Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Manam (Papua New Guinea) Few ash plumes during November-December 2022

Krakatau (Indonesia) Strombolian activity and ash plumes during November 2022-April 2023

Stromboli (Italy) Strombolian explosions and lava flows continue during January-April 2023

Nishinoshima (Japan) Small ash plumes and fumarolic activity during November 2022 through April 2023

Karangetang (Indonesia) Lava flows, incandescent avalanches, and ash plumes during January-June 2023

Ahyi (United States) Intermittent hydroacoustic signals and discolored plumes during November 2022-June 2023

Kadovar (Papua New Guinea) An ash plume and weak thermal anomaly during May 2023

San Miguel (El Salvador) Small gas-and-ash explosions during March and May 2023

Semisopochnoi (United States) Occasional explosions, ash deposits, and gas-and-steam plumes during December 2022-May 2023

Ebeko (Russia) Continued explosions, ash plumes, and ashfall during October 2022-May 2023

Home Reef (Tonga) Discolored plumes continued during November 2022-April 2023

Ambae (Vanuatu) New lava flow, ash plumes, and sulfur dioxide plumes during February-May 2023



Manam (Papua New Guinea) — July 2023 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Few ash plumes during November-December 2022

Manam is a 10-km-wide island that consists of two active summit craters: the Main summit crater and the South summit crater and is located 13 km off the northern coast of mainland Papua New Guinea. Frequent mild-to-moderate eruptions have been recorded since 1616. The current eruption period began during June 2014 and has more recently been characterized by intermittent ash plumes and thermal activity (BGVN 47:11). This report updates activity that occurred from November 2022 through May 2023 based on information from the Darwin Volcanic Ash Advisory Center (VAAC) and various satellite data.

Ash plumes were reported during November and December 2022 by the Darwin VAAC. On 7 November an ash plume rose to 2.1 km altitude and drifted NE based on satellite images and weather models. On 14 November an ash plume rose to 2.1 km altitude and drifted W based on RVO webcam images. On 20 November ash plumes rose to 1.8 km altitude and drifted NW. On 26 December an ash plume rose to 3 km altitude and drifted S and SSE.

Intermittent sulfur dioxide plumes were detected using the TROPOMI instrument on the Sentinel-5P satellite, some of which exceeded at least two Dobson Units (DU) and drifted in different directions (figure 93). Occasional low-to-moderate power thermal anomalies were recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system; less than five anomalies were recorded each month during November 2022 through May 2023 (figure 94). Two thermal hotspots were detected by the MODVOLC thermal alerts system on 10 December 2022. On clear weather days, thermal activity was also captured in infrared satellite imagery in both the Main and South summit craters, accompanied by gas-and-steam emissions (figure 95).

Figure (see Caption) Figure 93. Distinct sulfur dioxide plumes were captured, rising from Manam based on data from the TROPOMI instrument on the Sentinel-5P satellite on 16 November 2022 (top left), 6 December 2022 (top right), 14 January 2023 (bottom left), and 23 March 2023 (bottom right). Plumes generally drifted in different directions. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 94. Occasional low-to-moderate power thermal anomalies were detected at Manam during November 2022 through May 2023, as shown in this MIROVA graph (Log Radiative Power). Only three anomalies were detected during late November, one in early December, two during January 2023, one in late March, four during April, and one during late May. Courtesy of MIROVA.
Figure (see Caption) Figure 95. Infrared (bands B12, B11, B4) satellite images show a consistent thermal anomaly (bright yellow-orange) in both the Main (the northern crater) and South summit craters on 10 November 2022 (top left), 15 December 2022 (top right), 3 February 2023 (bottom left), and 24 April 2023 (bottom right). Gas-and-steam emissions occasionally accompanied the thermal activity. Courtesy of Copernicus Browser.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Krakatau (Indonesia) — July 2023 Citation iconCite this Report

Krakatau

Indonesia

6.1009°S, 105.4233°E; summit elev. 285 m

All times are local (unless otherwise noted)


Strombolian activity and ash plumes during November 2022-April 2023

Krakatau is located in the Sunda Strait between Java and Sumatra, Indonesia. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan cones and left only a remnant of Rakata. The post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones; it has been the site of frequent eruptions since 1927. The current eruption period began in May 2021 and has recently consisted of explosions, ash plumes, and thermal activity (BGVN 47:11). This report covers activity during November 2022 through April 2023 based on information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, referred to as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), MAGMA Indonesia, the Darwin Volcanic Ash Advisory Center (VAAC), and several sources of satellite data.

Activity was relatively low during November and December 2022. Daily white gas-and-steam plumes rose 25-100 m above the summit and drifted in different directions. Gray ash plumes rose 200 m above the summit and drifted NE at 1047 and at 2343 on 11 November. On 14 November at 0933 ash plumes rose 300 m above the summit and drifted E. An ash plume was reported at 0935 on 15 December that rose 100 m above the summit and drifted NE. An eruptive event at 1031 later that day generated an ash plume that rose 700 m above the summit and drifted NE. A gray ash plume at 1910 rose 100 m above the summit and drifted E. Incandescent material was ejected above the vent based on an image taken at 1936.

During January 2023 daily white gas-and-steam plumes rose 25-300 m above the summit and drifted in multiple directions. Gray-to-brown ash plumes were reported at 1638 on 3 January, at 1410 and 1509 on 4 January, and at 0013 on 5 January that rose 100-750 m above the summit and drifted NE and E; the gray-to-black ash plume at 1509 on 4 January rose as high as 3 km above the summit and drifted E. Gray ash plumes were recorded at 1754, 2241, and 2325 on 11 January and at 0046 on 12 January and rose 200-300 m above the summit and drifted NE. Toward the end of January, PVMBG reported that activity had intensified; Strombolian activity was visible in webcam images taken at 0041, 0043, and 0450 on 23 January. Multiple gray ash plumes throughout the day rose 200-500 m above the summit and drifted E and SE (figure 135). Webcam images showed progressively intensifying Strombolian activity at 1919, 1958, and 2113 on 24 January; a gray ash plume at 1957 rose 300 m above the summit and drifted E (figure 135). Eruptive events at 0231 and 2256 on 25 January and at 0003 on 26 January ejected incandescent material from the vent, based on webcam images. Gray ash plumes observed during 26-27 January rose 300-500 m above the summit and drifted NE, E, and SE.

Figure (see Caption) Figure 135. Webcam images of a strong, gray ash plume (left) and Strombolian activity (right) captured at Krakatau at 0802 on 23 January 2023 (left) and at 2116 on 24 January 2023 (right). Courtesy of PVMBG and MAGMA Indonesia.

Low levels of activity were reported during February and March. Daily white gas-and-steam plumes rose 25-300 m above the summit and drifted in different directions. The Darwin VAAC reported that continuous ash emissions rose to 1.5-1.8 km altitude and drifted W and NW during 1240-1300 on 10 March, based on satellite images, weather models, and PVMBG webcams. White-and-gray ash plumes rose 500 m and 300 m above the summit and drifted SW at 1446 and 1846 on 18 March, respectively. An eruptive event was recorded at 2143, though it was not visible due to darkness. Multiple ash plumes were reported during 27-29 March that rose as high as 2.5 km above the summit and drifted NE, W, and SW (figure 136). Webcam images captured incandescent ejecta above the vent at 0415 and around the summit area at 2003 on 28 March and at 0047 above the vent on 29 March.

Figure (see Caption) Figure 136. Webcam image of a strong ash plume rising above Krakatau at 1522 on 28 March 2023. Courtesy of PVMBG and MAGMA Indonesia.

Daily white gas-and-steam plumes rose 25-300 m above the summit and drifted in multiple directions during April and May. White-and-gray and black plumes rose 50-300 m above the summit on 2 and 9 April. On 11 May at 1241 a gray ash plume rose 1-3 km above the summit and drifted SW. On 12 May at 0920 a gray ash plume rose 2.5 km above the summit and drifted SW and at 2320 an ash plume rose 1.5 km above the summit and drifted SW. An accompanying webcam image showed incandescent ejecta. On 13 May at 0710 a gray ash plume rose 2 km above the summit and drifted SW (figure 137).

Figure (see Caption) Figure 137. Webcam image of an ash plume rising 2 km above the summit of Krakatau at 0715 on 13 May 2023. Courtesy of PVMBG and MAGMA Indonesia.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data showed intermittent low-to-moderate power thermal anomalies during November 2022 through April 2023 (figure 138). Some of this thermal activity was also visible in infrared satellite imagery at the crater, accompanied by gas-and-steam and ash plumes that drifted in different directions (figure 139).

Figure (see Caption) Figure 138. Intermittent low-to-moderate power thermal anomalies were detected at Krakatau during November 2022 through April 2023, based on this MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 139. A thermal anomaly (bright yellow-orange) was visible at Krakatau in infrared (bands B12, B11, B4) satellite images on clear weather days during November 2022 through May 2023. Occasional gas-and-steam and ash plumes accompanied the thermal activity, which drifted in different directions. Images were captured on 25 November 2022 (top left), 15 December 2022 (top right), 27 January 2023 (bottom left), and 12 May 2023 (bottom right). Courtesy of Copernicus Browser.

Geologic Background. The renowned Krakatau (frequently mis-named as Krakatoa) volcano lies in the Sunda Strait between Java and Sumatra. Collapse of an older edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of that volcano are preserved in Verlaten and Lang Islands; subsequently the Rakata, Danan, and Perbuwatan cones were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption caused more than 36,000 fatalities, most as a result of tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Stromboli (Italy) — July 2023 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Strombolian explosions and lava flows continue during January-April 2023

Stromboli, located in Italy, has exhibited nearly constant lava fountains for the past 2,000 years; recorded eruptions date back to 350 BCE. Eruptive activity occurs at the summit from multiple vents, which include a north crater area (N area) and a central-southern crater (CS area) on a terrace known as the ‘terrazza craterica’ at the head of the Sciara del Fuoco, a large scarp that runs from the summit down the NW side of the volcano-island. Activity typically consists of Strombolian explosions, incandescent ejecta, lava flows, and pyroclastic flows. Thermal and visual monitoring cameras are located on the nearby Pizzo Sopra La Fossa, above the terrazza craterica, and at multiple flank locations. The current eruption period has been ongoing since 1934 and recent activity has consisted of frequent Strombolian explosions and lava flows (BGVN 48:02). This report updates activity during January through April 2023 primarily characterized by Strombolian explosions and lava flows based on reports from Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) and various satellite data.

Frequent explosive activity continued throughout the reporting period, generally in the low-to-medium range, based on the number of hourly explosions in the summit crater (figure 253, table 16). Intermittent thermal activity was recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data (figure 254). According to data collected by the MODVOLC thermal algorithm, a total of 9 thermal alerts were detected: one on 2 January 2023, one on 1 February, five on 24 March, and two on 26 March. The stronger pulses of thermal activity likely reflected lava flow events. Infrared satellite imagery captured relatively strong thermal hotspots at the two active summit craters on clear weather days, showing an especially strong event on 8 March (figure 255).

Figure (see Caption) Figure 253. Explosive activity persisted at Stromboli during January through April 2023, with low to medium numbers of daily explosions at the summit crater. The average number of daily explosions (y-axis) during January through April (x-axis) are broken out by area and as a total, with red for the N area, blue for the CS area, and black for the combined total. The data are smoothed as daily (thin lines) and weekly (thick lines) averages. The black squares along the top represent days with no observations due to poor visibility (Visib. Scarsa). The right axis indicates the qualitative activity levels from low (basso) to highest (altissimo) with the green highlighted band indicating the most common level. Courtesy of INGV (Report 17/2023, Stromboli, Bollettino Settimanale, 18/04/2023 - 24/04/2023).

Table 16. Summary of type, frequency, and intensity of explosive activity at Stromboli by month during January-April 2023; information from webcam observations. Courtesy of INGV weekly reports.

Month Explosive Activity
Jan 2023 Typical Strombolian activity with spattering and lava overflows in the N crater area. Explosions were reported from 4 vents in the N area and 1-2 vents in the CS area. The average hourly frequency of explosions was low-to-medium (1-12 events/hour). The intensity of the explosions varied from low (less than 80 m high) to medium (less than 150 m high) in the N crater area and up to high (greater than 150 m high) in the CS crater area.
Feb 2023 Typical Strombolian activity with spattering in the N crater area. Explosions were reported from 2-3 vents in the N area and 1-4 vents in the CS area. The average hourly frequency of explosions was low-to-medium (1-14 events/hour). The intensity of the explosions varied from low (less than 80 m high) to medium (less than 150 m high) in the N crater area and up to high (greater than 150 m high) in the CS crater area.
Mar 2023 Typical Strombolian activity with spattering and lava overflows in the N crater area. Explosions were reported from 2-3 vents in the N area and 2-4 vents in the CS area. The average hourly frequency of explosions was low-to-medium (1-18 events/hour). The intensity of the explosions varied from low (less than 80 m high) to medium (less than 150 m high) in the N crater area and up to high (greater than 150 m high) in the CS crater area.
Apr 2023 Typical Strombolian activity. Explosions were reported from 2 vents in the N area and 2-3 vents in the CS area. The average hourly frequency of explosions was low-to-high (1-16 events/hour). The intensity of the explosions varied from low (less than 80 m high) to medium (less than 150 m high) in both the N and CS crater areas.
Figure (see Caption) Figure 254. Intermittent thermal activity at Stromboli was detected during January through April 2023 and varied in strength, as shown in this MIROVA graph (Log Radiative Power). A pulse of activity was captured during late March. Courtesy of MIROVA.
Figure (see Caption) Figure 255. Infrared (bands B12, B11, B4) satellite images showing persistent thermal anomalies at both summit crater on 1 February 2023 (top left), 23 March 2023 (top right), 8 March 2023 (bottom left), and 27 April 2023. A particularly strong thermal anomaly was visible on 8 March. Courtesy of Copernicus Browser.

Activity during January-February 2023. Strombolian explosions were reported in the N crater area, as well as lava effusion. Explosive activity in the N crater area ejected coarse material (bombs and lapilli). Intense spattering was observed in both the N1 and N2 craters. In the CS crater area, explosions generally ejected fine material (ash), sometimes to heights greater than 250 m. The intensity of the explosions was characterized as low-to-medium in the N crater and medium-to-high in the CS crater. After intense spattering activity from the N crater area, a lava overflow began at 2136 on 2 January that flowed part way down the Sciara del Fuoco, possibly moving down the drainage that formed in October, out of view from webcams. The flow remained active for a couple of hours before stopping and beginning to cool. A second lava flow was reported at 0224 on 4 January that similarly remained active for a few hours before stopping and cooling. Intense spattering was observed on 11 and 13 January from the N1 crater. After intense spattering activity at the N2 crater at 1052 on 17 January another lava flow started to flow into the upper part of the Sciara del Fuoco (figure 256), dividing into two: one that traveled in the direction of the drainage formed in October, and the other one moving parallel to the point of emission. By the afternoon, the rate of the flow began to decrease, and at 1900 it started to cool. A lava flow was reported at 1519 on 24 January following intense spattering in the N2 area, which began to flow into the upper part of the Sciara del Fuoco. By the morning of 25 January, the lava flow had begun to cool. During 27 January the frequency of eruption in the CS crater area increased to 6-7 events/hour compared to the typical 1-7 events/hour; the following two days showed a decrease in frequency to less than 1 event/hour. Starting at 1007 on 30 January a high-energy explosive sequence was produced by vents in the CS crater area. The sequence began with an initial energetic pulse that lasted 45 seconds, ejecting predominantly coarse products 300 m above the crater that fell in an ESE direction. Subsequent and less intense explosions ejected material 100 m above the crater. The total duration of this event lasted approximately two minutes. During 31 January through 6, 13, and 24 February spattering activity was particularly intense for short periods in the N2 crater.

Figure (see Caption) Figure 256. Webcam images of the lava flow development at Stromboli during 17 January 2023 taken by the SCT infrared camera. The lava flow appears light yellow-green in the infrared images. Courtesy of INGV (Report 04/2023, Stromboli, Bollettino Settimanale, 16/01/2023 - 22/01/2023).

An explosive sequence was reported on 16 February that was characterized by a major explosion in the CS crater area (figure 257). The sequence began at 1817 near the S2 crater that ejected material radially. A few seconds later, lava fountains were observed in the central part of the crater. Three explosions of medium intensity (material was ejected less than 150 m high) were recorded at the S2 crater. The first part of this sequence lasted approximately one minute, according to INGV, and material rose 300 m above the crater and then was deposited along the Sciara del Fuoco. The second phase began at 1818 at the S1 crater; it lasted seven seconds and material was ejected 150 m above the crater. Another event 20 seconds later lasted 12 seconds, also ejecting material 150 m above the crater. The sequence ended with at least three explosions of mostly fine material from the S1 crater. The total duration of this sequence was about two minutes.

Figure (see Caption) Figure 257. Webcam images of the explosive sequence at Stromboli on 16 February 2023 taken by the SCT and SCV infrared and visible cameras. The lava appears light yellow-green in the infrared images. Courtesy of INGV (Report 08/2023, Stromboli, Bollettino Settimanale, 13/02/2023 - 19/02/2023).

Short, intense spattering activity was noted above the N1 crater on 27 and 28 February. A lava overflow was first reported at 0657 from the N2 crater on 27 February that flowed into the October 2022 drainage. By 1900 the flow had stopped. A second lava overflow also in the N crater area occurred at 2149, which overlapped the first flow and then stopped by 0150 on 28 February. Material detached from both the lava overflows rolled down the Sciara del Fuoco, some of which was visible in webcam images.

Activity during March-April 2023. Strombolian activity continued with spattering activity and lava overflows in the N crater area during March. Explosive activity at the N crater area varied from low (less than 80 m high) to medium (less than 150 m high) and ejected coarse material, such as bombs and lapilli. Spattering was observed above the N1 crater, while explosive activity at the CS crater area varied from medium to high (greater than 150 m high) and ejected coarse material. Intense spattering activity was observed for short periods on 6 March above the N1 crater. At approximately 0610 a lava overflow was reported around the N2 crater on 8 March, which then flowed into the October 2022 drainage. By 1700 the flow started to cool. A second overflow began at 1712 on 9 March and overlapped the previous flow. It had stopped by 2100. Material from both flows was deposited along the Sciara del Fuoco, though much of the activity was not visible in webcam images. On 11 March a lava overflow was observed at 0215 that overlapped the two previous flows in the October 2022 drainage. By late afternoon on 12 March, it had stopped.

