krakatau on 18 March 2019 produced a steam plume that rose several hundred meters, barely visible from a community across the strait. Courtesy of Oystein Anderson and PVMBG.
Figure (see Caption) Figure 88. White steam and dark ejecta were observed at Anak Krakatau during an explosion on 30 March 2019 by the local patrol team from BKSDA Bengkulu-Ministry of LHK, which manages the Krakatau Islands Nature Preserve and Marine Nature Reserve. Courtesy of Krakatau Islands KPHK.

Although the number of reported seismic events increased significantly during April and May 2019, with 22 VONA's issued during April and 41 during May, only a single event had witnessed evidence of ejecta on 3 April (figure 89). The KPHK patrol that monitors conditions on the islands observed the first plant life returning on Sertung Island (5 km W of Anak Krakatau) on 5 April 2019, emerging through the several centimeters of fresh ash from the explosions and tsunami in late December and early January (figure 90). A 200-m-high steam plume was observed on 14 April, and plumes drifted NE and E on 27 and 29 April.

Figure (see Caption) Figure 89. Rangers for KPHK photographed a Surtseyan explosion with tephra and steam at Anak Krakatau on 3 April 2019. Courtesy of Krakatau Islands KPHK.
Figure (see Caption) Figure 90. A new plant on nearby Sertung Island emerges on 5 April 2019 through several centimeters of fresh ash from the Anak Krakatau explosions of December 2018 and January 2019. Courtesy of Krakatau Islands KPHK.

Members of an expedition to the island on 4 May 2019 photographed the still-steaming lake inside the new crater and the eroding ash-covered slopes (figure 91). Only the explosions on 10 and 17 May produced visible steam plumes that month, to 300-350 m high. By 15 May 2019 a new station had been installed at Anak Krakatau by PVMBG (figure 92). Four separate seismic events were recorded that day. Fog covered the island on a daily basis, and very few visible steam plumes were reported throughout April and May. The durations of the explosion events ranged from 30 seconds to 13 minutes (on 10 May); most of the events lasted for 1-2 minutes.

Figure (see Caption) Figure 91. Members of an expedition photographed the water-filled crater and ash-laden slopes of Anak Krakatau on 4 May 2019. Top image is looking S with Rakata island in the background, bottom image is looking W from the flank of the cone remnant. Photo by Galih Jati, courtesy of Volcano Discovery.
Figure (see Caption) Figure 92. By 15 May 2019 a new seismic station had been installed at Anak Krakatau by PVMBG. Four separate seismic events were recorded on 15 May 2019. Courtesy of Krakatau Islands KPHK.

Nine explosive events were reported during June 2019, but none produced visible steam or ash plumes until 25 June when a PVMBG webcam placed on Anak Krakatau captured a video of a Surtseyan event that lasted for about one minute. Dark gray ejecta shot tens of meters into the air over the lake, accompanied by billowing steam plumes which soon engulfed the webcam (figure 93). The other explosive events during March-July were likely similar, but frequent fog and the short-lived nature of the events made visual evidence scarce from webcams located 50 km away. During July there were 21 VONAs issued reporting similar seismic events that lasted from 30 seconds to 5 minutes; no plumes or sounds were seen or heard.

Figure (see Caption) Figure 93. Dark gray ejecta and billowing steam plumes were captured by a newly installed PVMBG webcam during an explosion at Anak Krakatau on 25 June 2019. The water-laden ash rose tens of meters and scattered ejecta around the island. See Information Contacts for a link to the video. Courtesy of Devy Kamil Syahbana and PVMBG.

Satellite imagery provided solid evidence that activity at Anak Krakatau during February-July 2019 included underwater venting. Dark orange submarine plumes were visible drifting away from the SW flank of the volcano near the new crater multiple times each month (figure 94). The patterns of the plumes varied in size and intensity, suggesting repeated injections of material into the water. The thermal activity showed a marked decline from the period prior to the large explosions and tsunami on 22-23 December 2018. Very little thermal activity was reported during January-March 2019, it increased moderately during April-July 2019 (figure 95).

Figure (see Caption) Figure 94. Dark orange plumes were visible in the seawater around Anak Krakatau during February-July 2019, strongly suggesting submarine discharges from the volcano. Top left: On 2 February 2019 the plume was discharging to the SW and visible in the water for nearly 10 km. Top center and right: on 29 March and 3 April the brightest areas of discharge were off the immediate SW flank; the plumes were drifting both NW and SE around the island. By 28 May (bottom left) the discharge was concentrated close to the SW flank with multiple underwater plumes suggesting several emission points. The only satellite image evidence suggesting a subaerial eruption appeared on 9 June (bottom center) when a dense steam plume rising and possible ejecta in the crater were visible. By 27 July (bottom right), discharge was still visible from the underwater vents on the SW flank, and the gradual filling in of the embayment on the W flank, when compared with the 2 February image, was clear. The island is about 2 km in diameter. Sentinel-2 satellite images with natural color rendering (bands 4,3,2) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 95. Thermal activity dropped abruptly at Anak Krakatau after the major flank collapse, explosions, and tsunami on 22-23 December 2018; it remained quiet through March and increased modestly during April-July 2019. Courtesy of MIROVA.

References: Gouhier, M, and Paris, R, 2019, SO2 and tephra emissions during the December 22, 2018 Anak Krakatau flank-collapse eruption, Volcanica 2(2): 91-103. doi: 10.30909/vol.02.02.91103.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Krakatau Islands KPHK, Conservation Area Region III Lampung, BKSDA Bengkulu-Ministry of LHK, (URL: https://www.instagram.com/krakatau_ca_cal); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); BBC News, (URL: https://www.bbc.com, article at https://www.bbc.com/news/science-environment-46743362); Planet Labs Inc. (URL: http://www.planet.com/); Sutopo Purwo Nugroho, BNPB (Twitter: @Sutopo_PN, URL: https://twitter.com/Sutopo_PN, image at https://twitter.com/Sutopo_PN/status/1101007655290589185/photo/1); Øystein Lund Andersen? (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com, image at https://twitter.com/OysteinLAnderse/status/1107479025126039552/photo/1); Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/), images at https://www.volcanodiscovery.com/krakatau/news/80657/Krakatau-volcano-Indonesia-activity-update-and-field-report-increasing-unrest.html; Devy Kamil Syahbana, Volcanologist, Bandung, Indonesia, (URL: https://twitter.com/_elangtimur, video at https://twitter.com/_elangtimur/status/1143372011177033728); The Daily Mail (URL: https://www.dailymail.co.uk, article at https://www.dailymail.co.uk/sciencetech/article-6910895/FORTY-volcanoes-world-potential-Anak-Krakatoa-eruptions.html) published 11 April 2019.


Tengger Caldera (Indonesia) — August 2019 Citation iconCite this Report

Tengger Caldera

Indonesia

7.942°S, 112.95°E; summit elev. 2329 m

All times are local (unless otherwise noted)


Ash emissions on 19 and 28 July 2019; lahar on the SW flank of Bromo

The Mount Bromo pyroclastic cone within the Tengger Caldera erupts frequently, typically producing gas-and-steam plumes, ash plumes, and explosions (BGVN 44:05). Information compiled for the reporting period of May-July 2019 is from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) and the Darwin Volcanic Ash Advisory Centre (VAAC).

The eruptive activity at Tengger Caldera that began in mid-February continued through late July 2019, including white-and-brown ash plumes, ash emissions, and tremors. During the months of May through June 2019, white plumes rose between 50 to 600 m above the summit. Satellite imagery captured a small gas-and-steam plume from Bromo on 5 June (figure 18). Low-frequency tremors were recorded by a seismograph from May through July 2019.

Figure (see Caption) Figure 18. Sentinel-2 satellite image showing a small gas-and-steam plume rising from the Bromo cone (center) in the Tengger Caldera on 5 June 2019. Thermal (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

According to PVMBG and a Volcano Observatory Notice for Aviation (VONA), an ash eruption occurred on 19 July 2019; however, no ash column was observed due to weather conditions. A seismograph recorded five earthquakes and three shallow volcanic tremors the same day. In addition, rainfall triggered a lahar on the SW flank of Bromo.

On 28 July the Darwin VAAC reported that ash plumes originating from Bromo rose to a maximum altitude of about 3.9 km and drifted NW from the summit, based on webcam images and pilot reports. PVMBG reported that lower altitude ash plumes (2.4 km) on the same day were also recorded by webcam images, satellite imagery (Himawari-8), and weather models.

Geologic Background. The 16-km-wide Tengger caldera is located at the northern end of a volcanic massif extending from Semeru volcano. The massive volcanic complex dates back to about 820,000 years ago and consists of five overlapping stratovolcanoes, each truncated by a caldera. Lava domes, pyroclastic cones, and a maar occupy the flanks of the massif. The Ngadisari caldera at the NE end of the complex formed about 150,000 years ago and is now drained through the Sapikerep valley. The most recent of the calderas is the 9 x 10 km wide Sandsea caldera at the SW end of the complex, which formed incrementally during the late Pleistocene and early Holocene. An overlapping cluster of post-caldera cones was constructed on the floor of the Sandsea caldera within the past several thousand years. The youngest of these is Bromo, one of Java's most active and most frequently visited volcanoes.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/).


Unnamed (Tonga) — November 2019 Citation iconCite this Report

Unnamed

Tonga

18.325°S, 174.365°W; summit elev. -40 m

All times are local (unless otherwise noted)


Submarine eruption in early August creates pumice rafts that drifted west to Fiji

Large areas of floating pumice, termed rafts, were encountered by sailors in the northern Tonga region approximately 80 km NW of Vava'u starting around 9 August 2019; the pumice reached the western islands of Fiji by 9 October (figure 7). Pumice rafts are floating masses of individual clasts ranging from millimeters to meters in diameter. The pumice clasts form when silicic magma is degassing, forming bubbles as it rises to the surface, which then rapidly cools to form solid rock. The isolated vesicles formed by the bubbles provide buoyancy to the rock and in turn, the entire pumice raft. These rafts are spread and carried by currents across the ocean; rafts originating in the Tonga area can eventually reach Australia. This report summarizes the pumice raft eruption from early August 2019 using witness accounts and satellite images (acquisition dates are given in UTC). Pending further research, the presumed source is the unnamed Tongan seamount (volcano number 243091) about 45 km NW of Vava'u, the origin of an earlier pumice raft produced during an eruption in 2001.

Figure (see Caption) Figure 7. The path of the pumice from the unnamed Tongan seamount from 9 August to 9 October 2019 based on eye-witness accounts and satellite data discussed below, as well as additional Aqua/MODIS satellite images from NASA Worldview. Blue Marble MODIS/NASA Earth Observatory base map courtesy of NASA Worldview.

The first sighting of pumice was around 1430 on 9 August NW of Vava'u in Tonga (18° 22.068' S, 174° 50.800' W), when Shannon Lenz and Tom Whitehead on board SV Finely Finished initially encountered isolated rocks and smaller streaks of pumice clasts. The area covered by rock increasing to a raft with an estimated thickness of at least 15 cm that extended to the horizon in different directions, and which took 6-8 hours to cross (figure 8). There was no sulfur smell and the sound was described as a "cement mixer, especially below deck." There was also no plume or incandescence observed. Their video, posted to YouTube on 17 August, showed a thin surface layer of cohesive interconnected irregular streaks of pumice with the ocean surface still visible between them. Later footage showed a continuous, undulating mass of pumice entirely covering the ocean surface. Larger clasts are visible scattered throughout the raft. The pumice raft was visible in satellite imagery on this day NW of Late Island (figure 9). By 11 August the raft had evolved into a largely linear feature with smaller rafts to the SW (figure 10). Approximately four hours later, about 15 km to the WSW, Rachel Mackie encountered the pumice. Initially the pumice was "ribbons several hundred meters long and up to 20m wide. It was quite fine and like a slick across the surface of the water." By 2130 they were surrounded by the pumice, and around 25 km away the smell of sulfur was noted.

