Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

 Bulletin of the Global Volcanism Network - Volume 20, Number 02 (February 1995)

Managing Editor: Richard Wunderman

Aoba (Vanuatu)

Increased steam emissions and seismicity in early March; evacuation preparations made

Barren Island (India)

New eruption on 20 December; lava flows reach the ocean

Colima (Mexico)

Summit temperatures, gas measurements, and July 1994 explosion crater description

Dukono (Indonesia)

Aviation report of an ash cloud on 30 January

Fernandina (Ecuador)

Flank eruption slows but continues until at least 19 March

Galeras (Colombia)

Continued fumarolic activity and low SO2 values; new type of seismicity

Hudson, Cerro (Chile)

Sulfurous odors, noises, rising rivers, and thermal anomalies

Kilauea (United States)

Lava flows on coastal plain; four active ocean entry points

Langila (Papua New Guinea)

Occasional explosions from Crater 2 generate dark clouds and ashfall

Llaima (Chile)

Minor fumarolic activity; small scoria cone collapsed in the crater

Manam (Papua New Guinea)

Activity continues to decrease; weak vapor emissions

Merapi (Indonesia)

Seismic data associated with the 22 November 1994 dome collapse

Popocatepetl (Mexico)

Small ash cone observed in summit crater; plume rises 3 km

Rabaul (Papua New Guinea)

Renewed eruptive activity at Tavurvur

Unzendake (Japan)

Isolated tremors, but no eruptive activity or pyroclastic flows

Vailulu'u (United States)

Seismicity ends after 145 events detected by T-waves

Villarrica (Chile)

Sketches of both the crater and ash lobes from late-December eruptions

Yakedake (Japan)

Hydrothermal explosion kills four people

Aoba (Vanuatu) — February 1995 Citation iconCite this Report



15.4°S, 167.83°E; summit elev. 1496 m

All times are local (unless otherwise noted)

Increased steam emissions and seismicity in early March; evacuation preparations made

The following report, prepared on 17 March, is from volcanologists of the Institut Francais de Recherché Scientifique pour le Developpement en Cooperation, Office de la Recherché Scientifique et Technique Outre-Mer (ORSTOM), in Vanuatu and Ecuador.

Geological setting. Aoba is the largest basaltic shield volcano in the New Hebrides arc, with the base ~3,000 m below sea level, the summit ~1,500 m asl, and a volume of ~2,500 km3 (Eggins, 1993; Gorton, 1977; Robin and others, 1993). This rainforest-covered island lies in front of the d'Entrecasteaux collision zone, between the N and S Aoba Basins along an ~N50°E fracture transverse to the arc (figure 1; see Greene and others, 1994, for more information). Two concentric summit calderas, the largest 5 km in diameter (figure 2), enclose the central crater containing the 2-km-diameter Lake Voui (Vui) (figure 3). Numerous secondary craters and cones lie along the N50°E fracture, out to the extremities of the island, where previous magma-seawater interactions have produced several maars.

Figure (see Caption) Figure 1. Bathymetric map of central Vanuatu showing the trench and direction of relative movement (arrows), Aoba, and other active volcanoes. Bathymetry is in kilometers. Modified from Greene and others, 1994.
Figure (see Caption) Figure 2. Topographic map of Aoba (Ambae) Island, central Vanuatu. Areas of Recent phreatic explosion cones, spatter and scoria cones, and minor lava flows are approximated from a 1979 geologic map by the New Hebrides Geological Survey (!;100,000). Large dashed circles are 5- and 10-km radius lines. Topographic base map courtesy of C. Robin, ORSTOM.
Figure (see Caption) Figure 3. Photograph of the summit of Aoba Island looking approximately NW. Two concentric calderas enclose the main central crater, which contains the 2-km-diameter Lake Voui (white). A black lake in the E part of the caldera, Lake Manaro, is in the foreground. The photograph was taken by a U.S. pilot during World War II, provided courtesy of C. Robin, ORSTOM.

Eruptive history. Lake Voui and the Manaro Ngoro summit explosion craters and cones formed ~420 years ago. The Ndui Ndui lava flows issued from the N50°E fissure ~300 years ago and reached the NW coast (Warden, 1970). Possible eruption-related lahars (or only secondary mudflows following heavy rains?) annihilated villages on the SE flanks of the island ~120 years ago, producing several casualties. An eruption possibly occurred in 1914 with ashfalls (?) and lahars (12 casualties). . . .

Robin and Monzier (1993, 1994) consider Aoba the most potentially dangerous volcano of the Vanuatu archipelago because of the wide distribution of very young deposits related to strong explosive eruptions. They also cite thick lahar deposits, the presence of Lake Voui, long repose periods (~300-400 years , Warden, 1970), strong degassing at the lake in 1991, and a population of ~3,500 within 10 km of the crater.

Activity in December 1994. Unusual seismicity was felt . . . during 1-7 December 1994 (BGVN 20:01). Records from ORSTOM seismic stations on Santo (70 km W) and Efate (260 km SSE) islands showed that peak activity lasted 24 hours with 13 events, the largest M 4.6 (Regnier, 1995). Crustal hypocenters were located under the S submarine base of the volcano. On 7 December, helicopter reconnaissance showed small areas of rising hot gaseous water at Lake Voui, similar to July 1991 and September 1993, but the rainforest appeared completely burned for up to several hundred meters around the crater. Despite the end of the seismic crisis, ORSTOM emphasized to the NDO the need to remain circumspect of the volcano. In mid-December, according to Robin and Monzier (1994), the following advice was given to NDO: "In the case of a resumption of volcanic activity in the summit area, it will be wise to evacuate, in a first phase, the population of coastal villages of the central part of the island (in a 10 km radius area surrounding Lake Voui) towards the less hazardous NE and SW extremities of the island. If the eruption occurs near these extremities, or spreads along fractures from central vents towards these extremities, then it might be necessary to evacuate part of the population to Santo or Maewo-Pentecost."

Activity in March 1995. According to a VANAIR pilot report on 1 March, Lake Voui was calm with gas emissions from numerous locations. The following day, the lake was steaming all over, bubbling up in the center, and its surface was rough; the pilot also reported black sediment ejections. Early on the morning of 3 March, people on Santo Island observed a gas plume rising 2-3 km above Lake Voui. Simultaneously, crustal seismicity similar to that in December 1994 was recorded.

On 4-6 March, ORSTOM geophysicists (M. Lardy and D. Charley) recorded strong continuous tremor at Ndui Ndui, ~9 km NW from the main crater. This tremor had a monochromatic signal with a 1.4 Hz mean frequency, several hours duration, and an amplitude of 3-4x background. Local observers were trained to watch the activity and the collaboration with VANAIR pilots was reinforced. As usual during the tropical summer, the top of the volcano was covered by thick clouds and rarely visible. However, on 5 March a gas plume was still visible above Lake Voui.

An island resident who stayed several days in the summit area during early March described lake levels and reported that soft mud had been blown all over the shores. On 4 and 6 March the surface of Lake Voui was at least 5.4 m higher than normal. However, on 9 March the lake was hot and steaming, and was ~4.8 m below the normal level, a change of ~10 m within 3 days. Tremor activity remained constant between 9 and 13 March, but with significantly less intensity than during 4-6 March. In addition, shallow, local micro-seismicity was noted since 11 March. During an aerial survey on 13 March, the entire lake was steaming and a strong sulfur smell had been reported around the summit area.