During a field excursion on 16 March, scientists noted that a vent in the central crater area was degassing. Another vent showed occasional Strombolian activity that emitted ash and lapilli. During 1200-1430 low-to-medium intense activity was reported; the N1 crater emitted ash emissions and the N2 crater emitted both ash and coarse material. Some explosions also occurred in the CS crater area that ejected coarse material. The C crater in the CS crater area occasionally showed gas jetting and low intensity explosions on 17 and 22 March; no activity was observed at the S1 crater. Intense, longer periods of spattering were reported in the N1 crater on 19, 24, and 25 March. Around 2242 on 23 March a lava overflow began from the N1 crater that, after about an hour, began moving down the October 2022 drainage and flow along the Sciara del Fuoco (figure 258). Between 0200 and 0400 on 26 March the flow rate increased, which generated avalanches of material from collapses at the advancing flow front. By early afternoon, the flow began to cool. On 25 March at 1548 an explosive sequence began from one of the vents at S2 in the CS crater area (figure 258). Fine ash mixed with coarse material was ejected 300 m above the crater rim and drifted SSE. Some modest explosions around Vent C were detected at 1549 on 25 March, which included an explosion at 1551 that ejected coarse material. The entire explosive sequence lasted approximately three minutes.

Figure (see Caption) Figure 258. Webcam images of the lava overflow in the N1 crater area of Stromboli on 23 March 2023 taken by the SCT infrared camera. The lava appears light yellow-green in the infrared images. The start of the explosive sequence was also captured on 25 March 2023 accompanied by an eruption plume (e) captured by the SCT and SPT infrared webcams. Courtesy of INGV (Report 13/2023, Stromboli, Bollettino Settimanale, 20/03/2023 - 26/03/2023).

During April explosions persisted in both the N and CS crater areas. Fine material was ejected less than 80 m above the N crater rim until 6 April, followed by ejection of coarser material. Fine material was also ejected less than 80 m above the CS crater rim. The C and S2 crater did not show significant eruptive activity. On 7 April an explosive sequence was detected in the CS crater area at 1203 (figure 259). The first explosion lasted approximately 18 seconds and ejected material 400 m above the crater rim, depositing pyroclastic material in the upper part of the Sciara del Fuoco. At 1204 a second, less intense explosion lasted approximately four seconds and deposited pyroclastic products outside the crater area and near Pizzo Sopra La Fossa. A third explosion at 1205 was mainly composed of ash that rose about 150 m above the crater and lasted roughly 20 seconds. A fourth explosion occurred at 1205 about 28 seconds after the third explosion and ejected a mixture of coarse and fine material about 200 m above the crater; the explosion lasted roughly seven seconds. Overall, the entire explosive sequence lasted about two minutes and 20 seconds. After the explosive sequence on 7 April, explosions in both the N and CS crater areas ejected material as high as 150 m above the crater.

Figure (see Caption) Figure 259. Webcam images of the explosive sequence at Stromboli during 1203-1205 (local time) on 7 April 2023 taken by the SCT infrared camera. Strong eruption plumes are visible, accompanied by deposits on the nearby flanks. Courtesy of INGV (Report 15/2023, Stromboli, Bollettino Settimanale, 03/04/2023 - 09/04/2023).

On 21 April research scientists from INGV made field observations in the summit area of Stromboli, and some lapilli samples were collected. In the N crater area near the N1 crater, a small cone was observed with at least two active vents, one of which was characterized by Strombolian explosions. The other vent produced explosions that ejected ash and chunks of cooled lava. At the N2 crater at least one vent was active and frequently emitted ash. In the CS crater area, a small cone contained 2-3 degassing vents and a smaller, possible fissure area also showed signs of degassing close to the Pizzo Sopra La Fossa. In the S part of the crater, three vents were active: a small hornito was characterized by modest and rare explosions, a vent that intermittently produced weak Strombolian explosions, and a vent at the end of the terrace that produced frequent ash emissions. Near the S1 crater there was a hornito that generally emitted weak gas-and-steam emissions, sometimes associated with “gas rings”. On 22 April another field inspection was carried out that reported two large sliding surfaces on the Sciara del Fuoco that showed where blocks frequently descended toward the sea. A thermal anomaly was detected at 0150 on 29 April.

Geologic Background. Spectacular incandescent nighttime explosions at Stromboli have long attracted visitors to the "Lighthouse of the Mediterranean" in the NE Aeolian Islands. This volcano has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent scarp that formed about 5,000 years ago due to a series of slope failures which extends to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy, (URL: http://www.ct.ingv.it/en/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Nishinoshima (Japan) — July 2023 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 100 m

All times are local (unless otherwise noted)


Small ash plumes and fumarolic activity during November 2022 through April 2023

Nishinoshima is a small island located about 1,000 km S of Tokyo in the Ogasawara Arc in Japan. The island is the summit of a massive submarine volcano that has prominent peaks to the S, W, and NE. Eruptions date back to 1973; the most recent eruption period began in October 2022 and was characterized by ash plumes and fumarolic activity (BGVN 47:12). This report describes ash plumes and fumarolic activity during November 2022 through April 2023 based on monthly reports from the Japan Meteorological Agency (JMA) monthly reports and satellite data.

The most recent eruptive activity prior to the reporting internal occurred on 12 October 2022, when an ash plume rose 3.5 km above the crater rim. An aerial observation conducted by the Japan Coast Guard (JCG) on 25 November reported that white fumaroles rose approximately 200 m above the central crater of a pyroclastic cone (figure 119), and multiple plumes were observed on the ESE flank of the cone. Discolored water ranging from reddish-brown to brown and yellowish-green were visible around the perimeter of the island (figure 119). No significant activity was reported in December.

Figure (see Caption) Figure 119. Aerial photo of gas-and-steam plumes rising 200 m above Nishinoshima on 25 November 2022. Reddish brown to brown and yellowish-green discolored water was visible around the perimeter of the island. Courtesy of JCG via JMA (monthly reports of activity at Nishinoshima, November 2022).

During an overflight conducted by JCG on 25 January 2023 intermittent activity and small, blackish-gray plumes rose 900 m above the central part of the crater were observed (figure 120). The fumarolic zone of the E flank and base of the cone had expanded and emissions had intensified. Dark brown discolored water was visible around the perimeter of the island.

Figure (see Caption) Figure 120. Aerial photo of a black-gray ash plume rising approximately 900 m above the crater rim of Nishinoshima on 25 January 2023. White fumaroles were visible on the E slope of the pyroclastic cone. Dense brown to brown discolored water was observed surrounding the island. Photo has been color corrected. Courtesy of JCG via JMA (monthly reports of activity at Nishinoshima, January, 2023).

No significant activity was reported during February through March. Ash plumes at 1050 and 1420 on 11 April rose 1.9 km above the crater rim and drifted NW and N. These were the first ash plumes observed since 12 October 2022. On 14 April JCG carried out an overflight and reported that no further eruptive activity was visible, although white gas-and-steam plumes were visible from the central crater and rose 900 m high (figure 121). Brownish and yellow-green discolored water surrounded the island.

Figure (see Caption) Figure 121. Aerial photo of white gas-and-steam plumes rising 900 m above Nishinoshima on 14 April 2023. Brown and yellow-green discolored water is visible around the perimeter of the island. Photo has been color corrected. Courtesy of JCG via JMA (monthly reports of activity at Nishinoshima, April, 2023).

Intermittent low-to-moderate power thermal anomalies were recorded in the MIROVA graph (Middle InfraRed Observation of Volcanic Activity) during November 2022 through April 2023 (figure 123). A cluster of six to eight anomalies were detected during November while a smaller number were detected during the following months: two to three during December, one during mid-January 2023, one during February, five during March, and two during April. Thermal activity was also reflected in infrared satellite data at the summit crater, accompanied by occasional gas-and-steam plumes (figure 124).

Figure (see Caption) Figure 123. Intermittent low-to-moderate thermal anomalies were detected at Nishinoshima during November 2022 through April 2023, according to this MIROVA graph (Log Radiative Power). A cluster of anomalies occurred throughout November, while fewer anomalies were detected during the following months. Courtesy of MIROVA.
Figure (see Caption) Figure 124. Infrared (bands B12, B11, B4) satellite images show a small thermal anomaly at the summit crater of Nishinoshima on 9 January 2023 (left) and 8 February 2023 (right). Gas-and-steam plumes accompanied this activity and extended S and SE, respectively. Courtesy of Copernicus Browser.

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Multiple eruptions that began in 2013 completely covered the previous exposed surface and continued to enlarge the island. The island is the summit of a massive submarine volcano that has prominent peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the ocean surface 9 km SSE.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Karangetang (Indonesia) — July 2023 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Lava flows, incandescent avalanches, and ash plumes during January-June 2023

Karangetang (also known as Api Siau), at the northern end of the island of Siau, Indonesia, contains five summit craters along a N-S line. More than 40 eruptions have been recorded since 1675; recent eruptions have included frequent explosive activity, sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters and collapses of lava flow fronts have produced pyroclastic flows. The two active summit craters are Kawah Dua (the N crater) and Kawah Utama (the S crater, also referred to as the “Main Crater”). The most recent eruption began in late November 2018 and has more recently consisted of weak thermal activity and gas-and-steam emissions (BGVN 48:01). This report updates activity characterized by lava flows, incandescent avalanches, and ash plumes during January through June 2023 using reports from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), MAGMA Indonesia, the Darwin VAAC (Volcano Ash Advisory Center), and satellite data.

Activity during January was relatively low and mainly consisted of white gas-and-steam emissions that rose 25-150 m above Main Crater (S crater) and drifted in different directions. Incandescence was visible from the lava dome in Kawah Dua (the N crater). Weather conditions often prevented clear views of the summit. On 18 January the number of seismic signals that indicated avalanches of material began to increase. In addition, there were a total of 71 earthquakes detected during the month.

Activity continued to increase during the first week of February. Material from Main Crater traveled as far as 800 m down the Batuawang (S) and Batang (W) drainages and as far as 1 km W down the Beha (W) drainage on 4 February. On 6 February 43 earthquake events were recorded, and on 7 February, 62 events were recorded. White gas-and-steam emissions rose 25-250 m above both summit craters throughout the month. PVMBG reported an eruption began during the evening of 8 February around 1700. Photos showed incandescent material at Main Crater. Incandescent material had also descended the flank in at least two unconfirmed directions as far as 2 km from Main Crater, accompanied by ash plumes (figure 60). As a result, PVMBG increased the Volcano Alert Level (VAL) to 3 (the second highest level on a 1-4 scale).

Figure (see Caption) Figure 60. Photos of the eruption at Karangetang on 8 February 2023 that consisted of incandescent material descending the flanks (top left), ash plumes (top right and bottom left), and summit crater incandescence (bottom right). Courtesy of IDN Times.

Occasional nighttime webcam images showed three main incandescent lava flows of differing lengths traveling down the S, SW, and W flanks (figure 61). Incandescent rocks were visible on the upper flanks, possibly from ejected or collapsed material from the crater, and incandescence was the most intense at the summit. Based on analyses of satellite imagery and weather models, the Darwin VAAC reported that daily ash plumes during 16-20 February rose to 2.1-3 km altitude and drifted NNE, E, and SE. BNPB reported on 16 February that as many as 77 people were evacuated and relocated to the East Siau Museum. A webcam image taken at 2156 on 17 February possibly showed incandescent material descending the SE flank. Ash plumes rose to 2.1 km altitude and drifted SE during 22-23 February, according to the Darwin VAAC.

Figure (see Caption) Figure 61. Webcam image of summit incandescence and lava flows descending the S, SW, and W flanks of Karangetang on 13 February 2023. Courtesy of MAGMA Indonesia.

Incandescent avalanches of material and summit incandescence at Main Crater continued during March. White gas-and-steam emissions during March generally rose 25-150 m above the summit crater; on 31 March gas-and-steam emissions rose 200-400 m high. An ash plume rose to 2.4 km altitude and drifted S at 1710 on 9 March and a large thermal anomaly was visible in images taken at 0550 and 0930 on 10 March. Incandescent material was visible at the summit and on the flanks based on webcam images taken at 0007 and 2345 on 16 March, at 1828 on 17 March, at 1940 on 18 March, at 2311 on 19 March, and at 2351 on 20 March. Incandescence was most intense on 18 and 20 March and webcam images showed possible Strombolian explosions (figure 62). An ash plume rose to 2.4 km altitude and drifted SW on 18 March, accompanied by a thermal anomaly.

Figure (see Caption) Figure 62. Webcam image of intense summit incandescence and incandescent avalanches descending the flanks of Karangetang on 18 March 2023. Photo has been color corrected. Courtesy of MAGMA Indonesia.

Summit crater incandescence at Main Crater and on the flanks persisted during April. Incandescent material at the S crater and on the flanks was reported at 0016 on 1 April. The lava flows had stopped by 1 April according to PVMBG, although incandescence was still visible up to 10 m high. Seismic signals indicating effusion decreased and by 6 April they were no longer detected. Incandescence was visible from both summit craters. On 26 April the VAL was lowered to 2 (the second lowest level on a 1-4 scale). White gas-and-steam emissions rose 25-200 m above the summit crater.

During May white gas-and-steam emissions generally rose 50-250 m above the summit, though it was often cloudy, which prevented clear views; on 21 May gas-and-steam emissions rose 50-400 m high. Nighttime N summit crater incandescence rose 10-25 m above the lava dome, and less intense incandescence was noted above Main Crater, which reached about 10 m above the dome. Sounds of falling rocks at Main Crater were heard on 15 May and the seismic network recorded 32 rockfall events in the crater on 17 May. Avalanches traveled as far as 1.5 km down the SW and S flanks, accompanied by rumbling sounds on 18 May. Incandescent material descending the flanks was captured in a webcam image at 2025 on 19 May (figure 63) and on 29 May; summit crater incandescence was observed in webcam images at 2332 on 26 May and at 2304 on 29 May. On 19 May the VAL was again raised to 3.

Figure (see Caption) Figure 63. Webcam image showing incandescent material descending the flanks of Karangetang on 19 May 2023. Courtesy of MAGMA Indonesia.

Occasional Main Crater incandescence was reported during June, as well as incandescent material on the flanks. White gas-and-steam emissions rose 10-200 m above the summit crater. Ash plumes rose to 2.1 km altitude and drifted SE and E during 2-4 June, according to the Darwin VAAC. Material on the flanks of Main Crater were observed at 2225 on 7 June, at 2051 on 9 June, at 0007 on 17 June, and at 0440 on 18 June. Webcam images taken on 21, 25, and 27 June showed incandescence at Main Crater and from material on the flanks.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed strong thermal activity during mid-February through March and mid-May through June, which represented incandescent avalanches and lava flows (figure 64). During April through mid-May the power of the anomalies decreased but frequent anomalies were still detected. Brief gaps in activity occurred during late March through early April and during mid-June. Infrared satellite images showed strong lava flows mainly affecting the SW and S flanks, accompanied by gas-and-steam emissions (figure 65). According to data recorded by the MODVOLC thermal algorithm, there were a total of 79 thermal hotspots detected: 28 during February, 24 during March, one during April, five during May, and 21 during June.

Figure (see Caption) Figure 64. Strong thermal activity was detected during mid-February 2023 through March and mid-May through June at Karangetang during January through June 2023, as recorded by this MIROVA graph (Log Radiative Power). During April through mid-May the power of the anomalies decreased, but the frequency at which they occurred was still relatively high. A brief gap in activity was shown during mid-June. Courtesy of MIROVA.
Figure (see Caption) Figure 65. Incandescent avalanches of material and summit crater incandescence was visible in infrared satellite images (bands 12, 11, 8A) at both the N and S summit crater of Karangetang on 17 February 2023 (top left), 13 April 2023 (top right), 28 May 2023 (bottom left), and 7 June 2023 (bottom right), as shown in these infrared (bands 12, 11, 8A) satellite images. The incandescent avalanches mainly affected the SW and S flanks. Sometimes gas-and-steam plumes accompanied the thermal activity. Courtesy of Copernicus Browser.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented (Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); IDN Times, Jl. Jend. Gatot Subroto Kav. 27 3rd Floor Kuningan, Jakarta, Indonesia 12950, Status of Karangetang Volcano in Sitaro Islands Increases (URL: https://sulsel.idntimes.com/news/indonesia/savi/status-gunung-api-karangetang-di-kepulauan-sitaro-meningkat?page=all).


Ahyi (United States) — July 2023 Citation iconCite this Report

Ahyi

United States

20.42°N, 145.03°E; summit elev. -75 m

All times are local (unless otherwise noted)


Intermittent hydroacoustic signals and discolored plumes during November 2022-June 2023

Ahyi seamount is a large, conical submarine volcano that rises to within 75 m of the ocean surface about 18 km SE of the island of Farallon de Pajaros in the Northern Marianas. The remote location of the seamount has made eruptions difficult to document, but seismic stations installed in the region confirmed an eruption in the vicinity in 2001. No new activity was detected until April-May 2014 when an eruption was detected by NOAA (National Oceanic and Atmospheric Administration) divers, hydroacoustic sensors, and seismic stations (BGVN 42:04). New activity was first detected on 15 November by hydroacoustic sensors that were consistent with submarine volcanic activity. This report covers activity during November 2022 through June 2023 based on daily and weekly reports from the US Geological Survey.

Starting in mid-October, hydroacoustic sensors at Wake Island (2.2 km E) recorded signals consistent with submarine volcanic activity, according to a report from the USGS issued on 15 November 2022. A combined analysis of the hydroacoustic signals and seismic stations located at Guam and Chichijima Island, Japan, suggested that the source of this activity was at or near the Ahyi seamount. After a re-analysis of a satellite image of the area that was captured on 6 November, USGS confirmed that there was no evidence of discoloration at the ocean surface. Few hydroacoustic and seismic signals continued through November, including on 18 November, which USGS suggested signified a decline or pause in unrest. A VONA (Volcano Observatory Notice for Aviation) reported that a discolored water plume was persistently visible in satellite data starting on 18 November (figure 6). Though clouds often obscured clear views of the volcano, another discolored water plume was captured in a satellite image on 26 November. The Aviation Color Code (ACC) was raised to Yellow (the second lowest level on a four-color scale) and the Volcano Alert Level (VAL) was raised to Advisory (the second lowest level on a four-level scale) on 29 November.

Figure (see Caption) Figure 6. A clear, true color satellite image showed a yellow-green discolored water plume extending NW from the Ahyi seamount (white arrow) on 21 November 2022. Courtesy of Copernicus Browser.

During December, occasional detections were recorded on the Wake Island hydrophone sensors and discolored water over the seamount remained visible. During 2-7, 10-12, and 16-31 December possible explosion signals were detected. A small area of discolored water was observed in high-resolution Sentinel-2 satellite images during 1-6 December (figure 7). High-resolution satellite images recorded discolored water plumes on 13 December that originated from the summit region; no observations indicated that activity breached the ocean surface. A possible underwater plume was visible in satellite images on 18 December, and during 19-20 December a definite but diffuse underwater plume located SSE from the main vent was reported. An underwater plume was visible in a satellite image taken on 26 December (figure 7).

Figure (see Caption) Figure 7. Clear, true color satellite images showed yellow-green discolored water plumes extending NE and W from Ahyi (white arrows) on 1 (left) and 26 (right) December 2022, respectively. Courtesy of Copernicus Browser.