Figure (see Caption) Figure 8. The pumice raft from the unnamed Tongan seamount on 9 August 2019 taken by Shannon Lenz and Tom Whitehead on board SV Finely Finished. The photos show the pumice raft extending to the horizon in different directions. Scattered larger clasts protrude from the relatively smooth surface that entirely obscures the ocean surface. Courtesy of Shannon Lenz and Tom Whitehead via noonsite.
Figure (see Caption) Figure 9. The pumice raft from the unnamed Tongan seamount on 9 August 2019 (UTC) can be seen NW of Late Island of Tonga in this Aqua/MODIS satellite image. The dashed white line encompasses the visible pumice. The location of the pumice in this image is shown in figure 7. Courtesy of NASA WorldView.
Figure (see Caption) Figure 10. The Sentinel-2 satellite first imaged the pumice from the unnamed Tongan seamount on 11 August 2019 (UTC). This image indicates the pumice distribution with the main raft towards the W and the easternmost area of pumice approximately 45 km away. The eastern tip of the pumice area is located approximately 30 km WNW of Lake islands in Tonga. The location of the pumice in this image is shown in figure 7. Natural color (bands 4, 3, 2) Sentinel-2 satellite image courtesy of Sentinel Hub Playground.

Michael and Larissa Hoult aboard the catamaran ROAM encountered the raft on 15 August (figure 11). They initially saw isolated clasts ranging from marble to tennis ball size (15-70 mm) at 18° 46′S, 174° 55'W. At around 0700 UTC (1900 local time) they noted the smell of sulfur at 18° 55′S, 175° 21′W, and by 0800 UTC they were immersed in the raft with visible clasts ranging from marble to basketball (25 cm) sizes. At this point the raft was entirely obscuring the ocean surface. On 16 and 21 August the pumice continued to disperse and drift NW (figures 12 and 13). On 20 August Scott Bryan calculated an average drift rate of around 13 km/day, with the pumice on this date about 164 km W of the unnamed seamount.

Figure (see Caption) Figure 11. Images of pumice from the unnamed Tongan seamount encountered by Michael and Larissa Hoult aboard the catamaran Roam on 15 August. Left: Larissa takes photographs with scale of pumice clasts; top right: a closeup of a pumice clast showing the vesicle network preserving the degassing structures of the magma; bottom left: Michael holding several larger pumice clasts. The location of their encounter with the pumice is shown in figure 7. Courtesy of SailSurfROAM.
Figure (see Caption) Figure 12. The pumice from the unnamed Tongan seamount (volcano number 243091) on 16 August 2019 UTC. The location of the pumice in this image is shown in figure 7. Natural color (bands 4, 3, 2) Sentinel-2 satellite image courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 13. On 21 August 2019 (UTC) the pumice from the unnamed Tongan seamount (volcano number 243091) had drifted at least 120 km WNW of Late Island in Tonga. The location of the pumice in this image is shown in figure 7. Natural color (bands 4, 3, 2) Sentinel-2 satellite image courtesy of Sentinel Hub Playground.

An online article published by Brad Scott at GeoNet on 9 September reported the preliminary size of the raft to be 60 km2, significantly smaller than the 2012 Havre seamount pumice raft that was 400 km2. Satellite identification of pumice-covered areas by GNS scientists showed the material moving SSW through 14 August (figure 14).

Figure (see Caption) Figure 14. A compilation of mapped pumice raft extents from 9 August (red line) through to 14 August (dark blue) from Suomi NPP, Terra, Aqua, and Sentinel-2 satellite images. The progression of the pumice raft is towards the SW. Courtesy of Salman Ashraf, GNS Science.

On 5 September the Maritime Safety Authority of Fiji (MSAF) issued a notice to mariners stating that the pumice was sighted in the vicinity of Lakeba, Oneata, and Aiwa Islands and was moving to the W. On 6 September a Planet Labs satellite image shows pumice encompassing the Fijian island of Lakeba over 450 km W of the Tongan islands (figure 15). The pumice entered the lagoon within the barrier reef and drifted around the island to continue towards the W. The pumice was imaged by the Landsat 8 satellite on 26 September as it moved through the Fijian islands, approximately 760 km away from its source (figure 16). The pumice is segmented into numerous smaller rafts of varying sizes that stretch over at least 140 km. On 12 September the Fiji Sun reported that the pumice had reached some of the Lau islands and was thick enough near the shore for people to stand on it.

Figure (see Caption) Figure 15. Planet Labs satellite images show Lakeba Island to the E of the larger Viti Levu Island in the Fiji archipelago. The top image shows the island on 7 July 2019 prior to the pumice raft from the unnamed Tongan seamount. The bottom image shows pumice on the sea surface almost entirely encompassing the island on 6 September. The location of the pumice in this image is shown in figure 7. Courtesy of Planet Labs.
Figure (see Caption) Figure 16. Landsat 8 satellite images show the visible extent of the unnamed seamount pumice on 26 September 2019 (UTC), up to approximately 760 km from the Tongan islands. The pumice seen here extends over a distance of 140 km. The top image shows the locations of the other three images in the white boxes, with a, b, and c indicating the locations. White arrows point to examples of the light brown pumice rafts in these images, seen through light cloud cover. The island in the lower right is Koro Island, the island to the lower left is Viti Levu, and the island to the top right is Vanua Levu. The location of the pumice in this image is shown in figure 7. Landsat 8 true color-pansharpened satellite images courtesy of Sentinel Hub.

Pumice had reached the Yasawa islands in western Fiji by 29 September and was beginning to fill the eastern bays (figure 17). By 9 October bays had been filled out to 500-600 m from the shore, and pumice had also passed through the islands to continue towards the W (figure 18). At this point the pumice beyond the islands had broken up into linear segments that continued towards the NW.

Figure (see Caption) Figure 17. These Sentinel-2 satellite images show the pumice from the unnamed Tongan seamount drifting towards the Yasawa islands of Fiji. The 24 September 2019 (UTC) image shows the beaches without the pumice, the 29 September image shows pumice drifting westward towards the islands, and the 9 October image shows the bays partly filled with pumice out to a maximum of 500-600 m from the shore. These islands are approximately 850 km from the Tongan islands. The Yasawa islands coastline impacted by the pumice shown in these images stretches approximately 48 km. The location of the pumice in this image is shown in figure 7. Sentinel-2 natural color (bands 4, 3, 2) satellite images courtesy of Sentinel Hub.
Figure (see Caption) Figure 18. This Sentinel-2 satellite image acquired on 9 October 2019 (UTC) shows expanses of pumice from the unnamed Tongan seamount that passed through the Yasawa islands of Fiji and was continuing NWW, seen in the center of the image. The location of the pumice in this image is shown in figure 7. Sentinel-2 natural color (bands 4, 3, 2) satellite images courtesy of Sentinel Hub.

Geologic Background. A submarine volcano along the Tofua volcanic arc was first observed in September 2001. The newly discovered volcano lies NW of the island of Vava'u about 35 km S of Fonualei and 60 km NE of Late volcano. The site of the eruption is along a NNE-SSW-trending submarine plateau with an approximate bathymetric depth of 300 m. T-phase waves were recorded on 27-28 September 2001, and on the 27th local fishermen observed an ash-rich eruption column that rose above the sea surface. No eruptive activity was reported after the 28th, but water discoloration was documented during the following month. In early November rafts and strandings of dacitic pumice were reported along the coast of Kadavu and Viti Levu in the Fiji Islands. The depth of the summit of the submarine cone following the eruption determined to be 40 m during a 2007 survey; the crater of the 2001 eruption was breached to the E.

Information Contacts: GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.gns.cri.nz/); Salman Ashraf, GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.gns.cri.nz/, https://www.geonet.org.nz/news/8RnSKdhaWOEABBIh0bHDj); Brad Scott, New Zealand GeoNet Project, a collaboration between the Earthquake Commission and GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.geonet.org.nz/, https://www.geonet.org.nz/news/8RnSKdhaWOEABBIh0bHDj); Scott Bryan, School of Earth, Environmental & Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, R Block Level 2, 204, Gardens Point (URL: https://staff.qut.edu.au/staff/scott.bryan); Shannon Lenz and Tom Whitehead, SV Finely Finished (URL: https://www.noonsite.com/news/south-pacific-tonga-to-fiji-navigation-alert-dangerous-slick-of-volcanic-rubble/, YouTube: https://www.youtube.com/watch?v=PEsHLSFFQhQ); Michael and Larissa Hoult, Sail Surf ROAM (URL: https://www.facebook.com/sailsurfroam/); Rachel Mackie, OLIVE (URL: http://www.oliveocean.com/, https://www.facebook.com/rachel.mackie.718); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/); Fiji Sun (URL: https://fijisun.com.fj/2019/09/12/pumice-menace-hits-parts-of-lau-group/).


Popocatepetl (Mexico) — September 2019 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Frequent explosions continue during March-August 2019

The current eruptive period of Popocatépetl began on 9 January 2005 and it has since been producing frequent explosions accompanied by ash plumes, gas emissions, and ballistic ejecta that can impact several kilometers away from the crater, as well as dome growth and destruction. This activity continued through March-August 2019 with an increase in volcano alert level during 28 March-6 May. This report summarizes activity during this period and is based on information from Centro Nacional de Prevención de Desastres (CENAPRED), Universidad Nacional Autónoma de México (UNAM), and various webcam and remote sensing data.

An overflight on 28 February confirmed that dome 82, which was first observed on 14 February, was still present and was 200 m in diameter. During March there were 3,291 observed low-intensity emissions, and 33 larger explosions that produced ash plumes to a maximum height of 5 km, accompanied by near-continuous emission of water vapor and volcanic gases. Explosions ejected blocks that fell on the flanks out to 1.2-2 km on 1, 10, 13, 17, 26, 27, and 29 March. The events on the 17th and 27th resulted in vegetation fires. Frequent sulfur dioxide (SO2) plumes were detected by TropOMI (figure 130). An overflight on 7 March showed intense degassing and an ash plume at 1142, preventing visibility into the crater (figure 131). On 13 March Strombolian activity was observed for approximately 15 minutes at 0500, accompanied by incandescent ejecta that deposited mainly on the ESE flank.

An overflight on 15 March was taken by CENAPRED and UNAM personnel to observe changes to the crater after explosions on the 13th and 14th. They reported that dome 82 had been destroyed and the crater maintained its previous dimensions of 300 m in diameter and 130 m deep. An explosion on the 27th ejected incandescent rocks out to 2 km from the crater and produced a 3-km-high ash plume that dispersed to the NE. Ashfall was reported in Santa Cruz, Atlixco, San Pedro, San Andrés, Santa Isabel Cholula, San Pedro Benito Juárez, and in the municipalities of Puebla, Hueyapan, Tetela del Volcán, and Morelos.

