Report on Reykjanes (Iceland) — 25 March-31 March 2020
Smithsonian Institution / US Geological Survey
Weekly Volcanic Activity Report, 25 March-31 March 2020
Managing Editor: Sally Sennert.
Please cite this report as:
Global Volcanism Program, 2020. Report on Reykjanes (Iceland) (Sennert, S, ed.). Weekly Volcanic Activity Report, 25 March-31 March 2020. Smithsonian Institution and US Geological Survey.
Reykjanes
Iceland
63.817°N, 22.717°W; summit elev. 140 m
All times are local (unless otherwise noted)
There were more than 6,000 earthquakes recorded beneath the Reykjanes peninsula as of 26 March, making this period of unrest the largest seismic crisis ever recorded in this part of the country since digital monitoring started in 1991, according to IMO. The seismicity occurred across three main volcanic systems: Eldey, Reykjanes-Svartsengi, and Krýsuvík. Uplift continued to be detected in the Thorbjorn area totaling about 70-80 mm; the deformation rate was lower than in January and February. Deformation modeling suggested that recent inflation was caused by a second magmatic intrusion at a depth of 3-4 km in an area W of Thorbjorn, close to the intrusion that occurred at the beginning of the year. GPS data suggested a small deformation pattern detectable over a regional area, far beyond the Thorbjorn area.
Geological Summary. The Reykjanes volcanic system at the SW tip of the Reykjanes Peninsula, where the Mid-Atlantic Ridge rises above sea level, comprises a broad area of postglacial basaltic crater rows and small shield volcanoes. The submarine Reykjaneshryggur volcanic system is contiguous with and is considered part of the Reykjanes volcanic system, which is the westernmost of a series of four closely-spaced en-echelon fissure systems that extend diagonally across the Reykjanes Peninsula. Most of the subaerial part of the system (also known as the Reykjanes/Svartsengi volcanic system) is covered by Holocene lavas. Subaerial eruptions have occurred in historical time during the 13th century at several locations on the NE-SW-trending fissure system, and numerous submarine eruptions dating back to the 12th century have been observed during historical time, some of which have formed ephemeral islands. Basaltic rocks of probable Holocene age have been recovered during dredging operations, and tephra deposits from earlier Holocene eruptions are preserved on the nearby Reykjanes Peninsula.