Hydrophone sensors continued to detect signals consistent with possible explosions during 1-8 January 2023. USGS reported that the number of detections decreased during 4-5 January. The hydrophone sensors experienced a data outage that started at 0118 on 8 January and continued through 10 January, though according to USGS, possible explosions were recorded prior to the data outage and likely continued during the outage. A discolored water plume originating from the summit region was detected in a partly cloudy satellite image on 8 January. On 11-12 and 15-17 January possible explosion signals were recorded again. One small signal was detected during 22-23 January and several signals were recorded on 25 and 31 January. During 27-31 January a plume of discolored water was observed above the seamount in satellite imagery (figure 8).

Figure (see Caption) Figure 8. True color satellite images showed intermittent yellow-green discolored water plumes of various sizes extending N on 5 January 2023 (top left), SE on 30 January 2023 (top right), W on 4 February 2023 (bottom left), and SW on 1 March 2023 (bottom right) from Ahyi (white arrows). Courtesy of Copernicus Browser.

Low levels of activity continued during February and March, based on data from pressure sensors on Wake Island. During 1 and 4-6 February activity was reported, and a submarine plume was observed on 4 February (figure 8). Possible explosion signals were detected during 7-8, 10, 13-14, and 24 February. During 1-2 and 3-5 March a plume of discolored water was observed in satellite imagery (figure 8). Almost continuous hydroacoustic signals were detected in remote pressure sensor data on Wake Island 2,270 km E from the volcano during 7-13 March. During 12-13 March water discoloration around the seamount was observed in satellite imagery, despite cloudy weather. By 14 March discolored water extended about 35 km, but no direction was noted. USGS reported that the continuous hydroacoustic signals detected during 13-14 March stopped abruptly on 14 March and no new detections were observed. Three 30 second hydroacoustic detections were reported during 17-19 March, but no activity was visible due to cloudy weather. A data outage was reported during 21-22 March, making pressure sensor data unavailable; a discolored water plume was, however, visible in satellite data. A possible underwater explosion signal was detected by pressure sensors at Wake Island on 26, 29, and 31 March, though the cause and origin of these events were unclear.

Similar low activity continued during April, May, and June. Several signals were detected during 1-3 April in pressure sensors at Wake Island. USGS suggested that these may be related to underwater explosions or earthquakes at the volcano, but no underwater plumes were visible in clear satellite images. The pressure sensors had data outages during 12-13 April and no data were recorded; no underwater plumes were visible in satellite images, although cloudy weather obscured most clear views. Eruptive activity was reported starting at 2210 on 21 May. On 22 May a discolored water plume that extended 4 km was visible in satellite images, though no direction was recorded. During 23-24 May some signals were detected by the underwater pressure sensors. Possible hydroacoustic signals were detected during 2-3 and 6-8 June. Multiple hydroacoustic signals were detected during 9-11 and 16-17 June, although no activity was visible in satellite images. One hydroacoustic signal was detected during 23-24 June, but there was some uncertainty about its association with volcanic activity. A single possible hydroacoustic signal was detected during 30 June to 1 July.

Geologic Background. Ahyi seamount is a large conical submarine volcano that rises to within 75 m of the ocean surface ~18 km SE of the island of Farallon de Pajaros in the northern Marianas. Water discoloration has been observed there, and in 1979 the crew of a fishing boat felt shocks over the summit area, followed by upwelling of sulfur-bearing water. On 24-25 April 2001 an explosive eruption was detected seismically by a station on Rangiroa Atoll, Tuamotu Archipelago. The event was well constrained (+/- 15 km) at a location near the southern base of Ahyi. An eruption in April-May 2014 was detected by NOAA divers, hydroacoustic sensors, and seismic stations.

Information Contacts: US Geological Survey, Volcano Hazards Program (USGS-VHP), 12201 Sunrise Valley Drive, Reston, VA, USA, https://volcanoes.usgs.gov/index.html; Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Kadovar (Papua New Guinea) — June 2023 Citation iconCite this Report

Kadovar

Papua New Guinea

3.608°S, 144.588°E; summit elev. 365 m

All times are local (unless otherwise noted)


An ash plume and weak thermal anomaly during May 2023

Kadovar is a 2-km-wide island that is the emergent summit of a Bismarck Sea stratovolcano. It lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the volcano, filling an arcuate landslide scarp open to the S. Submarine debris-avalanche deposits occur to the S of the island. The current eruption began in January 2018 and has comprised lava effusion from vents at the summit and at the E coast; more recent activity has consisted of ash plumes, weak thermal activity, and gas-and-steam plumes (BGVN 48:02). This report covers activity during February through May 2023 using information from the Darwin Volcanic Ash Advisory Center (VAAC) and satellite data.

Activity during the reporting period was relatively low and mainly consisted of white gas-and-steam plumes that were visible in natural color satellite images on clear weather days (figure 67). According to a Darwin VAAC report, at 2040 on 6 May an ash plume rose to 4.6 km altitude and drifted W; by 2300 the plume had dissipated. MODIS satellite instruments using the MODVOLC thermal algorithm detected a single thermal hotspot on the SE side of the island on 7 May. Weak thermal activity was also detected in a satellite image on the E side of the island on 14 May, accompanied by a white gas-and-steam plume that drifted SE (figure 68).

Figure (see Caption) Figure 67. True color satellite images showing a white gas-and-steam plume rising from Kadovar on 28 February 2023 (left) and 30 March 2023 (right) and drifting SE and S, respectively. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 68. Infrared (bands B12, B11, B4) image showing weak thermal activity on the E side of the island, accompanied by a gas-and-steam plume that drifted SE from Kadovar on 14 May 2023. Courtesy of Copernicus Browser.

Geologic Background. The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the andesitic volcano, filling an arcuate landslide scarp open to the south; submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. A period of heightened thermal phenomena took place in 1976. An eruption began in January 2018 that included lava effusion from vents at the summit and at the E coast.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


San Miguel (El Salvador) — June 2023 Citation iconCite this Report

San Miguel

El Salvador

13.434°N, 88.269°W; summit elev. 2130 m

All times are local (unless otherwise noted)


Small gas-and-ash explosions during March and May 2023

San Miguel in El Salvador is a broad, deep crater complex that has been frequently modified by eruptions recorded since the early 16th century and consists of the summit known locally as Chaparrastique. Flank eruptions have produced lava flows that extended to the N, NE, and SE during the 17-19th centuries. The most recent activity has consisted of minor ash eruptions from the summit crater. The current eruption period began in November 2022 and has been characterized by frequent phreatic explosions, gas-and-ash emissions, and sulfur dioxide plumes (BGVN 47:12). This report describes small gas-and-ash explosions during December 2022 through May 2023 based on special reports from the Ministero de Medio Ambiente y Recursos Naturales (MARN).

Activity has been relatively low since the last recorded explosions on 29 November 2022. Seismicity recorded by the San Miguel Volcano Station (VSM) located on the N flank at 1.7 km elevation had decreased by 7 December. Sulfur dioxide gas measurements taken with DOAS (Differential Optical Absorption Spectroscopy) mobile equipment were below typical previously recorded values: 300 tons per day (t/d). During December, small explosions were recorded by the seismic network and manifested as gas-and-steam emissions.

Gas-and-ash explosions in the crater occurred during January 2023, which were recorded by the seismic network. Sulfur dioxide values remained low, between 300-400 t/d through 10 March. At 0817 on 14 January a gas-and-ash emission was visible in webcam images, rising just above the crater rim. Some mornings during February, small gas-and-steam plumes were visible in the crater. On 7 March at 2252 MARN noted an increase in degassing from the central crater; gas emissions were constantly observed through the early morning hours on 8 March. During the early morning of 8 March through the afternoon on 9 March, 12 emissions were registered, some accompanied by ash. The last gas-and-ash emission was recorded at 1210 on 9 March; very fine ashfall was reported in El Tránsito (10 km S), La Morita (6 km W), and La Piedrita (3 km W). The smell of sulfur was reported in Piedra Azul (5 km SW). On 16 March MARN reported that gas-and-steam emissions decreased.

Low degassing and very low seismicity were reported during April; no explosions have been detected between 9 March and 27 May. The sulfur dioxide emissions remained between 350-400 t/d; during 13-20 April sulfur dioxide values fluctuated between 30-300 t/d. Activity remained low through most of May; on 23 May seismicity increased. An explosion was detected at 1647 on 27 May generated a gas-and-ash plume that rose 700 m high (figure 32); a decrease in seismicity and gas emissions followed. The DOAS station installed on the W flank recorded sulfur dioxide values that reached 400 t/d on 27 May; subsequent measurements showed a decrease to 268 t/d on 28 May and 100 t/d on 29 May.

Figure (see Caption) Figure 32. Webcam image of a gas-and-ash plume rising 700 m above San Miguel at 1652 on 27 May 2023. Courtesy of MARN.

Geologic Background. The symmetrical cone of San Miguel, one of the most active volcanoes in El Salvador, rises from near sea level to form one of the country's most prominent landmarks. A broad, deep, crater complex that has been frequently modified by eruptions recorded since the early 16th century caps the truncated unvegetated summit, also known locally as Chaparrastique. Flanks eruptions of the basaltic-andesitic volcano have produced many lava flows, including several during the 17th-19th centuries that extended to the N, NE, and SE. The SE-flank flows are the largest and form broad, sparsely vegetated lava fields crossed by highways and a railroad skirting the base of the volcano. Flank vent locations have migrated higher on the edifice during historical time, and the most recent activity has consisted of minor ash eruptions from the summit crater.

Information Contacts: Ministero de Medio Ambiente y Recursos Naturales (MARN), Km. 5½ Carretera a Nueva San Salvador, Avenida las Mercedes, San Salvador, El Salvador (URL: http://www.snet.gob.sv/ver/vulcanologia).


Semisopochnoi (United States) — June 2023 Citation iconCite this Report

Semisopochnoi

United States

51.93°N, 179.58°E; summit elev. 1221 m

All times are local (unless otherwise noted)


Occasional explosions, ash deposits, and gas-and-steam plumes during December 2022-May 2023

Semisopochnoi is located in the western Aleutians, is 20-km-wide at sea level, and contains an 8-km-wide caldera. The three-peaked Mount Young (formerly Cerberus) was constructed within the caldera during the Holocene. Each of these peaks contains a summit crater; the lava flows on the N flank appear younger than those on the S side. The current eruption period began in early February 2021 and has more recently consisted of intermittent explosions and ash emissions (BGVN 47:12). This report updates activity during December 2022 through May 2023 using daily, weekly, and special reports from the Alaska Volcano Observatory (AVO). AVO monitors the volcano using local seismic and infrasound sensors, satellite data, web cameras, and remote infrasound and lightning networks.

Activity during most of December 2022 was relatively quiet; according to AVO no eruptive or explosive activity was observed since 7 November 2022. Intermittent tremor and occasional small earthquakes were observed in geophysical data. Continuous gas-and-steam emissions were observed from the N crater of Mount Young in webcam images on clear weather days (figure 25). On 24 December, there was a slight increase in earthquake activity and several small possible explosion signals were detected in infrasound data. Eruptive activity resumed on 27 December at the N crater of Mount Young; AVO issued a Volcano Activity Notice (VAN) that reported minor ash deposits on the flanks of Mount Young that extended as far as 1 km from the vent, according to webcam images taken during 27-28 December (figure 26). No ash plumes were observed in webcam or satellite imagery, but a persistent gas-and-steam plume that might have contained some ash rose to 1.5 km altitude. As a result, AVO raised the Aviation Color Code (ACC) to Orange (the second highest level on a four-color scale) and the Volcano Alert Level (VAL) to Watch (the second highest level on a four-level scale). Possible explosions were detected during 21 December 2022 through 1 January 2023 and seismic tremor was recorded during 30-31 December.

Figure (see Caption) Figure 25. Webcam image of a gas-and-steam plume rising above Semisopochnoi from Mount Young on 21 December 2022. Courtesy of AVO.
Figure (see Caption) Figure 26. Webcam image showing fresh ash deposits (black color) at the summit and on the flanks of Mount Young at Semisopochnoi, extending up to 1 km from the N crater. Image was taken on 27 December 2022. Image has been color corrected. Courtesy of AVO.

During January 2023 eruptive activity continued at the active N crater of Mount Young. Minor ash deposits were observed on the flanks, extending about 2 km SSW, based on webcam images from 1 and 3 January. A possible explosion occurred during 1-2 January based on elevated seismicity recorded on local seismometers and an infrasound signal recorded minutes later by an array at Adak. Though no ash plumes were observed in webcam or satellite imagery, a persistent gas-and-steam plume rose to 1.5 km altitude that might have carried minor traces of ash. Ash deposits were accompanied by periods of elevated seismicity and infrasound signals from the local geophysical network, which AVO reported were likely due to weak explosive activity. Low-level explosive activity was also detected during 2-3 January, with minor gas-and-steam emissions and a new ash deposit that was visible in webcam images. Low-level explosive activity was detected in geophysical data during 4-5 January, with elevated seismicity and infrasound signals observed on local stations. Volcanic tremor was detected during 7-9 January and very weak explosive activity was detected in seismic and infrasound data on 9 January. Weak seismic and infrasound signals were recorded on 17 January, which indicated minor explosive activity, but no ash emissions were observed in clear webcam images; a gas-and-steam plume continued to rise to 1.5 km altitude. During 29-30 January, ash deposits near the summit were observed on fresh snow, according to webcam images.

The active N cone at Mount Young continued to produce a gas-and-steam plume during February, but no ash emissions or explosive events were detected. Seismicity remained elevated with faint tremor during early February. Gas-and-steam emissions from the N crater were observed in clear webcam images on 11-13 and 16 February; no explosive activity was detected in seismic, infrasound, or satellite data. Seismicity has also decreased, with no significant seismic tremor observed since 25 January. Therefore, the ACC was lowered to Yellow (the second lowest level on a four-color scale) and the VAL was lowered to Advisory (the second lowest level on a four-color scale) on 22 February.

Gas-and-steam emissions persisted during March from the N cone of Mount Young, based on clear webcam images. A few brief episodes of weak tremor were detected in seismic data, although seismicity decreased over the month. A gas-and-steam plume detected in satellite data extended 150 km on 18 March. Low-level ash emissions from the N cone at Mount Young were observed in several webcam images during 18-19 March, in addition to small explosions and volcanic tremor. The ACC was raised to Orange and the VAL increased to Watch on 19 March. A small explosion was detected in seismic and infrasound data on 21 March.

Low-level unrest continued during April, although cloudy weather often obscured views of the summit; periods of seismic tremor and local earthquakes were recorded. During 3-4 April a gas-and-steam plume was visible traveling more than 200 km overnight; no ash was evident in the plume, according to AVO. A gas-and-steam plume was observed during 4-6 April that extended 400 km but did not seem to contain ash. Small explosions were detected in seismic and infrasound data on 5 April. Occasional clear webcam images showed continuing gas-and-steam emissions rose from Mount Young, but no ash deposits were observed on the snow. On 19 April small explosions and tremor were detected in seismic and infrasound data. A period of seismic tremor was detected during 22-25 April, with possible weak explosions on 25 April. Ash deposits were visible near the crater rim, but it was unclear if these deposits were recent or due to older deposits.

Occasional small earthquakes were recorded during May, but there were no signs of explosive activity seen in geophysical data. Gas-and-steam emissions continued from the N crater of Mount Young, based on webcam images, and seismicity remained slightly elevated. A new, light ash deposit was visible during the morning of 5 May on fresh snow on the NW flank of Mount Young. During 10 May periods of volcanic tremor were observed. The ACC was lowered to Yellow and the VAL to Advisory on 17 May due to no additional evidence of activity.

Geologic Background. Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked Mount Cerberus (renamed Mount Young in 2023) was constructed within the caldera during the Holocene. Each of the peaks contains a summit crater; lava flows on the N flank appear younger than those on the south side. Other post-caldera volcanoes include the symmetrical Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented eruptions have originated from Young, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone could have been recently active.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).


Ebeko (Russia) — June 2023 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Continued explosions, ash plumes, and ashfall during October 2022-May 2023

Ebeko, located on the N end of Paramushir Island in the Kuril Islands, consists of three summit craters along a SSW-NNE line at the northern end of a complex of five volcanic cones. Eruptions date back to the late 18th century and have been characterized as small-to-moderate explosions from the summit crater, accompanied by intense fumarolic activity. The current eruption period began in June 2022 and has recently consisted of frequent explosions, ash plumes, and thermal activity (BGVN 47:10). This report covers similar activity during October 2022 through May 2023, based on information from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.

Activity during October consisted of explosive activity, ash plumes, and occasional thermal anomalies. Visual data by volcanologists from Severo-Kurilsk showed explosions producing ash clouds up to 2.1-3 km altitude which drifted E, N, NE, and SE during 1-8, 10, 16, and 18 October. KVERT issued several Volcano Observatory Notices for Aviation (VONA) on 7, 13-15, and 27 October 2022, stating that explosions generated ash plumes that rose to 2.3-4 km altitude and drifted 5 km E, NE, and SE. Ashfall was reported in Severo-Kurilsk (Paramushir Island, about 7 km E) on 7 and 13 October. Satellite data showed a thermal anomaly over the volcano on 15-16 October. Visual data showed ash plumes rising to 2.5-3.6 km altitude on 22, 25-29, and 31 October and moving NE due to constant explosions.

Similar activity continued during November, with explosions, ash plumes, and ashfall occurring. KVERT issued VONAs on 1-2, 4, 6-7, 9, 13, and 16 November that reported explosions and resulting ash plumes that rose to 1.7-3.6 km altitude and drifted 3-5 km SE, ESE, E, and NE. On 1 November ash plumes extended as far as 110 km SE. On 5, 8, 12, and 24-25 November explosions and ash plumes rose to 2-3.1 km altitude and drifted N and E. Ashfall was observed in Severo-Kurilsk on 7 and 16 November. A thermal anomaly was visible during 1-4, 16, and 20 November. Explosions during 26 November rose as high as 2.7 km altitude and drifted NE (figure 45).

Figure (see Caption) Figure 45. Photo of an ash plume rising to 2.7 km altitude above Ebeko on 26 November 2022. Photo has been color corrected. Photo by L. Kotenko, IVS FEB RAS.

Explosions and ash plumes continued to occur in December. During 1-2 and 4 December volcanologists from Severo-Kurilsk observed explosions that sent ash to 1.9-2.5 km altitude and drifted NE and SE (figure 46). VONAs were issued on 5, 9, and 16 December reporting that explosions generated ash plumes rising to 1.9 km, 2.6 km, and 2.4 km altitude and drifted 5 km SE, E, and NE, respectively. A thermal anomaly was visible in satellite imagery on 16 December. On 18 and 27-28 December explosions produced ash plumes that rose to 2.5 km altitude and drifted NE and SE. On 31 December an ash plume rose to 2 km altitude and drifted NE.

Figure (see Caption) Figure 46. Photo of an explosive event at Ebeko at 1109 on 2 December 2022. Photo has been color corrected. Photo by S. Lakomov, IVS FEB RAS.