On 28 March an explosion at 0650 generated a 2.5-km-high ash plume and ejecta out to 1 km from the crater, and a 130-minute-long event produced gas and ah plumes (figure 132). On this day the volcano alert level was increased from Yellow Phase 2 to Yellow Phase 3. On the 29th an ash plume rose to 3 km and was accompanied by ejecta that reached 2 km away from the crater. Later that day a 20-minute-long event produced ash and gas. During a surveillance flight on 30 March a view into the crater showed no dome present, and the crater size had increased to 350 m in width and 250-300 m in depth after recent explosions (figure 131). On this day Strombolian activity was also observed lasting for 14 minutes, producing an ash plume to 800 m and ejecta out to 300 m from the crater. Incandescence at the crater was often seen during nighttime throughout the month.

Figure (see Caption) Figure 130. Significant SO2 plumes at Popocatépetl detected by the TROPOMI instrument on the Sentinel-5P satellite during 3-11 March 2019. SO2 plumes are frequently observed and these images show examples of plume drift directions on 3 March 2019 (top left), 6 March 2019 (top right), 7 March 2019 (bottom left), and 11 March 2019 (bottom right). Date, time, and measurements are provided at the top of each image. Courtesy of NASA Goddard Flight Center.
Figure (see Caption) Figure 131. Activity at Popocatépetl and views of the crater during surveillance flights in March 2019. The top images show an ash plume (left) and a gas-and-steam plume (right) on 7 March. On 30 March (bottom left and right) no lava dome was observed in the crater, which was measured to be 350 m in diameter and 250-300 m deep. Courtesy of CENAPRED and Geophysics Institute of UNAM.
Figure (see Caption) Figure 132. Explosive activity at Popocatépetl on 28 March 2019 producing ash plumes (top and bottom left) and ejecting incandescent ejecta out to 2 km from the crater at 1948. Courtesy of Carlos Sanchez/AFP (top), CENAPRED (bottom left and right), and Webcams de Mexico (bottom left).

There was a decrease in events during the next two months with 1,119 recorded low-intensity emissions and no larger ash explosions throughout April, followed by 1,210 low-intensity emissions and seven larger ash explosions through May (figure 133). Water vapor and volcanic gas emissions were frequently observed through this time and incandescence was observed some nights. A surveillance overflight on 26 April noted no new dome within the crater. On 6 May the alert level was lowered back to Yellow Phase 2. Another overflight on 9 May showed no change in the crater. An explosion at 1910 on 22 May produced an ash plume to 3.5 km above the crater with ashfall reported in Ozumba, Temamatla, Atlautla, Cocotitlán, Ayapango, Ecatzingo, Tenango del Aire and Tepetlixpa.

Figure (see Caption) Figure 133. Graph showing the number of daily ash explosions and low-intensity emissions at Popocatépetl during March-August 2019. There was a decrease in the number of events during April and March, with an increase from March onwards. Data courtesy of CENAPRED.

Through the month of June there were 2,820 low-intensity emissions and 21 larger ash explosions recorded. Gas emissions were observed throughout the month. Two explosions on 3 June produced ash plumes up to 3.5 and 2.8 km, with ejecta out to 2 km S during the first explosion. On 11 June an explosion produced an ash plume to 1 km above the crater and ballistic ejecta out to 1 km E. Observers on a surveillance overflight on the 12th reported no changes within the crater

Explosions with estimated plume heights of 5 km occurred on the 14th and 15th, with the latter producing ashfall in the municipalities of San Pablo del Monte, Tenancingo, Papantla, San Cosme Mazatencocho, San Luis Teolocholco, Acuamanala, Nativitas, Tepetitla, Santa Apolonia Teacalco, Santa Isabel Tetlatlahuaca, and Huamantla, in the state of Tlaxcala, as well as in Nealtican, San Nicolás de los Ranchos, Calpan, San Pedro Cholula, Juan C. Bonilla, Coronango, Atoyatempan, and Coatzingo, in the state of Puebla.

On 17 June an explosion produced an ash plume that reached 8 km above the crater and dispersed towards the SW. An ash plume rising 2.5 km high was accompanied by incandescent ejecta impacting a short distance from the crater on the 21st, and another ash plume reached 2.5 km on the 22nd. Explosions on 26, 29, and 30 June resulted in ash plumes reaching 1.5 km above the crater and ballistic ejecta impacting on the flanks out to 1 km.

For the month of July there was an increased total of 5,637 recorded low-intensity emissions, and 173 larger ash explosions (figure 134). On 8 July an explosion produced ballistic ejecta out to 1.5 km and an ash plume up to 1 km above the crater. An ash plume up to 2.6 km was produced on the 12th. On 19 July a surveillance overflight observed a new dome (dome 83) with a diameter of 70 m and a thickness of 15 m (figure 135). Explosions on 20 July produced ashfall, and minor explosions that ejected incandescent ballistics onto the slopes. An event on the 24th produced an ash plume that reached 1.2 km, and ash plumes the following day reached 1 km. An overflight on 27 July confirmed that these explosions destroyed dome 83, and the crater dimensions remained the same (figure 136). The following day, ash plumes reached up to 1.6 km above the crater, and up to 2 km on the 29th. Minor ashfall was reported in the municipality of Ozumba on 30 June.

Figure (see Caption) Figure 134. Examples of ash plumes at Popocatépetl on 1 July (top left), 18 July (top right and bottom left), and 30 July (bottom right) 2019. In the night time image taken on 18 July hot rocks are visible on the flank. Webcam images courtesy of CENAPRED and Webcams de Mexico.
Figure (see Caption) Figure 135. A surveillance overflight at Popocatépetl on 19 July 2019 confirmed a new dome, dome number 83, with a width of 70 m and a thickness of 15 m. Courtesy of CENAPRED and Geophysics Institute of UNAM.
Figure (see Caption) Figure 136. Photos of the summit crater of Popocatépetl taken during a surveillance flight on 27 July 2019 confirmed that the 83rd lava dome was destroyed by recent explosions and the crater maintained the same dimensions as previously measured. Courtesy of CENAPRED and Geophysics Institute of UNAM.

Throughout August the number of recorded events was higher than previous months, with 5,091 low-intensity emissions and 204 larger ash explosions (figure 137). Two explosions generated ash plumes and incandescent ejecta on 2 August, the first with a plume up to 1.5 km with ejecta impacting the slopes, and the second with an 800 m plume and ejecta landing back in the crater. Ashfall from the events was reported in in the municipalities of Tenango del Aire, Ayapango and Amecameca. On the 14th ashfall was reported in Juchitepec, Ayapango, and Ozumba. Explosions on 16 August produced ash plumes up to 2 km that dispersed to the WSW. Over the following two days ash plumes reached 1.2 km and resulted in ashfall in Cuernavaca, Tepoztlán, Tlalnepantla, Morelos, Ozumba, and Ecatzingo. Over 30-31 August ash plumes reached between 1-2 km above the crater and ashfall was reported in Amecameca, Atlautla, Ozumba, and Tlalmanalco. Incandescence was sometimes observed at the crater through the month.

Figure (see Caption) Figure 137. Ash plumes at Popocatépetl on 7 August (top) and 26 August 2019 (bottom). Courtesy of CENAPRED and Webcams de Mexico.

The MODVOLC algorithm for MODIS thermal anomalies registered thermal alerts through this period, with 22 in March, three in May, five in July, and one in August. The MIROVA system showed that the frequency of thermal anomalies at Popocatépetl was higher in March, sporadic in April and May, low in June, and had increased again in July and August (figure 138). Elevated temperatures were frequently visible in Sentinel-2 thermal satellite data when clouds and plumes were not covering the crater (figure 139).

Figure (see Caption) Figure 138. Thermal activity at Popocatépetl detected by the MIROVA system showed frequent anomalies in March, intermittent anomalies through April-May, low activity in June, and an increase in July-August 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 139. Sentinel-2 thermal satellite images frequently showed elevated temperatures in the crater of Popocatépetl during March-August 2019, as seen in this representative image from 7 May 2019. Sentinel2- atmospheric penetration (bands 12, 11, 8A) scene courtesy of Sentinel Hub Playground.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Centro Nacional de Prevención de Desastres (CENAPRED), Av. Delfín Madrigal No.665. Coyoacan, México D.F. 04360, México (URL: http://www.cenapred.unam.mx/); Universidad Nacional Autónoma de México (UNAM), University City, 04510 Mexico City, Mexico (URL: https://www.unam.mx/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Webcams de Mexico (URL: http://www.webcamsdemexico.com/); Agence France-Presse (URL: http://www.afp.com/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 18, Number 04 (April 1993)

Managing Editor: Edward Venzke

Aira (Japan)

Explosive activity continues; windshield damaged

Akan (Japan)

Seismicity increases in April

Aracar (Argentina)

Ash column reported

Arenal (Costa Rica)

Explosions decrease as lava production increases

Avachinsky (Russia)

Fumarolic activity

Etna (Italy)

Steady degassing; seismicity low

Galeras (Colombia)

Two small eruptions; small swarm of earthquakes M 2.8-4.5

Kilauea (United States)

Lava continues to enter the ocean

Klyuchevskoy (Russia)

Small gas and ash explosions

Langila (Papua New Guinea)

Strombolian explosions continue

Lascar (Chile)

Eruption sends ash above 25 km altitude; pyroclastic flows travel 7.5 km

Lengai, Ol Doinyo (Tanzania)

Carbonatite lava production continues

Manam (Papua New Guinea)

Very low activity

Poas (Costa Rica)

Fumarolic activity continues; lake level drops

Rabaul (Papua New Guinea)

Seismic activity remains high; no ground uplift

Rincon de la Vieja (Costa Rica)

Seismic activity continues

Sheveluch (Russia)

Eruption sends ash cloud to 20 km altitude

Stromboli (Italy)

Explosive activity increases; detailed description of crater

Suwanosejima (Japan)

Sporadic, weak ash eruptions

Taftan (Iran)

Lava flow reported; no previous historical eruptions known

Turrialba (Costa Rica)

Fumarolic activity unchanged

Ulawun (Papua New Guinea)

Tremor level returns to background

Unzendake (Japan)

Pyroclastic flows increase in number; heavy rainfall produces large debris flows



Aira (Japan) — April 1993 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Explosive activity continues; windshield damaged

Seven explosions . . . were recorded in April . . . . Lapilli from an explosion at 1425 on 7 April cracked the windshield of an automobile on the volcano's island. It was the first direct damage from an explosion since February when windshields from nine autos were damaged. An explosion at 0948 on 2 April produced the highest ash plume of the month, >3,200 m above the crater. No earthquake swarms were recorded.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: JMA.


Akan (Japan) — April 1993 Citation iconCite this Report

Akan

Japan

43.384°N, 144.013°E; summit elev. 1499 m

All times are local (unless otherwise noted)


Seismicity increases in April

Microearthquake activity began to increase on 27 March and continued through April before declining in May. The monthly earthquake total for April was 295, far more than the background level of 10-20. Steam emissions remained steady with no observed changes.

Geologic Background. Akan is a 13 x 24 km caldera located immediately SW of Kussharo caldera. The elongated, irregular outline of the caldera rim reflects its incremental formation during major explosive eruptions from the early to mid-Pleistocene. Growth of four post-caldera stratovolcanoes, three at the SW end of the caldera and the other at the NE side, has restricted the size of the caldera lake. Conical Oakandake was frequently active during the Holocene. The 1-km-wide Nakamachineshiri crater of Meakandake was formed during a major pumice-and-scoria eruption about 13,500 years ago. Within the Akan volcanic complex, only the Meakandake group, east of Lake Akan, has been historically active, producing mild phreatic eruptions since the beginning of the 19th century. Meakandake is composed of nine overlapping cones. The main cone of Meakandake proper has a triple crater at its summit. Historical eruptions at Meakandake have consisted of minor phreatic explosions, but four major magmatic eruptions including pyroclastic flows have occurred during the Holocene.