If activity increases in the central crater, magma-water interactions could produce falls of ash, dense lapilli, and accretionary lapilli, as well as pyroclastic flows, base surges and lahars. Lava flows may also erupt from flank fissures, N50°E or other orientations. The ORSTOM seismological team in Vanuatu will be reinforced on 17 March by the arrival of a new seismologist, and 5-7 portable seismic stations will be deployed around the island as soon as possible to improve the focal locations and delineate possible areas of attenuation. Also, a new permanent seismic station will be installed on Aoba. Daily contact is maintained between ORSTOM scientists in Vanuatu and Ecuador; the latter are prepared to move to Vanuatu if necessary.

Evacuation preparations. On 8 March, after discussions between ORSTOM geophysicists in Vanuatu and volcanologists now based in Ecuador, the following advice was given to the Vanuatu Government: ". . .The size of the gas plume observed above Lake Voui crater on March 3, 1995 probably means that magma is now rising within the volcano . . . . Thus, Aoba volcano is now dangerous and it seems necessary to envisage the evacuation of the population of coastal villages located in a 10 km radius area surrounding Lake Voui towards the less hazardous NE and SW extremities of the island . . . ."

Following this advice, Aoba Island was placed on alert and preparations for evacuations were begun. On 9 March, aircraft within a 4-km radius of Aoba up to 2.2 km altitude (7,500 feet) were restricted to scheduled flights and those approved by civil aviation or disaster office authorities. Correcting previous statements that evacuations had already started, the UNDHA reported on 17 March that villages within 10 km of the crater had been identified as threatened, and those within a 5-km radius had been placed on stand-by for immediate evacuation. Evacuation centers were identified, and all available government and several private ships were positioned to assist in a possible evacuation.

References. Eggins, S., 1993, Origin and differenciation of picritic arc magmas, Ambae (Aoba), Vanuatu: Contributions to Mineralogy and Petrology, v. 114, p. 79-100.

Gorton, M.P., 1977, The geochemistry and origin of quaternary volcanism in the New Hebrides: Geochimica et Cosmochimica Acta, v. 41, p. 1257-1270.

Greene, H.G., Collot, J.-Y., Stokking, L.B., and others, 1994, Proceedings of the Ocean Drilling Program, Scientific Results, 134: College Station, TX (Ocean Drilling Program).

Regnier, M., 1995, Rapport préliminaire sur la crise sismique d'Aoba de décembre 1994: Rapport ORSTOM, Port-Vila, 4 p.

Robin, C., and Monzier, M., 1993, Volcanic hazards in Vanuatu: Disaster Management Workshop by National Disaster Management Office, Republic of Vanuatu, 24-28 May 1993, Port-Vila, 8 p.

Robin, C., and Monzier, M., 1994, Volcanic hazards in Vanuatu: ORSTOM and Dept. of Geology, Mines and Water Resources of the Vanuatu Government report, 15 p.

Robin, C., Monzier, M., Crawford, A.J., and Eggins, S.M., 1993, The geology, volcanology, petrology-geochemistry, and tectonic evolution of the New Hébrides island arc, Vanuatu: IAVCEI Canberra 1993, Excursion guide, Record 1993 / 59, Australian Geological Survey Organisation, 86 p.

Warden, A.J., 1970, Evolution of Aoba caldera volcano, New Hebrides: BV, v. 34, no. 1, p. 107-140.

Geologic Background. Aoba, also known as Ambae, is a massive 2500 cu km basaltic shield volcano that is the most voluminous volcano of the New Hebrides archipelago. A pronounced NE-SW-trending rift zone dotted with scoria cones gives the 16 x 38 km island an elongated form. A broad pyroclastic cone containing three crater lakes is located at the summit of the Hawaiian-style shield volcano within the youngest of at least two nested calderas, the largest of which is 6 km in diameter. Post-caldera explosive eruptions formed the summit craters of Lake Voui (also spelled Vui) and Lake Manaro Ngoru about 360 years ago. A tuff cone was constructed within Lake Voui about 60 years later. The latest known flank eruption, about 300 years ago, destroyed the population of the Nduindui area near the western coast.

Information Contacts: C. Robin and M. Monzier (geologists) ORSTOM, Quito, Ecuador; M. Lardy (geophysicist), M. Regnier, J-P. Metaxian, R. Decourt (seismologists), and D. Charley (technical assistant), ORSTOM, Vanuatu; M. Ruiz (seismologist), Instituto Geofísico, Escuela Politécnica Nacional, Quito, Ecuador; J-P. Eissen (geologist), ORSTOM, France; BOM, Australia; UNDHA.

Barren Island (India) — February 1995 Citation iconCite this Report

Barren Island


12.278°N, 93.858°E; summit elev. 354 m

All times are local (unless otherwise noted)

New eruption on 20 December; lava flows reach the ocean

A new eruption . . . was first noticed by the Indian Navy on 20 December 1994. A team composed of scientists from the GSI and Zoological Survey of India arrived at the island early on 24 January, and an aerial survey . . . was made on the 31st. As of 22 February, this mainly Strombolian eruption was still "in its initial stage, gradually gaining momentum."

During January and February, thick clouds of pale brownish gas, dark ash particles, and white steam from the crater area were rising ~200 m at intervals of 30 seconds, accompanied by continuous rumbling and intermittent "cracking" sounds. Two new vents were active, the first within the main crater near the SW corner, and the second ~50 m from the summit down the SW flank. The eruption is believed to have started from the flank vent, around which a new 100-m-diameter subsidiary crater had formed.

Incandescent material (cinder and volcanic bombs) rising to heights of 20 m could be seen from 4 km offshore. Particles ranged in size from a few cubic centimeters to ~1 m3, with the average size being slightly less than 10 cm3. Ejecta filled a valley on the S side of the western-most 1991 lava bed. Lava flows travelled ~1.5 km from the active vents into the sea, producing profuse steaming at the ocean entry. The moving lava front was ~50 m wide and 6 m thick by 22 February. Megascopically the lava was basaltic andesite, similar to that erupted during September 1991, with a high percentage of large plagioclase phenocrysts and frequent olivine in a dark-gray glassy groundmass.

On 9 March at around 0530 GMT astronauts on the Space Shuttle noticed a small plume rising from Barren Island. They made a short video recording (~15 seconds) showing a V-shaped plume that extended for ~3 km before dispersing. Visible imagery from the NOAA-14 (at 0730 GMT) and GMS (0430-0830 GMT) satellites failed to reveal a volcanic plume. A photograph taken from the Shuttle on 14 March at 0749 GMT again showed a small plume blowing W towards the Andaman Islands (figure 2). As this issue went to press, an aviation notice to airmen (NOTAM) on 27 March stated that the intensity of the eruption was unpredictable and advised all aircraft to avoid overflying the area.

Figure (see Caption) Figure 2. Oblique photograph of the Barren Island eruption plume taken from the Space Shuttle, 14 Mar 1995 at 0749 GMT, looking NW. Ash plume is blowing generally W towards the Andaman Islands. NASA photograph STS 067-721A-052. Courtesy of Cindy Evans.

Geologic Background. Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S-trending volcanic arc extending between Sumatra and Burma (Myanmar). The 354-m-high island is the emergent summit of a volcano that rises from a depth of about 2250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the west, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. Historical eruptions have changed the morphology of the pyroclastic cone in the center of the caldera, and lava flows that fill much of the caldera floor have reached the sea along the western coast.

Information Contacts: Director General, GSI; C. Evans, NASA-SSEOP; J. Lynch, SAB.

Colima (Mexico) — February 1995 Citation iconCite this Report



19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)

Summit temperatures, gas measurements, and July 1994 explosion crater description

Scientists from the geologic group of CUICT (Centro Universitario de Investigaciones en Ciencias de la Tierra), RESCO (Red Sismologica Telemetrica de Colima), and the Colima Volcano Observatory at the University of Colima visited the summit on 4 and 15 February 1995.