Explosions continued during January 2023, based on visual observations by volcanologists from Severo-Kurilsk. During 1-7 January explosions generated ash plumes that rose to 4 km altitude and drifted NE, E, W, and SE. According to VONAs issued by KVERT on 2, 4, 10, and 23 January, explosions produced ash plumes that rose to 2-4 km altitude and drifted 5 km N, NE, E, and ENE; the ash plume that rose to 4 km altitude occurred on 10 January (figure 47). Satellite data showed a thermal anomaly during 3-4, 10, 13, 16, 21, 22, and 31 January. KVERT reported that an ash cloud on 4 January moved 12 km NE. On 6 and 9-11 January explosions sent ash plumes to 4.5 km altitude and drifted W and ESE. On 13 January an ash plume rose to 3 km altitude and drifted SE. During 20-24 January ash plumes from explosions rose to 3.7 km altitude and drifted SE, N, and NE. On 21 January the ash plume drifted as far as 40 km NE. During 28-29 and 31 January and 1 February ash plumes rose to 4 km altitude and drifted NE.

Figure (see Caption) Figure 47. Photo of a strong ash plume rising to 4 km altitude from an explosive event on 10 January 2023 (local time). Photo by L. Kotenko, IVS FEB RAS.

During February, explosions, ash plumes, and ashfall were reported. During 1, 4-5 and 7-8 February explosions generated ash plumes that rose to 4.5 km altitude and drifted E and NE; ashfall was observed on 5 and 8 February. On 6 February an explosion produced an ash plume that rose to 3 km altitude and drifted 7 km E, causing ashfall in Severo-Kurilsk. A thermal anomaly was visible in satellite data on 8, 9, 13, and 21 February. Explosions on 9 and 12-13 February produced ash plumes that rose to 4 km altitude and drifted E and NE; the ash cloud on 12 February extended as far as 45 km E. On 22 February explosions sent ash to 3 km altitude that drifted E. During 24 and 26-27 February ash plumes rose to 4 km altitude and drifted E. On 28 February an explosion sent ash to 2.5-3 km altitude and drifted 5 km E; ashfall was observed in Severo-Kurilsk.

Activity continued during March; visual observations showed that explosions generated ash plumes that rose to 3.6 km altitude on 3, 5-7, and 9-12 March and drifted E, NE, and NW. Thermal anomalies were visible on 10, 13, and 29-30 March in satellite imagery. On 18, 21-23, 26, and 29-30 March explosions produced ash plumes that rose to 2.8 km altitude and drifted NE and E; the ash plumes during 22-23 March extended up to 76 km E. A VONA issued on 21 March reported an explosion that produced an ash plume that rose to 2.8 km altitude and drifted 5 km E. Another VONA issued on 23 March reported that satellite data showed an ash plume rising to 3 km altitude and drifted 14 km E.

Explosions during April continued to generate ash plumes. On 1 and 4 April an ash plume rose to 2.8-3.5 km altitude and drifted SE and NE. A thermal anomaly was visible in satellite imagery during 1-6 April. Satellite data showed ash plumes and clouds rising to 2-3 km altitude and drifting up to 12 km SW and E on 3 and 6 April (figure 48). KVERT issued VONAs on 3, 5, 14, 16 April describing explosions that produced ash plumes rising to 3 km, 3.5 km, 3.5 km, and 3 km altitude and drifting 5 km S, 5 km NE and SE, 72 km NNE, and 5 km NE, respectively. According to satellite data, the resulting ash cloud from the explosion on 14 April was 25 x 7 km in size and drifted 72-104 km NNE during 14-15 April. According to visual data by volcanologists from Severo-Kurilsk explosions sent ash up to 3.5 km altitude that drifted NE and E during 15-16, 22, 25-26, and 29 April.

Figure (see Caption) Figure 48. Photo of an ash cloud rising to 3.5 km altitude at Ebeko on 6 April 2023. The cloud extended up to 12 km SW and E. Photo has been color corrected. Photo by L. Kotenko, IVS FEB RAS.

The explosive eruption continued during May. Explosions during 3-4, 6-7, and 9-10 May generated ash plumes that rose to 4 km altitude and drifted SW and E. Satellite data showed a thermal anomaly on 3, 9, 13-14, and 24 May. During 12-16, 23-25, and 27-28 May ash plumes rose to 3.5 km altitude and drifted in different directions due to explosions. Two VONA notices were issued on 16 and 25 May, describing explosions that generated ash plumes rising to 3 km and 3.5 km altitude, respectively and extending 5 km E. The ash cloud on 25 May drifted 75 km SE.

Thermal activity in the summit crater, occasionally accompanied by ash plumes and ash deposits on the SE and E flanks due to frequent explosions, were visible in infrared and true color satellite images (figure 49).

Figure (see Caption) Figure 49. Infrared (bands B12, B11, B4) and true color satellite images of Ebeko showing occasional small thermal anomalies at the summit crater on 4 October 2022 (top left), 30 April 2023 (bottom left), and 27 May 2023 (bottom right). On 1 November (top right) ash deposits (light-to-dark gray) were visible on the SE flank. An ash plume drifted NE on 30 April, and ash deposits were also visible to the E on both 30 April and 27 May. Courtesy of Copernicus Browser.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Home Reef (Tonga) — June 2023 Citation iconCite this Report

Home Reef

Tonga

18.992°S, 174.775°W; summit elev. -10 m

All times are local (unless otherwise noted)


Discolored plumes continued during November 2022-April 2023

Home Reef is a submarine volcano located in the central Tonga islands between Lateiki (Metis Shoal) and Late Island. The first recorded eruption occurred in the mid-19th century, when an ephemeral island formed. An eruption in 1984 produced a 12-km-high eruption plume, a large volume of floating pumice, and an ephemeral island 500 x 1,500 m wide, with cliffs 30-50 m high that enclosed a water-filled crater. Another island-forming eruption in 2006 produced widespread pumice rafts that drifted as far as Australia; by 2008 the island had eroded below sea level. The previous eruption occurred during October 2022 and was characterized by a new island-forming eruption, lava effusion, ash plumes, discolored water, and gas-and-steam plumes (BGVN 47:11). This report covers discolored water plumes during November 2022 through April 2023 using satellite data.

Discolored plumes continued during the reporting period and were observed in true color satellite images on clear weather days. Satellite images show light green-yellow discolored water extending W on 8 and 28 November 2022 (figure 31), and SW on 18 November. Light green-yellow plumes extended W on 3 December, S on 13 December, SW on 18 December, and W and S on 23 December (figure 31). On 12 January 2023 discolored green-yellow plumes extended to the NE, E, SE, and N. The plume moved SE on 17 January and NW on 22 January. Faint discolored water in February was visible moving NE on 1 February. A discolored plume extended NW on 8 and 28 March and NW on 13 March (figure 31). During April, clear weather showed green-blue discolored plumes moving S on 2 April, W on 7 April, and NE and S on 12 April. A strong green-yellow discolored plume extended E and NE on 22 April for several kilometers (figure 31).

Figure (see Caption) Figure 31. Visual (true color) satellite images showing continued green-yellow discolored plumes at Home Reef (black circle) that extended W on 28 November 2022 (top left), W and S on 23 December 2022 (top right), NW on 13 March 2023 (bottom left), and E and NE on 22 April 2023 (bottom right). Courtesy of Copernicus Browser.

Geologic Background. Home Reef, a submarine volcano midway between Metis Shoal and Late Island in the central Tonga islands, was first reported active in the mid-19th century, when an ephemeral island formed. An eruption in 1984 produced a 12-km-high eruption plume, large amounts of floating pumice, and an ephemeral 500 x 1,500 m island, with cliffs 30-50 m high that enclosed a water-filled crater. In 2006 an island-forming eruption produced widespread dacitic pumice rafts that drifted as far as Australia. Another island was built during a September-October 2022 eruption.

Information Contacts: Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Ambae (Vanuatu) — June 2023 Citation iconCite this Report

Ambae

Vanuatu

15.389°S, 167.835°E; summit elev. 1496 m

All times are local (unless otherwise noted)


New lava flow, ash plumes, and sulfur dioxide plumes during February-May 2023

Ambae, also known as Aoba, is a large basaltic shield volcano in Vanuatu. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas. Periodic phreatic and pyroclastic explosions have been reported since the 16th century. A large eruption more than 400 years ago resulted in a volcanic cone within the summit crater that is now filled by Lake Voui; the similarly sized Lake Manaro fills the western third of the caldera. The previous eruption ended in August 2022 that was characterized by gas-and-steam and ash emissions and explosions of wet tephra (BGVN 47:10). This report covers a new eruption during February through May 2023 that consisted of a new lava flow, ash plumes, and sulfur dioxide emissions, using information from the Vanuatu Meteorology and Geo-Hazards Department (VMGD) and satellite data.

During the reporting period, the Alert Level remained at a 2 (on a scale of 0-5), which has been in place since December 2021. Activity during October 2022 through March 2023 remained relatively low and mostly consisted of gas-and-steam emissions in Lake Voui. VMGD reported that at 1300 on 15 November a satellite image captured a strong amount of sulfur dioxide rising above the volcano (figure 99), and that seismicity slightly increased. The southern and northern part of the island reported a strong sulfur dioxide smell and heard explosions. On 20 February 2023 a gas-and-ash plume rose 1.3 km above the summit and drifted SSW, according to a webcam image (figure 100). Gas-and-steam and possibly ash emissions continued on 23 February and volcanic earthquakes were recorded by the seismic network.

Figure (see Caption) Figure 99. Satellite image of the strong sulfur dioxide plume above Ambae taken on 15 November 2022. The Dobson Units (DU) exceeded 12. Courtesy of VMGD.
Figure (see Caption) Figure 100. Webcam image of a gas-and-ash plume rising above Ambae at 1745 on 20 February 2023. The plume drifted SSW. Courtesy of VMGD.

During April, volcanic earthquakes and gas-and-steam and ash emissions were reported from the cone in Lake Voui. VMGD reported that activity increased during 5-7 April; high gas-and-steam and ash plumes were visible, accompanied by nighttime incandescence. According to a Wellington VAAC report, a low-level ash plume rose as high as 2.5 km above the summit and drifted W and SW on 5 April, based on satellite imagery. Reports in Saratamata stated that a dark ash plume drifted to the WSW, but no loud explosion was heard. Webcam images from 2100 showed incandescence above the crater and reflected in the clouds. According to an aerial survey, field observations, and satellite data, water was no longer present in the lake. A lava flow was reported effusing from the vent and traveling N into the dry Lake Voui, which lasted three days. The next morning at 0745 on 6 April a gas-and-steam and ash plume rose 5.4 km above the summit and drifted ESE, based on information from VMGD (figure 101). The Wellington VAAC also reported that light ashfall was observed on the island. Intermittent gas-and-steam and ash emissions were visible on 7 April, some of which rose to an estimated 3 km above the summit and drifted E. Webcam images during 0107-0730 on 7 April showed continuing ash emissions. A gas-and-steam and ash plume rose 695 m above the summit crater at 0730 on 19 April and drifted ESE, based on a webcam image (figure 102).

Figure (see Caption) Figure 101. Webcam image showing a gas-and-ash plume rising 5.4 km above the summit of Ambae at 0745 on 6 April 2023. Courtesy of VMGD.
Figure (see Caption) Figure 102. Webcam image showing a gas-and-ash plume rising 695 m above the summit of Ambae at 0730 on 19 April 2023. Courtesy of VMGD.

According to visual and infrared satellite data, water was visible in Lake Voui as late as 24 March 2023 (figure 103). The vent in the caldera showed a gas-and-steam plume drifted SE. On 3 April thermal activity was first detected, accompanied by a gas-and-ash plume that drifted W (figure 103). The lava flow moved N within the dry lake and was shown cooling by 8 April. By 23 April much of the water in the lake had returned. Occasional sulfur dioxide plumes were detected by the TROPOMI instrument on the Sentinel-5P satellite that exceeded 2 Dobson Units (DU) and drifted in different directions (figure 104).

Figure (see Caption) Figure 103. Satellite images showing both visual (true color) and infrared (bands B12, B11, B4) views on 24 March 2023 (top left), 3 April 2023 (top left), 8 April 2023 (bottom left), and 23 April 2023 (bottom right). In the image on 24 March, water filled Lake Voui around the small northern lake. A gas-and-steam plume drifted SE. Thermal activity (bright yellow-orange) was first detected in infrared data on 3 April 2023, accompanied by a gas-and-ash plume that drifted W. The lava flow slowly filled the northern part of the then-dry lake and remained hot on 8 April. By 23 April, the water in Lake Voui had returned. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 104. Images showing sulfur dioxide plumes rising from Ambae on 26 December 2022 (top left), 25 February 2023 (top right), 23 March 2023 (bottom left), and 5 April 2023 (bottom right), as detected by the TROPOMI instrument on the Sentinel-5P satellite. These plumes exceeded at least 2 Dobson Units (DU) and drifted in different directions. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. The island of Ambae, also known as Aoba, is a massive 2,500 km3 basaltic shield that is the most voluminous volcano of the New Hebrides archipelago. A pronounced NE-SW-trending rift zone with numerous scoria cones gives the 16 x 38 km island an elongated form. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas, the largest of which is 6 km in diameter. That large central edifice is also called Manaro Voui or Lombenben volcano. Post-caldera explosive eruptions formed the summit craters about 360 years ago. A tuff cone was constructed within Lake Voui (or Vui) about 60 years later. The latest known flank eruption, about 300 years ago, destroyed the population of the Nduindui area near the western coast.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); Wellington Volcanic Ash Advisory Centre (VAAC), Meteorological Service of New Zealand Ltd (MetService), PO Box 722, Wellington, New Zealand (URL: http://www.metservice.com/vaac/, http://www.ssd.noaa.gov/VAAC/OTH/NZ/messages.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 27, Number 12 (December 2002)

Managing Editor: Richard Wunderman

Ambrym (Vanuatu)

Lava lakes remain active in Mbwelesu and Benbow craters through December 2002

Cotopaxi (Ecuador)

First anomalous seismicity since 1975 begins in October 2001

Etna (Italy)

Late October 2002 earthquake swarm signals start of new flank eruption

Karangetang (Indonesia)

500-m plumes and ~ 1.5-km glowing lava avalanche; Alert Level increased

Kerinci (Indonesia)

Continuous emissions through December 2002

Krakatau (Indonesia)

Seismicity dominated by volcanic earthquakes through at least December 2002

Lokon-Empung (Indonesia)

Higher-than-normal activity continues through at least December 2002

Lopevi (Vanuatu)

Anomalous SO2 emissions detected by satellite in December 2002 and January 2003

McDonald Islands (Australia)

Significant morphological changes due to eruptive activity

Pinatubo (Philippines)

Likely 2001 overflow controled by cross-rim trenching

Semeru (Indonesia)

Elevated explosive activity continues; evacuation on 30 December 2002

Stromboli (Italy)

Landslides on 30 December cause two tsunamis; damage in nearby villages

Tungurahua (Ecuador)

Summary of 2002 activity includes several episodes of intense seismicity

Witori (Papua New Guinea)

Dacite lava flows, flattened forest, deformation, and faulting



Ambrym (Vanuatu) — December 2002 Citation iconCite this Report

Ambrym

Vanuatu

16.25°S, 168.12°E; summit elev. 1334 m

All times are local (unless otherwise noted)


Lava lakes remain active in Mbwelesu and Benbow craters through December 2002

Observations of Ambrym were made by John Seach during a climb to the caldera during 11-15 December 2002. Lava lakes were visible in both Mbwelesu and Benbow craters that had been absent during a visit in February 2000 (BGVN 25:02) . Reports from local guides indicated that two lava lakes appeared in Mbwelesu crater during February 2001 and joined to form a single lava lake in August 2001. A lava lake reappeared in Benbow crater during June 2002. During November 2002 acid rain, for the third consecutive year, destroyed the mango crops between Sanesup and Lalinda on the W coast of Ambrym.

Activity at Mbwelesu Crater, 12 December 2002. Perfect visibility into the crater enabled detailed observations of the lava lake over 5 hours from the S side of the crater at an elevation of 950 m and over 300 m above the lava lake. The lava lake, located at the bottom of Mbwelesu Crater inside a circular pit (figures 6 and 7), had a diameter of 40-50 m, was in constant motion, and made continuous loud crashing sounds like waves at the beach. The lava lake was much more active than during previous visits in 1998 and 1999. Pele's hair littered the observation area, and white lithic blocks up to 30 cm in diameter were scattered on the rim.

Figure (see Caption) Figure 6. Photo of the lava lake inside a circular pit within Mbwelesu Crater at Ambrym, 12 December 2002. The diameter of the lava lake is 40-50 m. Courtesy of John Seach.
Figure (see Caption) Figure 7. Photo showing the violent degassing from the lava lake in Mbwelesu Crater at Ambrym, 12 December 2002. Courtesy of John Seach.

The surface of the lava lake was continuously disrupted by degassing. Bubbles caused the lake surface to blister and finally burst, splashing lava into the air. Up to eight large bubbles formed at any one time and covered over 80% of the lake surface. The cycle of bubble formation and rupture took about 3 seconds. Waves up to 10 m high formed due to the degassing and crashed onto the side of the pit. After lava waves hit the side of the pit there was a drain-back of lava into the main lake much like ocean waves receding off a beach. Jets of lava were regularly expelled from the lake surface and directed both vertically and at an angle towards the pit side. Fountains reached up to 40 m high. Blobs of molten lava spattered onto the side of the pit up to 20 m from the lava lake edge. This spatter was more erratic than lava fountains and sprayed over a greater area. When large amounts of lava were thrown onto the pit wall, some would cascade back into the lake via a lava stream, lava fall, or a wide curtain of orange flowing lava.

Crusting of the surface was observed when parts of the lake had a lower level of activity, most often in the NE part of the pit opposite the area of most vigorous degassing. Sometimes a lava fountain would burst through the crust, throwing darker pieces of lava high into the air. At times the orange lava lake surface was covered with black pieces of broken crust. Crusting lasted for only a few minutes at a time before it was disrupted by fountains or waves. Lava disappeared into the lava lake surface by subducting under layers of other lava. Some lava disappeared into overhangs on the side of the pit. Lava lake activity continued out of view for an unknown distance past these overhangs.

The lava lake level rose and fell over a period of less than an hour in response to changes in the surface degassing rate. When the rate of degassing was high the lake level was raised by 10 m. The changes appeared to be caused by inflation of the lake due to gas rather than any change in lava eruption rate. During a period of low lava lake activity, the whole lake surface tilted 5 m towards the N and then back to the S over a two-second period. Violent intra-crater winds were observed around the lava lake as reflected in their effects on gas emissions. These were also felt beside the lava lake in Benbow crater. Vapors emitted from the lake surface were white tinged with blue.

Two 15-m-diameter vents 100 m N of the lava lake and 60 m higher were separated by a thin wall. The W vent did not show any activity. The E vent made almost continuous loud degassing noises, and larger explosions ejected black ash 50 m into the air. Mbwelesu was approached again on 15 December, but rain the previous day and low clouds had filled the crater with white vapor, allowing only brief views of the still constantly active lava lake.