Information Contacts: JMA.


Aracar (Argentina) — April 1993 Citation iconCite this Report

Aracar

Argentina

24.29°S, 67.783°W; summit elev. 6095 m

All times are local (unless otherwise noted)


Ash column reported

A steam plume was observed rising above Arácar on 28 March. Viewed from the town of Tolar Grande, 50 km SE, the plume persisted throughout the clear day. At least twice during the day, a large ash column slowly rose 2,000 m above the summit. The following day clouds prevented a clear view of the volcano, but an "ashy haze" in the sky was noted. A local observer indicated that the activity was not unusual.

Arácar has a base 10 km in diameter. It is located just E of the Argentina-Chile border, ~ 100 km S of Lascar and 80 km NE of Llullaillaco volcanoes. No historical eruptions have been recorded. Moyra Gardeweg provided the following background. "It is clearly younger than the surrounding Miocene volcanoes. Its steep conical edifice has been cut by some deep gorges and an uncovered alteration zone lies close to its summit on the NE flank. It has a well-developed and well-preserved summit crater (1-1.5 km diameter) that contains a tiny lake. Lava flows are well preserved at the base of the cone (below 4,500-m elev), a common feature of Pliocene-to-Quaternary volcanoes in the Central Andes. I have no information about its exact age, but the good preservation of the summit crater and lava flows suggest that it could be Quaternary, although I can only assume it is Pliocene or younger."

Geologic Background. Aracar is a steep-sided stratovolcano with a youthful-looking summit crater 1-1.5 km in diameter that contains a small lake. It is located just east of the Argentina-Chile border. The volcano was constructed during three eruptive cycles dating back to the Pliocene. The andesitic stratovolcano overlies dacitic lava domes. Lava flows found at the base of the volcano below 4500 m elevation are relatively well preserved, but upper-flank lavas, often an indication of youthful activity, are not present (de Silva, 2007 pers. comm.). There were reports of possible ash columns from the summit in 1993, but it is not known whether these were rockfall dust or eruption plumes.

Information Contacts: R. Trujillo, Colorado, USA; M. Gardeweg, SERNAGEOMIN, Santiago.


Arenal (Costa Rica) — April 1993 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Explosions decrease as lava production increases

Gas emissions and lava flows continued from Crater C in April, and Strombolian activity vibrated windows of houses in La Palma, ~4 km N. Ash-laden columns were blown E on 15 April, and sporadic pyroclastic flows were observed. The character of the eruption changed on 20 April as the number of explosions decreased while degassing and effusion of lava increased.

The lava flow that started down the SW flank in March remained active. Its W lobe reached 1,050 m elevation and its SW lobe reached 1,000 m elevation. The flow descending the S flank halted at 1,400 m elevation. About the middle of the month a new flow began to descend the SW flank.

A seismograph ~2.7 km NE of the active crater recorded 1,314 explosions in April, an average of 44 explosions/day (figure 55, bottom). The highest daily total was 84 on April 21, and the lowest was 13 on 27 April. Some of the explosions were recorded by a new seismograph network 120 km distant. Tremor was most persistent on 7, 19 and 20 April with 19, 19, and 21 hours recorded respectively (figure 55, top). The tremor frequency was between 1.3 and 2.3 Hz.

Figure (see Caption) Figure 55. Hours of tremor/day (top) and explosions/day (bottom) recorded 2.7 km NE of Arenal. Courtesy of OVSICORI.

Activity 18-27 April was reported by W. Melson. "Arenal volcano was in continuous eruption. Loud explosions were common 18-19 April, but by 21 April were replaced by frequent chugging and whooshing sounds (figure 56) from summit scoria fountains. These fountains fed a slowly descending, viscous, blocky, highly phyric hypersthene-augite basaltic andesite flow, which spilled over the WSW side of the crater. The flow's advance was accompanied by spectacular avalanches of incandescent blocks from the flow front."

Figure (see Caption) Figure 56. Activity of Arenal, 18-27 April, as observed from Arenal Volcano Lodge, 2.8 km S of the summit craters. "Chug" and "whoosh" events are characterized by their sound. Courtesy of W. Melson.

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: E. Fernández, J. Barquero, V. Barboza, and W. Jimenez, OVSICORI; W. Melson, SI; S. McNutt, AVO.


Avachinsky (Russia) — April 1993 Citation iconCite this Report

Avachinsky

Russia

53.256°N, 158.836°E; summit elev. 2717 m

All times are local (unless otherwise noted)


Fumarolic activity

Fumarolic activity observed in late April from the crater area resulted from normal condensation of steam and was not caused by eruptive activity.

Geologic Background. Avachinsky, one of Kamchatka's most active volcanoes, rises above Petropavlovsk, Kamchatka's largest city. It began to form during the middle or late Pleistocene, and is flanked to the SE by the parasitic volcano Kozelsky, which has a large crater breached to the NE. A large horseshoe-shaped caldera, breached to the SW, was created when a major debris avalanche about 30,000-40,000 years ago buried an area of about 500 km2 to the south underlying the city of Petropavlovsk. Reconstruction of the volcano took place in two stages, the first of which began about 18,000 years before present (BP), and the second 7000 years BP. Most eruptive products have been explosive, with pyroclastic flows and hot lahars being directed primarily to the SW by the breached caldera, although relatively short lava flows have been emitted. The frequent historical eruptions have been similar in style and magnitude to previous Holocene eruptions.

Information Contacts: V. Kirianov, IVGG.


Etna (Italy) — April 1993 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3295 m

All times are local (unless otherwise noted)


Steady degassing; seismicity low

Steady degassing from the summit craters followed the end of the 1991-93 eruption on 30 March (18:03). Increased gas emissions were noted at the central (Voragine) and SE craters (see figure 59) in April, but no morphological changes were detected. The floor of Northeast Crater sank a few meters in early April and remained obstructed by fallen material.

Seismic activity was low with only two volcano-tectonic events recorded. The highest magnitude event (M 2.7) occurred 14 April on the SE flank of the volcano at ~ 10 km depth. Long-period events were similar to those recorded in March, but fewer in number. There was also a decreasing trend in volcanic tremor spectral amplitude. No major changes were recorded by shallow bore-hole tilt stations on the slopes of the volcano.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: IIV.


Galeras (Colombia) — April 1993 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Two small eruptions; small swarm of earthquakes M 2.8-4.5

Two small pyroclastic eruptions in the first half of April produced columns 6 km high. The first, at 1603 on 4 April, ejected 18 x 104 m3 of ash. Seismicity associated with the eruption reached M 3 and lasted for 123 seconds, saturating nearby stations (within 2 km) for the first 17 seconds. Analysis of records from stations >5 km away showed dominant frequencies of 4.9 and 12.6 Hz. Long-period seismicity increased slightly for 8 hours after the explosion. The second eruption occurred at 0321 on 13 April, with 21.7 x 104 m3 of ash and blocks ejected. The long-period event associated with this eruption reached M 3.1 and lasted for 140 seconds, saturating nearby stations for the first 33 seconds. The dominant frequencies were 9.8 and 12.4 Hz. Small-magnitude long-period seismicity continued for 30 minutes.

Seven high-frequency events were registered on 1 April, with a maximum magnitude of 4.5. The earthquakes occurred at 0048 (M 4.2), 0159 (M 4.5), 0204 (M 4.0), 0303 (M 3.5), 0508 (M 3.1), 0839 (M 3.0), and 2145 (M 2.8). High-frequency seismicity increased again 26 April, peaked the morning of the 27th (figure 66), and was continuing in early May. Another earthquake, M 3.6, occurred at 1030 on 29 April. All of these earthquakes, as well as 67 other events, had epicenters 3 km N of the active crater at depths of 2-8 km below the summit (figure 67). There were ~300 earthquakes recorded in April 1993.

Figure (see Caption) Figure 66. Daily number of earthquakes at Galeras, 1 January to 30 April 1993. Dashed line indicates long-period events; solid line indicates high-frequency events (very low until 27 April). Arrows at top indicate eruptions on 14 January, 23 March, 4 April, and 13 April. Courtesy of INGEOMINAS.
Figure (see Caption) Figure 67. Locations of high-frequency earthquakes at Galeras, 26-30 April 1993. Courtesy of INGEOMINAS.

"Screw-type" events, monochromatic long-period events characterized by a long, slowly decaying coda, reappeared on 8 April. A total of 18 of these events was recorded in April, the most significant at 0619 and 1030 on 10 April and at 0926 on 29 April, about an hour before an M 3.6 earthquake. This type of seismic signal has usually preceded eruptions, but was absent before the 4 April eruption. However, relatively small earthquakes, "hybrids between high-frequency and long-period," were registered at stations close to the crater. This activity, similar to that observed before other eruptions at Galeras, was more noticeable during the first half of the month, with swarms on 1, 2, 6, 8, and 9 April.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: M. Calvache, INGEOMINAS, Pasto.


Kilauea (United States) — April 1993 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Lava continues to enter the ocean

The . . . eruption continued in April and early May as lava from E-51 and E-53 vents entered the ocean. Surface flows were rare during the second half of April, but lava continued to reach the coastline through tubes. The volume of lava entering the ocean at Lae Apuki and along the W edge of the Kamoamoa delta began to decline in the last few days of April and early May as surface flows began breaking out inland from the entry points. By 6 May only the W Kamoamoa entry remained slightly active. The same day, three large breakouts were observed on Pulama Pali and two large sheet flows appeared on the coastal plain at night. One flow emerged from a tube below Pali Uli (~1 km inland) and advanced down the W side of the Lae Apuki flow. The other flow broke out of the Kamoamoa lava tube and covered new land on the E margin of the Kamoamoa flow field. By 10 May, the flows at Lae Apuki were stagnant, but lava continued to enter the ocean on both the E and W sides of the Kamoamoa delta. The Pu`u `O`o lava pond was very active during this period, fluctuating between 75 and 79 m below the rim.

Eruption tremor along the East rift zone continued with tremor amplitude 2-3x background levels during this period. Microearthquake counts were low beneath the summit and slightly above average along the East rift zone. Seismicity associated with ocean front bench collapse/explosion was recorded at 0939 on 17 April across almost the entire network, with P-arrivals that appeared to have very long-period characteristics. Many smaller events were recorded locally by the Wahaula seismograph (~4 km NE).

A number of collapse events with slightly higher frequency characteristics, including six that were locatable, were detected between 2143 and 2158 on 19 April by the Wahaula station. Based on field evidence and tourist reports, a major bench collapse during that time period was followed by a steam explosion as sea water inundated newly exposed hot rocks (figure 90). One person disappeared into the ocean, and 22 others were treated for injuries caused by the explosion showering them with incandescent lithic blocks and from falls on older flows while fleeing the area. The collapsed bench measured 210 m parallel to the coast, 14 m wide, and 8 m maximum thickness. Ejecta from the steam explosion were directed NW. Blocks near the viewing area and trail were generally <25 cm in size; meter-sized blocks were restricted to within 20 m of the entry area. Blocks were observed up to 200 m from the coast.

Figure (see Caption) Figure 90. Map of the Lae Apuki ocean entry area following the bench collapse and steam explosion on 19 April 1993. Courtesy of HVO.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: T. Mattox and P. Okubo, HVO.