During a previous ascent on 20 May 1994, temperature measurements of fumaroles were taken at 21 locations in two areas, E and NE of the summit; values were in the 274-304°C range. A gas sampling experiment (SO2 and CO2) used an aspirating pump (Matheson-Kitagawa toxic gas detector system) with 100-ml precision detector tubes and 1-5 minute collection times. SO2 values of 200 ppm were measured at both sites; CO2 was 0.2 and 0.3%, respectively. Low temperatures (<60°C) at the gas sampling sites were required. A second ascent later in 1994 was not undertaken because of increased seismicity following a phreatic explosion in July.

During February 1995, the group visited the same points as in May 1994, as well as the bottom of the July 1994 crater. On 4 February, fumarole temperatures measured at 17 locations in the E summit area averaged 372°C, with a high value of 504°C. Temperatures in the NE sector averaged 398°C. Gas sampling (HF, HCl, SO2, and CO2) was again conducted at almost the same sites. Values in the E and NE sectors, respectively, were as follows for each gas: HF, 17.4 and 78.3 ppm; HCl, 8.0 and 63.3 ppm; SO2, 180 and 460 ppm; CO2, 0.25 and 0.85%. On 15 February, temperatures taken inside the E rim of the July 1994 crater averaged 230°C. A survey showed the crater to have a rim diameter of 135 m, a depth of 40 m, a floor diameter of 37 m, and an internal slope of 30° on the E side (figure 21).

Figure (see Caption) Figure 21. Sketch map and topographic profiles of the summit of Colima, February 1995. Courtesy of Andrea Csillag Tirelli, Universidad de Colima.

A flight was made during clear weather on 11 February with a correlation spectrometer (COSPEC) to measure the SO2 flux. Ten traverses at 3,050 m altitude were made between two navigational benchmarks using the aircraft global positioning system (GPS), assuming that the traverses were perpendicular to the plume axis. Wind speed and direction was computed using GPS at two points beneath the plume as well as before and after the traverses above the summit. Wind direction was 289° with an average velocity of 10.9 m/s. The SO2 flux was determined to be 386 ± 160 metric tons/day, and was calculated according to instructions provided by S. Williams during a June 1994 workshop at UNAM in México City.

Geologic Background. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4320 m high point of the complex) on the north and the 3850-m-high historically active Volcán de Colima at the south. A group of cinder cones of late-Pleistocene age is located on the floor of the Colima graben west and east of the Colima complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: Carlos Navarro, Juan-José Ramirez, Abel Cortes, and Juan-Carlos Gavilanes, Colima Volcano Observatory and CUICT, Universidad de Colima; Andrea Csillag Tirelli, RESCO-CICBAS, Universidad de Colima.

Dukono (Indonesia) — February 1995 Citation iconCite this Report



1.693°N, 127.894°E; summit elev. 1229 m

All times are local (unless otherwise noted)

Aviation report of an ash cloud on 30 January

A NOTAM issued from the Ujung Pandang aviation control center on 30 January noted the presence of a volcanic ash cloud from Dukono with both altitude and drift direction unknown. Satellite imagery gave no indication of the presence of volcanic ash, although there was evidence of a low-level smoke plume.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: BOM Darwin, Australia.

Fernandina (Ecuador) — February 1995 Citation iconCite this Report



0.37°S, 91.55°W; summit elev. 1476 m

All times are local (unless otherwise noted)

Flank eruption slows but continues until at least 19 March

The fissure eruption . . . has continued sending lava flows down the SW flank and into the sea. All of the new flows appeared to be aa lavas (figure 2). Godfrey Merlen compared the eruption intensity in late January to 5 March and concluded that it had decreased significantly. . . . eruptions continued through at least 19 March.

Figure (see Caption) Figure 2. SW Fernandina Island sketch map from an original ~9 February map by Godfrey Merlen with later annotations by Tui De Roy. GPS points A, B, and C were recorded on 7 March. Point A lay at the extreme S end of a new 80-m-wide aa flow that also passed through point B. Point C lay at the foot of the S side of an active cone.

Tui De Roy was on the island during 8-16 February and part of her report follows (the term "kipuka" refers to an area of older rocks surrounded by younger lava flows). She saw two vent areas (figure 2): 1) an early eruptive site (active before she arrived) in the crater of an old cone ("Old Cone"), and 2) a main vent where the sustained activity that she witnessed took place ("Main vent"). She also had a reconnaissance view of some small finger-like lava flows at higher elevation ("inexact" on figure 2 and discussed below under Early Activity).

"All of the activity has taken place along a prominently marked, prehistoric radial fissure running from about half way up the volcano right down to the shore. This fissure is marked by numerous old cones of varying ages, ranging from a very old, elongated (and perfectly aligned) well-vegetated cones covered in ancient ash at the edge of a kipuka ["Old Cone"], to a string of 6-8 very recent looking cones on the lower flats coming right down to the shore [figure 2]. Significantly, a couple of very small new spatter cones had been active briefly early in this eruption within the crater of the old cone . . . . The entire length of this radial fissure had built up through previous eruptions something of a ridgeline down the flank of the volcano, which served to deflect most of the current lava to its northern watershed, although later in our stay an increasing number of flows were beginning to spill over through a gap to the S, posing an imminent threat to the wildlife oasis of Cape Hammond . . . ."

De Roy also noted that in many cases the paths of lava flows descending the flank "could not be readily followed because of undulations in the land and the fact that many of the flows disappeared into lava tubes at several points." But, she did describe flows that were visible, as follows.

"Both the active flows, as well as some that appeared to have now stopped, meandered and braided down the slope, with arms crisscrossing through irregular-shaped kipukas far to the NW of the main and most direct path to the sea. A new flow (as shown on Godfrey's map) reached the sea S of the main flows at about 0800 on 8 February where it formed a new delta and continued to advance steadily before halting a couple of days later."

Although there were slight variations, the intensity and height of the fountaining remained "remarkably steady" during her stay. The single active main vent displayed continuous fountaining 50-100 m tall. Fountains shot up both vertically and at oblique angles on either side of the vent. During 8-16 February the spatter cone around the vent grew considerably broader, but little taller. She camped near the vent on 9 and 13 February (figure 2) and watched the growth of a very blocky mass of rubble at the E base of the cone.

The migration of flows toward the N is emphasized by comparing De Roy's 16 February annotations of lava extent to the map completed by Merlen about a week earlier (figure 2). Starting about 12 February new flow paths developed high on the slope. Some lava flowed N as small fingers, but beginning at about 1600 on 12 February a large lobe flowed more southward than before. This migration of lava flows to the N and S corresponded with a progressive decrease in lava flow rate at the ocean entry (even though, as previously mentioned, the fountaining at the vent showed no marked decrease). By the time De Roy departed at noon on 16 February ". . . there seemed to be no more flowing of lava into the sea, with only slight wisps of steam still rising along the shore." On the nights of 13-15 February the glow from lava on the flats 1-2 km inland seemed to increase.

Although De Roy's observation of smoke and other airborne material was from upwind positions, she reported the following: "Only a very small amount of solid airborne particles appear to have been emitted during the initial stage of the eruption. A minimal amount of Pele's hair was evident near the shore, barely increasing in density closer to the vent. Within 1-2 km of the vent a thin dusting of light, gassy scoria littered the ground as in all previously observed Fernandina eruptions, but in much lower amount than some of the caldera eruptions of the 1970s and 1980s. Such scoria was still being produced at the time of our visit, with constant fallout in the area of our camp of 9 February whenever the eruption cloud drifted above us. No signs of ash from this eruption were present anywhere; although I did hear comment of 'ash' dusting one of the early boats to visit the site.