Activity at Mbogon Niri Mbwelesu, 12 December 2002. This small collapse pit has been re-named (formerly Niri Mbwelesu Taten) after a request by local residents. The new name comes from the local Port Vato language of W Ambrym, as did the previous name, but is more culturally appropriate. The translation of the new name is " mouth of the wild young pig" (Mbogon = mouth, Niri = son, Mbwelesu = wild pig).

On 12 December excellent visibility enabled detailed observations into Mbogon Niri Mbwelesu. Observations were made from the N side of the pit. Loud crashing, degassing sounds were heard inside the pit, and a 10-m-diameter vent was observed on the floor about 180 m below. The pit glowed bright orange, but lava was not directly observed. This was the first time in 2002 that guides had observed the presence of lava in this pit. Loud degassing occurred every few seconds, and the larger explosions were accompanied by light brown emissions and ground shaking. Pungent sulfurous fumes were emitted from the pit, forcing the observer to use a respirator at times. Strong degassing of brown vapors was coming from the E side of the pit, 50 m below the rim. The W inside wall of the pit was coated with red and yellow deposits.

Activity at Niri Mbwelesu Crater, 12 December 2002. On 12 December excellent views were obtained into Niri Mbwelesu. A recent large landslide on the W wall of the crater had covered the previously lava-filled vent. Rockfalls were heard regularly inside the crater and degassing occurred about every 30 seconds. About every 20 minutes larger explosions were heard at the crater; some were audible over 3 km away.

Activity at Benbow Crater, 13 December 2002. Benbow was climbed from the S on 13 December. The observer free-climbed 165 m down to the floor of the first level, and then another 45 m further down to the edge of the lava lake pit in the N of the crater. Inside Benbow there were two active pits. The larger pit, in the middle of the crater, contained a crusted lava lake and two active vents. The SW vent was 25 m in diameter and was full of vapor but emitted no sounds. The NW vent was 10 m in diameter, glowed red, and loudly degassed. The N crater in Benbow contained an active lava lake. The observer climbed to the rim and was able to view the lake surface, ~50 m below, for a few seconds before retreating. The lava lake was in constant motion and lava was ejected in to the air. Violent winds (over 80 km/hour) were generated inside the pit and made observations on the edge dangerous. At times the pit was filled with white and blue-tinged vapors which made breathing difficult. The lava lake made continuous rumbling and sloshing noises. On a wall next to the lava lake pit there was dripping water with a pH of 3.5 and 700 ppm total dissolved solids.

Visit to Ambrym, 15-20 August 2001. Jeff and Raine Williams, sailing aboard the S/Y Gryphon, visited Ambrym Island during 15-20 August 2001. One day was spent hiking to the Mbwelesu crater with a guide from the village of Ranvetlam. Their report has been reduced here to basic observations; a more poetic and complete description of their hike can be found on their website. After leaving Ranvetlam, they began a steep climb through jungle and gardens, continuing through coconut groves and thick woods of breadfruit trees and wild nut trees. After an hour they were still passing through the garden plots of villagers. At higher altitudes the vegetation changed to bananas, kava, and lap-lap plants; wild tree ferns and palm trees were abundant.

After about 90 minutes they emerged from the jungle onto a lava flow at the lower limit of the high central 'ash plain' plateau. They climbed along this "50-yard wide, black gravel road," also described as a "wild orchid-lined highway," through the jungle to the ash plain itself, where the tops of Marum and Benbow could be seen shrouded in clouds and mist. The hike continued across ~1.5 km of the ash plain before passing along a lava gully onto the final ridge, a 1-m-wide path of loose cinders and stone. They climbed to the rim and looked down the sheer, nearly vertical cliffs into the crater, where they heard rumbling and splashing sounds of the active lava lake. Although the weather was cold and windy, the fog cleared enough for the visitors to briefly observe bright red lava in the crater three times within 30 minutes. The 11-km-long hike to the crater took four hours, and another 3 hours to return.

Geologic Background. Ambrym, a large basaltic volcano with a 12-km-wide caldera, is one of the most active volcanoes of the New Hebrides Arc. A thick, almost exclusively pyroclastic sequence, initially dacitic then basaltic, overlies lava flows of a pre-caldera shield volcano. The caldera was formed during a major Plinian eruption with dacitic pyroclastic flows about 1,900 years ago. Post-caldera eruptions, primarily from Marum and Benbow cones, have partially filled the caldera floor and produced lava flows that ponded on the floor or overflowed through gaps in the caldera rim. Post-caldera eruptions have also formed a series of scoria cones and maars along a fissure system oriented ENE-WSW. Eruptions have apparently occurred almost yearly during historical time from cones within the caldera or from flank vents. However, from 1850 to 1950, reporting was mostly limited to extra-caldera eruptions that would have affected local populations.

Information Contacts: John Seach, PO Box 16, Chatsworth Island, NSW, 2469, Australia (URL: http://www.volcanolive.com/); Jeff and Raine Williams, P.O. Box 729, Funkstown, MD 21734, USA.


Cotopaxi (Ecuador) — December 2002 Citation iconCite this Report

Cotopaxi

Ecuador

0.677°S, 78.436°W; summit elev. 5911 m

All times are local (unless otherwise noted)


First anomalous seismicity since 1975 begins in October 2001

The last Cotopaxi report (SEAN 01:03) described a decline in activity during December 1975. Beginning in October 2001, anomalous seismic activity was registered. Seismicity increased further during November 2001-January 2002, and at times was up to seven times the normal level (tables 1 and 2). During this period, other seismic signals were registered that were distinct from those during the 13 previous years of monitoring, including: tornillos, explosion events, bands of harmonic tremor sometimes lasting a few minutes, and deep, high-energy long-period (LP) events registered away from the volcano (at the Antisana and Guagua Pichincha stations). Seismic observations and statistics were compiled using station "VCl," located ~4 km NE of the volcano. Earthquake locations were determined using records from the seven seismic stations on different flanks of Cotopaxi, and for higher-energy events with stations of the National network.

Table 1. Monthly seismicity at Cotopaxi during 2001-2002. Data includes Total and Daily averages for long-period (LP) events, hybrid events, volcano-tectonic (VT) events, tornillo events, and all earthquakes. Courtesy IG.

Date LP Total LP Daily Avg Hybrid Total Hybrid Daily Avg VT Total VT Daily Avg Tornillo Total Tornillo Daily Avg All Earthquakes Total All Earthquakes Daily Avg
Jan 2001 336 10.8 0 0.0 18 0.6 0 0.0 354 11.4
Feb 2001 185 6.6 0 0.0 4 0.1 0 0.0 189 6.8
Mar 2001 319 10.3 1 0.0 10 0.3 0 0.0 320 10.3
Apr 2001 280 9.3 0 0.0 26 0.9 0 0.0 306 10.2
May 2001 241 7.8 7 0.2 10 0.3 0 0.0 248 8.0
Jun 2001 243 8.1 11 0.4 53 1.8 0 0.0 307 10.2
Jul 2001 262 8.5 2 0.1 9 0.3 0 0.0 273 8.8
Aug 2001 241 7.8 0 0.0 9 0.3 0 0.0 250 8.1
Sep 2001 394 13.1 9 0.3 9 0.3 0 0.0 412 13.7
Oct 2001 555 17.9 0 0.0 7 0.2 0 0.0 562 18.1
Nov 2001 432 14.4 57 1.9 400 13.3 4 0.1 893 29.8
Dec 2001 516 16.6 169 5.5 729 23.5 0 0.0 1423 45.9
Jan 2002 595 19.2 5 0.2 363 11.7 3 0.1 966 31.2
Feb 2002 532 19.0 4 0.1 157 5.6 0 0.0 693 24.8
Mar 2002 504 16.3 1 0.0 191 6.2 0 0.0 696 22.5
Apr 2002 310 10.3 7 0.2 63 2.1 0 0.0 380 12.7
May 2002 431 13.9 8 0.3 53 1.7 0 0.0 453 14.6
Jun 2002 429 14.3 41 1.4 45 1.5 3 0.1 474 15.8
Jul 2002 445 14.4 181 5.8 92 3.0 2 0.1 720 23.2
Aug 2002 455 14.7 91 2.9 32 1.0 12 0.4 590 19.0
Sep 2002 509 17.0 184 6.1 140 4.7 19 0.6 852 28.4
Oct 2002 322 10.4 219 7.1 62 2.0 13 0.4 616 19.9
Nov 2002 295 9.8 142 4.7 64 2.1 2 0.1 503 16.8
Dec 2002 233 9.0 120 4.6 48 1.5 1 0.0 402 16.1

Table 2. Comparison of average seismicity at Cotopaxi during 2001 and 2002. Courtesy IG.

Year Daily average Monthly average Total
2001 15.4 461.4 5537
2002 20.4 612.1 7345

On 5 and 29 January 2002, two seismic clusters lasted an average of 2 hours and were composed mainly of LP and VT earthquakes. Most of the earthquakes were located at depths of 1-10 km beneath the summit. On 5 and 13 January small fumaroles were reported in the crater, and visible defrosting occurred on the upper E flank. A visit to the summit on 13 January revealed increased fumarolic activity compared to previous months. On 19 and 20 January observers reported gray plumes rising as high as 1,000 m.

During February and March activity diminished, and no seismic clusters were registered. Most of the earthquakes were located 1-10 km beneath the volcano. On 5 February roaring noises were heard from Mulaló and the refuges located on the flanks of the volcano. Strong fumarolic activity was also reported. On 6 February steam plumes rose ~300 m above the summit. On 27 February a small steam plume was reported exiting from the NW side of the crater. On 7 and 10 March small steam plumes originated from the W side of the crater. On 28 March harmonic tremor lasted for ~10 minutes.

Activity remained low during April-June. On 17 April a band of harmonic tremor lasted ~6 minutes with a maximum frequency of 4.3 Hz. During the first days of April small steam plumes were reported. During May LP earthquakes lasted up to a minute and saturated the seismometer for several seconds. On 20 May a seismic cluster of LP earthquakes lasted ~2 hours. On 8 and 14 May a white steam plume from the NE side of the volcano reached up to 200 m high. During June VT events mostly occurred ~10 km N of the crater. On 30 June a band of harmonic tremor lasted ~7 minutes with a maximum frequency of 1.7-5.2 Hz. Visits to the summit on 1 and 2 June revealed that fumarolic activity had diminished ~40% since January.

During July seismicity was at a moderate level with respect to the rest of 2002. During the first days of the month a series of LP events were registered that were large enough to be detected at distant stations, such as Antisana and Guagua Pichincha. The earthquakes had maximum frequencies of ~2.1 Hz and were generally 1-2 km beneath the summit. However, some events were located at depths of ~10 km. On 18 July at 2000 a band of low-frequency tremor lasted ~4 minutes. About 5 hours later a seismic cluster began that lasted for ~8 hours. The cluster consisted of ~110 total events, mostly hybrid (HB) and volcano-tectonic (VT). The earthquakes were located 1-4 km beneath the summit, and 2 LP events were located ~10 km deep.

Visitors to the summit on 6 July reported fumarolic activity in the zone of Yanasacha, a slight sulfur smell on the NE side, and noise generated by an avalanche on the E side. At the end of July reports indicated defrosting in the W zone. During August moderate seismicity was dominated by LP events at a depth of ~10 km.

Seismicity was again high in September 2002. A small cluster of VT earthquakes on 15 September lasted ~7 hours. During the first days of the month a visit to the crater revealed new fumaroles in the E and S zones. Defrosting continued in the W zone and left 40% of the W wall open.

During October seismic activity was low but the number of hybrid events increased compared to the previous months. Tectonic events were registered in the S and N zones up to ~7 km from the summit. Deep LP events decreased by ~50% compared to previous months.

Seismicity remained low during November and December. Less than 10% of VT events were registered in the N sector. No fumarolic or other surface activity was observed. During December seismic events were located 1-7 km beneath the summit. On 7 December people in Yanahurco reported dark brown plumes rising from the crater.

Seismicity since 1989 clearly shows an increase in recent months (figure 1). The 2001 seismic events were registered at 1-10 km beneath the volcano, but ~90% occurred at 2-4 km and showed little migration. The 2002 activity was variable, from a high of 966 events in January to a low of 420 events in April. Mostly LP events occurred with some VT events during the first half of the year, and later mostly LP events with hybrids during the second half of the year. On the basis of 2002 seismic activity, a new injection of magma did not occur, and the anomalies in July and September were the result of the movement of gas from magma intrusion that occurred during the last months of 2001.

Figure (see Caption) Figure 1. Graph of the total registered monthly events at Cotopaxi during 1989-2002. The activity increased beginning in November 2001 and has since remained above background levels. Courtesy of IG.

Geologic Background. The symmetrical, glacier-covered, Cotopaxi stratovolcano is Ecuador's most well-known volcano and one of its most active. The steep-sided cone is capped by nested summit craters, the largest of which is about 550 x 800 m in diameter. Deep valleys scoured by lahars radiate from the summit of the andesitic volcano, and large andesitic lava flows extend to its base. The modern edifice has been constructed since a major collapse sometime prior to about 5,000 years ago. Pyroclastic flows (often confused in historical accounts with lava flows) have accompanied many explosive eruptions, and lahars have frequently devastated adjacent valleys. Strong eruptions took place in 1744, 1768, and 1877. Pyroclastic flows descended all sides of the volcano in 1877, and lahars traveled more than 100 km into the Pacific Ocean and western Amazon basin. Smaller eruptions have been frequent since that time.

Information Contacts: Geophysical Institute (IG), Escuela Politécnica Nacional, Apartado 17-01-2759, Quito, Ecuador.


Etna (Italy) — December 2002 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3357 m

All times are local (unless otherwise noted)


Late October 2002 earthquake swarm signals start of new flank eruption

On 26 October 2002 at 2225 a swarm of earthquakes was recorded by the seismic network of the Catania Section of the National Institute of Geophysics and Volcanology (INGV-CT). This signaled the start of a new flank eruption that has formed fissures on the N and S sides of the volcano.

The lava supply from the main vents were cut off by 3 November. At that time both the N and S fissues stopped producing lava flows, although the S fissure continued to discharge fire fountains. After that, 20 m of downslope movement was observed at the most advanced flow front near Piano Provenzana on 5 November. This late movement was caused by channel emptying, and occurred when lava emerging at the main vent, ~5 km upstream, was completely crusted over. No further advancement of the lava flows was observed on the S or N flanks of the volcano after this date. However, while explosive and effusive activity stopped at the N fissure by 5 November, as of 11 November fire fountaining continued at the S vent located at 2,750 m elevation, near Torre del Filosofo. All data (gas emission, volcanic tremor, composition of the ash) suggested a steady state at this vent. Ash fallout caused intermittent disruption at the Catania airport and damage to buildings.

The eruption continued into December 2002. Lava flows and Strombolian activity continued on the S flank from vents at 2,750 m elevation. Ash emission from the 2,750 m cinder cone significantly declined on 17 December, allowing the local airport of Catania to reopen.

The two vents, which opened at the SE base of the 2,750 m cinder cone on 9-10 December, fed four major lava flows spreading S and SW. A lava flow spreading S on 13 December approached the Rifugio Sapienza and eventually crossed a road on 17 December. An overflow from the main lava channel covered a building and caused a strong explosion in the Rifugio Sapienza area during the night of 17 December, injuring 32 people. The explosion was not directly caused by the eruption, but by vaporization of oil or water inside the building while it was covered by the expanding lava flow. The effusion rate from the two vents gradually decreased, eventually causing the closure of the western vent and then the lack of supply to the lava flows spreading SW towards Monte Nero.

A new vent opened on 17 December at the S base of the 2,750 m cinder cone, a few meters W of the previous vents. A lava flow soon started from this vent, spreading SW towards Monte Nero. The new vent cut supply to the flows expanding S towards Rifugio Sapienza and formed a fan of thin lava flows spreading S, SSW and SW. The lower lava output produced shorter flows, which spread up to 2.5 km from the vent, without threatening the tourist facilities at Rifugio Sapienza. Lava flows spreading from the 17 December vent slowed down and crusted over on 22 December, when a new vent opened at the SW base of the 2,750 m cinder cone. A flow, again directed SW towards Monte Nero, originated from this vent and was expanding in this direction on 23 December.

SO2 emission measured daily during the eruption had significantly decreased as of 1 December, when the previous values of about 20,000 tons per day decreased to about 7,000 tons per day (figure 101). The lower gas output, the decrease in effusion rate, and the lower emission of ash from the summit, suggested a declining stage of the eruption.

Figure (see Caption) Figure 101. A plot of SO2 flux at Etna during September-December 2002. Courtesy of INGV-CT.

Updated maps of the lava flows, and reports of the eruptive activity, gas emission and ash composition (in Italian), can be found on the INGV-CT website.

Geologic Background. Mount Etna, towering above Catania on the island of Sicily, has one of the world's longest documented records of volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sonia Calvari, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania (URL: http://www.ct.ingv.it/).


Karangetang (Indonesia) — December 2002 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


500-m plumes and ~ 1.5-km glowing lava avalanche; Alert Level increased

During September-29 December 2002, seismicity at Karangetang was dominated by emission, multiphase and tectonic earthquakes (table 6). The S crater nearly always issued "white, thin ash plumes" that reached up to 500 m above the rim. At night, a light plume was visible rising 25-100 m. Loud noises were heard frequently, and the N crater emitted a "thin white ash plume" to 50 m. No ashfall was reported.

Table 6. Earthquakes recorded at Karangetang during 9 September-29 December 2002. No reports were issued for Karangetang during 25 November-22 December. Courtesy VSI.

Date Deep volcanic (A-type) Shallow volcanic (B-type) Explosion Multiphase Emission Tectonic Avalanche
09 Sep-15 Sep 2002 14 24 0 94 299 46 --
16 Sep-22 Sep 2002 28 27 0 82 246 39 --
23 Sep-29 Sep 2002 22 26 1 20 116 75 --
30 Sep-06 Oct 2002 14 4 0 38 88 54 98
07 Oct-13 Oct 2002 19 13 -- 30 67 89 43
14 Oct-20 Oct 2002 7 22 1 30 146 34 10
21 Oct-27 Oct 2002 12 34 -- 23 114 65 --
28 Oct-03 Nov 2002 18 154 -- 147 49 24 --
04 Nov-10 Nov 2002 15 29 -- 90 21 69 --
11 Nov-18 Nov 2002 12 40 1 75 28 70 --
19 Nov-24 Nov 2002 15 116 -- 94 1 46 --
23 Dec-29 Dec 2002 10 26 1 168 17 25 --

During 9 September-13 October glowing avalanches flowed 25-250 m toward Nanitu river (West Siau), and toward Beha river as far as 400 m from the crater rim. By the week of 14-20 October, the lava avalanches extended ~1.5 km toward the Nanitu river, 1.0 km toward the Beha river (West Siau), and 750 m toward the Kahetang river.

On 12 September loud noises were accompanied by a 50-m-high gray ash plume. During 5-6 October, there were 2 volcanic tremor events. On 19 October at 1759 an explosion ejected glowing material to a height of 500 m; it landed inside the crater. A gray-black ash plume reached up to 750 m, drifted to the N, and fell on the sea.