Klyuchevskoy (Russia) — April 1993 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Small gas and ash explosions

IV noted an increase in activity . . . in mid-March 1993, after a short period of repose, when explosions in the central crater sent an ash-and-gas cloud 1-2 km above the summit. On 15 March, volcanic tremor was noted, increasing in amplitude after 15 April.

A significant increase in seismicity beneath the volcano 24-27 April was reported by IVGG. Observers reported a glow near the summit area during the night of 25-26 April. A snowstorm prevented observation of the volcano 28-29 April, as volcanic tremor continued. Small steam and ash bursts inside the crater rose 200-300 m above the rim on 6 May. The plume extended 40 km NW from the volcano. Volcanic tremor remained above background.

IVGG reported three ash explosions from the summit crater on 10 May between 2030 and 2045, producing a plume that rose ~1 km above the crater rim and extended 7 km about SE. That same day, tremor amplitude measured by IV reached a maximum of 2.4 µm. Occasional steam and ash bursts occurred in the summit crater again 14 May; the plume rose 0.5-1 km above the crater rim and extended 1-7 km SW. Tremor amplitude had decreased by 19 May.

IV geologists note that tremor at Kliuchevskoi is common and is related to eruptive activity in the summit crater and, to a lesser degree, to flank eruptions. Tremor amplitude is largely dependent on the style of volcanic activity: amplitudes <0.5 µm are associated with steam-gas emission; 0.5-3 µm with Vulcanian explosions; and >3 µm with Strombolian explosions or lava spouting. Aircraft observations on 4 April 1993 revealed a newly formed crater at the summit with a diameter of 500 m and a depth of 200 m. A July 1992 overflight by S. A. Fedotov (IV) had previously revealed the almost complete subsidence of the 1984-90 cone. The last episode of dome collapse followed by renewed dome growth took place during 1962-68 when a new small volcanic cone was seen on the floor of the crater and minor lava fountaining was observed from its vent.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: V. Ivanov and V. Dvigalo, IV; V. Kirianov, IVGG


Langila (Papua New Guinea) — April 1993 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Strombolian explosions continue

"Eruptive activity was at a moderate-to-high level during April. A total of 134 Vulcanian explosion earthquakes was recorded, with the highest daily total of 17 events on 5 April.

"Incandescent Strombolian projections to 300 m above Crater 2 were seen on 2, 4, 5-10, and 23 April. Steady, weak glow was observed on 11, 19, 20, 24, and 26 April. Explosion and rumbling noises were heard throughout the month. Dark grey ash columns and moderate-to-strong white-grey vapour were released every day. Some ashfall to the SE and NW of the volcano was reported.

"Crater 3 was active until 13 April, producing moderate-to-strong ash emissions accompanied by deep explosion noises. Emissions then stopped until 22 April when weak blue and white vapours appeared. Emissions stopped again on 26 April. No glow or incandescent ejections were observed."

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: N. Lauer, R. Stewart, and C. McKee, RVO.


Lascar (Chile) — April 1993 Citation iconCite this Report

Lascar

Chile

23.37°S, 67.73°W; summit elev. 5592 m

All times are local (unless otherwise noted)


Eruption sends ash above 25 km altitude; pyroclastic flows travel 7.5 km

The largest historical eruption of Lascar began late on 18 April and sent ash 20-22 km above the . . . crater rim the following day. Pyroclastic flows traveled 7.5 km NW and light ashfall (<0.1 mm) was reported in Buenos Aires, Argentina, 1,500 km SE of the volcano.

A survey conducted from January to 14 March revealed that fumarolic activity persisted with columns sometimes absent but other times rising 500-1,000 m above the crater rim. A decrease in fumarolic activity 3-8 March preceded a small phreatomagmatic eruption on 10 March that produced a column 2,000 m high (Gardeweg and others, 1993). Similar activity had also been noted on 30 January when a higher eruption column followed a few days of low level activity. During 10-14 March, the column height remained at 500-1,000 m. Observations from 14 March to the evening of 20 April were made by Ibar Torrejón, a teacher in Talabre (17 km WNW) who maintains a log of Lascar's activity. From 8-17 April the column was also low: 100-200 m. The only other observed pre-eruption change was in the color of the column, from yellowish gray (8-11 April) to whitish pale-blue (12-17 April).

Eruptive activity. Activity on 18 April was primarily phreatic until 2200 when a large explosion threw incandescent material into the air. An explosion at 2300 produced a Plinian column. These initial explosions may have been related to the partial destruction of the dome that had filled the crater in March 1992 (17:3 and 5) and collapsed sometime between 12 November and 7 December.

At 0700 on 19 April, a low, dark, ash-laden Plinian column was observed, which slowly rose 5-10 km above the rim by 0900. (Initial reports of column heights were systematically high; corrected estimates are given here). Bombs were observed throughout the morning. At 1012 the column rose above 10 km, and the first pyroclastic flow down the N flank was seen: flows also descended the NE and SE flanks, but were not observed. Other large columns (10-15 km) accompanied by pyroclastic flows were recorded at 1030, 1205, and 1317. A witness in La Escondida mine (175 km SW) described these columns as much larger than those from the 1990 eruption (15:2). The explosion at 1317 produced a column that rose 20-22 km above the rim: it was accompanied by strong rumbling and ejection of bombs to heights > 2 km. The column dropped to 2 km height until an explosion at 1715 sent it back above 15 km. Nearly 30 minutes of continuous pyroclastic flow activity near the summit began at 1935. Large explosions at 2135-2148 and 2340-2350 preceded pyroclastic flows down the N and NW slopes. Ash was blown predominately ESE.

Activity declined until 0340 on 20 April when new Strombolian explosions began, ejecting incandescent spatter up to 1.5 km above the rim. Major explosive activity resumed at 0628, producing a column >10 km high and ejecting blocks to heights >1 km. The next large explosion, at 0920, was accompanied by strong rumbles and underground noises. It generated a column nearly 10 km high and its collapse produced the farthest-reaching pyroclastic flows (7.5 km NW). Seen from Sierra Gorda (165 km WNW), the column had a well-formed mushroom shape. It remained 2-4 km high until another large explosion at 1302, which sent the column to 8.5 km within 8 minutes before it began to drift NE. One observer reported two columns rising from the crater during this explosion, the W one a darker gray-brown. At 1500 the height of the yellow-gray column decreased to 3.5-4 km, and persisted at this height until 1915 when nightfall prevented further observations. During the night, no eruptions were recorded, and no incandescent material was seen above the crater or on the flanks of the volcano.

Observations at 0630 the following morning indicated that Lascar had returned to its normal fumarolic activity with weak columns that hardly rose above the crater rim. Small explosions on 22, 23, 26, and 29 April produced columns 1000 m above the rim, but the column otherwise remained low (100-300 m) and white with occasional ash explosions to 500-800 m high. This activity continued through 8 May. During this period 2 discrete fumarolic gas columns were again observed rising from the NE and W sides of the crater, suggesting changes in its morphology from March, when only one column was noted.

An overflight of the volcano on 26 April by the National Emergency Office of the Chilean Air Force provided aerial photography of the crater and surrounding area at scales of 1:33,000 and 1:3,500. From these photographs, a new lava dome was identified in the bottom of the crater, filling a much larger portion of the crater than either the 1989 or 1992 domes. The exposed base of the dome was ~60 m higher than the previous dome and 100 m above the known crater floor (5,145-m elev). A preliminary volume estimate of the new dome was 4.6 x 106 m3. The dome appeared as a flat surface with concentric cooling ridges and steep walls devoid of a talus apron. Fumarolic activity was restricted to the margins of the dome, primarily on the SE edge. Fresh tephra partially covered the walls of the active crater, particularly in the benches, and filled the E craters (figure 13). The crater showed no other remarkable morphological changes.

Figure (see Caption) Figure 13. Sketch map of the distribution of pyroclastic flows from the 19-20 April eruption of Lascar, based on photos taken on 26 April. Featured are (1) 19-20 April pumiceous pyroclastic-flow deposits, (2) 19-20 April undifferentiated pyroclastic material, (3) Previous lava flows partially covered by pyroclastic-flow deposits, (4) Pliocene welded ignimbrites, (5) Miocene to Pliocene domes, (6) the new lava dome, and (7) arrows indicating lava flows. Courtesy of M. Gardeweg, SERNAGEOMIN.

Five portable seismographs were installed around the volcano on the evening of 20 April. Preliminary analysis showed that the harmonic tremor recorded January-March 1993 was not initially present, but returned a couple of days after the eruption. A small number of high-frequency events occurred 21-25 April. A swarm of B-type events on 28 April may have been associated with the new dome formation, and an increase in activity on 30 April may have marked the injection of new magma.

Eruption products. M. Gardeweg characterized the eruption products as pyroclastic flows, co-ignimbrite fallout (pumice and ash) deposited mainly to the E, and projectiles (figure 13). The pyroclastic flows were small-volume ignimbrites composed of abundant rounded andesitic pumice in a gray ash matrix. Most flows traveled ~4 km from the crater, but some to the NW were channeled by the upper Talabre gorge and reached Tumbres, a swampy ground 7.5 km from the crater where springs supply water for the village of Talabre. The flow deposit was covered by a narrow, thin veneer of very fine-grained ash, which was constantly blown by the wind. Degassing pipes were observed in the Tumbres deposit. A day after the eruption, the flow front was still warm, but was cooling rapidly.

The water supply to Talabre was cut off by the pyroclastic flow, but a few hours after its emplacement, water eroded through the pyroclastic material, and developed a new creek in the gorge. Donkeys and small insects were back in Tumbres the day after the eruption. The water contained a large amount of ash, but its pH was 7.6-7.7, only slightly less than its normal 8.3. Grass samples from Tumbres that were covered by ash showed 33% more fluorine than samples of clean grass. Ash from Chilean volcanoes Hudson and Lonquimay also contained notable amounts of fluorine.

The lapilli varied from white and vesicular pumices to a denser scoriae. Banding evident in some lapilli mainly reflects different degrees of vesicularity. A few dense blocks (2(black scoriae) to 60.4% SiO2 (white pumices). The fine ash has a similar andesitic composition (60.3% SiO2) with slight K enrichment. Large blocks (>2 m) left 4-5 m diameter impact craters up to 7 km from the crater. In Lejía, 17 km SSE of the volcano, a thin cover of pumice fragments 6-9 cm in diameter was noted. Huaitiquina Pass, 65 km SE on the Chilean-Argentine border, received only a thin layer of fine ash (4-4.5 mm), largely blown by wind and concentrated below cliffs or in depressions. No fall-out was found in El Laco, 55 km SE (slightly S of Huaitiquina).

The eruption also affected Argentina and J. Viramonte provided the following information. The total volume of erupted material (excluding material injected into the stratosphere) was estimated to be 0.1 km3: 0.09 km3 proximal air fall, 0.0085 km3 distal air fall, and 0.0037 km3 pyroclastic flow.

Viramonte noted that pyroclastic-flow deposits W of the crater, 7.5 km long and 1.5-2 m thick, cut the road between Antofagasta, Chile, and Salta, Argentina. He described the deposits as 60% coarse juvenile andesitic pumice fragments (2-60 cm in diameter) mixed with a minor volume of dense andesitic blocks as large as 1 m in diameter (from the old summit lava dome), and 40% fine-grained andesitic material. A very fine-grained ash-cloud-surge deposit, 5-30 cm thick, that clearly burned vegetation, flanked the pyroclastic-flow deposits. On 23 April temperatures of the deposits were as high as 100°C. These units may have been emplaced during the continuous emission of pyroclastic flows that began at 1935 on 19 April.

Four superposed pyroclastic-flow units begin 3 km from the crater rim on the ESE flank of the volcano, and extend 3-4 km to the Pampa Lejía plain. They are 1.2-1.5 m thick and composed of mainly white juvenile pumice fragments and gray blocks from the lava dome (70-80%), and fine-grained material (20-30%). Many light-and-dark banded pumice fragments were present.

Three short pyroclastic-flow lobes on the E side of the volcano had been covered by air-fall pumice. Many fumaroles with white ammonium chloride crystals and red yellow iron chloride crystals were present on the flows. Fumarole temperatures were as high as 250°C. At the foot of the pyroclastic-flow deposits, a thin ground-surge deposit was identified 100-150 m up the side of Corona hill at the S end of Lascar.

Ejected bombs and blocks were abundant within a 3-3.5 km radius of the crater, becoming rare 4 km distant. The ballistic clasts were pumiceous black andesitic bombs and dense gray andesitic blocks from the lava dome. Rounded and strongly vesiculated bombs as large as 70 cm in diameter were found 3 km from the crater. The lava-dome blocks were irregular and often showed a bread-crust structure.

Tephra carried by strong high-altitude winds produced a large dispersion of airfall deposits to the ESE (figure 14). Wind speed and direction reported by the Servicio Metereorológico Nacional Argentina at different localities (table 2) are consistent with the evolution of the ash cloud as tracked by NOAA using weather satellites.

Figure (see Caption) Figure 14. Isopach map of tephra fallout from April 19-20 eruption of Lascar. Depths are in cm. Closed fields indicate salars, saline playa lakes. Courtesy of J. Viramonte, Instituto Geonorte.

Table 2. Wind speed and direction at selected cities (see figure 15) downwind of the 19-20 April eruption of Lascar. Data are from the Servicio Metereorológico Nacional Argentina. Courtesy of J. Viramonte, Instituto Geonorte.

Date Station Altitude (km) Direction (degrees) Velocity (km/hour)
19 Apr 1993 Resistencia 10.8 305 91
19 Apr 1993 Resistencia 12.3 270 41
19 Apr 1993 Resistencia 14.1 285 46
19 Apr 1993 Resistencia 16.5 275 41
19 Apr 1993 Córdoba 10.8 355 98
19 Apr 1993 Córdoba 12.3 345 59
19 Apr 1993 Córdoba 14.0 310 124
19 Apr 1993 Córdoba 16.4 300 56
19 Apr 1993 Salta 10.9 325 63
19 Apr 1993 Salta 12.3 310 91
19 Apr 1993 Salta 14.1 310 85
19 Apr 1993 Salta 16.5 295 91
20 Apr 1993 Resistencia 10.9 330 54
20 Apr 1993 Resistencia 12.4 320 72
20 Apr 1993 Resistencia 14.1 295 76
20 Apr 1993 Resistencia 16.6 290 65
20 Apr 1993 Córdoba 10.6 355 200
20 Apr 1993 Córdoba 12.1 355 202
20 Apr 1993 Córdoba 14.0 335 126
20 Apr 1993 Córdoba 16.4 300 115
20 Apr 1993 Salta 12.3 285 98
20 Apr 1993 Salta 14.1 285 83
20 Apr 1993 Salta 16.5 280 56
20 Apr 1993 Salta 18.6 260 44

The maximum diameter of air-fall clasts on the flanks of the volcano was 30-40 cm. The maximum tephra thickness was 0.6 m on the E side of Lascar where it intersects Aguas Calientes Volcano. Approximately 20,000 km2 received at least 1 mm of ash (figure 14), and over 850,000 km2, including parts of N-central Argentina, S Paraguay, Uruguay, and S Brazil, were covered by a thin (<0.1 mm) deposit of ash (figure 15).

Figure (see Caption) Figure 15. Approximate ash-fall distribution from the 18-20 April eruption of Lascar. The thick lines outline the area receiving ashfall according to news reports. Courtesy of M. Gardeweg, SERNAGEOMIN.

Satellite monitoring. GOES-7 visible and infrared imagery detected five major eruption pulses starting at 2300 on 19 April (table 3). The plume was very dark in the visible imagery, similar to the appearance of the 14-15 June 1991 clouds from Mount Pinatubo. A subtropical jetstream moved the plume rapidly ESE (figure 16) at ~93 km/hour.

Table 3. Summary of explosive phases of Lascar detected on 20 April with visible and infrared satellite imagery from GOES-7 and NOAA-11. The tropopause was at 15.7-km altitude in the region at 1200 GMT. Courtesy of Jim Lynch, NOAA/NESDIS.

Date Approximate Eruption Start Time Duration (hours) Maximum Altitude (km)
19 Apr 1993 2300 1.0 14-16
20 Apr 1993 0300 1.0 14-16
20 Apr 1993 0630 1.5 14-16
20 Apr 1993 0930 1.5 14-16
20 Apr 1993 1300 5.0 10-12
Figure (see Caption) Figure 16. Image of the plume of Lascar, 1600 on 20 April. The image was processed from NOAA-11 Advanced Very High Resolution Radiometer (AVHRR) channel 4 (thermal infrared) data. Compare with figure 3. Courtesy of G. Stephens, NOAA.

D. Rothery, C. Oppenheimer, and P. Francis noted the following changes in the active crater of Lascar using Landsat's TM. "We have been monitoring thermal events within Lascar's active crater for several years using the short wavelength infrared radiance of thermal origin. The latest image we have prior to the 20 April 1993 eruption was recorded by Landsat 5 on 24 February.

"Whereas our 1991 and 1992 data showed a strongly centered group of thermally radiant pixels that coincided with the lava dome (figure 17 bottom), there was a significant change visible on 24 February 1993 (figure 17 top). The central anomaly has decreased in size and magnitude, but there is a distinct subsidiary peak in thermal radiance to the E. This coincided with the position of a fumarole that had been more weakly radiant on previous images. This site lies about half-way down the wall of the active crater, which at this point is embedded in the floor of an old crater (see figure 13). We have no grounds for suggesting that this newly prominent site was the seat of the 19-20 April eruption. The nature of the central anomaly on 24 February, which had decreased to the approximate size and magnitude of the anomaly recorded from late 1987 until the end of 1989, suggests that the lava dome was still in existence on that date.

Figure (see Caption) Figure 17. Radiance in Landsat TM band 7 (2.08-2.35 micron) for a 15x15 pixel area encompassing Lascar's active crater, looking N. Data are from 24 February 1993 during the day (top), and 15 April 1992 during the night (bottom) (from figure 21b in Oppenheimer and others, 1993). Each pixel represents a 30 x 30 m ground area. Radiance is shown as DN, which is the number recorded by the sensor. In this example, areas with DN of about 50 or less are not thermally radiant and the DN represents reflected sunlight. Where DN exceeds about 100, the surface is radiating thermally, and the DN represents the sum of reflected sunlight and thermal radiance. Courtesy of D. Rothery, Open Univ.

"The summed spectral radiance of thermal origin in Landsat TM bands 5 and 7 showed a decline before the 1993 eruption similar to that before the September 1986 eruption (figure 18). There was no observed decline before the February 1990 eruption, though that could be the result of the lack of images before the eruption."

Figure (see Caption) Figure 18. Summed spectral radiance of thermal origin in Landsat TM bands 5 and 7 for the active crater of Lascar (from figure 18 in Oppenheimer and others, 1993 with data for 24 February 1993 added). Eruptions are noted by arrows. The decline in summed radiance prior to the 1993 eruption is similar to that preceding the 1986 eruption. There was no observed decline before the February 1990 eruption, though that could be the result of the lack of images during 1988-89. Courtesy of D. Rothery, Open Univ.

Effects and previous activity. The 70 [people] who live in Talabre and make their living as llama herders and weavers were evacuated [to the nearby village of Toconao for two nights] by authorities on 19 April. Initial reports indicated that there had been no injuries. However, many defied the order and returned to tend their homes and animals. As many as six people were listed as missing, having apparently gone searching for their animals on the SE side of the volcano. [The people listed as missing were forced to make a detour because their normal route was covered by pumice and ash, but they arrived safely 3 days after the eruption.]

References. Gardeweg, M.C., Sparks, S., Matthews, S., Fuentealba, G., Murillo, M, and Espinoza, A., 1993, V Informe sobre el comportamiento del Volcán Lascar (II Región): Enero Marzo 1993, Informe Inédito, Biblioteca Servicio Nacional de Geología y Minería, 14 p.

Oppenheimer, C., Francis, P.W., Rothery, D.A., Carlton, R.W.T., and Glaze, L.S., 1993, Infrared image analysis of volcanic thermal features: Lascar volcano, Chile, 1984-1992, Journal of Geophysical Research, v. 98, p. 4269-4286.

Geologic Background. Láscar is the most active volcano of the northern Chilean Andes. The andesitic-to-dacitic stratovolcano contains six overlapping summit craters. Prominent lava flows descend its NW flanks. An older, higher stratovolcano 5 km E, Volcán Aguas Calientes, displays a well-developed summit crater and a probable Holocene lava flow near its summit (de Silva and Francis, 1991). Láscar consists of two major edifices; activity began at the eastern volcano and then shifted to the western cone. The largest eruption took place about 26,500 years ago, and following the eruption of the Tumbres scoria flow about 9000 years ago, activity shifted back to the eastern edifice, where three overlapping craters were formed. Frequent small-to-moderate explosive eruptions have been recorded since the mid-19th century, along with periodic larger eruptions that produced ashfall hundreds of kilometers away. The largest historical eruption took place in 1993, producing pyroclastic flows to 8.5 km NW of the summit and ashfall in Buenos Aires.

Information Contacts: M. Gardeweg and A. Espinoza, SERNAGEOMIN, Santiago; E. Medina, Univ Católica del Norte, Antofagasta; M. Murillo, Univ de la Frontera, Temuca, Chile; J. Viramonte, R. Marini, R. Bocchio, and R. Pereyra, Univ Nacional de Salta, Instituto Geonorte - CONICET, Argentina; R. Seggiaro, M. Bosso, N. Monegatti, and M. Bolli, Univ Nacional de Salta, Instituto Geonorte, Argentina; R. Ortiz Ramis, CSIC, J. Gutierrez Abascal, Spain; I. Torrejón, Esccuela Básica G-29, Talabre, Chile; D. Rothery, C. Oppenheimer, and P. Francis, Open Univ; J. Lynch, SAB; G. Stephens, NOAA; American Embassy, Santiago, Chile.


Ol Doinyo Lengai (Tanzania) — April 1993 Citation iconCite this Report

Ol Doinyo Lengai

Tanzania

2.764°S, 35.914°E; summit elev. 2962 m

All times are local (unless otherwise noted)


Carbonatite lava production continues

Carbonatite lava extrusion since February 1992 has centered on [T20] (figure 27). Lava production has continued since September [1992] as new lava flows from T20 have surrounded other cones with up to 4 m of new material.

Figure (see Caption) Figure 27. Panorama of Ol Doinyo Lengai crater on 23 February 1993 looking SW from the E rim (top) and looking E from the W rim (bottom). Crater diameter is ~330 m. Drawn by C. Nyamweru from photographs taken by H. Martin and P. Robinson.

Although no activity was observed on 23 February when David Peterson, Paul Robinson, and a group of St. Lawrence Univ students descended to the crater floor for ~3.5 hours in the morning, morphological changes indicated continued lava production from vent T20. Heather Martin reported that no liquid lava was visible in the vents or on the crater floor, but that steam was being emitted from almost all of the vents, especially T5/T9 and T20 (figure 27), and from the base of the W inner crater wall. There was also a strong smell of sulfur near the vents, and intermittent rumbling, thumping, and cracking noises were heard coming from beneath the crater floor and the two vents named above. The crater floor consisted of large, relatively smooth, but heavily cracked, pale grayish-tan plates. Crystalline sulfur deposits (green/yellow/rust/white) were present along cracks. No dark, fresh flows were observed. The E-W diameter of the crater was estimated to be 330 m, and the E wall behind T5/T9 was estimated to be 32 m high. Rim cone C1 and feature A5 were very pale compared to the color of the rest of the N wall.

The upper 5 m of cone T8 was still visible after being partially buried by several younger lava flows, now white in color. The vent on the E side of the summit of T14 remained open, although younger white-to-pale gray lavas have also surrounded this 6.4-m-high cone. Yellow sulfur staining was visible on the upper slopes of both the T8 and T14 cones. Vent T5/T9 (21 m high) remained the tallest feature on the crater floor, though the sharp junction at the base of the cone indicates that it has also been surrounded by younger flows. There have been no noticeable changes since last September to the 8-m-high T15 cone, which still has pale-gray lower slopes and jagged dark upper slopes. Vent T19 and feature D, possibly an older lava flow that has been visible for several years (figure 26), have apparently been completely buried by younger flows.

Based on the depth of lava that has surrounded the older T5/T9, T8, and T14 cones (1.5-4 m), the base of the crater wall, and the remains of the M2 spur, it is clear that a considerable volume of lava has been extruded since . . . 30 September 1992. The source of most or all of this lava appears to be the T20 vent . . . . Vent T20 has blackened upper slopes with an open vent on the W upper slope and a lava tunnel 2-3 m deep and 1-2 m high that extends ~50 m to the SE. The smooth lava that gently slopes up from the crater floor around T20 resulted in height estimates for T20 that varied between 7 and 14 m.

Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

Information Contacts: C. Nyamweru, St. Lawrence Univ; D. Peterson, Arusha; P. Robinson, Nairobi, Kenya; H. Martin, Norwood, NY; A. Prime, Hingham, MA.


Manam (Papua New Guinea) — April 1993 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Very low activity

"Activity . . . continued at the very low level reported in March. Emissions from both summit craters consisted of weak-to-moderate white vapour. No night glow was reported. Seismic activity was low throughout April and the tilt measurements showed no trends."

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: N. Lauer, R. Stewart, and C. McKee, RVO.


Poas (Costa Rica) — April 1993 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Fumarolic activity continues; lake level drops

Fumarolic activity in the N part of the crater lake continued in April as gas columns rose to 500 m. One fumarole produced a jet-like sound, audible from an observation site 1 km S. Almost constant phreatic eruptions produced 1-2-m-high plumes in a light-green area near the center of the lake. The lake level dropped 1 m during April.

A seismograph located 2.7 km SW of the active crater recorded 4,115 low-frequency events (2-2.5 Hz) during April (figure 44). The highest daily total of the month was 319 on 5 April.

Figure (see Caption) Figure 44. Seismic events/day recorded 2.7 km SW of the main crater of Poás, April 1993. Courtesy of OVSICORI.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: E. Fernández, J. Barquero, V. Barboza, and W. Jimenez, OVSICORI.


Rabaul (Papua New Guinea) — April 1993 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Seismic activity remains high; no ground uplift

"The number of earthquakes detected in April was 1,061, . . . still relatively high compared to background (250-350 earthquakes/month). Large swarms of >100 earthquakes occurred on 1, 3, and 21 April. No earthquakes were felt, suggesting that the largest event was M 2-2.5. The epicenters of the 52 accurately located earthquakes were mainly in the W and NE parts of the caldera seismic zone, similar to . . . March.

"Routine monthly levelling from Rabaul town to Matupit Island showed a small uplift at the S end of the island. Other parts of this levelling line showed no significant changes compared to March. Additional levelling along the N side of Greet Harbor showed a deflation of up to 13 mm since the last survey in August 1992.

"The relatively high level of seismicity with little or no associated ground uplift is reminiscent of activity recorded in mid-1986. The lack of significant uplift suggests that neither episode was related to any pronounced movement of magma within the caldera."

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: N. Lauer, R. Stewart, and C. McKee, RVO.


Rincon de la Vieja (Costa Rica) — April 1993 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Seismic activity continues

A seismograph about 5 km SW of the active crater recorded 28 microearthquakes and four high-frequency earthquakes in April (figure 7).

Figure (see Caption) Figure 7. Seismic events/day recorded 5 km SW of the active crater of Rincón de la Vieja. Courtesy of OVSICORA.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: E. Fernández, J. Barquero, V. Barboza, and W. Jimenez, OVSICORI.


Sheveluch (Russia) — April 1993 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Eruption sends ash cloud to 20 km altitude

An explosive eruption 22 April followed more than a month of seismic and explosive precursors. Almost daily explosive bursts from 18 March to 4 April sent eruptive clouds to 1-4 km above the summit. Shallow earthquake swarms increased in early April from 14 earthquakes on 4 April to 90 distinct earthquakes in a continuous swarm on 7 April, when the Level of Concern Code was raised to orange by geologists at the IVGG. Magnitudes were estimated to be about M 2 on 6 April. Steam and gas explosions with some ash content continued over the next 3 days with seismicity remaining at high levels. Earthquakes increased in number and magnitude 12-15 April, with a maximum of 124 earthquakes on 14 April.

A snowstorm prevented observations 17-19 April, but explosions from the volcano were heard in Kliuchi (45 km SW) every few seconds on the 19th. Numerous gas and steam bursts occurred from the active dome 19-20 April. The gas-and-ash plume rose 800 m above the crater rim and drifted SW. Two spine-like or obelisk-shaped extrusions, 30-40 m high, were observed on the summit dome 20 April by geologists from IVGG and the IV. Shallow seismicity beneath the dome began to migrate towards the surface that same day. Seismicity began decreasing 19 April, and had declined sharply by the 21st. Gas and steam bursts rose to 600 m above the dome on 21 April.

The climactic eruption began the morning of 22 April. IV scientists reported explosions at the dome and from the crater near the dome beginning at 1030. The eruption cloud was ~7 km high by 1042 and >10 km high at 1313. The cloud obscured the volcano after the explosions until about 1600 when the lower part of the cloud was blown E and the upper part W. The eruption also produced pyroclastic flows and mud flows >10 km long.

The Level of Concern Code was raised to red on 22 April by IVGG geologists, who reported strong explosions at 1205 and 1230. At 1205 the eruptive cloud rose 6 km above the crater rim . . . and then to 15 km by 1330. The lower part of the ash cloud was moving WSW, and the upper portion was moving SE. Lightning was seen within the cloud. At 1340 the height of the eruption column was estimated to be 18 km (~20 km altitude). The ash cloud was detected drifting W by a weather satellite at 1432. By 1545, the ash cloud was moving WSW over the Kamchatka Peninsula. Pyroclastic flows down the flanks of the volcano reached 900 m elev, and mud flows extended 100 m lower.

The next morning, at 0530 on 23 April, another explosive ash eruption sent a column to 9-11 km altitude with the cloud moving in different directions at different altitudes. Bad weather prevented visual helicopter inspections of the crater area that day, but ash had started falling in . . . Kliuchi during the night and continued past 0800, stopping sometime later in the day. Strong winds rapidly redistributed the ash making thickness estimates difficult; however no more than 3 mm of ash appears to have fallen on the town, 45 km SW. Seismic activity decreased in the 24 hours after the eruption, and the Level of Concern Code was lowered to orange. No new pyroclastic flows or mudflows were observed on the lower flanks of the volcano.

IV also reported single explosions continuing on 23 April. The ash column was 3 km high and ashfall also occurred in Ust'-Kamchatsk (100 km SE). Baidarnaya station (8 km from active crater) registered 27 earthquakes on 23 April with amplitudes of 2-4 µm.

The volcano became visible 24 April, and a gas and steam column 4.5 km high was observed by IVGG at 2230, drifting to the N. Shimmering lights inside the crater were observed during the night. Seismicity was twice that recorded 22 April, and 20 earthquakes were detected in addition to constant low-amplitude tremor beneath the crater. An explosive burst was recorded seismically at 0619 on 25 April. A steam-and-ash column to 3.5 km above the crater was observed that day at 0530 and 0730, with a >30-km-long plume directed NNW.

Clouds again prevented visual observations 26-29 April, but the Level of Concern Code was lowered to yellow on 27 April because of the overall decline in volcanic activity. However, seismicity remained above background levels during this period with 36 earthquakes recorded on 27 April. Shallow, low-amplitude tremor was also continuing beneath the active dome.

Separate strong explosions were observed by IV geologists once every few days from 24 April to 3 May. The height of the ash cloud during the last days reached 1.5-2 km.

Thermal capacity and volume of ejected pyroclastics were calculated based on powerful explosions on 21 April at 2242-2258 (plume 6 km above the crater); 22 April at 0013-0026 (>10 km), 1104-1110, 1630 (7 km), and 2030, and 24 April at 1719 (3.5 km). Tremor amplitude was as much as 35 microns, with a period 0.6-0.9s (7.5 km from the active dome). Based on the height of the eruptive cloud and tremor, calculations indicate that the thermal capacity of the plume was about 1-50 x 109 MJ, with about 1-50 x 106 tons of ejected pyroclastics. Calculations were made by V. V. Ivanov (IV) using the methods of Fedotov (1985) and Firstov and others (1977).

References. Fedotov, S. A., 1985, Estimates of heat and pyroclast discharge by volcanic eruptions based upon the eruption cloud and steady plume observations: Journal of Geodynamics, v. 3, p. 275-302.

Firstov, P. P., Lemzikov, V. K., and Rulenko, O. P., 1977, Seismic regime of Karymsky volcano (1970-1973): Volcanism and Geodynamics, p. 161-179 (in Russian).

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: V. Kirianov, IVGG; S. Fedotov, V. Ivanov, G. Bogoyavlenskaya, V. Gavrilov, and N. Zharinov, IV; J. Lynch, SAB.


Stromboli (Italy) — April 1993 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Explosive activity increases; detailed description of crater

Steve Matthews and Abigail Church observed vigorous Strombolian activity on 22 April at two 20-m-high hornitos in crater C1 (figure 29). Incandescent gas explosions occurred at 3-10 second intervals, followed ~0.5 seconds later by ejection of spatter. Semi-liquid bombs up to 2 m across reached up to 100 m above the vents. Stronger activity from all three craters every 10-20 minutes consisted of gas emissions lasting as long as 15 seconds that ejected spatter as high as 250 m. These stronger events appeared to occur in pairs from craters C3 and C2. An explosion from C3's vent 4 was often followed a few minutes later by an explosion from vent 2 in C2. Within C1, these larger explosions were only produced from the NE hornito (vent 1). Many incandescent fumaroles were visible on the hornitos and the floors of all three craters. Small amounts of spatter were also ejected from the fumaroles during the strongest explosive episodes. At about 2030, shortly after sunset, lava was observed flowing slowly from a breach or bocca in the SW hornito (vent 2) in C1. When observations ended at 2200, the lava flow had divided and was beginning to form a moat around the hornitos.

Figure (see Caption) Figure 29. Sketch of the summit craters and vents at Stromboli, 22 April (top), and 3 May 1993 (bottom). Crater walls could not be distinguished on 3 May due to the abundant gas and steam. Vent numbers are in parentheses. Field of view is ~200 m across. Courtesy of S. Matthews, A. Church, and S. O'Meara.

A high level of eruptive activity was reported by Steve O'Meara on 2-6 May. Roaring noises could be heard in San Vincenzo (~2.5 km NE) the afternoon of 2 May, which became periodic by late afternoon, occurring about once every 20-30 minutes. A gray fountain was observed from the lower NE slopes around 1830 that rose several hundred meters above the NE-most vent. Several strong explosions later that evening sent incandescent boulders rolling down the steep slope of the Sciara del Fuoco (figure 29). There were at least 8 vents active for several hours during summit observations the night of 3-4 May. Eruptive activity increased dramatically after the nearly full moon rose, peaked when the moon culminated in the southern sky, and waned before moonset. Lunar perigee (when the moon is closest to the Earth) occurred that night around 0100.

Vent 1 in crater C1 (figure 29) was a large dome-shaped mound with a summit crater and shallow floor filled with incandescent bombs from other vent explosions. Approximately every 30 minutes a powerful explosive blast, which sounded like a large cannon firing, violently blew the debris from the vent to heights of 200-300 m. Increased crater glow preceded these eruptions and most others. C1's vent 2 is a small cone with a peanut-shaped throat adjacent to and W of vent 1. This vent was continuously active with jetting sounds, blue flames, and spatter ejection. Thin streams of lava were erupted about every 5 minutes, with larger 100-m sprays of lava about every 15 minutes. Vent 3 in C1 (E of and adjacent to vent 1) exhibited continuous glow and erupted synchronously with either vent 1 or vent 2, ejecting material to a height of ~100 m. Occasionally, vents 1-3 would erupt together. Ejecta from vent 3 was directed slightly NE, while blasts from vents 1 and 2 were directed vertically. These explosions only lasted for a few seconds. Another less-active vent in C1, S of and adjacent to vent 1, also appeared to erupt synchronously with vents 1-3 to heights of tens of meters.

In crater C2, vent 1 had three glowing components, though only the western-most one produced sporadic minor eruptions, spraying lava ~10-30 m above its steep, narrow cone. Eruptions from vent 2 in C2 occurred every 30-45 minutes and lasted 20-40 seconds each. Eruptions began with a strong jetting sound, after which a thin spray of lava would shoot out, followed by more vigorous jetting and extensive lava production. Lava fountains reached heights of up to 150 m. Lava was visible in the vent for about a minute after each eruption, with the surface continually being fractured by escaping gases. The lava would then slowly sink into the vent until it was no longer visible, although glow remained.

Two small adjacent vents in crater C3 were each surrounded by wide, shallow cinder rims. Eruptions were more frequent at the W vent, where explosions sent material 300-400 m high about every 10 minutes during the most active periods. These eruptions occurred without warning and were accompanied by a loud roaring noise. The largest eruptions from this vent produced very broad, expansive plumes shaped like large evergreen trees, which reached 30 m above the summit of the volcano. Another vent farther S may also have erupted, but that area was obscured by fumes and steam.

The frequency of eruptions from each vent changed with time, but not the sounds, making it possible to know which vents were erupting. By the morning of 3 May, activity had declined to one large explosion and a couple of smaller ones approximately every 20 minutes. During the most active periods of the night, >20 strong eruptions occurred every hour. Activity increased again after moonrise on 4 May and remained strong into the early morning. Orange glow reflected by the clouds was observed that night in San Vincenzo. The next day, powerful eruptions continued from crater C3 and vent 1 in C1, but with less frequency. Vents 2 and 3 in C1 glowed but did not have any strong eruptions. Observations ended about 2400 on 5 May. Seven eruptions were seen from the ferry 2100-2200 on 6 May.

Marcello Riuscetti reports that Stromboli guides observed a new cone in crater C1 and renewed activity at the C3 spatter cone in mid-May. On 16 May a small lava emission occurred from the base of a cone in C3. During the night the flow traveled 30 m down the slope, reaching the feeding fissure of the 1985 eruption before stopping. The flow resumed 18 May, covering ~60 m of 1985 lava NE towards the Sciara del Fuoco. Strong tremor and frequent explosions accompanied the lava flow.

Seismicity (number and energy of shocks, tremor energy) increased in March and April after the low of 11 February (18:02). The level of seismicity was very high in April (figure 30), with nearly continuous explosions in the second and third weeks.

Figure (see Caption) Figure 30. Seismicity recorded at Stromboli, March-April 1993. Open bars show the number of recorded events/day, the solid bars those with ground velocities >100 mm/s. The lines show daily tremor energy computed by averaging hourly 60-second samples. The number of daily events are off the scale for the 2nd and 3rd weeks of April due to the nearly continuous explosions during that period. Courtesy of M. Riuscetti.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: S. Matthews, Univ College London, London; A. Church, Natural History Museum, London; S. O'Meara, Sky & Telescope; M. Riuscetti, Univ di Udine.


Suwanosejima (Japan) — April 1993 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Sporadic, weak ash eruptions

Sporadic, weak ash eruptions continued in April. The island's residents heard explosions [during] 22-26 April.

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: JMA.


Taftan (Iran) — April 1993 Citation iconCite this Report

Taftan

Iran

28.6°N, 61.13°E; summit elev. 3940 m

All times are local (unless otherwise noted)


Lava flow reported; no previous historical eruptions known

An eruption that sent a lava flow ~60 m downslope was reported on 25 April by the Islamic Republic News Agency. No additional information about the timing or location of the activity was available. There was apparently no immediate danger to the local population.

Geologic Background. Taftan is a strongly eroded andesitic stratovolcano with two prominent summits. The volcano was constructed along a volcanic zone in Beluchistan, SE Iran, that extends into northern Pakistan. The higher SE summit cone is well preserved and has been the source of very fresh-looking lava flows, as well as of highly active, sulfur-encrusted fumaroles. The deeply dissected NW cone is of Pleistocene age. In January 1902 the volcano was reported to be smoking heavily for several days, with occasional strong night-time glow. A lava flow was reported in 1993, but may have been a mistaken observation of a molten sulfur flow.

Information Contacts: AP; Reuters.


Turrialba (Costa Rica) — April 1993 Citation iconCite this Report

Turrialba

Costa Rica

10.025°N, 83.767°W; summit elev. 3340 m

All times are local (unless otherwise noted)


Fumarolic activity unchanged

Fumarolic activity continued in the N, W, and SW walls of the main crater. Temperatures at the fumaroles, 90°C, have remained relatively unchanged since 1982 (17:02). A condensate sample had a pH of 4.5, similar to the pH of 4.8 recorded in December 1992 (17:12). Small landslides from the N, S, and W walls continued.

Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Information Contacts: E. Fernández, J. Barquero, V. Barboza, and Walter Jimenez, OVSICORI.


Ulawun (Papua New Guinea) — April 1993 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Tremor level returns to background

"Activity continued at the low levels reported in the previous two months. Emissions of weak-to-moderate white vapour occurred throughout April, with stronger emissions on 3 and 6 April. Seismic activity was low throughout the month. RSAM showed that the slow decline in tremor amplitude seen in March continued until 20 April. After 20 April, the tremor amplitude remained constant, indicating that tremor had effectively ceased and the natural background noise was being recorded."

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: N. LauerR. Stewart, and C. McKee, RVO.


Unzendake (Japan) — April 1993 Citation iconCite this Report

Unzendake

Japan

32.761°N, 130.299°E; summit elev. 1483 m

All times are local (unless otherwise noted)


Pyroclastic flows increase in number; heavy rainfall produces large debris flows

The swelling of dome 10 and local deformation of the basement rocks N of the dome complex had stopped by mid-April. Large blocks of dome 10 that overhung to the W and N collapsed and scattered around Jigokuato crater, filling it and covering a part of the 1663 lava flow.

Exogenous growth of dome 11 continued. The volume of dome 11 remained constant, implying that the volume of magma supplied to the dome was equal to that lost because of collapses. By mid-May, dome 11 was 150 m long, 150 m wide, and 70 m high.

The seismic network recorded ~ 10 pyroclastic flows/day until 27 April. On 28 and 29 April (both rainy days), 39 and 26 pyroclastic flows were detected, respectively. These were the highest daily totals since 25 September 1992. The monthly total of flows was 352, twice that of March.

The pyroclastic flows, almost all generated by collapses of dome 11, descended mainly E into Mizunashi Valley, NE into Oshiga Valley, and only rarely SE (figure 55). Several flows traveled through Oshiga Valley and entered the Mizunashi River, and some flows entered a headwater of the Nakao River, the upper stream of the Senbongi district. The limit of the flow deposits has been moving slowly N. The longest flow of the month occurred at 1016 on 29 April, traveling 3.5 km E from the dome complex and having a seismic duration of 160 seconds. Ash clouds from the flows rose ~ 1 km above the dome complex, generally higher than those of the past 4 months. The highest cloud rose 1.3 km on 26 April. A pilot reported a very dense, dark-gray column rising to 900 m above the summit and drifting SSE at 1818 on 25 April. The pyroclastic flows caused no damage.

Figure (see Caption) Figure 55. Map showing distribution of pyroclastic-flow and debris-flow deposits at Unzen, May 1993. Courtesy of S. Nakada.

Heavy rainfall on 28-29 April and 2 May generated the largest debris flows of the current eruption, both along the Mizunashi and Nakao rivers. Flows traveled E across highways 57 and 251, and the Shimabara railway, damaging about 500 houses. Prior to the flows, ~ 7,000 people had been asked to evacuate, and no injuries were reported. People were able to return after the rains. The highways were reopened 4 May after the sediment was removed, but the railway remained buried as of mid-May. The Civil Engineer of Nagasaki Prefectural Government estimated the total volume of debris in the Mizunashi River to be > 106 m3.

The number of microearthquakes detected under the dome complex declined . . . to 656 in April. A weak swarm occurred 19-24 April when daily totals increased by a factor of 5. Seismicity near the volcano was low.

The Geographical Survey Institute estimated the total volume of magma erupted from May 1991 to early-March 1993 to be 0.13 km3, and the volume of the dome complex to be 0.05 km3 based on digital mapping data. Over 2,000 residents remain evacuated from Shimabara and Fukae.

Geologic Background. The massive Unzendake volcanic complex comprises much of the Shimabara Peninsula east of the city of Nagasaki. An E-W graben, 30-40 km long, extends across the peninsula. Three large stratovolcanoes with complex structures, Kinugasa on the north, Fugen-dake at the east-center, and Kusenbu on the south, form topographic highs on the broad peninsula. Fugendake and Mayuyama volcanoes in the east-central portion of the andesitic-to-dacitic volcanic complex have been active during the Holocene. The Mayuyama lava dome complex, located along the eastern coast west of Shimabara City, formed about 4000 years ago and was the source of a devastating 1792 CE debris avalanche and tsunami. Historical eruptive activity has been restricted to the summit and flanks of Fugendake. The latest activity during 1990-95 formed a lava dome at the summit, accompanied by pyroclastic flows that caused fatalities and damaged populated areas near Shimabara City.

Information Contacts: JMA; S. Nakada, Kyushu Univ; ICAO.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).