"Intense heat was rising from the main vent, with only moderate amounts of bluish-white smoke. It rose vertically into a constantly contorting, billowing, major thermal head, resembling a thunderhead. In addition, a pall of amber-colored fumes surrounded this cloud column and spread westward at all times, regardless of the shifting directions of the wind at lower elevations, which caused the main cloud to waver in various directions at different times of day or night. This pall was particularly evident when traversed by sunshine or moonshine, which took on a brownish hue. This plume should have been evident on satellite images, regardless of the main cloud possibly being mistaken for the normal thunderhead prevalent over the island during this El Niño season. The 'smoke' from the vent did seem to increase very gradually during our stay."

Besides the main vent, the eruption also produced voluminous amounts of gases from two other sources: 1) several areas of the main lava flow ~2 km below the main vent where degassing took place at the mouths of lava tubes, and 2) at the lava's ocean entry where mainly steam was rising. The first source of gases came out of the main lava flow and was thought to be degassing at the mouths of lava tubes.

Weather satellites (and shuttle astronauts) . . . have thus far been unable to obtain clear views of the eruption plume. The difficulty has been screening from high clouds coupled with inadequate eruptive plume heights. The TOMS instrument that has successfully imaged Galápagos eruptions since 1979 failed in December 1994.

Having seen the eruption in late-January, Godfrey Merlen returned . . . on the night of 5 March and noted a reduction in the comparative intensity of the eruption. In March the molten lava at the ocean entry was "dripping rather than flowing." Though less intense than in February, lava outflows remained concentrated at the site where lava had initially entered the sea in January; in March this amounted to about 10 separate outpourings over a 90-m lateral distance. Merlen noted that the small delta created there was ~ 5-m high and already cut back by waves forming an almost vertical cliff face. In contrast to earlier stages of the eruption, floating dead fish and the abundant wildlife feeding on them were largely absent. In March the sea surface temperature was up to 45°C, while it was ~ 24.5°C at a distance from the new delta. These temperatures were down from those in mid-Feb when at equivalent spots temperatures were >60°C and ~ 27°C (table 1). No new lava flows had moved to the S. Though still very hot, the new flow appeared to have left nearby vegetation nearly green, suggesting it may have been cooler when erupted than some of the earlier lavas. Scoria thickness on the new cone's upwind base averaged 5 cm.

Table 1. A summary of measurements and remarks comparing offshore seawater and nearshore turgid water close to the lava's ocean entry for the vigorous part of the eruption (late January and early February). Courtesy of Godfrey Merlen.

[Skip text table]
                        Color            Temp  Secci disk visible  Remarks
                                                  to (depth)

    "Normal" water    dark blue          27°C       ~12 m           --

    Turgid water at   bright green       31°C        <2 m           Up to ~2
    from the lava's                                                 km offshore
    ocean entry                                                     & extending
                                                                    S of Cape

    Adjacent the      brownish-yellow   >60°C        --             Steaming
    lava entry                                                      with rising

Early activity. Reports by De Roy, Merlen, and Day added information on the eruption's earliest days before observers arrived. The most notable signs were several small lava flows from fissure vents high on the shoulder of the volcano (figure 2). Viewed from a distance, these small flows appeared devoid of cones or extensive accumulated lava.

As previously mentioned, the "old cone" (figure 2) contained two or three early vents within its crater. These vents were marked by steep black spatter. The spatter had been flung 20-30 m, coating and charring trees. Those trees closest to the vents (~15 m from them) had their bark steamed off and were deep orange in color. Although these vents were only briefly active, they discharged a very rough aa flow.

Around the old cone many of the larger trees (Palo Santo and Opuntia cacti) had lost limbs or been knocked down (uprooted or snapped off at mid-height). The trees had predominantly fallen in a downhill direction, radiating roughly away from the main vent. An absence of directional scouring from scoria, and the presence of Waltheria bushes repeatedly twisted around their bases, suggested violent multidirectional wind gusts (a "tornado") rather than a well-defined unidirectional blast. Within a kilometer of the vent, however, Jasminocercus cacti consistently showed mild blistering from excess heat on their ventward sides.

Merlen noted that during the eruption lightning and heavy rain were commonly seen. For example, on the night of 28 January (prior to the release of ponded lava into the sea at about 2230) there was considerable sheet lightning coming from high clouds. Merlen also noted that high columns of thick white steam rose on occasion to ~4 km. The ascent of these plumes appeared dependant on the flux of lava into the sea.

Submarine acoustic recordings were also made by Merlen on 27-29 January using a Benthos hydrophone. The recordings detected extremely loud, echoing explosions at least 7 km from the lava's ocean entry. These sounds were not heard during subsequent visits (on 6-7 and 10 February); however, during all visits the hydrophones received a cacophony of hissings, poppings, and low-level thumps.

Some of Merlen's oceanographic observations are summarized in table 1. Within the discolored water Merlen also noted a ~100-m-diameter circular patch of upwelling water that was "glassy-smooth" and encircled by standing waves up to a meter in height on its margins. Located near the shore and not shifting in position, the upwelling water was cool and sufficiently turbulent to make steerage of the dingy difficult. In contrast to the cool (19.6°C) upwelling water, only 2-3 m away from its margin very hot (50°C) water was found. The upwelling water was brought to his attention by seabirds attracted to it. "Around this dramatic phenomenon and spreading out from it were a quantity of dead fish representing a mesopelagic fauna, including hatchet fish (Argyopelecus sp.), what appears to be a scabbard fish (Aphanopus sp.), and others that have yet to be identified." Although a limited amount is known about the vertical ranges of these kinds of fish, their presence at the surface may help determine the sources of this cold upwelling water.

Biological impact. De Roy noted that the wildlife appeared unable to comprehend the dangers from the intense heat of the lava. Marine iguanas were attracted to the warmth of active flows, climbed onto them, and were ignited before being able to escape. On the other hand, sea turtles and adult fur seals cruised through steaming waters within meters of the lava flow edge and showed no immediate signs of discomfort or injury. In other cases, it was unclear if the water temperature or chemistry was more critical in causing death (eg. pelicans, marine invertebrates, moray eels, and fish). In the sea and along the shore, many animals were attracted by the abundance of dead marine life floating on the surface. These opportunistic species included frigate birds, boobies, brown noddies, storm petrels, and many hundreds of pelicans. Merlen mentioned pelicans with pouches scalded from diving into hot seawater. In addition, De Roy saw sharks, sea lions, and flightless cormorants feeding. The eruption also killed some land iguanas. If lava flows were to reach Cape Hammond this would threaten flightless cormorants, penguins, and marine iguanas as well as one of the largest breeding populations of Galápagos fur seals. Merlen closed his 28 February report with the words: "the overall impression was that of biology in confusion."

Geologic Background. Fernandina, the most active of Galápagos volcanoes and the one closest to the Galápagos mantle plume, is a basaltic shield volcano with a deep 5 x 6.5 km summit caldera. The volcano displays the classic "overturned soup bowl" profile of Galápagos shield volcanoes. Its caldera is elongated in a NW-SE direction and formed during several episodes of collapse. Circumferential fissures surround the caldera and were instrumental in growth of the volcano. Reporting has been poor in this uninhabited western end of the archipelago, and even a 1981 eruption was not witnessed at the time. In 1968 the caldera floor dropped 350 m following a major explosive eruption. Subsequent eruptions, mostly from vents located on or near the caldera boundary faults, have produced lava flows inside the caldera as well as those in 1995 that reached the coast from a SW-flank vent. Collapse of a nearly 1 cu km section of the east caldera wall during an eruption in 1988 produced a debris-avalanche deposit that covered much of the caldera floor and absorbed the caldera lake.