Activity decreased during November, and loud sounds were rarely heard. On 15 November at 0248 an ash explosion produced glowing material up to ~200 m that fell around the crater. Some of the material entered the Batang, Beha, and Keting rivers, located 300-350 m away. Ash fell around Salili, Beong, Hiu, Ondong, Pehe, and Paniki villages to the SW. The Alert Level remained at level 3 through at least 29 December (on a scale of 1 to 4).

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented (Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Kerinci (Indonesia) — December 2002 Citation iconCite this Report

Kerinci

Indonesia

1.697°S, 101.264°E; summit elev. 3800 m

All times are local (unless otherwise noted)


Continuous emissions through December 2002

Emissions were continuous through at least late October 2002 (table 4). During most of the period 9 September-27 October a "white-thin ash plume" rose 50-400 m and drifted toward the W or SW. No ashfall was reported. Kerinci remained at Alert Level 2 (on a scale of 1-4). No further reports were issued during 2002.

Table 4. Earthquakes registered at Kerinci during 9 September-27 October 2002. Courtesy VSI.

Date B-type volcanic Emission Tectonic
09 Sep-15 Sep 2002 3 Continuous 7
16 Sep-22 Sep 2002 4 Continuous 8
23 Sep-29 Sep 2002 1 Continuous 5
30 Sep-06 Oct 2002 1 Continuous 4
07 Oct-13 Oct 2002 2 Continuous 16
14 Oct-20 Oct 2002 -- Continuous 2
21 Oct-27 Oct 2002 -- Continuous --

Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Krakatau (Indonesia) — December 2002 Citation iconCite this Report

Krakatau

Indonesia

6.1009°S, 105.4233°E; summit elev. 285 m

All times are local (unless otherwise noted)


Seismicity dominated by volcanic earthquakes through at least December 2002

During 9 September through at least late December 2002, seismicity at Krakatau was dominated by A-and B-type volcanic earthquakes (table 2). Throughout the report period, clouds obscured the view of the summit. Krakatau remained at Alert Level 2.

Table 2. Earthquakes registered at Krakatau during 9 September-29 December 2002. No data were available during 16-29 September. Courtesy VSI.

Date A-type volcanic B-type volcanic Tectonic
09 Sep-15 Sep 2002 2 6 3
30 Sep-06 Oct 2002 8 31 6
07 Oct-13 Oct 2002 30 109 6
14 Oct-20 Oct 2002 18 64 3
21 Oct-27 Oct 2002 7 55 5
28 Oct-03 Nov 2002 8 54 11
04 Nov-10 Nov 2002 28 56 5
11 Nov-18 Nov 2002 2 31 5
02 Dec-08 Dec 2002 16 50 5
09 Dec-15 Dec 2002 13 53 13
16 Dec-22 Dec 2002 6 32 1
23 Dec-29 Dec 2002 11 59 2

Geologic Background. The renowned Krakatau (frequently mis-named as Krakatoa) volcano lies in the Sunda Strait between Java and Sumatra. Collapse of an older edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of that volcano are preserved in Verlaten and Lang Islands; subsequently the Rakata, Danan, and Perbuwatan cones were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption caused more than 36,000 fatalities, most as a result of tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Lokon-Empung (Indonesia) — December 2002 Citation iconCite this Report

Lokon-Empung

Indonesia

1.358°N, 124.792°E; summit elev. 1580 m

All times are local (unless otherwise noted)


Higher-than-normal activity continues through at least December 2002

Higher-than-normal activity continued at Lokon-Empung during August-December 2002. Throughout the report period a "white-thin ash plume" rose 25-75 m above the crater rim. No ashfall was reported. Seismicity was dominated by shallow volcanic and tectonic earthquakes (table 4).

Table 4. Earthquakes recorded at Lokon during 5 August-29 December 2002. No reports were issued during 11 November-22 December. Courtesy VSI.

Date Deep volcanic (A-type) Shallow volcanic (B-type) Tectonic
05 Aug-11 Aug 2002 19 42 32
12 Aug-18 Aug 2002 9 11 35
19 Aug-25 Aug 2002 14 51 42
26 Aug-01 Sep 2002 19 53 28
02 Sep-08 Sep 2002 14 39 32
09 Sep-15 Sep 2002 18 50 33
16 Sep-22 Sep 2002 16 37 39
23 Sep-29 Sep 2002 2 18 46
30 Sep-06 Oct 2002 9 17 39
07 Oct-13 Oct 2002 5 7 35
14 Oct-20 Oct 2002 5 4 29
21 Oct-27 Oct 2002 6 25 44
28 Oct-03 Nov 2002 0 1 35
04 Nov-10 Nov 2002 1 4 26
23 Dec-29 Dec 2002 29 74 31

During the week of 4-10 November, the hazard status was reduced from Alert Level 2 to 1 (on a scale of 1-4). On 23 December a "white-thick ash plume" rose 100-250 m over Tompaluan crater. No ashfall was reported. [A later report did note ashfall.] The same day, volcanic tremor with an amplitude of 0.5-2 mm occurred. A total of 42 emissions were reported during 23-29 December. The Alert Level returned to 2 by the end of the report period.

Geologic Background. The Lokong-Empung volcanic complex, rising above the plain of Tondano in North Sulawesi, includes four peaks and an active crater. Lokon, the highest peak, has a flat craterless top. The morphologically younger Empung cone 2 km NE has a 400-m-wide, 150-m-deep crater that erupted last in the 18th century. A ridge extending 3 km WNW from Lokon includes the Tatawiran and Tetempangan peaks. All eruptions since 1829 have originated from Tompaluan, a 150 x 250 m crater in the saddle between Lokon and Empung. These eruptions have primarily produced small-to-moderate ash plumes that sometimes damaged croplands and houses, but lava-dome growth and pyroclastic flows have also occurred.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Lopevi (Vanuatu) — December 2002 Citation iconCite this Report

Lopevi

Vanuatu

16.507°S, 168.346°E; summit elev. 1413 m

All times are local (unless otherwise noted)


Anomalous SO2 emissions detected by satellite in December 2002 and January 2003

Satellite data interpreted by Simon Carn indicate that anomalous degassing may have begun from a volcano in Vanuatu in mid-December 2002. SO2 signals were noted in data from both the Global Ozone Monitoring Experiment (GOME) on the ERS-2 satellite and the Earth Probe Total Ozone Mapping Spectrometer (TOMS). Although GOME is more sensitive to SO2 than TOMS, its spatial resolution is very poor, so distinguishing the source of emissions between Ambrym and Lopevi is impossible using the available imagery.

However, on 14 December John Seach noted a strong sulfurous smell on the W side of Ambrym caldera. The wind was blowing from the direction of Lopevi at the time, and white emissions were noticed on Lopevi's active crater on the NW flank of the volcano. Seach did not note unusual emissions from Ambrym during his 11-15 December 2002 visit, so the editors are attributing this activity to Lopevi unless other data are found that identify Ambrym as the source.

GOME data indicate SO2 emissions over Vanuatu on 13, 19, 22, and 25 December 2002, then again during 4, 7, 11, 14, 17, and 20 January 2003. Data are only collected every third day, so degassing could be continuous, with a possible lull in late December. After 11 January GOME signals became very weak. TOMS data also indicated SO2 originating from the region on 19, 21, and 25 December, and again during 4, 5, 6, 8, 9, 10, 11, and 12 January, with nothing really evident since then. On a couple of days, particularly 4 January, the anomaly seen in TOMS imagery seemed to be originating from Ambrym.

The SO2 mass detected by TOMS immediately E of Lopevi and Ambrym on 8 January was estimated at less than 5,000 tons, a low value. Combining the two datasets indicates that the most significant SO2 emissions occurred around 25 December 2002 and 4-11 January 2003. After mid-January the activity seemed to be tapering off.

Geologic Background. The small 7-km-wide conical island of Lopevi, known locally as Vanei Vollohulu, is one of Vanuatu's most active volcanoes. A small summit crater containing a cinder cone is breached to the NW and tops an older cone that is rimmed by the remnant of a larger crater. The basaltic-to-andesitic volcano has been active during historical time at both summit and flank vents, primarily along a NW-SE-trending fissure that cuts across the island, producing moderate explosive eruptions and lava flows that reached the coast. Historical eruptions at the 1413-m-high volcano date back to the mid-19th century. The island was evacuated following major eruptions in 1939 and 1960. The latter eruption, from a NW-flank fissure vent, produced a pyroclastic flow that swept to the sea and a lava flow that formed a new peninsula on the western coast.

Information Contacts: Simon A. Carn, TOMS Volcanic Emissions Group, Joint Center for Earth Systems Technology (NASA/UMBC), University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA (URL: https://jcet.umbc.edu/); John Seach, PO Box 16, Chatsworth Island, NSW 2469, Australia (URL: http://www.volcanolive.com/).


McDonald Islands (Australia) — December 2002 Citation iconCite this Report

McDonald Islands

Australia

53.03°S, 72.6°E; summit elev. 230 m

All times are local (unless otherwise noted)


Significant morphological changes due to eruptive activity

Accounts from ship-based observers and satellite imagery have revealed significant morphological changes to McDonald Island due to volcanic activity prior to 6 November 2001. A comparison of November 2001 satellite imagery with 1980 aerial photographs was described in AUSGEO News 68 (December 2002). Tourist reports were published in the Australian Antarctic Division's Antarctic Non-government Activity News (ANAN), no. 89 (January 2003). Geoscience Australia's National Mapping reports the elevation of McDonald Island as 230 m, but the activity described below has most likely increased this value.

A photograph taken on 9 November 2000 (BGVN 26:02) was similar to previous photos and descriptions. In addition, thermal alerts for nearby Heard Island occurred frequently in November and December 2000, an indication not only of eruptive activity there, but clear weather during which any significant activity at McDonald would likely have been detected in infrared satellite imagery. Combined, these observations place the eruptive activity after 9 November 2000, and probably after 30 December 2000.

Analysis of 6 November 2001 satellite imagery. A routine check of Australia's maritime boundaries in the Southern Ocean by Geoscience Australia showed that the McDonald Islands had doubled in size, and it appears that the separate islands of McDonald Island and Flat Island are now one. Geoscience Australia's Bill Hirst was comparing an aerial photograph of the McDonald Islands taken on 11 March 1980, with satellite imagery from Landsat 7 EGM data acquired on 6 November 2001, when he noticed that the islands had changed shape (figure 6). The islands earlier combined area of 1.13 km2 is now thought to have changed to 2.45 km2. Some features have disappeared.

Figure (see Caption) Figure 6. Aerial photograph of the McDonald Islands taken on 11 March 1980 from a helicopter (left) and satellite imagery from Landsat 7 EGM data acquired on 6 November 2001 (right). The outline of the islands in 1980 is superimposed on the satellite image. Courtesy of Geoscience Australia.

The senior surveyor onshore during a 6-day visit in 1980 was Geoscience Australia's John Manning, who named many features of the McDonald Islands. He noted that "Thelander Point doesn't appear to be an appropriate name now, Williams Bay seems to be filled in, and The Needle may be gone . . . Windward Point is no longer a point because there are about 400 m of new land in front of it. The tumultuous bay I called Cauldron is now full of rock, and Flat Island is probably joined to McDonald Island by a shingle comprising gravel and pumice." Other new features appear to be a volcanic hill and a spit to the E of the island similar to one on Heard Island. Macaroni Hill was once the highest point.

Observations in late November 2002. Experienced observers noted changes to the McDonald Island group in late November 2002 from on board the Akademic Shokalskiy, which was visiting the Heard Island region on a voyage organized by the New Zealand-based tour company Heritage Expeditions. A comparison of old and new photographs of the area shows that the N part of the island is much higher than before, and 75% of the land area that is now there may be completely new. During the last five years Australian national program vessels that have observed the McDonald group have reported seeing steam issuing from vents at various locations.

Three of the passengers on the Akademic Shokalskiy had worked on Heard Island in the 1950's and 1960's, and one of them, Graham Budd, was one of the first two people to set foot on McDonald Island, in 1971. When the ship was travelling towards Heard Island en route from Crozet early on the morning of 26 November, Budd noticed the changed profile of the McDonald islands and expedition leader Rodney Russ decided to take a closer look after the end of the visit to Heard Island. It was not possible to sail too close to the islands because the water around them is uncharted. Under Australian management plans for McDonald Island, landings cannot be made there without a permit and only then for "compelling scientific reasons."

On the second sail past the island, passengers observed steaming slopes and "two types of lava dome." The highest part of the islands was now at the N end, not in the S at Maxwell Hill as it had been previously. Analysis of enlarged digital photographs taken by passengers indicates that considerable sedimentation has occurred along the coastline, such that the formerly separate Flat Island is now joined to the main island. It also appears that several meters of ash have blanketed the N half of McDonald Island, and Macaroni Hill at its N end has disappeared. A low-lying spit and reef now extend over 1 km E of McDonald Island.

Although it is not certain when the activity occurred, wildlife did not appear to have been affected. Penguins were still nesting up to the top of Maxwell Hill and on ash-covered remnants of the old land inshore of the new spit. The birds appear to have deserted Flat Island. There were a large number of penguins and seals on the beaches, and several dozen fur seals swimming offshore.

The two geologists on the voyage, Australian Jon Stephenson and New Zealander Margaret Bradshaw, believe that a scientific visit should be made so that the sequence of the new volcanic events and the composition of the lavas can be determined. The Australian national program currently plans to conduct a scientific program on Heard Island during the 2003-04 austral summer, but currently has no plans to do land-based research on McDonald Island.

MODVOLC Thermal Alerts. Following the distribution of the above reports via the Volcano Listserv, David Rothery and Diego Coppola (The Open University) searched for "thermal alerts" at McDonald Island using the MODIS Thermal Alerts website (http://modis.higp.hawaii.edu/). This system is the first truly global high-temperature thermal monitoring system. It is capable of detecting and documenting changes in active lava flows, lav domes, lava lakes, strongly incandescent vents, and hot pyroclastic flows. No alert is likely to be triggered by an ash cloud.

As described by Flynn et al. (2001) and Wright et al. (2002), the MODIS Thermal Alerts website provides a series of maps updated every 24 hours to show "thermal alerts" based on night-time (approximately 2230 local time) infrared data from a 1-km-resolution instrument called MODIS that is carried by NASA's Terra and Aqua satellites. Thermal alerts are based on an "alert ratio" (3.9 µm radiance - 12 µm radiance) / (3.9 µm radiance + 12 µm radiance), and an alert is triggered whenever this ratio has a value more positive than -0.8. This threshold value was chosen empirically by inspection of images containing known volcanic sites at high temperature, and is the most negative value that avoids numerous false alarms. There are also some daytime (approximately 1030 local time) alerts that are based on the same algorithm but incorporating a correction for estimated solar reflection and a more stringent threshold whereby the alert ratio is required to be more positive than -0.6 in order to trigger an alert.

Thermal alert data are available for the region including McDonald Island from 13 May 2000 onwards (with a gap 26 May-2 June 2000). No thermal alert occurred at McDonald Island from 13 May 2000 through 30 January 2003. This null result does not prove that the activity must have occurred before 13 May 2000, because MODIS cannot see through cloud, which is common in that region. However, there were multiple thermal alerts for nearby Heard Island during the same period (24 May; 3, 5, and 6 June; 25 September; 29 October; 5, 15, 19, and 24 November; 16, 17, 26, and 30 December 2000; 2 February 2001). Had McDonald been active on the same dates, it is highly likely that this activity would have been detected at least once.

Climate and Biology. The following is taken from the AUSGEO News report. The McDonald Islands are remote, and people have landed on the islands only twice since a British sealer sighted them in November 1833. The islands have cliff-lined coasts and are surrounded by rocky shoals and reefs that are treacherous for boats and landing parties. They lie in stormy seas where temperate water from the Indian Ocean meets icy Antarctic water. Most days are cloudy, making it very difficult to obtain satellite imagery and photographs of the islands. Maximum temperatures average 3°C, and wind gusts can reach 210 km/hour. Two Australian scientists looking for fur seals made the first landing in 1970, a 20-minute visit, by helicopter from the French Antarctic ship Gallieni. The second landing, in March 1980, was from the Cape Pillar, chartered by National Mapping to survey the Heard Island-Kerguelen region. The small shore party, which included a botanist, biologist, geologist, and surveyor, landed by helicopter and amphibious vehicle. They stayed ashore for six days while the ship sailed its survey lines.

The McDonald Islands were designated a World Heritage site in December 1997 because of their pristine sub-Antarctic ecosystems and geological activity. Local waters are teaming with Patagonian toothfish, Mackerel icefish, Grey rockcod, and Unicorn icefish. Colonies of Macaroni and Gentoo penguins breed and feed from these islands.

References. Flynn, L.P., Wright R., Garbeil, H., Harris, A.J.L., and Pilger, E., 2001, A global thermal alert system using MODIS: initial results from 2000-2001: Advances in Environmental Monitoring and Modelling, no. 3, Monitoring volcanic hotspots using thermal remote sensing, edited by Harris, A.J.L., Wooster, M.J. and Rothery, D. A. (Http://www.kcl.ac.uk/ kis/schools/hums/geog/advemm/vol1no3.html).

Wright, R., Flynn, L., Garbeil, H., Harris, A., and Pilger, E., 2002, Automated volcanic eruption detection using MODIS: Remote Sensing of Environment, v. 82, p. 135-155.

Geologic Background. Historical eruptions have greatly modified the morphology of the McDonald Islands, located on the Kerguelen Plateau about 75 km W of Heard Island. The largest island, McDonald, is composed of a layered phonolitic tuff plateau cut by phonolitic dikes and lava domes. A possible nearby active submarine center was inferred from phonolitic pumice that washed up on Heard Island in 1992. Volcanic plumes were observed in December 1996 and January 1997 from McDonald Island. During March 1997 the crew of a vessel that sailed near the island noted vigorous steaming from a vent on the N side of the island along with possible pyroclastic deposits and lava flows. A satellite image taken in November 2001 showed the island to have more than doubled in area since previous reported observations in November 2000. The high point of the island group had shifted to the McDonald's N end, which had merged with Flat Island.

Information Contacts: Bruce Hull, Senior Environment Officer, Environmental Management & Audit Unit, Australian Antarctic Division, Environment Australia, Channel Highway, Kingston, Tasmania 7050, Australia (URL: http://www.antarctica.gov.au/environment); AUSGEO News and National Mapping, Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia (URL: http://www.ga.gov.au/); David A. Rothery and Diego Coppola, Department of Earth Sciences, The Open University, Milton Keynes MK 6AA, United Kingdom.


Pinatubo (Philippines) — December 2002 Citation iconCite this Report

Pinatubo

Philippines

15.13°N, 120.35°E; summit elev. 1486 m

All times are local (unless otherwise noted)


Likely 2001 overflow controled by cross-rim trenching

Pinatubo's catastrophic 1991 eruption left the volcano with a 2.5-km-wide summit caldera that eventually came to contain a lake (table 8). During 2001 a crisis occurred as the lake's surface neared the low point on the caldera's rim. PHIVOLCS provided a detailed report on trenching and release of lake water to avoid catastrophic breakout of the crater lake. The report that is summarized here was authored and contributed by Ma. Antonia V. Bornas and the Quick Response Team. The brief version given here omits the lengthy list of Team members as well as several figures and the references.

Table 8. Pinatubo crater-lake-water surface level through time and computed monthly and average lake-rise increments. See the original report for data sources. Courtesy PHIVOLCS.

Date Elevation Maraunot freeboard Monthly average Cumulative monthly average Annual average
June 1991 780.0 180.00 -- -- --
June 1995 830.0 130.00 1.042 -- 12.50
June 1997 855.0 105.00 1.042 2.083 12.50
07 May 1998 915.0 45.00 5.455 7.538 65.45
27 Apr 1999 933.0 27.00 1.589 9.127 19.06
10 May 2000 942.0 18.00 0.726 9.853 8.72
28 Jun 2000 944.0 16.00 1.250 11.103 --
05 Aug 2000 945.7 14.30 1.339 12.442 --
16 Aug 2000 945.9 14.10 0.541 12.982 --
16 Sep 2000 948.4 11.60 2.500 15.482 --
13 Oct 2000 948.7 11.35 0.278 15.760 --
23 Nov 2000 949.2 10.78 0.432 16.192 --
27 Dec 2000 949.7 10.33 0.500 16.692 --
27 Jun 2001 953.5 6.50 0.638 17.330 --
11 Jul 2001 955.0 5.00 1.327 18.657 15.17
Average -- -- 1.166 -- 13.23

Mount Pinatubo's summit caldera lake surface rose 40 m between May 1998 and July 2001. By July 2001 lake water approached the caldera rim's lowest point, the Maraunot Notch (~960 m elevation). Its surface then stood at 955 m elevation, 5 m below the notch.

The record of the crater lake's rise implied overtopping of Maraunot Notch in the last quarter of 2001. A breach at Maraunot could lead to rapid escape of lake water into an area of abundant unconsolidated pyroclastic deposits (figure 35). Such an event would threaten upriver towns as well as the larger Botolan, Zambales (population ~40,000).

Figure (see Caption) Figure 35. Digital terrain map of the NW Pinatubo quadrant, showing the Maraunot Notch and the contiguous Maraunot-Balin-Baquero-Bucau river system. Botolan town proper and upriver villages are shown. Digital elevations are from the PHIVOLCS-GIS lab. Sources include USGS (1991), Philippine Bureau of Mines (1983), and Fire and Mud (1996). Courtesy PHIVOLCS.

The beheaded upper Maraunot river sits on the NW flank (figure 36) and flows 15 km NW into the Balin-Baquero river. Lahars have long threatened to inundate Botolan town proper. As with the 1991 pyroclastic flows, lahars obliterated villages in the Balin-Baquero and Bucao valleys (e.g. Villar, Burgos, and Poonbato).

Figure (see Caption) Figure 36. Oblique aerial photograph showing the Pinatubo crater, the Maraunot Notch, and the Maraunot-Bucao river system (looking NW) as seen in 2000. Photo courtesy of S. Suto, PHIVOLCS.

Notch and dam characteristics. The valley of the Maraunot Notch contains 150-m-high walls composed of dome rocks and lithified block-and-ash deposits, cut by steep NW- and E-trending faults. Dome rocks also crop out within the first kilometer-long reach of the Maraunot channel and are inferred to form its bedrock. Less competent deposits fill the valley floor and edge off abruptly at the crater, damming the crater lake. This dam is approximately 85 m wide at the edge or crest but narrows as it slopes 8° down-valley to its toe at a prominence of dome rock 70 m away and 10 m below the crest (the nose).

Comprising the dam are a lower pre-1991 terrace of three boulder-rich breccia units and an upper sequence of 1991 deposits. Pre-1991 breccia units are poorly indurated and contain dense dacite-andesite clasts (median diameter, 10-15 cm) in coarse (B1) or fine (B2) ash or coarse sand (B3) matrix. Exposures of the dam in 1998 indicated that pre-1991 breccia may be as much as 14 m thick at the crest. The units also occur as in-channel terraces along the first 700-m reach of the Maraunot River. An overlying 1991 eruption sequence also occurs. It is unconsolidated and up to several meters thick, but has been gullied down to a meter thick along the channel thalweg, creating a 5 m-wide natural spillway at the dam's axis. Thus, unconsolidated 1991 eruption deposits at the dam's upper part left it vulnerable to rapid erosion and possible catastrophic breach.

A potential breach was expected on the occasion of intense rainfall. Dam failure was thought to be potentially initiated by erosion or headcutting of 1991 deposits where the valley narrows or "noses" and the channel drops. The removal of material would lead to increasing flow perimeter and head, which would increase discharge and weaken the dam. Discharge would escalate into a tremendous rush of water, accelerating erosion headward in a runaway process that culminated in dam failure. This same process has been documented in numerous cases of overtopped natural and man-made dams that have breached.

In the worst case, a 10- to 20-m-depth of the channel dam corresponding to the vertical gap between the crest and shallow channel bedrock could have been breached, releasing lake volumes of 28 x 106 to 55 x 106 m3. For a 10- to 20-m-deep breach, estimated peak discharges at the breach in such a circumstance are 3,000 and 11,000 m3/s. The breakout flow would be expected to erode and incorporate pyroclastic-flow and lahar sediments at the mid- to lower reaches of the Maraunot River, causing it to bulk up 3-6 times. Resulting large lahars could reach 3- to 7-fold larger distances than in previous typhoons (e.g. 1993). Faced with this hazard, PHIVOLCS proposed in early August 2001 to trench across the channel dam. This formed the core element of a rapid mitigation plan that included information drives, evacuation of risk areas, and lahar watches.

Trenching took place during 23 August-5 September 2001. The bulk of the trench was manually dug by an 80-man crew using pick axes and shovels and, later, by sluicing with a portable 50 m-long pressure hose. Excavation followed the channel thalweg or the natural spillway from crest to toe of the dam. The fully-excavated trench was 70 m long, 4 m wide, and nearly 3.5 m deep. It contained a 1-m-wide and 1.5-m-deep inner terrace that resulted from belated prioritization of depth over width (figures 37 and 38). Its bottom was originally graded ~2%. At the mouth it sloped steeply into 5 m-long plug that confined the lake until its release. In the end, about 700 m3 of material was excavated. On 4 September, observers were stationed at four sites. Evacuation of Botolan began the following day in anticipation of potential lahars.

Figure (see Caption) Figure 37. Oblique photo of Pinatubo's Maraunot Trench looking NE, taken the day before the channel was opened. Inset shows the mouth on 1 September 2001, ~ 2 m above the lake level; bottom lefthand inset is the profile of the trench. Courtesy PHIVOLCS.
Figure (see Caption) Figure 38. View showing of the mouth and the terraced inner geometry of the Pinatubo's Maraunot Trench, 6 September 2001. Courtesy PHIVOLCS.

On 6 September, with a 10-cm-head of water, the plug was removed by sluicing. At 0653, after less than 1.25 hours of sluicing, lake water spill into the trench commenced, but discharge remained sluggish in the first four hours (~0.03 m3/s). Political developments led to the trench being left in a state that thwarted rapid, planned breaching.

Monitoring the newly opened trench. From 6 September to 5 November, local rainfall and outflow conditions and changes in configuration of the Maraunot trench were monitored. An estimated 4.4 x 106 m3 (~86,000 m3/day) of rainwater entered the crater between 6 September and 5 November. In response, discharge across the trench fluctuated but rarely exceeded 1 m3/s under a lake head generally under 1 m. The total water output at the trench was roughly 3 x 106 m3 (~59,000 m3/day) for the same period.

Time-series profiles of the trench floor revealed a total 1.5 m of downcutting in the period 8 September-21 October, an average of ~3.5 cm/day. As the terminus lowered close to bedrock and precipitation waned, however, the floor more or less stabilized, as did the trench's mouth-to-terminus elevation drop of 2.2 m. No substantial lateral erosion occurred at the 5-15 reach or in the first 30 m reach between 6 September and 5 November. Nevertheless, there was significant lateral erosion of as much as 2 m at the 55-65 m reaches and beyond. Erosion was attributed largely to the steeper channel and more turbulent flow at the trench's terminal reaches.

The pre-1991 breccia matrix eroded with vertical scour experienced uniformly across the entire floor and lateral scour (sidecutting) confined to the terminal reaches. Matrix erosion resulted in armoring of the trench floor with dense boulders. This partly accounted for restrained vertical scouring.

Trenching impacts to the lake breakout problem. Although the trench did not trigger a rapid breach as PHIVOLCS originally intended, the monitoring determined that the armoring provided by coarse pre-1991 breccia limited vertical scouring of the dam. Lateral matrix erosion and bank collapse were considered to deliver even further armor to the trench bed, as well as some sideways expansion of the channel.

Trenching by itself had significantly reduced the breakout hazard. The lake was averted from growing an extra 11 x 106 m3 and relieved of another 3 x 106 m3 with a trench now draining it. This minimized the magnitude of lake breakout. Had natural overtopping been allowed to occur under sustained intense rainfall, initial outflow could have easily scoured a wider channel across the loose 1991 deposits, attaining discharge rates possibly too high for pre-1991 breccia to counteract with armoring.

Geologic Background. Prior to 1991 Pinatubo volcano was a relatively unknown, heavily forested lava dome complex located 100 km NW of Manila with no records of historical eruptions. The 1991 eruption, one of the world's largest of the 20th century, ejected massive amounts of tephra and produced voluminous pyroclastic flows, forming a small, 2.5-km-wide summit caldera whose floor is now covered by a lake. Caldera formation lowered the height of the summit by more than 300 m. Although the eruption caused hundreds of fatalities and major damage with severe social and economic impact, successful monitoring efforts greatly reduced the number of fatalities. Widespread lahars that redistributed products of the 1991 eruption have continued to cause severe disruption. Previous major eruptive periods, interrupted by lengthy quiescent periods, have produced pyroclastic flows and lahars that were even more extensive than in 1991.

Information Contacts: Ma. Antonia V. Bornas and theQuick Response Team, Geology and Geophysics Research and Development Division, Philippine Institute of Volcanology and Seismology, C.P. Garcia Ave., University of the Philippines Campus, Diliman 1101, Quezon City, Philippines.


Semeru (Indonesia) — December 2002 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Elevated explosive activity continues; evacuation on 30 December 2002

Higher-than-normal seismic and explosive activity occurred at Semeru during June-September 2002 (BGVN 27:09). During 9 September-29 December, activity continued to be higher than normal. Seismicity was dominated by explosions and avalanche earthquakes (table 10). Throughout the report period, a white-gray ash plume rose 400-500 m high above the Jonggring Seloko crater rim. There were eight explosions on 23 December, one explosion on 25 December, seven explosions on 26 December, eight explosions on 27 December, and another seven explosions on 29 December.

Table 10. Earthquakes recorded at Semeru during 9 September 2002-1 January 2003. "*" indicates that the report was part of a special report issued by VSI and may break the sequence of weekly reports. Courtesy VSI.

Date Volcanic A-type Volcanic B-type Explosion Avalanche Tremor Tectonic Pyroclastic Flow Flood/lahar
09 Sep-15 Sep 2002 1 -- 640 57 0 2 -- --
16 Sep-22 Sep 2002 1 -- 527 32 4 6 -- --
23 Sep-29 Sep 2002 0 -- 483 24 13 2 -- --
30 Sep-06 Oct 2002 0 -- 602 13 1 7 -- --
07 Oct-13 Oct 2002 -- -- 548 27 1 4 -- --
14 Oct-20 Oct 2002 1 -- 493 20 2 4 -- --
21 Oct-27 Oct 2002 -- 1 561 27 -- 6 -- --
28 Oct-03 Nov 2002 -- -- 430 3 -- -- -- --
04 Nov-10 Nov 2002 -- -- 528 34 2 2 -- --
11 Nov-18 Nov 2002 -- -- 273 27 -- 1 -- --
02 Dec-08 Dec 2002 -- -- 474 13 7 3 3 --
09 Dec-15 Dec 2002 -- -- 513 6 1 1 1 --
16 Dec-22 Dec 2002 -- -- 606 6 1 -- 1 --
03 Dec-16 Dec 2002* 0 0 967 19 8 3 4 0
17 Dec-30 Dec 2002* 0 1 1085 49 2 6 6 3
23 Dec-29 Dec 2002 -- 1 479 43 2 6 3 4
31 Dec 2002* -- -- 83 (47 mm max. amp.) 30 (2 mm max. amp.) 1 (3 mm amp., 80-sec. duration) -- -- 1
01 Jan 2003* -- 3 (2-6 mm amp., 11-12 sec. duration) 88 (36 mm max. amp.) 18 (4 mm max. amp.) 1 (1 mm max. Amp., 60 sec. duration) -- -- --

On 25 December, a pyroclastic flow traveled 2.5 km and entered the Besuk Kembar river. On 27 December lava avalanches traveled 250 m toward Besuk Kembar. On 29 December a 5 km pyroclastic flow occurred. The same day during 1700-2015 a lahar flowed along Besuk Kembar closer to Supit village. Early on the morning of 30 December residents of Supit village were evacuated. The same day at 0720 a pyroclastic flow traveled 2.0 km toward Besuk Kembar and at 1000 a pyroclastic flow traveled 4.0 km, approaching Supit village. Semeru remained at Alert Level 2 (on a scale of 1-4).

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Stromboli (Italy) — December 2002 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Landslides on 30 December cause two tsunamis; damage in nearby villages

Following heightened seismicity during June-July 2002 that culminated in an explosion on 24 July (BGVN 27:07), major activity lessened until late December.

On 28 December, an effusive eruption started at the base of Crater 1 of the NE Crater in the summit area. This eruption ended on 29 December and a helicopter-borne thermal camera survey that day revealed three lava flows that had spread in the eastern Sciara del Fuoco and had reached the sea. Along the coast, the joined flows were ~300 m wide, but were no longer being fed.

Visibility improved on 30 December, when a new survey found an eruptive fissure running NE. The fissure started from the base of Crater 1 at ~700 m elevation and spread down to ~600 m elevation, along a length of ~200 m. On 30 December observers saw a ~200-m-long lava flow emitted from the base of the fissure, spreading in the upper Sciara del Fuoco into a small depression.

Landslides and tsunami. On 30 December at 1315 and 1322 two landslides formed along the Sciara del Fuoco. They reached the sea accompanied by fine (0.1 mm grain-size) wet dust falling on the SE flank of the island (from rock collisions during the landslides). The volume of the first landslide was estimated at ~6 x 106 m3 of rock while the second was smaller at ~5 x 106 m3 of rock. These landslides detached the lava from the 28 December eruption along the slope together with a large portion of the ground below.

The large volume of rock crashing into the sea caused two tsunamis, each with waves several meters high. The waves spread onto the villages of Stromboli and Ginostra damaging buildings and boats and injuring several people (according to news reports, six people were evacuated by helicopter and taken to two hospitals on Sicily). Large waves were reported on the northern coast of Sicily, 60 km S of Stromboli. The two separate landslides were formed from two distinct bodies of rock, and left a ridge on the Sciara del Fuoco wall between them. This ridge may collapse in the future; its volume is estimated to be similar to that of the first landslide.

As of 6 January 2003, the effusive eruption and thin lava flows continued along the Sciara del Fuoco. Two vents located at ~500 m and ~300 m elevation in the middle of the Sciara del Fuoco were feeding two narrow flows that merged and reached the sea. Occasional small landslides from the unstable walls of the Sciara covered the lava flows with a thin talus. Concern over another major landslide had diminished due to several small-volume rockfalls from the walls of the depression. The summit craters had not shown any explosive activity since the start of the eruption on 28 December, and no earthquakes were recorded by the indigenous seismic network. Two shocks recorded by INGV seismic stations were directly related to the spreading of the two landslides on the Sciara del Fuoco.

Previous tsunamis at Stromboli occurred in 1930, 1944, and 1954. These were related either to paroxysmal eruptive activity, to landslides along the Sciara del Fuoco, or to pyroclastic flows, but not associated with lava flow venting.

Geologic Background. Spectacular incandescent nighttime explosions at Stromboli have long attracted visitors to the "Lighthouse of the Mediterranean" in the NE Aeolian Islands. This volcano has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent scarp that formed about 5,000 years ago due to a series of slope failures which extends to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Sonia Calvari, Instituto Nazionale di Geofisica e Vulcanologia (INGV); Sezione di Catania (URL: http://www.ct.ingv.it/); Stromboli On-Line (URL: http://www.stromboli.net/).


Tungurahua (Ecuador) — December 2002 Citation iconCite this Report

Tungurahua

Ecuador

1.467°S, 78.442°W; summit elev. 5023 m

All times are local (unless otherwise noted)


Summary of 2002 activity includes several episodes of intense seismicity

This report presents a summary of activity throughout 2002. During 2002 several episodes of intense seismic activity occurred that shared certain characteristics: clusters of long-period (LP) earthquakes, tremor related to ash emissions, and an increase in VT events on some occasions. Magmatic intrusions during January-March 2002, were generally preceded by LP clusters with dominate frequencies of 3.8 Hz with some oscillating around 1.5-1.6 Hz. Following these clusters, increased tremor occurred, some related to the emission of gas and ash. Eruptive activity included explosions and Strombolian blasts.

In April, activity changed, LP clusters ceased including events with a dominant frequency of 3.8 Hz and began to contain frequencies of ~6 Hz. Since June, VT events seemed to precede LP events or tremor episodes. Precursors of magmatic activity changed slightly. In almost every case, fewer precursory events were registered. Instituto Geofisica (IG) stated that the present eruptive process could be more uncertain than before. In September, the acceleration of processes seemed to indicate variations in internal conditions, such as changes in magma within the conduit, increased temperatures, diminishing percentages of crystals, lower SiO2, and addition of new gases.

During October-November there was none of the intense tremor activity that usually accompanies new magma injections. Energy remained at very low levels. IG stated that a large number of VT events and their decreased influence on volcanic activity could indicate a low contribution of magmatic gases that could be mobilized and released outside the volcano by means of explosions, continuous ash emissions, or Strombolian activity as previously observed. Further details of 2002 activity follow.

Detailed activity. During the first 2 weeks of January 2002 a high number of low-energy LP earthquakes took place. Some of the LP's were associated with emissions of mainly steam with a moderate magmatic gas concentration. During the last 2 weeks of the month the number of LP's increased remarkably. The LP's occurred in clusters, most of which were preceded by VT events at depths of 4-11 km beneath the summit. Beginning on 15 January it was possible to see a glow coming from the crater, accompanied by the emission of gases. While the emissions diminished during the last week of January, explosions increased in number and magnitude. By the end of January sporadic episodes of tremor and light ashfall occurred in Ambato and Baños. These seismic characteristics, along with frequent roaring noises that occurred with the explosions, indicated possible degassing of a small volume of magma that entered the conduit beginning on 15 January.