Information Contacts: T. De Roy, Golden Bay, New Zealand; G. Merlen and D. Day, Estacion Cientifica Charles Darwin; J. Lynch, SAB; C. Evans, Lockheed.

Galeras (Colombia) — February 1995 Citation iconCite this Report



1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)

Continued fumarolic activity and low SO2 values; new type of seismicity

Activity during January and February consisted of slow gas release, decreasing the chances of an eruption in the near future. Overflights on 6 and 9 January revealed no changes in the fumarolic activity. On 23 January a visual inspection of the active cone from the police station revealed increased fumarolic activity in the W sector. In several visits to the summit, the principal points of gas emission were La Joya, Las Deformes, Las Chavas, and El Paisita fumarolic areas, and low-pressure zones on the interior of the main crater and the inside W crater wall (figure 72); fumarolic columns rose <30 m. Temperature measurements at Las Deformes and La Joya fumaroles (average 130°C) showed a small decrease compared to 21 July 1994.

Figure (see Caption) Figure 72. Sketch map of the Galeras summit crater, 24 January 1995. Courtesy of INGEOMINAS.

SO2 measurements obtained by COSPEC increased compared to December (<=50 t/d), reaching values of up to 290 t/d. Although these measurements are considered low, the increase is considerable, and corresponded to long-period gas-release seismic signals. Measurements of SO2 remained stable during February (~200 t/d), and deformation measurements showed no variations.

A total of 89 screw-type seismic events were recorded between 20 October 1994 and 9 January. These types of signals, associated with pressure in the system, preceded five of the six eruptions between June 1992 and July 1993. Long-period events were recorded after 9 January. A swarm of "butterfly" events (a hybrid long-period, high-frequency event) on 20 January was the first since July 1994; a peak of 210 events was recorded on the 21st. The number of high-frequency events was very low in early 1995, but increased slightly after 23 January. These signals, which have a similar wave form to long-period events, were located principally in the W sector of the active crater at depths of <4 km.

Shallow high-frequency seismicity in February was concentrated near the crater. There was also sporadic fracturing activity from the W part of the crater (small magnitudes with depths <6 km) and from a N source (M <1.9 and depths of 5-7 km). "Butterfly" events were observed through mid-Feb with an average of 50 events/day before decreasing to 15 events/day toward the end of the month. These events were concentrated near the active cone, at depths <1 km. Few long-period events occurred during the month, but after 26 February a new type of high-frequency signal (called "Pseudo-Screw") began with dominant peaks of 8-10 Hz.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: INGEOMINAS, Pasto.

Cerro Hudson (Chile) — February 1995 Citation iconCite this Report

Cerro Hudson


45.9°S, 72.97°W; summit elev. 1905 m

All times are local (unless otherwise noted)

Sulfurous odors, noises, rising rivers, and thermal anomalies

On 15 February, inhabitants of the Huemules valley 40 km NW of Hudson heard noises coming from the volcano. The next day a sulfurous odor reached the city of Coihaique, 75 km NE of Hudson. The day after that (17 February), inhabitants of the Huemules valley again heard noises and smelled sulfur. Furthermore, the Huemules river rose such that its banks shifted laterally by 30-40 m from its normal course.

Based on an interpretation of a NOAA satellite image, personnel of the Centro de Estudios Espaciales de la Universidad de Chile reported a 10-km-diameter, 37°C thermal anomaly over the E sector of the caldera. Rodrigo Rodrigues (ONEMI) overflew the area on 21 February but saw no fresh ash upon the snow. He only saw minor fumarolic activity, mainly discharging steam. The steam escaped from part of crater 1, an area in the glacial ice cap along the W wall of the 9-km-diameter summit caldera (see BGVN 16:07-16:11).

As on 14 March 1994, this event may have generated phreatic explosions, local subglacial melting, and steam production, all possibly due to heat remaining from the 1991 eruptive cycle. Similar activity was also reported during 10-13 April 1993 and a rainy summer season in 1991-1992 caused extensive reworking of pyroclastic debris, particularly down the Huemules river (BGVN 17:03). Prior to the overflight, on 6 February 1995 a pilot flying near the Chile-Argentina border (close to Balmaceda, 45.52°S, 72.43°W) noted "strong volcanic activity." Since prevailing winds blow from the W, this might have been new ash from Hudson, but it also might have been dust or Hudson ash re-suspended from previous ground deposits.

Preliminary tephrochronology indicates that in the last 7,000 years Hudson has had at least 3 large magnitude eruptions (possibly in the VEI 4-6 range). Minor Plinian eruptions had a recurrence interval of 500 to 1,000 years (Stern and Naranjo, in press).

Hudson produced one of the largest eruptions of the 20th century starting on 8 August 1991 from a fissure cutting the caldera rim. The paroxysmal phase began on 12 August, sending columns up to 16-18 km for 3 days, resulting in ash fall on the Falkland Islands, 1,000 km away. Pyroclastic flows were mostly restricted to the caldera floor, and a lava flow travelled 4 km down the WNW flank following the glacier along the upper reaches of the Huemules valley. The eruption plume of 14-15 August was blown rapidly E by the Roaring Forties winds so that about 5-6 days later a "strange haze" arrived in Australia, 15,000 km E.

Reference. Stern, C.R., and Naranjo, J.A., in press, Summary of the Holocene eruptive history of the Hudson volcano, in Bitschene & Mendia (Eds.). The 1991 eruption of the Hudson volcano: a thousand days after, Naturalia Patagonica: Universidad Nacional de la Patagonia, Comodoro Rivadavia and Publicacion Series of the Argentianian Geological Survey, Buenos Aires, Argentina.

Geologic Background. The ice-filled, 10-km-wide caldera of the remote Cerro Hudson volcano was not recognized until its first 20th-century eruption in 1971. It is the southernmost volcano in the Chilean Andes related to subduction of the Nazca plate beneath the South American plate. The massive volcano covers an area of 300 km2. The compound caldera is drained through a breach on its NW rim, which has been the source of mudflows down the Río de Los Huemeles. Two cinder cones occur N of the volcano and others occupy the SW and SE flanks. This volcano has been the source of several major Holocene explosive eruptions. An eruption about 6700 years ago was one of the largest known in the southern Andes during the Holocene; another eruption about 3600 years ago also produced more than 10 km3 of tephra. An eruption in 1991 was Chile's second largest of the 20th century and formed a new 800-m-wide crater in the SW portion of the caldera.

Information Contacts: Jose Antonio Naranjo, Servicio Nacional de Geologia y Mineria, Avenida Santa Maria 0104, Casilla 1347, Santiago, Chile.

Kilauea (United States) — February 1995 Citation iconCite this Report


United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)

Lava flows on coastal plain; four active ocean entry points

Both the Lae`apuki and Kamoamoa lava flows had many breakouts on the coastal plain during February, and several aa and pahoehoe flows were observed on the Pulama pali flow field (figure 96). Poor weather conditions and thick fume clouds obscured the Pu`u `O`o lava pond during the first half of February, but it was very active and 75 m below the crater rim on 24 February.

On 2 February, lava that broke out of the Kamoamoa tube system at ~600 m elevation fed flows that burned forest and cascaded down Pulama pali. This fast-moving pahoehoe flow reached Paliuli on the 14th, 700 m W of the Lae`apuki flow, and headed for the Chain of Craters Road, burning grasslands and setting off methane explosions. The flow front stagnated within 150 m of the road on 27 February. Lava broke out of the tube again on 10 February at ~615 m elevation and formed a channelized aa flow 1 km W of the main flow field that reached the base of Pulama pali by the 13th. In the second half of February the Lae`apuki flow had several breakouts between Paliuli and the ocean that spread W, covering new land and starting brush fires and methane explosions.

Lava flows were active at four ocean entries during the month (figure 96). Lava continued to enter the ocean across a wide front on the Kamoamoa flow, and built benches into the ocean. Explosions following a small bench collapse at the W Kamoamoa entry spread spatter 30-40 m inland of the sea cliff. A lava flow also advanced to the E edge of the Kamoamoa flow field and on 10 February entered the ocean within a few hundred meters of the Kupaianaha flow (Kamokuna entry). This entry then built a large bench that merged with Kupaianaha flows.

Low-amplitude tremor dominated the east rift zone throughout the first half of February. The number of microearthquakes was low beneath the summit and rift zones except for a slight pickup in LPC-C activity (5-13 km depth, 1-5 Hz) on 10-11 February. A series of three small earthquakes in the lower east rift on 10 February (M 2-2.5) originated from a shallow source near Puulena Crater, E of the Leilani Estates subdivision; a few residents felt the events. Tremor amplitudes in the second half of February were slightly higher at a fairly constant level 3x background, interrupted by a few bursts of higher-amplitude tremor. Activity beneath the summit and rift zones was low except for a steady swarm of LPC-C events. During 24-27 February, intermediate, long-period microearthquake counts were high, averaging nearly 200 events on 26-27 February.

Geologic Background. Kilauea volcano, which overlaps the east flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: T. Mattox and P. Okubo, HVO.

Langila (Papua New Guinea) — February 1995 Citation iconCite this Report


Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)

Occasional explosions from Crater 2 generate dark clouds and ashfall

"Activity during February continued to be focused at Crater 2, at the moderately low level observed since December. Emissions consisted mainly of white-to-grey vapour-and-ash clouds in low or moderate volumes. Occasionally, an explosion produced a larger and darker cloud that rose a few hundred meters above the crater and produced fine ashfall SE of the volcano. Rumbling noises accompanying the emissions were heard intermittently throughout the month, and weak glow was seen on most clear nights. Activity at Crater 3 consisted essentially of fumarolic emission of thin white vapour. The seismograph was not in operation during February."

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: P. de Saint-Ours, R. Stewart, and B. Talai, RVO.

Llaima (Chile) — February 1995 Citation iconCite this Report



38.692°S, 71.729°W; summit elev. 3125 m

All times are local (unless otherwise noted)

Minor fumarolic activity; small scoria cone collapsed in the crater

One of the most active volcanoes in Chile, Llaima's last reported eruptive episode began on 17 May 1994. An overflight made in the late morning of 15 February (in conjunction with Simon Young and John Simmons) disclosed only minor fumarolic activity. The fumarolic activity focused on the N internal wall of the main crater. In accord with the minor fumarolic activity, no new ash was seen. The summer ice melt has exposed the May and August 1994 scoria deposits (BGVN 19:04, 19:05, and 19:08), layers blackening the glaciers and rocks on the volcano's slopes. Along the crater's SSW border, a roughly 200-m-deep notch exposed alternating lava and tephra layers that mantle the edifice. A small scoria cone surrounding the source vent sat in the SE portion of the crater after the 26-30 August 1994 eruption. That feature later collapsed without leaving a visible trace. The crater itself had a depth of ~350 m.

The episode that began on 17 May 1994 generated a Strombolian-to-subplinian eruption with associated lahars and flooding, and produced a column ~4-5 km above the summit. Tephra fell over a cigar-shaped zone trending about ESE. A 500-m-long, SW-trending fissure produced explosions and lava fountains. Lava flowed across the bottom of a glacier on Llaima's W flank, melting snow and ice that caused lahars to descend into the Calbuco and Quepe rivers. Flooding occurred farther from the volcano.

Geologic Background. Llaima, one of Chile's largest and most active volcanoes, contains two main historically active craters, one at the summit and the other, Pichillaima, to the SE. The massive, dominantly basaltic-to-andesitic, stratovolcano has a volume of 400 km3. A Holocene edifice built primarily of accumulated lava flows was constructed over an 8-km-wide caldera that formed about 13,200 years ago, following the eruption of the 24 km3 Curacautín Ignimbrite. More than 40 scoria cones dot the volcano's flanks. Following the end of an explosive stage about 7200 years ago, construction of the present edifice began, characterized by Strombolian, Hawaiian, and infrequent subplinian eruptions. Frequent moderate explosive eruptions with occasional lava flows have been recorded since the 17th century.

Information Contacts: Jose Antonio Naranjo, Servicio Nacional de Geologia y Mineria, Avenida Santa Maria 0104, Casilla 1347, Santiago, Chile.

Manam (Papua New Guinea) — February 1995 Citation iconCite this Report


Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)

Activity continues to decrease; weak vapor emissions

"Activity during February decreased further from January levels. Both South and Main craters released weak white vapours in low to moderate volumes. One explosion from South Crater on 19 February emitted a grey cloud, and a weak glow was seen on the night of the 24th. Seismicity was low during the first half of February, but increased somewhat during the 2nd and 3rd weeks. No significant change was shown by the water-tube tiltmeter 4 km SW of the summit."

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: P. de Saint-Ours, R. Stewart, and B. Talai, RVO.

Merapi (Indonesia) — February 1995 Citation iconCite this Report



7.542°S, 110.442°E; summit elev. 2968 m

All times are local (unless otherwise noted)

Seismic data associated with the 22 November 1994 dome collapse

Workers at the GMU Geophysical Laboratory and Martin Beisser of GFZ-Potsdam recorded seismic data during the [summit lava dome] collapse from their station at Klathakan, 1.8 km WNW of the summit. Their broad-band seismic instrument showed the associated disturbance beginning on 22 November at 1007 and 32 seconds (radial-component data shown on figure 14). So far as the GMU and GFZ workers know, the wide dynamic range of their broad-band instrument preserved the event with a minimal amount of high-amplitude signal "clipping." Also, in their interpretation, the collapse and seismic disturbance began simultaneously. In other words, the initial displacement at the beginning of the seismic record is thought to correspond to the arrival of signals from the inception of the collapse.

Figure (see Caption) Figure 14. Seismic record for the Merapi 22 November 1994 dome collapse. The component shown is horizontal, radial to the edifice; amplitude scale is arbitrary. The data were recorded on a data logger connected to a Streckeisen STS2 seismometer (with a 50 Hz sampling rate, a 8.33 mHz to 50 Hz linear response, and a 32-bit analog-to-digital converter). Courtesy of A. Brodscholl and K. Brotopuspito.

The collapse-related seismic event lasted for almost an hour (figure 14). The initial signals were set against a moderately quiet background, and maximum amplitude generally increased with time. Highest-amplitude signals were received ~40 minutes after the event began. These largest signals had amplitudes that reached approximately 30 mm/second, whereas at the beginning of the collapse the maximum amplitudes were only ~0.05 mm/second. Thus, on the seismic records, amplitudes ultimately grew to 600x as large as the initial signals.

The eruption and collapse also appear in a 200-hour time window showing measured seismic amplitude in specified wavelengths (figure 15). The figure was prepared using signal processing techniques, which for the high frequency (0.1-1.0 Hz) data involved significant averaging of the maximum values (to once an hour). These depictions show that one or two noteworthy seismic disturbances took place at ~150 and 180 hours prior to the collapse (cause unknown). Compared to the other seismic disturbances on these records, the collapse and eruption induced larger amplitude and much more sustained signals. The post-collapse signals were also followed by an interval of at least 10 hours of elevated background (most noticeable in the 1-12 Hz range).

Figure (see Caption) Figure 15. Radial component of the Merapi 22 November 1994 dome collapse showing a seismic amplitude (arbitrary scale) versus time for stated wavelength ranges. The inception of the collapse lies at the zero point of the time scale. Courtesy of A. Brodscholl and K. Brotopuspito.

Using the available data, the investigators failed to find any clearly related premonitory seismic signals for the collapse. Sufficient collateral data (for example, teleseismic and meteorological data) might help constrain detected collapse and eruption earthquakes, or shed light on the cause of the pre-collapse seismic disturbances.

Since our last report (19:12), continued dome building occurred at Merapi. On 5 January another collapse brought 1 x 106 m3 of debris downslope. This collapse produced a small pyroclastic flow on the S slope.

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi volcano during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: A. Brodscholl and K. Brotopuspito, GMU; M. Beisser, GFZ-Potsdam, Germany; W. Tjetjep, VSI.

Popocatepetl (Mexico) — February 1995 Citation iconCite this Report



19.023°N, 98.622°W; summit elev. 5426 m

All times are local (unless otherwise noted)

Small ash cone observed in summit crater; plume rises 3 km

On the morning of 21 February at 1105, for the first time since eruptions began on 21 December 1994, Claus Siebe was able to look into the crater from a helicopter without fumes or ash impeding visibility. A small crater surrounded by a tuff cone composed of light-brown to gray silty-sandy ash occupied the site of the former lake. Judging from the color, he interpreted the loose ash to be mostly non-juvenile. A plume was emitted from a depression in the ash cone at 1115 and rose ~3 km above the crater rim. No snow has fallen in recent weeks, and all the snow and ice in the summit area was covered by a thin coat of ash.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, towers to 5426 m 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major plinian eruptions, the most recent of which took place about 800 CE, have occurred from Popocatépetl since the mid Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since precolumbian time.

Information Contacts: Claus Siebe, Instituto de Geofísica, UNAM, Coyoacán.

Rabaul (Papua New Guinea) — February 1995 Citation iconCite this Report


Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)

Renewed eruptive activity at Tavurvur

"Eruptive activity resumed at Tavurvur on 13 February after one and a half months of quiescence; no precursory activity was detected. Following the end of the 1994 eruption on 23 December, Tavurvur had exhibited only fumarolic activity. The amount of vapour released declined during January and emissions became intermittent in the first half of February. Seismicity was low, although some volcanic earthquakes continued to be recorded. The deflation rate of the caldera was also extremely low.

"After about 0100 on 13 February, small explosions started from Tavurvur's 1994 crater. Activity increased during the early hours of the morning, and large explosions occurred at 0328, 0857, 0919, 0937, 1012, 1100, and 1230. Each of these lasted 2-3 minutes and generated ash clouds that rose 1,500-3,000 m above the crater. Some of the ash clouds were laced with lightning. Ballistic blocks were seen falling onto the flanks of the cone and into the sea around Tavurvur. Between the larger explosions, emissions were less energetic or in "puffs" over periods of 5 minutes or more. After the first day, the emissions generally rose 500-1,000 m above the crater and were blown SE, producing a 10-km-long discontinuous, diffuse, pale-grey plume.

"Each of the explosions was accompanied by a distinctive explosive or low-frequency earthquake whose amplitude corresponded to the size of the explosion. Changes in the eruptive activity could therefore be tracked using RSAM data from station KPTH on Matupit Island (figure 23). An analysis of RSAM 1-minute data produced the event counts and mean amplitudes shown in figure 23. These showed that after a few hours of large events, at an average rate of ~10/hour, the activity was dominated by smaller explosions that peaked after about a day and a half on 14 February, at an average rate of 15/hour. The number of explosions and their amplitude then declined over the next 2-3 days. On 17 and 18 February, however, the activity increased again, perhaps associated with heavy rain on the 16th and 17th. The event count stayed fairly constant until the end of the month, although event amplitudes exhibited a slowly increasing trend.

Figure (see Caption) Figure 23. Rabaul tilt and seismicity measured at stations MPT and KPTH on Matupit Island, 1 February-10 March 1995. Positive N and W tilts indicate deflation of the caldera. Note that times are GMT (= local time - 10 hours). Courtesy of RVO.

"Apart from the low-frequency explosive events associated with the Tavurvur eruption, earthquake activity at Rabaul was very low in February. There were only four small high-frequency earthquakes recorded, compared to 28 in January. Two were located at shallow depths near Vulcan and the other two were outside the seismic network to the NE.

"Throughout the first part of February, ground deformation data continued to show the slowing deflationary trend seen since September 1994, with the deflation centered S of Matupit Island. Electronic tilt data from station MPT on Matupit Island showed deflation of ~0.5 µrad/day during this period (figure 23). Seashore survey measurements around Greet Harbour were in good agreement, with subsidence of <1 cm/month. Following the renewal of activity at Tavurvur, ground deformation rates seem to have decreased, with only 3 µrad of tilt at MPT in 3 weeks, and no measurable changes in seashore levelling data. The gap in the tilt data on figure 23 was because the battery at MPT was stolen the day before the explosive activity began.

"There were three aerial inspections of Tavurvur during this period. On the morning of 13 February, before the large explosions took place, there was no marked change in the configuration of the bowl-shaped crater compared to the previous inspection in January. There also was no open vent, although the explosive emissions rose through the central part of the crater floor, which was covered with ash and rubble. On 20 February, emissions were seen rising from an obstructed vent in the SE part of the crater, while a strong fumarole was active on the W side of the crater (at the head of the 1994 lava flow). A small mound of lava seen on the 27th at the base of the crater was 20-30 m wide, only a few meters high, and was partly mantled with ash. Emissions were released through cracks in the lava or from between blocks near the edges.

"Throughout February, Vulcan continued to exhibit only very weak fumarolic activity from diffuse sources around the edge of the floors of both the 1937 and 1994 craters. At some time in late January or February, hot steaming springs appeared along the N shore of the Vulcan headland. Measured temperatures were consistently around 100°C.

"The Gazelle Peninsula has remained under a State of Emergency, with access to Rabaul controlled because of the risk from mudflows and flooding. Although the rainy season has been unusually mild so far, mudflows and flash floods are causing much damage to the roads into Rabaul and are flooding the remaining buildings in the town and in nearby villages."

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: P. de Saint-Ours, R.Stewart, and B. Talai, RVO.

Unzendake (Japan) — February 1995 Citation iconCite this Report



32.761°N, 130.299°E; summit elev. 1483 m

All times are local (unless otherwise noted)

Isolated tremors, but no eruptive activity or pyroclastic flows

Activity during February-March was characterized by almost no magma supply to the dome. The dike at the top of the endogenous dome had almost stopped moving in late January. No changes at the dome were observed during either helicopter or ground-based inspections. No large rockfalls or pyroclastic flows have occurred since early February. Emissions of SO2 from the dome declined to below the COSPEC detection limit, according to SEVO (Shimabara Earthquake and Volcano Observatory, Kyushu University).

Dome outlines observed from several fixed points using theodolite by both SEVO and JMA showed no change during February. EDM measurements by the Geological Survey of Japan indicated that mirrors located on the upper NW to SW flanks near the dome moved little, except one 500 m SW of the dome. The distance between the latter mirror and a point ~1.5 km S has been decreasing at a steady rate of ~0.3 mm/day during the last four years (there were no data prior to dome extrusion).

Except for a swarm of 55 events on 4 February, microearthquakes beneath the lava dome occurred at a rate of <5/day. A total of 81 events registered in February at the seismic station 3.6 km SW of the dome. However, there have been isolated tremors, but these were much smaller and scarcer that those that preceded dome extrusion in 1991. Only two pyroclastic flows were detected at a seismic station 1 km WSW of the dome, both of which traveled ~500 m SE.

Geologic Background. The massive Unzendake volcanic complex comprises much of the Shimabara Peninsula east of the city of Nagasaki. A 30-40-km-long, E-W-trending graben extends across the peninsula. Three large stratovolcanoes with complex structures, Kinugasa on the north, Fugen-dake at the east-center, and Kusenbu on the south, form topographic highs on the broad peninsula. Fugendake and Mayuyama volcanoes in the east-central portion of the andesitic-to-dacitic volcanic complex have been active during the Holocene. The Mayuyama lava dome complex, located along the eastern coast west of Shimabara City, formed about 4000 years ago and was the source of a devastating 1792 CE debris avalanche and tsunami. Historical eruptive activity has been restricted to the summit and flanks of Fugendake. The latest activity during 1990-95 formed a lava dome at the summit, accompanied by pyroclastic flows that caused fatalities and damaged populated areas near Shimabara City.

Information Contacts: Setsuya Nakada, Volcano Research Center - Earthquake Research Institute, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan (Email: nakada@eri.u-tokyo.ac.jp); Volcanological Affairs Office, Seismological and Volcanological Dept, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.

Vailulu'u (United States) — February 1995 Citation iconCite this Report


United States

14.215°S, 169.058°W; summit elev. -592 m

All times are local (unless otherwise noted)

Seismicity ends after 145 events detected by T-waves

The RSP stations in Tahiti registered acoustic T-waves (tertiary waves traveling through the ocean) beginning on 8 January. This seismic swarm ended after 9 small and 5 stronger events in early February. The total number of recorded events during this swarm was 100 small and 45 larger events. Twelve of the larger events in January (M 4.2-4.8), detected and located by the world-wide seismic network, showed that the swarm was spread ~130 km along a NW-SE trend,~50 km NE of Ta'u Island (see figure 1) in the E Samoa Islands.

Geologic Background. Vailulu'u, a massive basaltic seamount not discovered until 1975, rises 4,200 m from the sea floor to a depth of 590 m about one-third of the way between Ta'u and Rose islands at the E end of the American Samoas. It is considered to mark the current location of the Samoan hotspot. The summit contains a 2-km-wide, 400-m-deep oval-shaped caldera. Two principal rift zones extend E and W from the summit, parallel to the trend of the hotspot. A third less prominent rift extends SE of the summit. The rift zones and escarpments produced by mass wasting phenomena give the seamount a star-shaped pattern. On 10 July 1973, explosions were recorded by SOFAR (hydrophone records of underwater acoustic signals). An earthquake swarm in 1995 may have been related to an eruption. Turbid water above the summit shows evidence of ongoing hydrothermal plume activity.

Information Contacts: F. Schindele, LDG, Tahiti; NEIC.

Villarrica (Chile) — February 1995 Citation iconCite this Report



39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)

Sketches of both the crater and ash lobes from late-December eruptions

Geologists who made an overflight of the stratovolcano late on the morning of 15 February (in conjunction with Simon Young and John Simmons) observed increasing fumarolic activity. Villarrica gave off moderate puffs of bluish, sulfurous gases at 1-2 minute intervals that rose 300-400 m above the crater before dispersing to the SE.

Between 1040 and 1245 on 15 February the local seismic station (VVN) registered an average of 3 tremor episodes per minute. This tremor had frequencies of 1.3-1.5 Hz, 0.3 Hz below the frequency customarily received (1.8 Hz), and considered a possible indication of a slightly deeper source than typical for both the tremor and the puffs. This behavior continued until 1900 on 15 February. Afterwards tremor diminished and puffing ceased at the fumaroles. These later conditions prevailed until at least 19 February.

The crater, a little more than 200 m in diameter, contained a nested terrace (figure 4). The inner crater floor sat ~200 m below the crater rim, the bottom 50 m of which was black in color, possibly composed of scoria. At the very bottom center an opening exposed ~20 m of material with a bright red glow.

Figure (see Caption) Figure 4. Sketch of Villarrica's crater as seen on 15 February 1995. Courtesy of J. Naranjo, G. Fuentealba, and P. Peña.

Black ash on the glaciers of the E and S flanks extended 4.6 km in the S20 E direction and 2.5 km in the S direction (figure 5). These ash lobes could correspond to eruptions on 25 and 29 December 1994 (19:12).

Figure (see Caption) Figure 5. Distribution of black ash from Villarrica's crater as seen on 15 February 1995. Courtesy of J. Naranjo, G. Fuentealba, and P. Peña.

Geologic Background. Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: J. Naranjo, SERNAGEOMIN, Santiago; G. Fuentealba and P. Peña, SAVO.

Yakedake (Japan) — February 1995 Citation iconCite this Report



36.227°N, 137.587°E; summit elev. 2455 m

All times are local (unless otherwise noted)

Hydrothermal explosion kills four people

A hydrothermal explosion around 1430 on 11 February killed four people at a highway construction site, located in a geothermal area along the narrow Azusa-gawa River ~2 km SE of the summit. The Geological Survey of Japan reported that there were at least two explosions from the vent (12 m long and 6 m wide). The first, a large explosion, created a 1,500-m-high plume composed of mud and gas, and caused collapse of the river bank, burying the primary vent. A second explosion scattered mud and gas within 200 m of the vent. JMA staff who surveyed the site on 12 February and 13 March noted that fume rising to a height of 20 m was almost at the boiling point. No explosions have been reported since 12 February.

Geologic Background. Yakedake rises above the popular resort of Kamikochi in the Northern Japan Alps. The small dominantly andesitic stratovolcano, one of several Japanese volcanoes named Yakedake or Yakeyama ("Burning Peak" or "Burning Mountain"), was constructed astride a N-S-trending ridge between the older volcanoes of Warudaniyama and Shirataniyama. Akandanayama, about 4 km SSW, is a stratovolcano with lava domes that was active into the Holocene. A 300-m-wide crater is located at the summit, and explosion craters are found on the SE and N flanks. Frequent small-to-moderate phreatic eruptions have occurred during the 20th century. On 11 February 1995 a hydrothermal explosion in a geothermal area killed two people at a highway construction site.

Information Contacts: JMA.

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in the Selected Bulletin tab.

Dropdowns to choose month and year for archived Bulletins.    

The default month and year is the latest issue available.

 Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

View Atmospheric Effects Reports

 Special Announcements

Special announcements of various kinds and obituaries.

View Special Announcements Reports

 Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.


False Report of Sea of Marmara Eruption

Africa (northeastern) and Red Sea

False Report of Somalia Eruption

Africa (eastern)

False Report of Elgon Eruption

Kermadec Islands

Floating Pumice (Kermadec Islands)

1986 Submarine Explosion

Tonga Islands

Floating Pumice (Tonga)

Fiji Islands

Floating Pumice (Fiji)

New Britain


Andaman Islands

False Report of Andaman Islands Eruptions

Sangihe Islands

1968 Northern Celebes Earthquake

Kawio Barat


False Report of Mount Pinokis Eruption

Southeast Asia

Pumice Raft (South China Sea)

Land Subsidence near Ham Rong

Ryukyu Islands and Kyushu

Pumice Rafts (Ryukyu Islands)

Izu, Volcano, and Mariana Islands

Mikura Seamount

Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source

Kuril Islands

Possible 1988 Eruption Plume



Aleutian Islands

Possible 1986 Eruption Plume


False Report of New Volcano




La Lorenza Mud Volcano



Pacific Ocean (Chilean Islands)

False Report of Submarine Volcanism

Central Chile and Argentina

Estero de Parraguirre

West Indies

Mid-Cayman Spreading Center

Atlantic Ocean (northern)

Northern Reykjanes Ridge


Azores-Gibraltar Fracture Zone

Antarctica and South Sandwich Islands

Jun Jaegyu

East Scotia Ridge

 Special Announcements

Special Announcement Reports