During February magma injection apparently disturbed the system, and new gases ascended. Steam and ash emissions occurred, as well as the possible formation of a lava lake. Strombolian activity during 4-18 February was so strong that pyroclastic flows (PF's) descended the WNW flank along the Juive and Cusua valleys. Seismicity was characterized by LP's, tremor related to emissions, a few volcano-tectonic events (VT's), and small explosions.

During the first 3 weeks of March there was Strombolian activity with emissions of lava, gas, and ash, and almost-continuous roaring noises. During the third week of March, activity diminished in intensity until it disappeared almost completely by the last week of the month. Although incandescence was observed at night, it was not as intense as that observed in previous months. Ashfall occurred in Ambato, Quero, Latacunga, Cusua, Chacauco, Penipe, Peula, Patate, Pelileo, Cotaló, and Pillate.

Most of the LP's registered during April were small and rather sporadic, but frequency content changed on 17 April from 4-4.8 Hz to 6-8 Hz. On 22 and 23 April, VT events at 6-8 km depths were followed by strong gas-and-ash emissions. These became quite intense during 24-30 April.

Activity was quite intense during 12-13 and 28-30 May. On 13 May a total of 8 explosions took place, preceded by an increase in the number of LP events. The same day ashfall occurred in Ambato and Baños. On 24 May VT activity took place just before an increase in explosive activity. During 17-26 May explosions were preceded by VT events, and by 30 and 31 May were preceded by LP events. As of the second week of May Strombolian activity, roaring noises, and incandescence in the crater was intense and almost constant. Lava was present in the crater, accompanied by tremor and ongoing emissions. During the last week of the month a continuous gas-ash column drifted mainly W.

During the last week of June intense tremor registered. The tremor occurred for 3 days and contained dominant frequencies of 2.2-2.7 and 1.5 Hz. Tremor lasted up to an hour with an amplitude that saturated seismographs. Many LP's and explosions accompanied the tremor. During June VT events (4-7 km deep) occurred just before tremor and LP events. Several LP's and tremor episodes preceded explosive events. On average the LP's and tremor occurred 2-4 hours before an explosion.

Explosions occurred during the first week of July. During the first 2 weeks, deep VT earthquakes (5-10 km deep) occurred at a rate of ~1 per day and there was an increase in the number of LP's and hybrid earthquakes. VT and LP events preceded new cycles of explosions, not immediately as had previously been noticed, but in this case by about 15 days. After the new cycle of explosive activity began, most of the LP events had frequencies of 1.5-2.5 Hz. Some VT's preceded the LP's and had frequencies of 3.8 and 1.5 Hz. During the second week intense roars were heard, and increasing ash emissions mainly drifted W. There was strong persistent incandescence, and frequent explosions produced loud noises and ash columns 2-4 km above the crater.

During the first 2 weeks of July, several episodes of Strombolian activity were observed, along with continuous but light ash emissions that were accompanied by roaring noises. Ash was deposited in a thin N-S strip between Hualcango and San Pedro de Sabañag (S of Quero), extending toward the W and Igualata. Ash accumulated up to 2.5 mm thick in "El Mirador" at Cerro Arrayán. Activity decreased toward the end of the month, when small plumes were emitted.

During 5-13 September, 8-10 VT earthquakes registered. These preceded the harmonic tremor seen during 13-21 September. Strong explosions and ash emissions also occurred. Ashfalls were noted in distant cities such as Píllaro and Riobamba, located ~30 km NW and SW, respectively.

During the first week of October explosions with reduced displacements greater than 10 cm2 took place and ashfall occurred in Pillate, Ambato, Cusua, Penipe, Altar, Bayusig, Matus Alto, and Matus Bajo. During the second and last week of the month VT events preceded explosions. During the last week of the month incandescence and roaring noises were heard. Three ashfalls were noted, two in Guadalupe and one (on 29 October) in Baños (up to 1 mm), Runtún, Pondoa, and Pintitin.

On 10 and 26 November, two peaks of LP activity occurred that were very close to the peaks of VT activity. The first LP peak preceded the first VT peak by two days. This was unusual because the VT peak normally preceded the LP peak. The second LP peak took place around the same time as the VT peak, indicating that the circulation of fluids was almost simultaneous. Incandescence was observed before the VT activity on 26 November. An increase of LP activity seemed to be correlated with the increase of sounds emitted by the volcano. Frequent incandescence in the crater preceded a VT peak.

Magmatic intrusions during 2002. Five magmatic intrusions (figure 18) apparently occurred during (1) 15-29 January, (2) 15-30 April, 12-13, 24-30 May, (3) 28-30 June, (4) 3-13 July, and (5) 5-13 September. Two periods of intense activity also occurred during 8-13 and 21-27 October, and on 10 and 26 November. During April-June magmatic intrusions did not occur along with a peak of seismic activity, but VT's, hybrids, and emissions all occurred, though in smaller numbers than registered in previous years.

Figure (see Caption) Figure 18. Monthly earthquakes at Tungurahua during January 1999-November 2002. Peaks indicated with arrows correspond to periods of inferred magmatic intrusion. Courtesy IG.

Tremor activity was an essential indicator of these magmatic intrusions (figure 19). Later peaks of tremor activity were always during periods of seismicity related to magmatic intrusions, although it was not clear whether the June peak was related to a possible intrusion. Tremor energy was quite variable.

Figure (see Caption) Figure 19. Tremor energy at Tungurahua, 14 September 1999 through 14 November 2002. Many of these tremor episodes were related to small emissions of gas or ash. Arrows indicate 2002 peaks. Courtesy IG.

Deformation measurements. During 2002 EDM measurements on the N flank showed a slight tendency of inflation. This inflation was first noticed during the first half of 2000. During 2002 a shortening of the distance occurred between prisms and reference bases, between -2 and -6 cm with respect to values observed before the reactivation of the volcano. Although there were variations in measurements taken during the year, the overall tendency has been inflation of 4 to 6 cm with respect to that during 1998-2000.

Data from inclinometers RETU and JUIV show a positive drift of the radial axis of station RETU (elevation 4,000 m). The drift would mean a deflation in the NW sector. During September 2002, when numerous explosions occurred, inclinometer movements changed.

During 2002 measurements of the inclinometer at station JUIV5 were stable until October 2002, when there were disturbances in the radial axis and to a greater degree in the tangential axis. Since 10 November both axes showed significant changes of up to 200 µrad. The negative tendency indicated a progressive inflation. This change agreed exactly with the first LP peak on 10 November. The change lasted until 20 November and included the greater peak of VT activity during 2002. After 20 November, both axes became stabilized. The oscillations seen in this slope between September and October occurred simultaneously with other activity, possibly representing slow but continuous magma movement in the lower parts of the volcano.

Geochemistry. SO2 flux measurements determined by COSPEC during 1999-2002 were generally less than 2,000 tons/day (figure 20). The peaks took place during March and October, with values reaching 3,000-5,000 tons/day. These high values seemed to correspond with the magma injections of December 2001and January and September 2002. Other episodes of seismic activity related to magmatic injection seemed to precede the peaks in SO2 emission. The high point in August ("3 y 4" on figure 14), followed increased seismicity during June and July.

Figure (see Caption) Figure 20. COSPEC-measured SO2 emissions at Tungurahua during 1999-2002. The arrows indicate the peaks of SO2 that occurred during May and August 2002.

Thermal waters generally increased in temperature ~0.5°C. A small reduction in pH occurred, with a tendency toward alkaline values. During 1998-99, when the seismicity increased, pH also increased, probably because of the magmatic unrest at the time. Conductivity did not change, and neither did geochemical characteristics such as abundances of sulfates, chlorides, and bicarbonates. IG stated that it could not yet be explained how an increase in seismicity seemed to shift the pH of thermal waters (figure 21).

Figure (see Caption) Figure 21. Temperature and pH of thermal waters at Tungurahua during 1994-2002. Courtesy IG.

Future scenarios. Since 1999 Tungurahua has shown frequent, moderate volcanism with occasional lava emissions. This period can be divided into 13 magmatic intrusions of similar characteristics, although the last three injections displayed slight differences. Starting in 1916 Tungurahua displayed intermittent activity until 1918, with periods of tranquility and greater activity than at present.

The present process has been characterized by LP clusters just before and during eruptions. During October and November 2002, VT events usually preceded cycles of increased activity. Strong incandescence on 2 December was not accompanied by strong explosions, Strombolian activity, or lava emissions.

Geologic Background. Tungurahua, a steep-sided andesitic-dacitic stratovolcano that towers more than 3 km above its northern base, is one of Ecuador's most active volcanoes. Three major edifices have been sequentially constructed since the mid-Pleistocene over a basement of metamorphic rocks. Tungurahua II was built within the past 14,000 years following the collapse of the initial edifice. Tungurahua II collapsed about 3,000 years ago and produced a large debris-avalanche deposit to the west. The modern glacier-capped stratovolcano (Tungurahua III) was constructed within the landslide scarp. Historical eruptions have all originated from the summit crater, accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. Prior to a long-term eruption beginning in 1999 that caused the temporary evacuation of the city of Baños at the foot of the volcano, the last major eruption had occurred from 1916 to 1918, although minor activity continued until 1925.

Information Contacts: Patty Mothes and Indira Molina, Geophysical Institute (Instituto Geofísico, IG), Escuela Politécnica Nacional, Apartado 17-01-2759, Quito, Ecuador.


Witori (Papua New Guinea) — December 2002 Citation iconCite this Report

Witori

Papua New Guinea

5.5745°S, 150.5161°E; summit elev. 724 m

All times are local (unless otherwise noted)


Dacite lava flows, flattened forest, deformation, and faulting

Additional information about Mt. Pago's recent eruption (BGVN 27:07-27:09) has been provided by members of the U.S. Geological Survey's Volcano Disaster Assistance Program (VDAP). The team donated to the GVP archives an extensive suite of digital photographs (still and video) taken during August-October 2002. The photographers included the helicopter pilot Alan Cameron (Heli Niugini), and VDAP members Andy Lockhart, Jeff Marso, and Elliot Endo.

In terms of the basic distribution of eruptive products, the August-October 2002 photos (figures 7-16) appeared similar to those shown in earlier reports (BGVN 27:07-27:09). All photos were taken from a helicopter, often during routine observation flights provided by the West New Britain Provincial Government. For scale on some of the photos, Cameron estimated that tree heights ranged from 5-30 m, with the taller trees in the low-lying areas and most of the ones in the photos at the shorter end of that range.

Figure (see Caption) Figure 7. A false-color Landsat satellite image labeling some key features at Mt. Pago and its vicinity. N is upwards (parallel to the grid lines) and, for scale, Pago lies ~20 km S of the coast at Cape Hoskins. Although the settlement at Hoskins is labeled, several others also lie along the coast, including some E of Lolo volcano. Taken by LANDSAT 7 on 26 May 2002 (path 94, row 64) and provided courtesy of USGS-VDAP.
Figure (see Caption) Figure 8. An overview of Pago's N sector taken on 7 October 2002 and showing middle to lower flanks and caldera. The shot was taken from the NW, sighting cross-wise to the aligned chain of recent eruptive vents. Freshly erupted lavas have thus far remained confined within the caldera. The extruded massive dacitic lavas include two lava tongues flowing towards the viewer and a larger lava flow ponded in the distance, banked up against older (1911-18) intra-caldera lavas and the caldera's topographic margins. The wide zone of discolored vegetation continues well beyond both the caldera's topographic margin and the photo's left-hand edge. This and several other features such as a zone of deformation and faulting (lower center) appear less distinct here but are highlighted on later figures. Courtesy of USGS-VDAP.
Figure (see Caption) Figure 9. Upper NE flanks of Pago highlighting the broad zone of denuded and knocked-down vegetation there. Most of the trees have been laid flat, and there exist occasional cleared-out gullies resembling avalanche chutes, washouts, and lahar paths. Courtesy of the USGS-VDAP.
Figure (see Caption) Figure 10. A 16 September 2002 view of Pago, as seen looking SSE towards the summit along the aligned, radial-trending chain of vents. Massive lava flows lie in the foreground. Their extrusive vent sits along the main fissure below the lowest cone, in an area of local degassing and conspicuous yellow deposits. Provided courtesy of USGS-VDAP.
Figure (see Caption) Figure 11. A 13 September 2002 photo of Pago's middle-to-upper flanks, including the summit crater and the higher-elevation radial-vent areas. This photo was taken from the NW; in many other photos taken during August-October 2002 white steam plumes tended to obscure the ground. Note the sub-linear swaths of denuded vegetation, particularly two swaths in the left foreground, and the broad area of discolored vegetation in the background behind the fresh lava. The swaths denote the surface traces of recent faults with significant offset, places where existing trees had fallen over. Observation flights in mid- to late September disclosed still further visible, meter-length deformations in this area. Observers inferred that these features reflected a graben formed in the upper portion of a cryptodome. Courtesy of USGS-VDAP.
Figure (see Caption) Figure 12. A close-up photo of Pago's ravaged summit crater taken from the N on 16 September 2002. Despite their proximity to the crater, some portions of the cone's flanks appear relatively undisturbed. Although difficult to see at the limited scale and resolution of this rendition, the original image clearly shows that a band of denuded trees remained standing within the highly disturbed zone along the breach. Many trees in a zone farther downslope were knocked flat. Courtesy of USGS-VDAP.
Figure (see Caption) Figure 13. A closer view of a portion of Pago's NW outer flanks (seen in figure 3 and part of figure 5) centered on Pago's zone of intense deformation and faulting. The traces of two sub-parallel faults offset the intervening area (D) downward, forming a graben, which crosses the steep sides of older, tree-covered lavas. Farther upslope, the two faults intersect the steaming, lowermost cone (C) at several points (D'' and D'''). Downslope, the two faults join a larger system, which seems to curve back towards the massive lavas (E and E'). The massive lavas (A) discharge at the surface at a point just below A'. Courtesy of USGS-VDAP.
Figure (see Caption) Figure 14. Preliminary structural interpretation by Elliot Endo of Pago's zone of intense faulting and deformation. In this interpretation, the upslope area contains a graben; the downslope area a thrust or a region of mass wasting. Courtesy of Elliot Endo, USGS-VDAP.
Figure (see Caption) Figure 15. A closer view showing Pago's graben deformation feature. Earliest photographs available (~ August 15) show this feature in the early stage of development. The photo was taken looking E on 16 September 2002. For scale, mature trees midway along the fault are 10-15 m in length. Courtesy of the USGS-VDAP.
Figure (see Caption) Figure 16. Closeup showing the extreme surface roughness of the recent Pago dacite extrusions appearing in an area near the lower vent. Large fractures sub-parallel to the vent developed during extrusion. Offsets along fractures were estimated to be as much as 5-7 m and the height of numerous adjacent points on the lava flow's surface easily varied by a meter. Courtesy of the USGS-VDAP.
Figure (see Caption) Movie 1. Digital movie of Pago filmed from a helicopter on 6 October 2002 showing the zone of deformation and faulting followed by a views of the lava flows and vents with the summit crater in the distance towards the SSE. Courtesy of the USGS-VDAP. (30 seconds, 10.7 MB MPEG)

During all or part of this August-October 2002 interval, lavas erupted at high rates: 10-20 m3/s. The crystal-poor dacitic lavas were roughly the same as those produced during the ancestral caldera-forming eruption. The same composition had also been consistent for the intervening lavas. By or before the end of October the current eruption had emitted ~60 x 106 m3 to ~100 x 106 m3 of magma. There was some evidence of magma mixing. Available evidence suggested that the magma rose in a dike from source depths of 6-8 km. A vital question was whether a gas-rich eruptive phase might start.

Highlighted in the August-October photos were recent faults and associated surface deformation. These had been documented by Chris McKee (Geophysical Observatory, PNG) who found that these features covered an area on Pago's mid-to-lower NW flanks. In many cases the faults left conspicuous trails marked by swaths of fallen trees across the rainforest (figures 5 and 8). Despite their clear expressions and documentation, a thermal-imaging device found that the faults and adjacent areas generally lacked anomalous high-temperature signals (Steve Saunders, RVO). The obvious exceptions to this occurred where faults cut across either vent areas and their cones or across massive lava flows in the caldera (figure 7). The inferred cause of the faulting and associated deformation was a shallow magmatic intrusion.

The USGS contributors expressed gratitude to their colleagues affiliated with Rabaul Volcano Observatory in Papua New Guinea and the West New Britain Provincial Government who had helped them with field and logistical support.

At the close of 2002 Alan Cameron (Heli Niugini) wrote Endo the following brief note. "Since you left, interest in Mt. Pago seems to have diminished; I have not flown over it for some time. Yesterday I flew a [medical evacution] past it, and smoke, etc. was still rising but the weather was bad and I did not get closer than about a half mile [(~1 km)], so I don't know what it is doing. Hoskins [airport] is still closed to aircraft, and the Talasea [air]strip is often closed due to water over it and the soft surface, so air travel is somewhat unreliable from here."

In the first week of February, Cameron sent another message. "The last time I had a close look at Pago was about a month ago. It still looked to be fairly active in most respects, however there is not much emission of ash now and the lava seems to have slowed, but I think this is on account of the flow being restricted in its exit to the [S]. To my eye it seems that the lava deposit may be increasing in height due to that restriction . . . . I do recall that there is still a great deal of heat from the lava ( I could feel its effect on the helicopter), which supports my feeling that it is building vertically and the lava is still flowing."

Reference. Cooke, R.J.S., 1981, Eruptions at Pago volcano, 1911-1933 (Compiled by R.W. Johnson), in Cooke-Ravian Volume of Volcanological Papers (editor, R.W. Johnson) Geological Survey of Papua New Guinea Memoir 10, 135-46; Printed in Hong Kong by Libra Press Ltd.

Geologic Background. The active Pago cone has grown within the Witori caldera (5.5 x 7.5 km) on the northern coast of central New Britain contains the active Pago cone. The gently sloping outer caldera flanks consist primarily of dacitic pyroclastic-flow and airfall deposits produced during a series of five major explosive eruptions from about 5,600 to 1,200 years ago, many of which may have been associated with caldera formation. Pago cone may have formed less than 350 years ago; it has grown to a height above the caldera rim, and a series of ten dacitic lava flows from it covers much of the caldera floor. The youngest of these was erupted during 2002-2003 from vents extending from the summit nearly to the NW caldera wall. The Buru caldera cuts the SW flank.

Information Contacts: Elliot Endo, John Ewert, C. Dan Miller, Andy Lockhart, Jeff Marso, and Chris Newhall, U.S. Geological Survey, David A. Johnston Cascades Volcano Observatory, Volcano Disaster Assistance Program (VDAP), 1300 SE Cardinal Ct, Building 10, Suite 100, Vancouver, WA 98683, USA; Alan Cameron, Chief Pilot, Heli Niugini Kimbe, Box 404, Kimbe WNB, Papua New Guinea; Ima Itikarai and Steve Saunders, Rabaul Volcano Observatory (RVO), Papua New Guinea; Chris Mckee, Port Moresby Geophysical Observatory, PO Box 323, Port Moresby NCD, Papua New Guinea; Hugh Davies, Earth Sciences, University of Papua New Guinea, PO Box 414, University Post Office NCD, Papua New Guinea.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports