Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Ambrym (Vanuatu) New ash eruption with crater incandescence in late January 2022

Popocatepetl (Mexico) Continuing minor ash emissions and crater incandescence during August 2021-January 2022

Ibu (Indonesia) Intermittent ash plumes and thermal activity during September 2021-February 2022

Villarrica (Chile) Gas-and-steam emissions, seismicity, and crater incandescence during September 2021-February 2022

Santa Maria (Guatemala) Frequent explosions, ash plumes, and block avalanches during August 2021-January 2022

Grimsvotn (Iceland) November-December 2021 jökulhlaup is not followed by Grímsvötn eruption

Erta Ale (Ethiopia) Intermittent surges of activity at both caldera pit craters, September 2021-April 2022

Suwanosejima (Japan) Frequent explosions with ash plumes and ejecta

Lewotolok (Indonesia) Strombolian activity persisted with ash plumes during August 2021-January 2022

Reventador (Ecuador) Daily explosions and ash plumes with incandescent block avalanches during August 2021-January 2022

Hunga Tonga-Hunga Ha'apai (Tonga) Surtseyan explosions with eruption plumes during 14-15 January 2022

Sangeang Api (Indonesia) Small ash plume on 17 February 2022



Ambrym (Vanuatu) — May 2022 Citation iconCite this Report

Ambrym

Vanuatu

16.25°S, 168.12°E; summit elev. 1334 m

All times are local (unless otherwise noted)


New ash eruption with crater incandescence in late January 2022

Ambrym contains a 12-km-wide caldera and is part of the New Hebrides Arc, located in the Vanuatu archipelago. The two currently active craters within the caldera are Benbow and Marum, which have produced lava lakes, explosions, lava flows, ash, and gas emissions. The previous eruption period, which began in May 2008, ended in December 2018 with lava fountains, lava flows, a submarine fissure eruption, and drainage of the lava lake (BGVN 45:03). After those events no eruptive activity was reported until January 2022, which consisted of ash plumes and crater incandescence. This report updates information from April 2020 through March 2022 and describes a short eruption period during 25 January to the beginning of February 2022. Information comes from the Vanuatu Meteorology and Geohazards Department (VMGD) and satellite data.

Activity during April 2020 through December 2021 was relatively low and consisted mainly of gas-and-steam emissions from both Benbow and Marum craters. On 25 January 2022 the Volcanic Alert Level (VAL) was raised from Level 1 to 2 (on a scale of 0-5) due to increased activity beginning around 0400. Significant gas-and-steam emissions were observed rising from Marum, and gas-and-ash emissions rose from Benbow at 0515 (figure 52). A sulfur dioxide plume that exceeded 2 DUs (Dobson Units) was detected on 25 January and drifted SE, following the ash plume, based on data from the Sentinel-5 instrument (figure 53). At night on 25 January, crater incandescence from Benbow was visible in webcam images, which represented a lava flow that had effused from a new vent on the NW part of the crater floor. Incandescence persisted through 27 January, according to VMGD (figure 54).

Figure (see Caption) Figure 52. Webcam image of Ambrym at 0645 on 25 January 2022 showing an ash plume rising above the Benbow crater. Courtesy of VMGD.
Figure (see Caption) Figure 53. A sulfur dioxide plume was detected on 25 January 2022 based on Sentinel-5P data after increased activity, including an ash plume, occurred at Ambrym. The plume drifted SE. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 54. Webcam image showing visible nighttime incandescence coming from the Benbow crater at Ambrym at 2000 on 25 January 2022. Activity was visible through the early morning of 26 January, accompanied by gas-and-steam emissions. Courtesy of VMGD.

By early February, crater incandescence was no longer visible. On 2 February sulfur dioxide emissions were still detected in satellite images and drifted E. According to VMGD, no gas-and-steam emissions were visible from Benbow during early February through April and seismicity had decreased. As a result, the VAL was lowered to Level 1 on 28 April.

Geologic Background. Ambrym, a large basaltic volcano with a 12-km-wide caldera, is one of the most active volcanoes of the New Hebrides Arc. A thick, almost exclusively pyroclastic sequence, initially dacitic then basaltic, overlies lava flows of a pre-caldera shield volcano. The caldera was formed during a major Plinian eruption with dacitic pyroclastic flows about 1,900 years ago. Post-caldera eruptions, primarily from Marum and Benbow cones, have partially filled the caldera floor and produced lava flows that ponded on the floor or overflowed through gaps in the caldera rim. Post-caldera eruptions have also formed a series of scoria cones and maars along a fissure system oriented ENE-WSW. Eruptions have apparently occurred almost yearly during historical time from cones within the caldera or from flank vents. However, from 1850 to 1950, reporting was mostly limited to extra-caldera eruptions that would have affected local populations.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, MD 20771, USA (URL: https://so2.gsfc.nasa.gov/).


Popocatepetl (Mexico) — April 2022 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Continuing minor ash emissions and crater incandescence during August 2021-January 2022

Popocatépetl is located 70 km SE of Mexico City, Mexico, and contains a 400 x 600 m wide crater. Records of activity date back to the 14th century and the current eruption period has been ongoing since January 2005, which has included numerous episodes of lava-dome growth and destruction within the summit caldera. Recently, activity has consisted of intermittent crater incandescence, frequent ash explosions, and ash emissions. This report covers the period from August 2021 through January 2022, characterized by daily low-intensity gas-and-ash emissions, volcano-tectonic tremors, and crater incandescence, based on information from México's Centro Nacional de Prevención de Desastres (CENAPRED) and various satellite data.

Gas-and-steam emissions, some of which contained ash, remained ongoing throughout August 2021-January 2022. Some minor ashfall was reported during mid-September. CENAPRED reported the number of low-intensity gas-and-ash emissions or “exhalations” and the number of minutes of tremor in their daily reports (figure 185). Tremor activity reached an average of 261 minutes per day from August to January 2022, but dropped off significantly after September. A total of about 72 volcano-tectonic (VT) tremors were detected throughout the reporting period. The average number of gas-and-ash emissions was 54 per day, with a maximum number of 260 on 25 September. Occasional small to moderate sulfur dioxide plumes were detected with satellite instruments each month (figure 186).

Figure (see Caption) Figure 185. CENAPRED reported the number of daily “exhalations” (in blue, left scale), and the number of minutes of tremor (in gold, right scale) at Popocatépetl each day during August 2021-January 2022. The number of daily exhalations fluctuated throughout the period, reaching as high as 260 on 25 September 2021, followed by a gradual decline through the rest of the reporting period. Similarly, there was some fluctuation in the duration of tremors during August through September; on 15 August 2021 a maximum duration of 1,192 minutes of tremor was detected. After September, the minutes of tremor decreased significantly and often were not detected. Data from CENAPRED daily reports.
Figure (see Caption) Figure 186. Moderate sulfur dioxide plumes were detected at Popocatépetl intermittently from August 2021 through January 2022, as seen on 26 October (top left), 14 November (top right), 3 December (bottom left) 2021, and 2 January (bottom right) 2022. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

MODIS thermal anomaly data provided through MIROVA showed low-level, intermittent activity during August through early October 2021, followed by a brief break in activity (figure 187). Thermal activity resumed in early November at a higher level and frequency compared to previous months. According to data from MODVOLC thermal alerts, a total of nine hotspots were detected on 10 and 16 September, 14 and 28 November, 6 December, and 1, 2, and 15 January 2022. Sentinel-2 infrared satellite imagery also showed persistent thermal anomalies in the summit crater multiple times each month from August 2021 through January 2022 (figure 188).

Figure (see Caption) Figure 187. The MIROVA graph of thermal anomalies at Popocatépetl from 11 April 2021 through January 2022 shows low-level, intermittent activity during May through early October, followed by a short break. Activity increased in both power and frequency in November and remained elevated through January. Courtesy of MIROVA.
Figure (see Caption) Figure 188. Sentinel-2 infrared satellite images showing thermal anomalies in the summit crater of Popocatépetl on 9 August (top left), 3 October (top right), 12 November (middle left), 27 November (middle right), 7 December (bottom left) 2021, and 31 January (bottom right) 2022. Images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Activity during August and September was relatively high compared to the rest of the reporting period. There were an average number of 92 exhalations per day, which consisted mostly of water vapor, volcanic gases, and a small amount of ash, the most of which occurred on 25 September with 260. On clear nights, crater incandescence was observed, though cloudy weather was common. About 36 VT earthquakes were also noted throughout the two months. A total of 46 minor to moderate explosions were detected. A moderate explosion was reported on 6 August at 2137, accompanied by incandescent material that was ejected a short distance from the crater.

Explosions were detected at 2135, 2254, and 2345 on 1 September, followed by a VT earthquake. Two explosions on 11 September (at 1222 and 1323) generated ash plumes that rose 1.8-2 km above the crater, accompanied by incandescent material ejected from the crater. A gas-and-ash plume at 1015 on 15 September rose 2.2 km above the crater; a minor explosion at 1441 that day produced an ash plume 1.8 km above the crater and drifted NW. According to information from the National Center for Communication and Civil Protection Operations (CENACOM), light ashfall was reported in the municipalities of Valle de Chalco, Chiautla, Ixtapaluca, Nezahualcóyotl, La Paz, Ecatepec, Ayapango, Temamatla, Tenango del Aire, Tlalmanalco, Amecameca, Tepetlixpa, Tlalnepantla, and Acolman in the México State. Three minor explosions on 17 September resulted in light ashfall in the municipalities of Valle de Chalco, Ixtapaluca, Chalco, Tlalmanalco, Amecameca, Ayapango, Tenango del Aire, Temamatla, and Ecatzingo, as well as in Iztapalapa, Xochimilco, and Tlahuac in México City. Some ashfall was reported on 18 September in Cuernavaca.

The number of daily exhalations and duration of VT earthquakes declined after September, though they continued to be detected during October and November, with an average of 43 exhalations per day; 129 exhalations occurred on 2 October. A total of 45 VT earthquakes was detected during these two months and 11 minor to moderate explosions were recorded. On 2 October an explosion at 0619 generated an ash plume that rose 1.2 km above the crater (figure 189) and ejected incandescent material onto the slopes. A low-intensity explosion detected at 0057 on 5 October produced an ash plume that rose 800 m above the crater and drifted W.

Figure (see Caption) Figure 189. Webcam image of a gas-and-ash plume that rose 1.2 km above the crater of Popocatépetl on 2 October 2021. Courtesy of CENAPRED daily report.

The Institute of Geology at the National Autonomous University of Mexico (UNAM), with support from the National Guard and CENAPRED, conducted an overflight on 5 November to make visual observations; the internal crater had a diameter of 390-400 m and a depth of 160-200 m (figure 190), and no new lava was seen. On 19 November an explosion at 1714 generated an ash plume that rose 2 km above the crater and drifted NE. A minor explosion on at 0230 on 21 November produced an ash plume that rose 600 m above the crater and drifted NW, and at 0136 the next day another small explosion produced an ash plume that rose 800 m above the crater and drifted NE.

Figure (see Caption) Figure 190. Aerial photo of the summit crater and inner crater of Popocatépetl taken on 5 November 2021. The internal crater had an approximate diameter of 400 m and a depth of 200 m. Courtesy of CENAPRED daily report.

Activity remained relatively low during December and January 2022, consisting of an average number of 27 exhalations reported per day, a total of 47 VT earthquakes, and only six minor to moderate explosions, most of which occurred during January. A minor explosion was detected on 13 January at 0420, producing an ash plume that rose 600 m above the crater and drifted SE. The next day on 14 January a minor explosion at 2255 generated a plume containing a small amount of ash rose 1 km above the crater and drifted NE. Some material was also ejected a short distance from the crater (figure 191).

Figure (see Caption) Figure 191. Webcam image of an explosion at Popocatépetl on 13 January 2022 that generated an ash plume 1 km above the crater that drifted NE. Incandescent material was ejected a short distance from the crater. Courtesy of CENAPRED daily report.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Centro Nacional de Prevención de Desastres (CENAPRED), Av. Delfín Madrigal No.665. Coyoacan, México D.F. 04360, México (URL: http://www.cenapred.unam.mx/, Daily Report Archive https://www.gob.mx/cenapred/archivo/articulos); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Ibu (Indonesia) — April 2022 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Intermittent ash plumes and thermal activity during September 2021-February 2022

Ibu is located along the NW coast of Halmahera Island in Indonesia and contains an inner crater measuring 1-km-wide and 400 m deep, and an outer crater that measures 1.2-km-wide breached on the N side. The first observed and recorded eruption occurred in 1911 and consisted of a small explosion in the summit crater. The current eruption period began in April 2008 and has recently been characterized by intermittent low-level ash plumes, light ashfall, and thermal anomalies (BGVN 46:09). This report covers similar activity of low-level ash plumes, minor ashfall, and thermal activity during September 2021 through February 2022 using information from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Darwin Volcanic Ash Advisory Centre (VAAC), and various satellite data. The Volcano Alert Level remained at 2 (on a scale of 1-4), and the public was warned to stay at least 2 km away from the active crater and 3.5 km away on the N side.

Activity during this reporting period was relatively low, primarily consisting of occasional ash plumes rising to 2.4 km altitude, minor ashfall, and thermal activity. Daily explosions ranged from 55-102; the greatest number of eruption events was detected on 8 September 2021. Frequent white-and-gray emissions rose 200-1,000 m above the summit and drifted in different directions, according to PVMBG. Data from the MIROVA plot (Log Radiative Power) showed intermittent low-to-moderate thermal anomalies during September 2021 through mid-February 2022, including a short break in activity during late November to mid-December 2021 (figure 36). According to MODIS data from MODVOLC, a total of 10 thermal alerts were detected on 28 September, 15 and 19 October, 13, 16, and 27 November 2021, 28 January 2022, and 4 February. Thermal anomalies were also captured in Sentinel-2 infrared satellite images on 2 September and 12 October 2021, and again on 5 January and 14 February 2022 (figure 37).

Figure (see Caption) Figure 36. Persistent low- to- moderate-power thermal anomalies were detected at the summit crater of Ibu during September 2021 through mid-February 2022, though a short break in activity occurred during late November to mid-December 2021, as shown by the MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 37. Thermal anomalies of varying intensity were visible in the summit crater of Ibu on 2 September 2021 (top left), 12 October 2021 (top right), 5 January 2022 (bottom left), and 14 February 2022 (bottom right). Two anomalies, one in the summit crater and a smaller one to the NW of it, appeared on 12 October, 5 January, and 14 February. Images using “Atmospheric penetration” (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.

Intermittent ash plumes were reported during September 2021 while white-and-gray emissions rose 200-800 m above the summit each day. Daily eruption events ranged from 55-102, the higher number occurring on 8 September, according to PVMBG daily reports. On 6 September an ash plume rose 400 m above the summit at 0916 and drifted N. Another ash plume on 18 September rose 1 km above the summit at 1135 and drifted W (figure 38). Two avalanches were reported on 30 September traveling 1 km to the W.

Figure (see Caption) Figure 38. Images of various ash plumes rising above Ibu on 18 September (top left), 11 November (top right), 18 December (bottom left) 2021, and 16 February (bottom right) 2022 and drifting in different directions. The ash plume on 18 September rose 1 km above the summit and drifted W. The ash plume on 16 February rose to 2.1 km altitude and drifted S. Courtesy of MAGMA Indonesia.

White-and-gray emissions persisted every day during October, rising 200-800 m above the summit. Daily eruption events ranged from 0-81, the most of which occurred on 28 October. Some light ashfall was reported in the towns to the W of the volcano on 1 October. On 7 and 19 October an explosion generated an ash plume that rose 800 m above the summit. According to a VONA issued on 9 October, an ash plume rose to 1.7 km altitude at 1651 and drifted NE. Another VONA published on 16 October described an ash plume that rose 600 m above the summit at 0838 and drifted N. On 31 October, an ash plume rose 500 m above the summit at 0818.

Similar low activity continued in November; white-and-gray emissions rose 200-800 m above the summit and intermittent ash plumes rose as high as 2.3 km altitude. Daily eruption events ranged from 1-87, the most of which occurred on 26 November. On 6 November an ash plume rose to 2.3 km altitude at 0637 and drifted W and S. Two days later, on 8 November, an ash plume rose 1 km above the summit at 0957 and drifted S. During 10-11 November, ash plumes drifted W, causing some light ashfall in communities to the W of the volcano. VONAs issued on 16 and 19 November described ash plumes rising 1-8-2.3 km altitude that drifted N and S.

During December, the primary form of activity was white-and-gray emissions rising 200-1,000 m above the summit. Daily eruption events ranged from 56-87, the most of which occurred on 18 December. On 20 December, an avalanche traveled 100-400 m to the NW.

Low activity during January 2022 consisted of daily white-and-gray emissions that rose 200-1,000 m above the summit. During 1-4 January, avalanches were detected each day, but they were not visually observed. Daily eruption events ranged from 66-94, the most of which occurred on 17 January. During 8-9 January, strong rumbling sounds were heard and minor ashfall was reported to the W of the volcano.

During February, white-and-gray emissions persisted, rising 200-1,000 m above the summit, while intermittent ash plumes rose to 2.3 km altitude. Daily eruption events ranged from 46-82, the most of which occurred on 2 and 4 February. Ash plumes were reported on 14, 16, 18, and 23 February, according to VONA notices, rising to 2.1-2.3 km altitude and drifting W, S, and SW (figure 38).

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, has contained several small crater lakes. The 1.2-km-wide outer crater is breached on the N, creating a steep-walled valley. A large cone grew ENE of the summit, and a smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. The first observed and recorded eruption was a small explosion from the summit crater in 1911. Eruptive activity began again in December 1998, producing a lava dome that eventually covered much of the floor of the inner summit crater along with ongoing explosive ash emissions.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Villarrica (Chile) — April 2022 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Gas-and-steam emissions, seismicity, and crater incandescence during September 2021-February 2022

Villarrica has had documented eruptions dating back to 1558, which have consisted largely of mild-to-moderate explosive activity and occasional lava effusions. Its currently active cone has a 2-km-wide caldera at its base. The current eruption period has been ongoing since December 2014 and more recently has been characterized by low-level activity of thermal anomalies, gas-and-steam emissions, and sulfur dioxide emissions. This reporting period of September 2021 through February 2022 continues this pattern of low-level activity. Information for this report primarily comes from the Southern Andes Volcano Observatory (Observatorio Volcanológico de Los Andes del Sur, OVDAS), part of Chile's National Service of Geology and Mining (Servicio Nacional de Geología y Minería, SERNAGEOMIN) and satellite data.

Seismicity and thermal activity were relatively low in September. Continuous tremor, as many as 162 long period (LP), and 4 volcano-tectonic (VT) seismic events were recorded. Gas-and-steam emissions rose less than 500 m above the crater rim. A single thermal anomaly was visible above the volcano on 20 September, according to MIROVA data, and three anomalies were detected in Sentinel-2L2A satellite imagery on 7, 10, and 20 September (figure 116).

Figure (see Caption) Figure 116. Intermittent thermal anomalies of varying intensity were visible in Sentinel-2 infrared satellite images of Villarrica during September 2021 through February 2022 on clear weather days. Images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

The number of LP-type events increased during October; as many as 2,142 were detected, in addition to 5 VT-type events. White gas-and-steam emissions of varying intensities throughout the month rose 1 km above the crater rim. MIROVA reported only one thermal anomaly, on 26 October, and Sentinel-2L2A imagery showed six anomalies on 7, 10, 12, 17, 27, and 30 October, according to SERNAGEOMIN (figure 116).

LP, tremor (TR), and VT-type seismic events were detected during November; about 504 LP and 88 VT-type earthquakes were recorded. The highest magnitude earthquake was 3.4, detected on 28 November about 10.8 km ESE of the crater. Throughout the month, gas-and-steam emissions rose less than 500 m above the crater rim. According to a notice from the Buenos Aires VAAC, an ash plume rose to 3.4 km altitude and drifted SE on 6 November. Analysis of Sentinel-2L2A satellite images showed nine thermal anomalies that occurred on 1, 6, 11, 16,19, 21, 24, 26, and 29 November (figure 116).

The number of LP earthquakes increased during December. About 2,888 LP earthquakes were recorded over the month, in addition to as many as 614 TR-type events. Gas-and-steam emissions persisted, rising less than 500 m above the crater rim. According to data from Sentinel-2L2A satellite imagery, ten thermal anomalies were visible in the crater on 4, 9, 14, 16, 19, 21, 24, 26, 29, and 31 December. SERNAGEOMIN used equipment for Differential Absorption Optical Spectroscopy (DOAS) to measure an average sulfur dioxide value of 412 and 608 t/d on 28 and 30 December, respectively.

During January 2022, LP and TR-type seismicity persisted, the latter of which presented an energy value (RSAM) between 0.1 and 0.4 units. About 3,766 earthquakes were detected, most of which were LP type, 53 were TR-type events, and five were VT-type events. Consistent gas-and-steam emissions rose to a maximum height of 540 m on 6 January. Based on DOAS measurements of sulfur dioxide emissions, an average value of 595 t/d was recorded, with a daily maximum value of 1,763 t/d on 19 January. Sentinel-2L2A satellite images showed a total of 8 thermal hotspots within the crater on 5, 8, 10, 13, 15, 25, 28, and 30 January (figure 116).

Seismicity in February was considered low, with the RSAM units measuring between 0.2 and 0.5. About 2,811 LP-type, 4 TR-type, and 1 VT-type seismic events were detected. The average value of sulfur dioxide emissions was 451 t/d, with a daily maximum value of 774 t/d on 15 February. On 2 February an ash plume rose to 2.7-4.6 km altitude and drifted E at 1050, based on data from two webcam images and information from SERNAGEOMIN. By 1130 the plume was barely visible in satellite images. Webcam images showed continuous gas-and-steam emissions with sporadic puffs of ash rising as high as 4.9 km altitude, although by 2330, the ash was no longer visible. There were seven thermal anomalies detected during the month on 2, 4, 7, 9, 12, 14, and 17 February (figure 116). Low-intensity incandescence was visible from 12 to 15 February. Gas-and-steam emissions persisted, with a maximum height of 520 m above the crater rim on 21 February.

Geologic Background. Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Santa Maria (Guatemala) — April 2022 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Frequent explosions, ash plumes, and block avalanches during August 2021-January 2022

The Santiaguito lava-dome complex of Guatemala's Santa María volcano has been actively erupting since 1922. It formed within a large crater on the SW flank which was created during the 1902 eruption. Ash explosions, pyroclastic flows, and lava flows have emerged from Caliente, the youngest of the four vents in the complex, for more than 40 years. The Caliente vent has an elevation of about 2.5 km, and the summit of Santa Maria is about 3.7 km elevation. A lava dome that appeared within the summit crater of Caliente in October 2016 has continued to grow, producing frequent block avalanches down the flanks. Daily explosions with ash plumes and block avalanches continued during this report period of August 2021-January 2022, with information primarily from Guatemala's INSIVUMEH (Instituto Nacional de Sismologia, Vulcanologia, Meterologia e Hidrologia).

Activity during August consisted of gas-and-steam emissions rising to 3-3.3 km altitude and drifting SW, weak to moderate explosions that produced gray ash plumes to 2.8-3.5 km altitude that drifted mainly W and SW, and constant weak to moderate block-and-ash avalanches down the W, SW, and S flanks, some of which reached the base of the lava dome. As a result of the avalanches, some fine ash particles were occasionally detected around the volcano. Crater incandescence was frequently observed. On 4 August an explosion generated an ash plume that rose to 2.8 km altitude and drifted W and SW for 6 km, followed by fine ashfall in the villages of Loma Linda Palajunoj, San Marcos Palajunoj, and farms in the surrounding area. Incandescent block avalanches traveled 600 m down the W flank on 8, 18, and 23 August. Explosions on 14 and 24 August produced ash plumes that rose to 2.8 km altitude and drifted as far as 8 km S and SW, resulting in ashfall in the villages of Las Marías and Calaguache on the 14th and in San Marcos and Loma Linda Palajunoj, and farms in the area on the 24th. Due to heavy rains on 23 August, lahars were detected in the Cabello de Ángel, located S of the volcano, according to CONRED.

Similar explosions and ash plumes continued in September. Gas-and-steam plumes rose to 2.7-3.5 km altitude and drifted generally W and SW from the Caliente vent. Weak to moderate explosions produced ash plumes that rose to 3-3.4 km altitude and drifted primarily to the W and SW. Incandescent block-and-ash avalanches descended mainly the W, SW, and S flanks, which sometimes reached the base of the dome and continued to generate fine ashfall surrounding the volcano. Heavy rainfall on 1 September generated lahars in the Cabello de Ángel river south of the volcano. The river carried blocks up to 1 m in diameter, fine sediments, and tree trunks and branches. On 17 September the smell of sulfur was reported from several communities up to 7 km S of the lava dome as block avalanches continued down the W flank of the Caliente dome. An explosion on 18 September produced an ash plume that rose to 3 km altitude that dispersed W as far as 10 km, and resulted in ashfall in San Marcos Palajunoj, Loma Linda Palajunoj, and farms in the area. Strong rainfall resulted in lahars descending the San Isidro and Cabello de Ángel rivers, moving blocks 30 cm to 1 m in diameter and material that was deposited on the upper part of the volcano.

Explosions and ash plumes persisted in October. Gas-and-steam emissions rose 3-3.5 km altitude and gray and white eruption columns rose to 3-3.4 km altitude that drifted generally S and SW. Block avalanches descended the W, SW, and S flanks of the Caliente dome, commonly generating fine ashfall around the volcano. On 3 October an explosion generated an ash plume that rose to 2.8-3 km altitude and drifted S and SW as far as 10 km, resulting in ashfall in San Marcos Palajunoj, Loma Linda Palajunoj, and farms in the area. Lahars were detected in the El Tambor river on 19 October, located SSW of the volcano that carried blocks up to 3 m in diameter, fine sediment, and tree trunks and branches.

During November, weak to moderate block avalanches mainly affected the SW, W, NW, and S flanks of the Caliente dome. Weak to moderate explosions produced white and gray ash plumes that rose to 3.5 km altitude and drifted generally SW and W, sometimes resulting in ashfall near the volcano. Constant incandescence was observed above the lava dome in addition to gas-and-steam emissions rising to 3 km altitude (figure 129). On 2 November an explosion produced an ash plume that rose to 3.4 km altitude and drifted SW, causing ashfall in the Monte Claro area. On 20 November an explosion generated an ash plume that rose to 3.4 km altitude and drifted W and SW and ashfall was reported in Monte Claro. Explosions during 28 and 29 November ejected ash plumes to 3.3-3.4 km altitude that extended 10 km to the W, NW, SW, and S, causing ashfall in the villages of San Marcos Palajunoj and Loma Linda Palajunoj.

Figure (see Caption) Figure 129. Photo of white gas-and-steam emissions rising above the Caliente dome of Santa María at 0845 on 24 November 2021. Courtesy of CONRED (Informative Bulletin No. 532-2021).

Activity consisting of weak degassing over the Caliente dome rising 150-800 m above the vent and weak to moderate avalanches persisted during December. Some of the avalanches were preceded by explosions; effusive activity continued to build up the W flank and the lava dome. Intermittent ash plumes rose to altitudes of 3-3.4 km and extended generally to the S, SW, and W. On 3 December an ash plume rose to 3 km altitude and drifted NW and W as far as 10 km and, as a result, ashfall was reported in San Marcos Palajunoj and Loma Linda. An explosion on 13 December produced an ash plume that dispersed to the W and SW as far as 15 km and ashfall was reported in the villages of San Marcos and Loma Linda Palajunoj. Ash was also reported in these villages on 17, 18, 28, and 31 December. During the night and early morning of 16-17 December intense incandescence was observed on the W and SW edge of the Caliente dome, accompanied by block avalanches descending the W, SW, and S flanks. On 29 December an explosion expelled an ash plume to 3.2 km altitude that drifted for 10 km to the W and NW, followed by fine ashfall in Loma Linda Palajunoj, San Marcos Palajunoj, and Llanos del Pinal.

White and gray gas-and-steam emissions rose 100-600 m above the crater that generally expanded to the W and SW and weak-to-moderate explosions ejecting ash plumes to 2.8-3.4 km altitude persisted during January 2022. At night and during the early morning, persistent and strong incandescence was observed from the Caliente dome. Frequent moderate-to-strong block avalanches continued descend mostly the W, SW, and S flanks, and weaker ones down the NE, SE, and E flanks, some of which reached the base of the dome. During 2-3, 8, 12-14, 17-18, 22-23 January ash plumes rose to 3.1-3.3 km altitude that drifted W and NW for 10-15 km, causing ashfall in the villages of Loma Linda Palajunoj, San Marcos Palajunoj, and Llanos del Pinal. On 7, 17, 22 January two lava flows were reported on the W and SW flanks with lengths of 500 and 700 m, respectively. In addition, explosions generated an ash plume that rose to 3.2 km altitude and drifted W and NW for 10 km, causing ashfall in the villages of Loma Linda Palajunoj, San Marcos Palajunoj, and Llanos del Pinal. On 29 January moderate to strong ashfall was reported in Loma Linda Palajunoj, San Marcos Palajunoj, El Palmar, and Quetzaltenango. From the early morning on 30 January through 1800 on 31 January, 10 pyroclastic flows were detected by seismic sensors and surveillance cameras. Gas-and-steam emissions persisted over the Caliente dome as high as 600 m.

Intermittent low-level thermal activity was recorded during August through October 2021, as reported by MIROVA (figure 130). Beginning in November, the frequency and power of the anomalies gradually increased through January 2022. According to MODVOLC infrared satellite data from NASA’s MODIS instrument, a total of 21 hotspots were detected over the Caliente vent on 17, 19, 23, 26, and 30 December and 2, 12, 18, 19, 20, 24, and 29 January. On clear weather days, Sentinel-2 infrared satellite imagery showed a small thermal anomaly over the Caliente vent; on 2 January 2022 a linear anomaly was visible on the W flank, which was likely the result of incandescent blocks or a pyroclastic flow (figure 131).

Figure (see Caption) Figure 130. Low-level intermittent thermal activity was detected at Santa María during August through October 2021, based on data from MIROVA (Log Radiative Power). Anomalies were followed by an increase in both frequency and power beginning in November and continuing through January 2022. Courtesy of MIROVA.
Figure (see Caption) Figure 131. Sentinel-2 infrared satellite imagery showed a small thermal anomaly over the Caliente vent of Santa María on 24 October (top left), 13 November (top right), 3 December (bottom left) 2021, and 2 January (bottom right) 2022. A linear thermal anomaly was visible on the W flank originating from the Caliente vent on 2 January, which was likely due to either incandescent blocks or a pyroclastic flow. Images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); CONRED, Coordinadora Nacional para la reduccion de desastres (URL: https://conred.gob.gt/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Grimsvotn (Iceland) — March 2022 Citation iconCite this Report

Grimsvotn

Iceland

64.416°N, 17.316°W; summit elev. 1719 m

All times are local (unless otherwise noted)


November-December 2021 jökulhlaup is not followed by Grímsvötn eruption

Grímsvötn is a volcano located under the Vatnajökull glacier in the southeastern quadrant of Iceland (figure 19). Its most recent eruption in 2011 included explosions with multiple 15-20 km altitude ash plumes that produced ashfall tens of kilometers away (BGVN 36:06). Periodic jökulhlaups (glacial outburst floods) from Vatnajökull have been recognized for centuries (Einarsson, 2009), and have occurred regularly since the end of the last ice age when a lake fed by glacial meltwater breaches its dam and drains. The best known jökulhlaups from Vatnajökull occur from three separate places: Grímsvötn volcano, the Skaftá cauldrons, and glacial lake Grænalón. The most dangerous jökulhlaups in Iceland have been associated with subglacial volcanic activity due to the greater volume of meltwater produced (Einarsson, 2009). This report summarizes past eruptions, jökulhlaups, and possible co-occurrences of the two with respect to Grímsvötn, and then describes in more detail events since the last eruption in 2011. Since then, jökulhlaups have been reported on the Skeiðarársandur outwash plain in 2014, 2015, 2016, and most recently during November-December 2021. Information is primarily from the Icelandic Met Office (IMO).

Figure (see Caption) Figure 19. Grímsvötn volcano is located under the western half of the Vatnajökull glacier in southeastern Iceland. Jökulhlaups originating from the caldera lake travel 50 km S, emerge from the S tip of the Skeiðarárjökull lobe of the Vatnajökull glacier, enter the Gígjukvísl river, and travel S across the Skeiðarársandur outwash plain. The most recent jökulhlaup from Grímsvötn occurred during November-December 2021. Base map courtesy of Google Earth.

Jökulhlaups from Grímsvötn have been known since at least the fourteenth century (Þórarinsson, 1939 and 1974, in Einarsson, 2009), but the relationship between eruptions and floods from the subglacial crater lake is not well understood. In 1953, Sigurður Þórarinsson suggested a correlation between jökulhlaups and Grímsvötn eruptions. He proposed that if a large volume of water was stored in the lake, that the pressure release following the sudden removal of water during a flood could facilitate magma movement and trigger an eruption. This type of scenario was proposed to explain coincident eruptions and jökulhlaups in 1922 and 1938. Records preserved since 1922 have indicated a few eruptions that were coincident with jökulhlaups, several eruptions with no evidence of jökulhlaups, and a larger number of jökulhlaups with no prior or subsequent documented eruption (table 2). The only recent confirmed event where a jökulhlaup was followed by an eruption took place in 2004.

Table 2. Jökulhlaups and eruptions at Grímsvötn from 1922-2021. For pre-1972 events, only those with possible co-occurring jökulhlaups and eruptions are listed. For 1972 and later both jökulhlaups and eruptions as reported by GVP or IMO are listed. Sources are listed in the table.

Date Eruption Jökulhlaup Total Discharge Estimate Max Flux Ice Subsidence Source
29 Sep-23 Oct 1922 Eruption first observed 29 Sep, last observed 23 Oct Skeiðará river jökulhlaup begins late Sep -- -- -- IMO, Þórarinsson (1939), Brandsdottir (1984)
May 1938 Eruption 8 km north formed large ice cauldron, minor tephra Jökulhlaups occurred at Skeiðará and Sula rivers -- -- -- BGVN 21:09 (Sep 1996), Gudmundsson and Björnsson (1991), BGVN 23:11 (Nov 1998)
7-21 Jul 1954 Eruption uncertain, possible steam explosions Jökulhlaup on the Skeiðará river -- -- -- Þórarinsson S (1974), IMO
15-30 Mar 1972 No clear eruption evidence Grímsvötn jökulhlaup 3.2 km3 -- -- CSLP 20-72 (Mar 1972), SEAN 07:02 (Feb 1982)
Sep 1976 No eruption Grímsvötn jökulhlaup 2.4 km3 -- -- SEAN 07:02 (Feb 1982)
28 Jan-11 Feb 1982 No eruption Grímsvötn jökulhlaup 1.3 km3 2,000 m3/s 50 m SEAN 07:02 (Feb 1982)
28 May-2 Jun 1983 Eruption within Grímsvötn caldera No jökulhlaup -- -- Ice cap melted SEAN 08:05 (May 1983), BGVN 23:11 (Nov 1998)
30 Sep-13 Oct, 4-7 Nov 1996 Fissure eruption between Bardarbunga and Grímsvötn (Gjálp) fills Grímsvötn caldera with meltwater 30 Sep-13 Oct Major flood reported five weeks after eruption started, 4-7 Nov, largest jökulhlaup recorded from Grímsvötn 3.2 km3 5,000 m3/s Subsidence over fissure 8-9 km long, 2 km wide BGVN 21:09 (Sep 1996), BGVN 23:11 (Nov 1998), Gudmundsson and others (1997), Björnsson (2002)
18-28 Dec 1998 Eruption within Grímsvötn caldera No jökulhlaup -- -- -- BGVN 23:11 (Nov 1998)
26 Oct-5 Nov 2004 Earthquake swarm and eruption began on 1 Nov at G. caldera following jökulhlaup, 26 Oct-4 Nov Jökulhlaup water release began on 26 October, reached Skeiðará R on 29 Oct 0.5 km3 3,000-4,000 m3/s 10-20 m BGVN 29:10 (Oct 2004)
31 Oct-3 Nov 2010 No eruption Jökulhlaup emerged from glacier on 31 Oct and peaked on 3 Nov. Floodwater went W to river Gígjukvísl instead of into Skeiðará due to landform changes in 2009 0.45 km3 2,600 m3/s -- BGVN 36:06 (Jun 2011), IMO
21-28 May 2011 Eruption from Grímsvötn crater No jökulhlaup -- -- -- BGVN 36:06 (Jun 2011)
22 Nov 2012 No eruption Small jökulhlaup from subglacial lake Grímsvötn 0.2-0.3 km3 -- -- IMO (6 May 2015 report)
27 Mar 2014 No eruption Small jökulhlaup from subglacial lake Grímsvötn 0.2-0.3 km3 ~1,000 m3/s -- SI/USGS Weekly (26 Mar-1 Apr 2014), IMO (6 May 2015 report)
6-9 May 2015 No eruption Small jökulhlaup from subglacial lake Grímsvötn 0.2-0.3 km3 less than 700 m3/s -- SI/USGS Weekly (6-12 May 2015), IMO (6 May 2015 report)
18-23 Aug 2016 No eruption Small jökulhlaup from subglacial lake Grímsvötn 0.1-0.15 km3 -- 5 m IMO
24 Nov-6 Dec 2021 No eruption Large Jökulhlaup from subglacial lake Grímsvötn -- 2,800 m3/s 77 m IMO, SI/USGS Weekly (24-30 Nov 2021)

Until 2009, jökulhlaups from Grímsvötn had emerged from under the S side of the Vatnajökull glacier on the S and E margins of the Skeiðarárjökull lobe of the glacier, draining into the Skeiðará river (figure 20). The Skeiðará river had previously deposited large amounts of sediment on the eastern part of the Skeiðarársandur plains over the centuries. In addition, the glacier had carved a trench during times of advance. In the summer of 2009, water ceased to enter the channel of the Skeiðará; the retreat of the glacier over the previous 15 years led to a shift in the direction of meltwater flow. Beginning in 2010, floodwater that emerged from beneath the eastern part of the Skeiðarárjökull glacier went westwards along the margin and then entered the Gígjukvísl river (figure 21).

Figure (see Caption) Figure 20. Jökulhlaups from Grímsvötn currently emerge from the S margin of the Skeiðarárjökull lobe of Vatnajökull glacier and drain into the Gígjukvísl River. Until 2009 they drained into the Skeiðará river. Courtesy of IMO.
Figure (see Caption) Figure 21. Floodwater flows along the terminus of Skeiðarárjökull glacier on 3 November 2010. IMO scientists are measuring water flow and chemistry from the glacier edge (left). The flow traveled west along the margin of the lobe into the Gígjukvísl river (right). Photos taken during scientific flight with the Icelandic Coast Guard (TF-SIF) by Matthew J. Roberts and Egill Axelsson, courtesy of Icelandic Met Office.

Two subglacial geothermal areas 10-15 km NW of Grímsvötn cause surface depressions to form due to melting of the glacier at its base; they are known as the Eastern and Western Skaftá cauldrons (figure 22), named for the river where the floods discharge. The eastern cauldron is a little less than 3 km in diameter while the western one is about 2 km in diameter. The lows in the glacier surface lead to local minima in the fluid potential at the base of the glacier and therefore lakes are formed under both cauldrons, sealed by the ice overburden pressure at the rim (Björnsson, 2002). For the western cauldron, analyses suggest that the water formed by geothermal melting of ice is the largest (71%) component of inflow to the lake, followed by geothermal fluid (19%) and surface meltwater (10%). Jökulhlaups from underneath the Skaftá cauldrons occur almost every year and 45 jökulhlaups were recorded in the Skaftá river between 1955 and 2009 (Einarsson, 2009). Although the Skaftá cauldrons are located less than 20 km from Grímsvötn, the rivers where their respective jökulhlaups occur are located about 100 km apart; the Skaftá river is off the SW edge of the Vatnajökull glacier, while the Grímsvötn jökulhlaups have only been observed on the Skeidarársandur outwash plain located 50 km S of the volcano. There has not been any coincidence of activity recorded between these areas.

Figure (see Caption) Figure 22. The Eastern and Western Skaftá cauldrons discharge water as jökulhlaups almost yearly; the water travels 40 km subglacially and emerges at the SW edge of the Vatnajökull glacier into the Skaftá river. There is no documented connection with Grímsvötn caldera and its associated jökulhlaups which discharge 50 km S of the volcano at the S edge of the Skeiðarárjökull lobe of the Vatnajökull glacier (bottom right of figure) into the Gígjukvísl river. Until 2009 Grímsvötn jökulhlaups drained into the Skeiðará river located farther E. Figure from Einarsson (2009).

Jökulhlaups and eruptions during 1922-2011. A Skeiðará river jökulhlaup began in late September 1922 and an eruption at Grímsvötn was first reported on 29 September and last observed on 23 October of that year. There were no reports of jökulhlaups during eruptions in 1933 and 1934. Jökulhlaups that occurred on the Skeiðará and Sula rivers in May 1938 have been associated with an eruption that occurred a few kilometers N of Grímsvötn, though very little eruptive activity above the glacier was recorded. Jökulhlaups from Grímsvötn were reported in June 1939, April and May 1941, September 1945, and February 1948, but there were no confirmed reports of eruptions around those times. A Skeiðará river jökulhlaup during 7-21 July 1954 was attributed to a subglacial eruption, but this is uncertain. Jökulhlaups reported in March 1972 (CSLP 20-72), September 1976, and January-February 1982 (SEAN 07:02) had no accompanying reports of eruptions. The May-June 1983 eruption of Grímsvötn (SEAN 08:05) melted the overlying ice and revealed an oval-shaped lake, 300 m in diameter, initially covered by raft ice. Multiple explosions were observed from the lake; no jökulhlaups were reported in the Skeiðará river.

The 30 September-13 October 1996 Gjálp eruption was located on a N-trending fissure between Bardarbunga and Grímsvötn (BGVN 21:09; Björnsson, 2002) about 8 km NW of Grímsvötn. For five weeks the meltwater generated by the eruption went into the Grímsvötn caldera, raising the lake level to the highest ever recorded (Gudmundsson and others, 1997). By 4 November 1996 the lake had risen to 1,510 m, the level needed to float the ice dam, and ice-quakes marked the onset of drainage. About 10.5 hours later water emerged from the margin of Skeiðarárjökull as a flood wave, in the most rapid jökulhlaup ever recorded from Grímsvötn (Björnsson, 2002).

The December 1998 eruptive vents at Grímsvötn were at the foot of Mt. Grímsfjall, which rises about 300 m above the flat ice shelf over the subglacial lake (BGVN 23:11). No major flood occurred in conjunction with this event; only a small amount of the ice shelf near the eruption site melted.

High-frequency tremor on 26 October 2004 indicated the beginning of a flood from the subglacial caldera lake. An eruption began on 1 November 2004, melting through 150-200 m of ice to the surface in about an hour. Observations on 2 November revealed that the eruption was occurring from a circular vent about 1 km in diameter in the SE part of the crater where a surface ice cauldron had been mapped a year earlier (figure 5, BGVN 29:10). The jökulhlaup from the draining caldera reached a maximum discharge rate of 3,000-4,000 m3/s on the afternoon of 2 November in the affected rivers on the coastal plain. Discharge declined quickly after the peak with no damage reported to roads or bridges. The total volume of the jökulhlaup was about 0.5 km3. On 3 November pulses of activity produced ash plumes rising from 8-14 km above the volcano.

On 31 October 2010, a jökulhlaup originating at subglacial lake Grímsvötn emerged from beneath the Skeiðarárjökull glacier, according to IMO. Observations on the bridge over the Gígjukvísl river confirmed a steady water level increase that indicated the onset of a jökulhlaup, with initial discharge rates of about 145 m3/s. Flow reached a maximum of 2,600 m3/s on the Gígja river on 3 November before declining. Seismicity recorded during the event was all attributed to the jökulhlaup, and no evidence was detected either seismically or visually of an eruption (figure 23).

Figure (see Caption) Figure 23. An aerial view of the eastern edge of Mt. Grímsfjall on 3 November 2010 revealed fresh crevasses at its base in the ice-cover over the adjacent subglacial lake Grímsvötn. The elongated trench in the ice gives an indication of the lake surface and the extent of the subsidence after the jökulhlaup. Water presumably drained from this region around the eastern edge of Grímsfjall. Photo taken during scientific flight with the Icelandic Coast Guard (TF-SIF) by Matthew J. Roberts and Egill Axelsson, courtesy of Icelandic Met Office (IMO).

An eruption from Grímsvötn began on 21 May 2011 following about an hour of tremor (BGVN 36:06). Ash plumes from the eruption rose to 15-20 km altitude, disrupted airline traffic, and drifted toward northern Europe. Ashfall was reported from the Reykjavík area in the SW to Tröllaskagi Peninsula in the N. Explosions lasted for approximately a week; on 28 May tremor rapidly decreased then disappeared. No changes in the water levels were recorded in either the Gígja (Gígjukvísl) or Núpsvötn rivers. IMO noted that the eruption occurred from the same site in the SW part of the Grímsvötn caldera as the 2004 eruption, and ice-melt was not expected to be great. Visual observation on 26 May indicated that little ice had melted during the eruption, and no jökulhlaup occurred.

Jökulhlaups during 2012-2021. The water level rose slightly in the Gígjukvísl river on 22 November 2012 and was attributed by IMO to a small flood releasing from Grímsvötn's subglacial lake; no eruption was reported. Another small jökulhlaup with a maximum discharge rate of about 1,000 m3/s was reported on 27 March 2014, causing a rise in the water level in the Gígjukvísl River (figure 24). Electrical conductivity measurements indicated a considerable increase of a geothermal contribution to the river water, confirming its source at Grímsvötn's subglacial lake. Seismic tremor had increased due to the flood and not volcanic activity.

Figure (see Caption) Figure 24. Water at the Skeiðará river outlet at the Skeiðarárjökull ice margin on 27 March 2014 indicated a small jökulhlaup from Grímsvötn's subglacial lake. The photo is taken at the E margin of Skeiðarárjökull and the mountains in the background are Krossgilstindur (near) and Færnes (distant). Photo copyright by Njáll Fannar Reynisson, courtesy of IMO.

A small jökulhlaup from Grímsvötn's subglacial lake occurred on 6 May 2015, increasing the water level in the Gígjukvísl River. Electrical conductivity measurements indicated a considerable increase of a geothermal contribution to the river water. Based on information from the Institute of Earth Sciences, the water available for drainage was estimated at 0.2-0.3 km3, similar to floods in November 2012 and March 2014. Seismic tremor had increased due to the flood and not volcanic activity, and no eruption was reported. The IMO reported another small jökulhlaup originating from Grímsvötn in the Gígjukvísl river on the Skeiðarársandur outwash plain on 23 August 2016. Seismicity had been first observed at Mt. Grímsfjall on 19 August and lasted for about 24 hours (figure 25). On 22 August, data indicated that the ice shelf over the subglacial lake had subsided by about 5 m since 18 August. It was estimated that only 0.1-0.15 km3 of water was present in the lake. No eruption occurred.

Figure (see Caption) Figure 25. Mt. Grímsfjall was visible from the Grímsvötn's ice shelf during an IMO expedition 5-7 August 2016. The ice shelf subsided by about 5 m during the August 2016 jökulhlaup. The buildings of the Glacier Research Society at Eystri Svíahnúk are visible as two small dots within the snowfield along the top of Grímsfjall. Courtesy of IMO.

Between previous eruptions of Grímsvötn, deformation data was interpreted by IMO as indicating gradual accumulation of new magma at depth. In early June 2020 IMO scientists measured high levels of SO2 in the SW part of the caldera, close to the 2004 and 2011 eruption sites (figure 26); they interpreted this as magma degassing at a shallow level. In addition, the area where geothermal activity could be detected at the surface had notably increased. Although seismic activity had been increasing for the previous year, it was still below levels reached prior to the eruptions of 2004 and 2011.

Figure (see Caption) Figure 26. A specialist from the Icelandic Meteorological Office performed gas measurements at Grímsvötn during the first half of June 2020, as increasing SO2 levels suggested magma degassing. The location of the photo is near the site of the 2011 eruption. Photograph by Melissa Anne Pfeffer, courtesy of IMO.

Elevation measurements of the ice shelf over Grímsvötn made by IES showed that it rose 10 m during the first half of 2020 to a level it had not exceeded since October 2010. In response to the increased possibility for a flood or an eruption, IMO installed a continuous GPS measurement station on the ice cap in early June 2020. Webcams were also installed at Hamarinn and Skeiðarársandur looking towards Grímsvötn.

In August 2020 IMO added a webcam to Mt. Grímsfjall, overlooking the Grímsvötn ice field above the lake. The GPS devices showed a potential drop in the ice sheet in early August, but the electrical conductivity and water level in the Gígjukvísl river were both normal. IMO discovered that the instruments on the ice shelf had tilted (figure 27) as a result of high rates of melting of the ice sheet from unusually hot weather. The IMO raised the Aviation Color Code to Yellow on 30 September 2020, noting that seismicity had increased over the past month, ice cauldrons had deepened in several places over the caldera signifying increased geothermal activity, surface deformation surpassed the level prior to the 2011 eruption, and magmatic gases were present in emissions over the summer. Additionally, water levels in the subglacial lake were comparable to levels prior to floods in 2004 and 2010.

Figure (see Caption) Figure 27. IMO scientists repaired tilted GPS monitoring equipment on the Grímsvötn ice sheet over the subglacial lake in mid-August 2020 after unusually hot weather increased the melting rate at the surface and disrupted the equipment. The GPS meter is on the left, and on the right is a wind turbine that powers the measuring device (right). Photograph by Björn Ólafsson, courtesy of IMO.

On 24 November 2021 IMO reported that the ice sheet over Grímsvötn's caldera had subsided 60 cm in the previous few days and the rate of subsidence had accelerated during the previous 24 hours. These measurements indicated that it was likely that water had started to leave the lake. The flow rate in the river on 29 November was measured at 240 m3/s; water levels in the Gígjukvísl drainage rose overnight during 30 November-1 December (figure 28) and by 2 December the flow rate had reached 930 m3/s, ten times the normal seasonal rate. Water from the lake drained from the E side of Skeiðarárjökull lobe and from a channel in the middle of the lobe into the Gígjukvísl River. Daily measurements showed that the flow rate continued to rise; it peaked at about 2,800 m3/s during the morning of 5 December, and then declined rapidly. While the water was draining from Grímsvötn lake, subsidence of the overlying ice sheet continued; by 2 December it had reached 17 m and continued to fall rapidly. The maximum subsidence of 77 m was measured by IMO during 5-6 December.

Figure (see Caption) Figure 28. The water level rose substantially in the Gígjukvísl river between 28 November (left) and 1 December 2021 (right) from the jökulhlaup that began on 24 November draining the subglacial lake at Grímsvötn. View is to the S from the IMO webcam. Courtesy of IMO.

Early on 6 December 2021 two earthquakes, M 2.3 and 3.6 were recorded, followed by several M 1 aftershocks. This resulted in the IMO briefly raising the Aviation Color Code to Orange, based on concerns of a possible relationship between the draining lake and increased eruption probability. With no further significant seismic activity, the alert level was lowered to Yellow the next day. IMO lowered the Aviation Color Code further to Green on 12 January 2022, noting that seismicity had returned to normal levels with a few earthquakes detected over the previous few weeks.

References: Björnsson H, 2002, Subglacial lakes and jökulhlaups in Iceland. Global and Planetary Change, 35: 255-271.

Brandsdottir B, 1984, Seismic activity in Vatnajökull in 1900-1982 with special reference to Skeidararhlaups, Skaftarhlaups and Vatnajökull eruptions. Jokull, 34: 141-150.

Einarsson B, 2009, Jökulhlaups in Skaftá: A study of jökulhlaup from the Western Skaftá cauldron in the Vatnajökull ice cap. Iceland, Icelandic Meteorological Office, VÍ 2009-006, ISSN 1670-8261.

Gudmundsson M T, Bjornsson H, 1991, Eruptions in Grímsvötn, Vatnajökull, Iceland, 1934-1991, Jokull, 41: 21-45.

Gudmundsson M T, Sigmundsson F, Björnsson H, 1997, Ice-volcano interaction of the 1996 Gjálp subglacial eruption, Vatnajökull, Iceland. Nature, 389:6654, 954-957. DOI: 10.1038/40122.

Þórarinsson S, 1939, The ice dammed lakes of Iceland with particular reference to their values as indicators of glacier oscillations. Geografiska Annaler, 21 (3-4), 216-242.

Þórarinsson S, 1953, The crater groups in Iceland. Bulletin of Volcanology, 14: 3-44. https://doi.org/10.1007/BF02596003

Þórarinsson S, 1974. Vötnin stríð. Saga Skeiðarárhlaupa og Grímsvatnagosa. Bókaútgáfa, Menningarsjóðs. Reykjavík. [In Icelandic].

Geologic Background. Grímsvötn, Iceland's most frequently active volcano in historical time, lies largely beneath the vast Vatnajökull icecap. The caldera lake is covered by a 200-m-thick ice shelf, and only the southern rim of the 6 x 8 km caldera is exposed. The geothermal area in the caldera causes frequent jökulhlaups (glacier outburst floods) when melting raises the water level high enough to lift its ice dam. Long NE-SW-trending fissure systems extend from the central volcano. The most prominent of these is the noted Laki (Skaftar) fissure, which extends to the SW and produced the world's largest known historical lava flow during an eruption in 1783. The 15-cu-km basaltic Laki lavas were erupted over a 7-month period from a 27-km-long fissure system. Extensive crop damage and livestock losses caused a severe famine that resulted in the loss of one-fifth of the population of Iceland.

Information Contacts: Icelandic Met Office (IMO), Reykjavík, Iceland (URL: http://en.vedur.is/); Google Earth (URL: https://www.google.com/earth/).


Erta Ale (Ethiopia) — May 2022 Citation iconCite this Report

Erta Ale

Ethiopia

13.6°N, 40.67°E; summit elev. 613 m

All times are local (unless otherwise noted)


Intermittent surges of activity at both caldera pit craters, September 2021-April 2022

Ethiopia's Erta Ale basaltic shield volcano has had at least one active lava lake since the mid-1960s, and possibly much earlier. Two active craters (north and south pits) within the larger oval-shaped summit caldera have exhibited periodic lava fountaining and lava lake overflows for many years. During January 2017-March 2020 a vent at the southeast caldera, a few kilometers SE of the summit caldera, produced lava flows that extended many kilometers from the main vents. Since March 2020 pulses of activity from both pit craters in the summit caldera have been recorded in numerous satellite thermal images. This report covers activity from September 2021-April 2022 when both the north and south pits were intermittently active. Information comes primarily from satellite imagery and thermal data, although reports and photographs from ground-based expeditions that periodically visit the site are occasionally available.

Multiple breakouts from persistent lava flows originating at the southeast caldera tapered off in March 2020; after this, intermittent low levels of thermal activity were focused at the N and S pit craters of the summit caldera, with occasional pulses of stronger activity in late November 2020 at the S pit crater and in late March and late May 2021 at the N pit crater (BGVN 46:02, 46:10). A return to more vigorous thermal activity in September 2021 was indicated by MODIS satellite data as an increased number of MODVOLC thermal alerts, increases in the MIROVA log radiative power frequency and intensity (figure 107), and numerous Sentinel-2 satellite images of thermal anomalies. Visitors to the site in December 2021, and January and February 2022, confirmed the active lava lake at the S pit crater.

Figure (see Caption) Figure 107. The Log Radiative Power for thermal activity at Erta Ale increased during September 2021 and remained elevated through April 2022, as seen in the MIROVA graph of activity from 6 June 2021 through April 2022 (top). The MIROVA distance graph (bottom) confirms that all of the activity was located at the N and S pit craters, compared with the earlier flow activity located many kilometers from the summit and southeast calderas (figure 97, BGVN 45:05). Courtesy of MIROVA.

Only a few of the Sentinel-2 satellite images of Erta Ale are cloudy, providing a consistent record of the changes in thermal activity in the summit caldera during the period. The S pit crater had thermal anomalies of varying intensity throughout, but the N pit crater was more intermittent. A very weak anomaly appeared at the N pit on 31 August 2021, but then not again until 10 October. It was larger on 15 October and bright on 30 October. At the S pit, the anomaly was present in all September and October images, and brightest on 20 September. Double anomalies appeared at the S pit for most of October (figure 108). MODVOLC thermal alerts were recorded on four days in September and nine days of October.

Figure (see Caption) Figure 108. A very weak anomaly appeared at the N pit of Erta Ale on 31 August 2021 (top left), but then not again until 10 October. It was larger on 15 October (bottom 2nd from left) and very bright on 30 October (bottom right). At the S pit, the anomaly was present in all September and October images, and brightest on 20 September (top, 2nd from right). Double anomalies appeared at the S pit for most of October (bottom). Sentinel-2 images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

The thermal anomaly was weak at the N pit on 4 November 2021, brighter on 19 November, brightest on 24 November, and very weak or absent on 29 November. It was very bright on 14 December, but absent the other days of December. At the S pit, two anomalies were present in most images, one much brighter than the other, with a similar size and intensity throughout (figure 109). MODVOLC thermal alerts were issued on eleven days during November and six days during December.

Figure (see Caption) Figure 109. The thermal anomaly was weak at the N pit of Erta Ale on 4 November 2021 (top left), brighter on 19 November (top, 2nd from left), brightest on 24 November (top, 2nd from right) and very weak or absent on 29 November (right). It was very bright on 14 December (bottom 2nd from left), but absent the other days of December. At the S pit, two anomalies were present in most images from November and December, one much brighter than the other, with a similar size and intensity throughout the period. Sentinel-2 images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

No thermal anomaly was present at the N pit for all of January or February 2022. At the S pit, a single weak anomaly was present during January, and a brighter single or double anomaly was present throughout February and early March (figure 110). A single MODVOLC thermal alert was issued on 24 January, and alerts were reported on four days during February. A weak thermal anomaly was present at the N pit in the 29 March 2022 image and persisted in all of the April images. Consistent size and intensity double anomalies, one bright and one dim, were present at the S pit in all images for March and April (figure 111). MODVOLC thermal alerts were issued for five days during March and six days during April 2022.

Figure (see Caption) Figure 110. No thermal anomaly was present in satellite images at the N pit of Erta Ale for all of January and February 2022. At the S pit, a single weak anomaly was present during January, and a brighter single or double anomaly was present throughout February and early March. Sentinel-2 images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 111. A weak thermal anomaly was present at the N pit of Erta Ale in the 29 March 2022 image (top right), and persisted in all of the April images (bottom). Double anomalies of consistent size and intensity, one bright and one dim, were present at the S pit in all images for March and April. Sentinel-2 images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Visitors to the S pit crater in late December 2021 and early January 2022 reported that the lake measured about 200 m in diameter and the level was about 30 m below the edge of the crater with fresh lava overhanging the crater rim (figure 112). Two collapses of the crater rim, widening the lake, were observed on 31 December-1 January 2022. In a second visit during 28-29 January 2022 the lake was still about 200 m in diameter with periodic small lava fountains (figure 113). On a 24 February 2022 visit the lava lake showed signs of constant activity with slabs of solidified crust moving around on the surface, bright orange lava in the cracks and spattering of lava a few tens of meters above the lake surface (figure 114).

Figure (see Caption) Figure 112. Visitors to Erta Ale on 31 December-1 January 2022 reported that the crater at the S pit was about 200 m in diameter and the lava lake was about 30 m below the rim, with fresh lava hanging off the crater rim. Photo by Enku Mulugeta, courtesy of Volcano Discovery.
Figure (see Caption) Figure 113. The lava lake at Erta Ale’s S pit crater was still about 200 m wide on 28 January 2022 and active with periodic lava fountains. Photo by Enku Mulugeta, courtesy of Volcano Discovery.
Figure (see Caption) Figure 114. On a 24 February 2022 visit, Erta Ale’s lava lake at the S pit crater showed signs of constant activity with slabs of solidified crust moving around on the surface with bright orange lava in the cracks and spattering of lava a few tens of meters above the lake surface. Photo by Enku Mulugeta, courtesy of Volcano Discovery.

Geologic Background. The Erta Ale basaltic shield volcano is the most active in Ethiopia, with a 50-km-wide edifice that rises more than 600 m from below sea level in the barren Danakil depression. It is the namesake and most prominent feature of the Erta Ale Range. The volcano includes a 0.7 x 1.6 km elliptical summit crater hosting steep-sided pit craters. Another larger 1.8 x 3.1 km wide depression elongated parallel to the trend of the Erta Ale range is located SE of the summit and is bounded by curvilinear fault scarps on the SE side. Fresh-looking basaltic lava flows from these fissures have poured into the caldera and locally overflowed its rim. The summit caldera usually also holds at least one long-term lava lake that has been active since at least 1967, or possibly since 1906. Recent fissure eruptions have occurred on the N flank.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/).


Suwanosejima (Japan) — April 2022 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Frequent explosions with ash plumes and ejecta

Suwanosejima is an 8-km-long island located in the northern Ryukyu Islands, Japan, consisting of a stratovolcano and two historically active summit craters. Volcanism was intermittent for much of the 20th century, characterized by Strombolian explosions, ash plumes, and ashfall. The current eruption began in October 2004 and has recently consisted of intermittent explosions, ash emissions, and incandescent ejecta (BGVN 46:09). Incandescence is often observed at night and ejecta periodically reaches as far as a kilometer from the summit. Ashfall is usually noted several times each month in the nearby community on the SW flank of the island. This report overs activity from July 2021 through March 2022 using information from the Japan Meteorological Agency (JMA), the Tokyo Volcanic Ash Advisory Center (VAAC), and several sources of satellite data.

Intermittent explosions were detected in the Otake crater, generating ash plumes that rose 5.4 km above the crater rim. Larger volcanic bombs were ejected as far as 1.9 km from the crater. Crater incandescence was frequently visible at night. The MIROVA Log Radiative Power graph of the MODIS thermal anomaly data through March 2022 indicates intermittent pulses of increased thermal activity in in late April to early May 2021, July 2021, September 2021, two small pulses in early and late November 2021, and early January 2022 that appear to correspond to increased periods of explosive activity (figure 67). According to data from the MODVOLC thermal algorithm, a total of eight hotspots were detected: one on 29 August, one on 10 September, two on 21 September, one on 23 September 2021, one on 4 January 2022, and two on 6 January. Reports of eruption sounds were heard in Toshima village (4 km SSW), in addition to occasional ashfall events.

Figure (see Caption) Figure 67. The MIROVA Log Radiative Power graph of the MODIS thermal anomaly data from 4 April 2021 through March 2022 indicates intermittent pulses of increased thermal activity in late April to early May 2021, July 2021, September 2021, two small pulses in early and late November 2021, and early January 2022 that appear to correspond to increased periods of explosive activity. Courtesy of MIROVA.

Ongoing explosions during July generated ash plumes that rose 1.6-3.6 km high (figure 68). Bombs were ejected as far as 1 km from the crater, accompanied by occasional crater incandescence that was visible at night. An explosion on 8 July at 0439 ejected bombs 800 m NW. An explosion at 1319 on 12 July generated an ash plume that rose 3 km high and later at 2330 a second explosion produced an ash plume 3.6 km high. Eruption sounds were heard in Toshima village; ashfall deposits were reported in the village during 12-19 July. On 29 July JMA lowered the Volcano Alert Level to 2 (on a 5-level scale) at 1100 and warned the public to stay 1 km from the crater.

Figure (see Caption) Figure 68. Photo of an eruption plume rising 3.8 km high above Suwanosejima at 1814 on 31 July 2021. Courtesy of JMA (Volcanic activity commentary for Suwanosejima, July 2021).

During August, explosions continued, producing ash plumes that rose 2.2-4.8 km high. Large blocks were ejected as far as 500 m from the crater, accompanied by nightly crater incandescence. Ashfall was occasionally reported in Toshima village. On 19 August an explosion at 0137 and 1613 produced an ash plume that rose 3 km and 2.2 km NE and N above the crater, respectively. A third explosion at 2059 generated an ash plume that rose 2.5 km above the crater and drifted N. A small amount of ashfall was reported in Yakushima, Nishinoomote, and Nakatane, as well as Toshima village. Explosions at 0628 and 0713 on 20 August produced ash plumes that rose 2.5-3 km above the crater and drifted N, resulting in ashfall in Toshima village, with smaller amounts in Yakushima, Mishima, Ibusuki, Minamikyushu, and Makurazaki. An explosion at 0617 on 21 August resulted in an ash plume 3.2 km above the crater that drifted N; a large amount of ash (over 1 mm) was detected in Toshima village and a smaller amount (less than 0.1 mm) was detected in Makurazaki, Minamisatsuma, Minamikyushu, Kagoshima, Ibusuki, and Hioki. A second explosion that day at 0906 produced an ash plume up to 3.2 km high that drifted N. On 28 August an explosion occurred at 1231 that produced an ash plume 4.8 km above the crater, though weather clouds prevented clear views of the summit.

Explosions persisted during September, with ash plumes rising 2.4-5.4 km high. Some crater incandescence was visible at night, which was also detected in Sentinel-2 infrared satellite imagery on clear weather days (figure 69). On 17 September explosions were detected at 0212 and 0218, which ejected material 1 km SE from the crater. JMA raised the Alert Level to 3 at 0235. On 20 September an explosion ejected material as far as 1.2 km SE from the crater. An eruptive event at 0711 on 26 September produced an ash plume that rose 5.4 km high, though weather clouds prevented a clear view of the summit. As a result, ejecta traveled 800 m from the crater and a large amount of ash was reported in Toshima village.

Figure (see Caption) Figure 69. A thermal anomaly (bright yellow-orange) and occasional gray ash plumes were recorded in Sentinel-2 satellite imagery at Suwanosejima on 23 September (top left), 28 October (top right) 2021, 26 January (bottom left), and 12 March (bottom right) 2022. The size of the hotspot visibly decreased during 2022. Image uses Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

During October, frequent explosions continued, generating ash plumes up to 3.3 km high and ejecting bombs as far as 1.1 km from the crater. Occasional crater incandescence was noted at night, as well as ashfall in Toshima village. On 26 October an explosion at 1317 produced an ash plume that rose 3.3 km above the crater and ejected material was reported up to 1.9 km from the crater (figure 70). Similar activity continued in November with explosions that produced ash plumes 1.2-2.7 km above the crater. Large volcanic bombs were ejected 800 m from the crater and occasional ashfall was reported in Toshima village. During late November crater incandescence was visible nightly.

Figure (see Caption) Figure 70. Photo of an eruption plume rising 3.3 km above Suwanosejima at 1317 on 26 October 2021. Courtesy of JMA (Volcanic activity commentary for Suwanosejima, October 2021).

Explosions during December generated ash plumes 1.5-3.1 km high and ejected large blocks as far as 800 m from the crater. Some ash plumes rose 1-3.4 km high in early December but were not associated with explosive events. Occasional crater incandescence was visible at night. Hundreds of explosions persisted during January 2022 with ash plumes rising 1.4-3 km high and nighttime crater incandescence. Material was ejected 1.1 km from the crater. During the latter half of the month, rumbling sounds and ashfall were reported in Toshima village.

Figure (see Caption) Figure 71. Photo of crater incandescence from Suwanosejima at 0106 on 9 January 2022. Courtesy of JMA (Volcanic activity commentary for Suwanosejima, January 2022).

Similar activity continued during February and March with intermittent explosions and ash plumes rising 1.3-2.8 km high. Bombs were ejected 900 m from the crater and crater incandescence persisted. Ashfall also was also intermittently reported in Toshima village.

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Lewotolok (Indonesia) — March 2022 Citation iconCite this Report

Lewotolok

Indonesia

8.274°S, 123.508°E; summit elev. 1431 m

All times are local (unless otherwise noted)


Strombolian activity persisted with ash plumes during August 2021-January 2022

Lewotolok (also known as Lewotolo) is located on the island of Lembata (Lomblen) in the Lesser Sunda Islands of Indonesia. The current eruption period began in late November 2020 and has been recently characterized by explosions with ash emissions rising up to 1.5 km above the summit and incandescent ejecta. A cone had formed in the summit crater over the SE rim, which contains a smaller crater. Intermittent thermal activity was also visible in satellite imagery according to MIROVA data, MODVOLC, and Sentinel-2 infrared data. This report covers similar explosive activity during August 2021 through January 2022 with information provided by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), MAGMA Indonesia, and satellite data.

Intermittent ash plumes were reported rising to a maximum of 2.1 km above the summit; incandescent ejecta was also observed rising hundreds of meters above the summit and extending a similar distance from the crater. Thermal anomalies in MIROVA data indicated pulses of higher activity during late June to early July, and again in October through November (figure 27). Sentinel-2 infrared satellite imagery provided thermal and visual evidence of thermal activity inside the summit crater on multiple occasions (figure 28). According to data from the MODVOLC thermal algorithm, a total of eight hotspots were detected on 8, 13, 15, 17, 20, and 22 October, and 9 November.

Figure (see Caption) Figure 27. Periods of increased thermal activity at Lewotolok were shown on the MIROVA graph (Log Radiative Power) during late June-early July and October-November 2021. Few low-power anomalies were also detected during January 2022. Courtesy of MIROVA.
Figure (see Caption) Figure 28. Occasional thermal anomalies were detected at the summit of Lewotolok on 31 August (top left), 5 October (top right), 24 November (bottom left) 2021, and 3 January (bottom right) 2022. Two distinct anomalies were present on 24 November and 3 January. Sentinel-2 satellite imagery uses Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Daily white, gray, and black emissions rose 50-2,000 m above the summit during August. Occasional banging noises were also reported. On 10 August an eruption at 0729 produced an ash plume that rose 1.5 km above the summit and drifted S (figure 29). Incandescent material was ejected 200-350 m radially from the summit and was accompanied by banging noises. Ash plumes on 11 and 13 August rose 2 km and 1 km above the summit, respectively, both of which drifted W. During 15-16 August incandescence was observed from the SW part of the crater. On 18 August an ash plume at 1820 rose 1 km above the summit and drifted W and material was ejected 500 m SE. Ash plumes rose 1.2-1.5 km above the summit and drifted generally W on 22, 24, and 26 August.

Figure (see Caption) Figure 29. An ash plume rose 1.5 km above the summit of Lewotolok and drifted S on 10 August 2021. Courtesy of MAGMA Indonesia and PVMBG.

Similar activity during September was characterized by daily white, gray, and black emissions rising 50-700 m above the summit. Ash plumes rose 200-600 m above the summit. Incandescent material was ejected as high as 300 m above the summit during 1-2 September. Some incandescent material traveled as far as 1 km to the SE on 5 September (figure 30). On 15 September an ash plume rose 600 m above the summit and during 15-16 September incandescent material was ejected 100-300 m above the summit to the E (figure 31). Crater incandescence was visible on 17 September, followed by incandescent ejecta as high as 300 m above the summit that was reported on 18, 19, and 21 September.

Figure (see Caption) Figure 30. Incandescent material from Lewotolok traveled as far as 1 km to the SE on 5 September 2021. Courtesy of MAGMA Indonesia and PVMBG.
Figure (see Caption) Figure 31. Incandescent material from Lewotolok was ejected 100-300 m above the summit to the E on 15 September 2021. Courtesy of MAGMA Indonesia and PVMBG.

During October white, gray, and black emissions rose 50-1,000 m above the summit. Ash plumes were reported rising as high as 1 km above the summit. Rumbling and banging sounds were reported daily. On 1 October an ash plume rose 800 m above the summit and drifted W and incandescent ejecta during 1-2 October rose 300 m above the summit (figure 32). During 3-5 October incandescent material was ejected as far as 700 m from the vent in multiple directions. On 6 October material was ejected as far as 1 km to the SE and 300 m to the SW; an associated ash plume at 1723 rose 600 m above the summit. A VONA stated that on 7 October an ash plume rose 1.9 km above the summit and drifted W. Daily incandescent ejecta were detected during 8-16 October rising up to 300 m above the crater, one event of which moved to the SE. On 11 October there were 24 eruption events reported with ash emissions rising 200 m above the summit, and during 13-15 October there were a total of 77 eruption events with similar ash emissions up to 1 km above the summit. An ash plume at 0548 on 25 October rose 2.1 km above the summit. Incandescent pulses and weak rumbling sounds were reported on 30 October.

Figure (see Caption) Figure 32. Incandescent ejecta rose as high as 300 m above the summit of Lewotolok on 1 October 2021. Courtesy of MAGMA Indonesia and PVMBG.

White, gray, and black emissions persisted in November, rising 50-2,000 m above the summit. During 1-3 November incandescent material was ejected 100-200 m above the summit, and frequent rumbling and banging sounds were reported. On 6 October there were 16 eruption events that produced white and gray emissions 200-300 m above the summit; rock avalanches and crater incandescence were also observed (figure 33). Incandescent material was frequently ejected as far as 400 m away from the vent in multiple directions. During 19-20 November incandescent material was ejected 200 m E from the vent and crater incandescence remained visible during 22-30 November. On 24-25 and 30 November incandescent material was ejected 200-500 m above the summit to the E and SE.

Figure (see Caption) Figure 33. Incandescent material and rock avalanches were visible above the Lewotolok summit on 6 October 2021. Courtesy of MAGMA Indonesia and PVMBG.

Activity continued during December, with white, gray, and black emissions rising 50-800 m above the summit. During 7-8 December incandescent material was ejected 300 m above the summit; faint rumbling accompanied this activity. On 13, 14, and 15 December ash plumes rose to 500 m, 700 m, and 600 m above the summit, respectively (figure 34). Incandescent material was ejected on multiple days during 15-29 December as high as 300 m in different directions. Ash plumes on 25 and 27 December rose 500 m and 400 m above the summit, respectively.

Figure (see Caption) Figure 34. An ash plume rose 500 m above the summit of Lewotolok on 13 December 2021. Courtesy of MAGMA Indonesia and PVMBG.

During January 2022, white, gray, and black emissions rose as high as 600 m above the summit and drifted E and SE and incandescent material was ejected 300 m from the vent, accompanied by rumbling. At 0848 on 11 January an ash plume rose 700 m above the summit and drifted E (figure 35). During 11-14 January ash plumes also rose as high as 700 m above the summit, drifting E, SE, and W.

Figure (see Caption) Figure 35. An ash plume rose 700 m above the summit and drifted E from Lewotolok on 11 January 2022. Courtesy of MAGMA Indonesia and PVMBG.

Geologic Background. The Lewotolok (or Lewotolo) stratovolcano occupies the eastern end of an elongated peninsula extending north into the Flores Sea, connected to Lembata (formerly Lomblen) Island by a narrow isthmus. It is symmetrical when viewed from the north and east. A small cone with a 130-m-wide crater constructed at the SE side of a larger crater forms the volcano's high point. Many lava flows have reached the coastline. Eruptions recorded since 1660 have consisted of explosive activity from the summit crater.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Reventador (Ecuador) — March 2022 Citation iconCite this Report

Reventador

Ecuador

0.077°S, 77.656°W; summit elev. 3562 m

All times are local (unless otherwise noted)


Daily explosions and ash plumes with incandescent block avalanches during August 2021-January 2022

Volcán El Reventador is located 100 km E of the main axis of active volcanoes in Ecuador and has had eruptions recorded since the 16th century, characterized by explosive events and lava flows. The most recent eruption began in 2008 and has recently consisted of ash explosions, lava flows, and block avalanches (BGVN 46:08). This report describes daily explosions, ash plumes, incandescent block avalanches, lava flows, and occasional pyroclastic flows and lahars during August 2021 through January 2022, based on daily reports from Ecuador's Instituto Geofisico (IG-EPN), the Washington Volcano Ash Advisory Center (VAAC), and infrared satellite data.

During August 2021 to January 2022, IG-EPN reported daily explosions, gas-and-steam and ash plumes, and frequent crater incandescence, often accompanied by incandescent block avalanches and lava flows. The highest average number of explosions per day was 74 in August, followed by 68 in October (table 14). During January 2022, the average number of daily explosions had declined to 32. Ash plumes rose to a maximum height of 1.7 km above the crater during 2-3 September and 10 October. At night and early morning, frequent crater incandescence was visible, occasionally accompanied by lava flows generally on the S and NE flanks and incandescent block avalanches traveling as far as 800 m from the summit.

Table 14. Monthly summary of explosions and plume heights recorded at Reventador from August 2021 through January 2022. Data courtesy of IG-EPN (August 2021 to January 2022 daily reports).

Month Average number of explosions per day Max plume height above the crater (km)
Aug 2021 74 1.6
Sep 2021 64 1.7
Oct 2021 68 1.7
Nov 2021 57 1.4
Dec 2021 49 1.3
Jan 2022 32 1.4

Summit crater activity was relatively similar during August and September 2021. There were 34-100 daily explosive events during these two months, which generated gas-and-steam and ash plumes that rose 300-1,700 m above the crater that drifted in multiple directions. At night, crater incandescence was frequently visible and incandescent block avalanches intermittently traveled 300-800 m down all the flanks, but primarily the NE and SE flanks. A lava flow was observed descending the S and NE flank during 2-3 August. On 12 August an ash plume rose as high as 1.6 km above the crater (figure 149). An active lava flow was detected on the NE flank during the afternoon of 12 August through the late morning of 13 August. During 2-3 September ash plumes varied from 1.4-1.7 km above the crater and drifted SW and W (figure 149). Incandescent blocks during 29-30 November were observed rolling down the E flank for about 800 m and accompanied crater incandescence.

Figure (see Caption) Figure 149. Webcam images of gas-and-ash plumes rising as high as 1.6 km above the crater on 12 August 2021 (left) and 1.7 km above the crater and drifting W and SW on 3 September 2021 (right). Courtesy of IG-EPN (INFORME DIARIO DEL VOLCAN REVENTADOR No. 2021-225, 12 de agosto de 2021 and INFORME DIARIO DEL VOLCAN REVENTADOR No. 2021-247, 03 de septiembre de 2021).

During October and November, daily explosions continued, with 8-105 per day and resulting gas-and-ash plumes that rose 100-1,700 m above the crater and drifted in different directions. Nighttime crater incandescence was frequently visible, accompanied by occasional block avalanches that descended 300-800 m down all the flanks, especially the S and SE flanks. According to Washington VAAC reports, ash emissions rose as high as 1.7 km above the summit and drifted NW and W on 2 and 8-10 October 2021 (figure 150). A pyroclastic flow was captured descending the S flank at 0617 on 25 October 2021 (figure 151). Ashfall was reported in Gonzalo Pizarro on 27 October. On 7 November an ash plume rose 1.2 km above the summit and drifted W and SW (figure 150). During 8-9 November ash emissions rose as high as 1.4 km above the summit and drifted SW and N, according to a Washington VAAC notice. Some light ashfall was reported during the morning of 12 and 14 November in San Luis del El Chaco. A lava flow was detected on the NE flank advancing slowly during 14-16 November.

Figure (see Caption) Figure 150. Webcam image of a gas-and-ash plume that rose 1.7 km above the summit on 10 October 2021 (left) and 1.2 km above the summit on 7 November 2021 (right). Courtesy of IG-EPN (INFORME DIARIO DEL VOLCAN REVENTADOR No. 2021-277, 10 de octubre de 2021 and INFORME DIARIO DEL VOLCAN REVENTADOR No. 2021-312, 07 de noviembre de 2021).
Figure (see Caption) Figure 151. Webcam image of a pyroclastic flow descending the S flank of Reventador at 0617 on 25 October 2021. Courtesy of IG-EPN (INFORME DIARIO DEL VOLCAN REVENTADOR No. 2021-299, 25 de octubre de 2021).

Activity persisted during December and January 2022, characterized by 7-103 daily explosions, frequent ash plumes, and crater incandescence; however, weather and clouds in January often prevented clear views of the summit. Ash plumes rose 500-1,400 m above the summit and drifted in different directions, especially W, SW, and NW. Nighttime crater incandescence was occasionally accompanied by incandescent blocks that descended 300-800 m on all sides of the volcano, including the S, SE, and NE flanks. On 1, 2, and 15 December ash plumes rose 1.3 km above the summit and drifted W and SW, respectively. An active lava flow was reported traveling down the N flank during 1-2 and 25-26 December. During the night of 13 December and during 16-19 and 22-27 December, a lava flow descended the NE flank, based on data from surveillance cameras (figure 152). A lava flow on the E flank was reported during 14-15 and 23-24 January. On 4, 29, and 30 January ash plumes rose 1.4 km above the summit and drifted S and SE.

Figure (see Caption) Figure 152. Thermal image of an active lava flow descending the NE flank of Reventador at 0720 on 25 January. Courtesy of IG-EPN (INFORME DIARIO DEL VOLCAN REVENTADOR No. 2021-025, 25 de enero de 2022).

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed intermittent thermal anomalies of varying intensity during April 2021 through January 2021, which reflected the active lava flows and incandescent block avalanches occurring throughout that time (figure 153). In comparison, the MODVOLC thermal algorithm 37 thermal anomalies were detected by the MODVOLC thermal algorithm on 4 and 20 August, 5, 14, and 28 September, 1, 2, and 3 October, 4, 17, 22, 24, and 29 November, 31 December 2021, and 2, 7, and 9 January 2022. Some thermal anomalies and incandescent avalanches on the NE flank were visible in Sentinel-2 infrared satellite imagery, though clouds often obscured the view of the summit (figure 154).

Figure (see Caption) Figure 153. Frequent thermal activity was detected at Reventador at varying levels during August 2021 through January 2022, based on this MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 154. Sentinel-2 infrared satellite images of Reventador on 4 August (top left), 2 December (top right), 12 December (bottom left), and 27 December (bottom right) 2021 showing a strong thermal anomaly at the summit crater. On 12 December an incandescent block avalanche could be seen through the clouds descending the NE flank. Images with “Atmospheric penetration” (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.

Geologic Background. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Information Contacts: Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Hunga Tonga-Hunga Ha'apai (Tonga) — March 2022 Citation iconCite this Report

Hunga Tonga-Hunga Ha'apai

Tonga

20.536°S, 175.382°W; summit elev. 114 m

All times are local (unless otherwise noted)


Surtseyan explosions with eruption plumes during 14-15 January 2022

The Hunga Tonga-Hunga Ha’apai volcano includes the small islands of Hunga Tonga and Hunga Ha’apai along with shallow reefs along the caldera rim of a much larger submarine edifice in the western South Pacific Ocean (see figure 25; BGVN 47:02), west of the main inhabited islands in the Kingdom of Tonga. It is one of 12 confirmed submarine volcanoes along the Tofua Arc, a segment of the larger Tonga-Kermadec volcanic arc. The Tonga-Kermadec arc formed as a result of subduction of the Pacific Plate beneath the Indo-Australian Plate. The capital city of Tonga, Nuku’alofa, is located 65 km S on the island of Tongatapu. New Zealand lies 2,000 km S, and Australia is over 3,000 km SW.

The first recorded eruption at this site occurred in 1912, followed by an eruption in 1937, and then S of the islands in 1988. In 2009 a short eruption increased the land area at Hunga Ha’apai; around this time the two islands were each about 2 km long (BGVN 34:03). During December 2014 through January 2015 eruptive activity added land between the islands, creating the merged Hunga Tonga-Hunga Ha’apai island (BGVN 40:01). Major Surtseyan explosions and eruption plumes were detected beginning in late December 2021, which initially reshaped the central part of the combined island (BGVN 47:02) before stronger activity on 14 January 2022 removed most of the 2014-2015 material. The next day, 15 January, an even larger eruption generated a plume that reached at least 20 km altitude, caused a tsunami across the Pacific Ocean, and triggered shock waves through the atmosphere; only small remnant of the islands remained visible above the ocean surface. This report will update details of the large 14-15 January 2022 events using information primarily from the Tonga Geological Services (TGS), Tongan and New Zealand news outlets, the Wellington and Darwin Volcanic Ash Advisory Centers (VAAC), and various satellite data.

Activity during 1-13 January 2022. According to observations of satellite images, little eruptive activity was detected during 1-2 January. On 2 January a Sentinel-2 natural color image showed green-yellow discolored water in the area west of the volcano, accompanied by white gas-and-steam emissions drifting NE on the SW end of the westernmost island (figure 44). Pumice rafts roughly 10 m wide were also visible in Sentinel-2 satellite imagery, drifting about 100 km W of the volcano on 2 January (see figure 41; BGVN 47:02). The surface area of the island had grown from approximately 2 km2 on 10 December 2021 to 3.6 km2 on 2 January 2022. The vent was estimated to be at 90 m elevation and the base of the active cone had grown from 500 to 1,700 m wide.

Figure (see Caption) Figure 44. A Sentinel-2 satellite image showing green-yellow discolored water surrounding the area to the W of Hunga Tonga-Hunga Ha’apai captured on 2 January 2022. Some white gas-and-steam emissions are visible rising from the SW end of the island. Image uses “Natural color” rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

A small ash plume was detected during 2220-2230 on 3 January that rose to 6-7 km altitude and drifted 5-10 km NE, according to TGS (figure 45). At 2230 the plume decreased in altitude to 5 km. During 3-4 January a cyclone passed through the area, obscuring views of the volcano. A minor ash plume was again detected between 0000 and 0010 on 5 January, which rose to 8 km altitude and drifted 15 km NE; by 0010 the plume had drifted 18 km ENE. Some pumice had washed up on the northwestern beaches of Tongatapu Island on 5 January (see figure 42; BGVN 47:02) and a sulfurous odor was reported on the Nuku’alofa waterfront on 6 January.

Figure (see Caption) Figure 45. HIMAWARI-8 AHI satellite images captured a small ash plume rising 5-10 km NE from Hunga Tonga-Hunga Ha’apai (purple box) at 2220 (left) and 2230 (right) on 3 January 2022. At 2220 the plume rose to 6-7 km altitude and by 2230, it had decreased to 5 km, based on the color scale on the bottom right of each image. Courtesy of Tonga Geological Services.

Activity during 14 January 2022. A sub-aerial eruption that began at 0420 on 14 January generated a mushroom-shaped eruption plume consisting of gas-and-steam and ash which was 5 km wide at the base and rose to the stratosphere, 18-20 km altitude, according to TGS (figure 46). The plume expanded radially to 240-260 km diameter and extended over Tongatapu (70 km S), ‘Eua (106 km SSE), Ha’apai (130 km NE), and Vava’u (270 km NNE). Geologists on a boat observed Surtseyan pulses ejecting dark, dense material into the air and pyroclastic flows expanding over the ocean around 1700-1830 (figure 47). The activity removed approximately the middle third of the island that had been enlarged over the previous weeks, according to analysis of a Planet Labs satellite image acquired at 1525 on 15 January (figure 48).

Figure (see Caption) Figure 46. A massive eruption plume rising above Hunga Tonga-Hunga Ha’apai was captured by the GOES-17 satellite (NOAA) at 0640 on 14 January 2022. The plume rose above 16 km altitude and expanded radially at the top to 240-260 km in diameter. Tongan islands are outlined in blue. Courtesy of CIMSS and SSEC.
Figure (see Caption) Figure 47. Successive photos of the explosion at Hunga Tonga-Hunga Ha’apai taken at 1712 (top), 1727 (middle), and 1816 (bottom) on 14 January 2022. The view at 1712 is towards the NE with the volcano in the foreground. The photo at 1727 looks E with Hunga Ha’apai in the foreground and Hunga Tonga on the far right. In the 1816 image the view is to the N with Hunga Ha’apai to the left of the plume. The plume measures 5 km wide at the base and rises to 18-20 km altitude in each of these photos. Courtesy of Tonga Geological Services.
Figure (see Caption) Figure 48. The center section of Hunga Tonga-Hunga Ha’apai became submerged as a result of the large explosion on 14 January 2022. It is surrounded by green-yellow discolored water and gray-brown pumice rafts. Image courtesy of Tanya Harrison, Planet Labs.

A national tsunami warning was issued at 1112 due to abnormal swirling water off the coast of Nuku’alofa, according to a Matangitonga news article. The Tonga Meteorological Services (TMS) also issued tsunami warnings for areas including ‘otu Mu’omu’a in Ha’apai (Nomuka, Mango, Fonoifua), ‘Atataa, ‘Eueiki, and Tongatapu mo ‘Eua. Fluctuating tsunami waves were recorded off the coast of Tongatapu throughout the day; waves reached 200 m inland and rose as high as 15 m in elevation on the Good Samaritan Beach, according to TGS. The highest tsunami wave was recorded around 1800, measuring 30 cm, according to the Nuku’alofa tidal gauge.

The eruption on 14 January continued for more than 12 hours, with the plume reaching 20 km altitude, based on data from HIMAWARI-8 AHI satellite imagery captured between 1410 and 2330. Ashfall was reported on the Mango and Fonoi (75 km ENE) islands of Ha’apai. The eruption plume also contained an estimated sulfur dioxide mass of 0.05 Tg (50 kilotons), based on satellite data. As a result, the smell of sulfur was reported over Tongatapu, Ha’apai, and ‘Eua. Ashfall was reported on many islands, including Fonoi and Mango. All domestic flights in Tonga were canceled on 15 January. By 2230 the altitude of the plume had decreased to 18 km. The Global Lightning Detection Network (GLD360) ground-based network detected 191,309 lightning events from 0334 on 14 January through 0134 on 15 January, or up to 30,000 events per hour.

Activity during 15 January 2022. The eruption was intermittent during 0043 through 0604, according to the Wellington VAAC; plumes rose to 14 km altitude. The Nuku’alofa tidal gauge recorded waves less than 10 cm high through 1000 on 15 January, causing the National Tsunami Warning Centre to cancel the tsunami marine warning for Tongatapu, Ha’apai, and southern Tonga. Based on observations from satellite images, an ash plume rising to 14 km altitude was detected at 0720 on 15 January that drifted downwind to the E from the volcano due to an eruption that lasted 10-15 minutes.

A larger submarine eruption began at 1700 on 15 January from vents just below the surface of the ocean, generating an eruption plume of gas, steam, and some ash. A report from the Wellington VAAC stated that the plume had risen to 15.2 km altitude by 1918; the top of the plume was at least 600 km in diameter by 1903 as seen in satellite images (figure 49). According to news reports and social media posts, residents in Nuku’alofa heard multiple loud booms and saw a large expanding eruption plume that eventually covered all the Tongan islands. The eruptive activity lasted eight minutes.

Figure (see Caption) Figure 49. HIMAWARI-8 satellite image showing the significant eruption plume that rose from Hunga Tonga Hunga Ha’apai taken at 1800 (local time) on 15 January 2022. The top of the plume measured at least 600 km in diameter and rose to at least 20 km altitude, possibly higher. Tongan islands are outlined in blue. Courtesy of CIMSS.

Ashfall eventually measuring several centimeters thick started around 1800 on 15 January and lasted about 10 hours (figure 50), which also affected water tanks and some residents reported having difficulty from breathing the ash in the air. The eruption caused a communications black out across the country, which included damaging the underwater fiber-optic cable providing access to the internet and damage to satellite terminals due to being covered in ash.

Figure (see Caption) Figure 50. Drone image of the tsunami aftermath from the Hunga Tonga-Hunga Ha’apai eruption taken on 16 January 2022. Image shows ashfall in Nuku’alofa. Courtesy of Tonga Geological Services.

During 1719-2300 on 15 January there were almost 400,000 lightning events recorded in the plume by the GLD360 network, with 200,000 of those occurring during 1800-1900. The plume continued to rise to at least 20 km altitude, though other satellite datasets suggested that some of it may have risen as high as 30 km. At 0343 on 16 January the plume was at 19.2 km altitude. Based on volcanic ash advisories issued by the Wellington VAAC and then by the Darwin VAAC, the horizontal extent of the plume grew from 18,000 km2 at 1739 on the 15th to 12 million km2 by 1300 on 19 January. The plume narrowed and lengthened along an E-W axis, moving W over Australia. According to data from the TROPOMI instrument on the Sentinel-5P satellite, a sulfur dioxide plume was detected with a mass of roughly 50 kilotons on 14 January, 420 kilotons that drifted W on 16 January, and 400 kilotons that continued to drift W on 17 January (figure 51).

Figure (see Caption) Figure 51. A large sulfur dioxide plume was released from Hunga Tonga-Hunga Ha’apai on 14 January 2022 (top) that measured roughly 50 kilotons. Significant plumes with a mass of roughly 400-420 kilotons continued to be visible on 16 January (middle) and 17 January (bottom) drifted W. Courtesy of NASA Global Sulfur Dioxide Monitoring Page via Simon Carn.

The explosions produced multiple pressure (shock) waves that rippled through surrounding weather clouds at a rate of 300 m/s, though the pressure wave from the largest explosion propagated across the planet. The sonic boom from this wave was heard at great distances, including within about two hours in New Zealand (2,300 km SW), Samoa, Fiji (500 km NW), Vanuatu, Cook Islands, and Alaska (9,370 km NE km). The pressure wave was also recorded by infrasound and weather instruments worldwide as it circled the Earth, with instruments detecting it again when it arrived from the opposite direction.

Warnings were issued for the N and E coasts of New Zealand’s North Island and the Chatham Islands; multiple boats were destroyed overnight in Tutukaka Marina in Far North (figure 52). According to an RNZ article, more than 120 people had been evacuated from the Far North between 2300 and 0000. Tsunami waves reaching 1.2 m high hit Nuku’alofa during the evening, breaching the shoreline and flooding coastal roads and properties. At Mango Island (75 km ENE), the tsunami waves reached 500 m inland and rose as high as 12 m high, destroying buildings and trees (figure 53). According to the Tongan Navy, tsunami waves that hit Mango Island reached 5-10 m high. According to an official update from the Tongan government on 20 January, tsunami waves reached up to 15 m high, which affected the W coasts of Tongatapu, 'Eua, and Ha'apai Islands and the water depth in the village of Kanokupolu was 1.5 m.

Figure (see Caption) Figure 52. Photos of boats that were damaged by strong tsunami waves during the night of 15 January 2022 as a result of the Hunga Tonga-Hunga Ha’apai eruption and possibly Cyclone Cody at Tutukaka Marina in Far North. Photo by Sam Olley. Courtesy of Radio New Zealand.
Figure (see Caption) Figure 53. Video footage of Mango Island (75 km NE) showing the damage caused by the tsunami waves generated by Hunga Tonga-Hunga Ha’apai from the eruption on 15 January 2022 coupled with an acoustic wave that permeated the atmosphere. The resulting wave measured 12 m high and moved as far as 500 m inland. Traces of the waves can be observed based on the dark brown rings surrounding the coast on the sand. Ashfall lasting 10 hours was also reported after 1800 on the 15th. Footage was captured on 20 January 2022. Video captured by Nikolasi Heni. Courtesy of Tonga Geological Services.

In Japan, around 230,000 people were advised to evacuate across eight prefectures due to the tsunami risk. The resulting waves were recorded in the Kominato district of Amami-Oshima Island in Kagoshima Prefecture at 2355. The waves reached 80 cm in Japan, disrupting train services, flights, and damaging harbors and boats. In Anchorage, Alaska, the US National Weather Service reported maximum waves heights of 20-100 cm on Alaskan coastlines and along the British Columbia coast, waves were 16-29 cm. By the morning of 16 January, the tsunami warning had been extended to the W coast of South Island. Reports indicated that the villages of Sopu, Kolomotua, Kolofo'ou, Ma'ufanga, Patangata were also affected by the tsunami, especially areas near Vuna Road.

Activity during 16-31 January 2022. No new eruptive events were detected after the large explosive eruption on 15 January. A satellite image taken on 18 January showed that most of the previously combined island had been destroyed, leaving only a small part of the NE island of Hunga Tonga (200 m long) and the SW island of Hunga Ha’apai (700 m long) visible above the ocean surface (figure 54). Pumice rafts were visible to the SE of Hunga Ha’apai. The Aviation Color Code was lowered to Green on 19 January. According to the Darwin VAAC, the plume continued to drift W at altitudes between 12.8 and 19.2 km during 19-22 January; the ash was diffuse and difficult to distinguish from meteorological clouds, though the sulfur dioxide signal was stronger. The leading edge of the plume reached the E coast of Africa on 22 January, but by 2150 (local time) the Darwin VAAC noted that ash was no longer detectable.

Figure (see Caption) Figure 54. Following the major eruption on 15 January 2022, this image taken on 18 January shows that most of the previous combined island had been destroyed, leaving only small remnants of the NE island of Hunga Tonga (200 m long) and the SW island of Hunga Ha’apai (700 m long) visible above the ocean surface. A few days after the eruptive activity, pumice rafts were still visible in the area. Images courtesy of Tanya Harrison, Planet Labs.

The Tongan Ministry of Foreign Affairs and Trade confirmed three deaths and multiple people injured following the explosion and tsunami on 15 January. Aerial surveillance images showed that buildings and villages had washed away or been badly damaged, roofs were covered with ash, trees were uprooted, vegetation was brown and damaged, and modified coastlines contained sediment-laden waters. All the houses on Mango Island were destroyed due to the tsunami waves; a few temporary tarpaulin shelters were still visible. Only two houses remained on Fonoifua, and extensive damage was also reported on Nomuka Island (figure 55). Evacuations began on 19 January, which included people on the islands of Mango, Atata, and Fonoifua; about 150 people were evacuated to other islands. About 89 people remained in evacuation shelters on the island of ‘Eua. According to the Tongan government, parts of the W side of Tongatapu, including Kanokupolu, were evacuated after dozens of houses were damaged (figure 55), and in the central district many houses were damaged in Kolomotu'a and on the island of 'Eua. Numerous buildings were reported gone on Atata Island. Roughly 62 survivors were evacuated from Mango Island to Tongatapu on 22 January via a Navy patrol boat. According to a news article from Radio New Zealand, two deaths were reported from a beach in Peru (over 10,000 km) due to high tsunami waves.

Figure (see Caption) Figure 55. Drone images of Nomuka Island (top) and Kanokupolu Village (bottom) showing the damage caused by the Hunga Tonga-Hunga Ha’apai eruption taken on 16 January 2022. Image on the bottom shows the remnants of the Vakaloa Resort. Footage of Nomuka Island was recorded by Nikolasi Heni. Courtesy of Tonga Geological Services.

According to a media release from the Government of Tonga on 21 January, all the islands were affected by ashfall and tsunami waves. A relief flight from New Zealand brought telecommunication equipment and a repair vessel was sent to repair the damaged seafloor fiber-optic cable; domestic flights remained suspended. Dozens of Mw 4.5-5 earthquakes were detected in the vicinity of the volcano after the eruption, at least through 24 January, though the type of earthquake signal was unknown.

Geologic Background. The small andesitic islands of Hunga Tonga and Hunga Ha'apai are part of the western and northern remnants of the rim (~6 km diameter) of a largely submarine caldera located about 30 km SSE of Falcon Island. The topmost sequence of welded and unwelded ignimbrite units from a caldera-forming eruption was 14C dated to 1040-1180 CE (Cronin et al., 2017; Brenna et al. 2022). At least two additional welded pumice-rich ignimbrite units and nonwelded pyroclastic flow deposits, below paleosols and other volcaniclastic deposits, indicated more very large previous eruptions (Cronin et al., 2017; Brenna et al. 2022). Several submarine eruptions have occurred at this caldera system since the first recorded eruption in 1912, including 1937 and S of the islands in 1988. A short eruption in 2009 added land to to Hunga Ha'apai. At that time the two islands were each about 2 km long, displaying inward-facing sea cliffs with lava and tephra layers dipping gently away from the caldera. An eruption during December 2014-January 2015 was centered between the islands, and combined them into one larger structure. Major explosive eruptions in late 2021 initially reshaped the central part of the combined island before stronger activity in mid-January 2022 removed most of the 2014-15 material; an even larger eruption the next day sent an eruption plume high into the stratosphere, triggered shock waves through the atmosphere and tsunami across the Pacific Ocean, and left only small remnants of the islands above the ocean surface.

Information Contacts: Tonga Geological Services, 51 Vaha'akolo Road, Nuku’alofa, Tonga (URL: https://www.facebook.com/tongageologicalservice); Matangi Tonga Online, PO Box 958, Nuku‘alofa, Tonga (URL: https://matangitonga.to/); RNZ (Radio New Zealand) Pacific, PO Box 123, Wellington 6140, New Zealand (URL: https://www.rnz.co.nz); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Wellington Volcanic Ash Advisory Centre (VAAC), Meteorological Service of New Zealand Ltd (MetService), PO Box 722, Wellington, New Zealand (URL: http://www.metservice.com/vaac/, http://www.ssd.noaa.gov/VAAC/OTH/NZ/messages.html); Planet Labs, Inc. (URL: https://www.planet.com/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, MD 20771, USA (URL: https://so2.gsfc.nasa.gov/); Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison, Space Science and Engineering Center, 1225 West Dayton Street, Madison, WI 53706, USA (URL: http://tropic.ssec.wisc.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); 1 News, New Zealand (URL: https://www.1news.co.nz/); Tanya Harrison, Planet Labs, Inc. (URL: https://twitter.com/tanyaofmars); Chris Vagasky, National Lightning Safety Council (URL: https://twitter.com/COweatherman); Simon Carn, Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: http://www.volcarno.com/, Twitter: @simoncarn).


Sangeang Api (Indonesia) — March 2022 Citation iconCite this Report

Sangeang Api

Indonesia

8.2°S, 119.07°E; summit elev. 1912 m

All times are local (unless otherwise noted)


Small ash plume on 17 February 2022

Sangeang Api is a complex volcano on the small island of Sangeang in the Lesser Sunda Islands, Indonesia, consisting of two volcanic cones. After a major explosion in May 2014, activity continued until November 2015, with thermal anomalies indicating possible lava dome growth or lava flows (BGVN 39:02 and 41:10). Another eruptive period during July 2017 into June 2020 included occasional weak ash explosions with ash plumes and emissions, hot material discharged from the summit crater, periods of numerous thermal anomalies, summit incandescence, and infrequent Strombolian activity (BGVN 42:09, 43:11, 44:05, 45:02, and 45:08). The volcano is monitored by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, or CVGHM), the Darwin Volcanic Ash Advisory Center (VAAC), and by various satellites.

The only documented activity during August 2020-February 2022 was an ash plume on 17 February 2022 reported by the Darwin VAAC that rose to an altitude of 4-4.9 km (~3 km above the summit) and drifted SW and WSW. During August 2020-February 2022, Sentinel-2 satellite images during this time were usually obscured by weather clouds, but no thermal signals or volcanic activity were observed when there were clear views. During May 2021 through February 2022, the MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system recorded ten scattered hotspots within 5 km of the summit; the cause of the weak anomalies is unknown.

Geologic Background. Sangeang Api volcano, one of the most active in the Lesser Sunda Islands, forms a small 13-km-wide island off the NE coast of Sumbawa Island. Two large trachybasaltic-to-tranchyandesitic volcanic cones, Doro Api and Doro Mantoi, were constructed in the center and on the eastern rim, respectively, of an older, largely obscured caldera. Flank vents occur on the south side of Doro Mantoi and near the northern coast. Intermittent eruptions have been recorded since 1512, most of them during in the 20th century.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 47, Number 05 (May 2022)

Managing Editor: Edward Venzke

Ambrym (Vanuatu)

New ash eruption with crater incandescence in late January 2022

Erta Ale (Ethiopia)

Intermittent surges of activity at both caldera pit craters, September 2021-April 2022



Ambrym (Vanuatu) — May 2022 Citation iconCite this Report

Ambrym

Vanuatu

16.25°S, 168.12°E; summit elev. 1334 m

All times are local (unless otherwise noted)


New ash eruption with crater incandescence in late January 2022

Ambrym contains a 12-km-wide caldera and is part of the New Hebrides Arc, located in the Vanuatu archipelago. The two currently active craters within the caldera are Benbow and Marum, which have produced lava lakes, explosions, lava flows, ash, and gas emissions. The previous eruption period, which began in May 2008, ended in December 2018 with lava fountains, lava flows, a submarine fissure eruption, and drainage of the lava lake (BGVN 45:03). After those events no eruptive activity was reported until January 2022, which consisted of ash plumes and crater incandescence. This report updates information from April 2020 through March 2022 and describes a short eruption period during 25 January to the beginning of February 2022. Information comes from the Vanuatu Meteorology and Geohazards Department (VMGD) and satellite data.

Activity during April 2020 through December 2021 was relatively low and consisted mainly of gas-and-steam emissions from both Benbow and Marum craters. On 25 January 2022 the Volcanic Alert Level (VAL) was raised from Level 1 to 2 (on a scale of 0-5) due to increased activity beginning around 0400. Significant gas-and-steam emissions were observed rising from Marum, and gas-and-ash emissions rose from Benbow at 0515 (figure 52). A sulfur dioxide plume that exceeded 2 DUs (Dobson Units) was detected on 25 January and drifted SE, following the ash plume, based on data from the Sentinel-5 instrument (figure 53). At night on 25 January, crater incandescence from Benbow was visible in webcam images, which represented a lava flow that had effused from a new vent on the NW part of the crater floor. Incandescence persisted through 27 January, according to VMGD (figure 54).

Figure (see Caption) Figure 52. Webcam image of Ambrym at 0645 on 25 January 2022 showing an ash plume rising above the Benbow crater. Courtesy of VMGD.
Figure (see Caption) Figure 53. A sulfur dioxide plume was detected on 25 January 2022 based on Sentinel-5P data after increased activity, including an ash plume, occurred at Ambrym. The plume drifted SE. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 54. Webcam image showing visible nighttime incandescence coming from the Benbow crater at Ambrym at 2000 on 25 January 2022. Activity was visible through the early morning of 26 January, accompanied by gas-and-steam emissions. Courtesy of VMGD.

By early February, crater incandescence was no longer visible. On 2 February sulfur dioxide emissions were still detected in satellite images and drifted E. According to VMGD, no gas-and-steam emissions were visible from Benbow during early February through April and seismicity had decreased. As a result, the VAL was lowered to Level 1 on 28 April.

Geologic Background. Ambrym, a large basaltic volcano with a 12-km-wide caldera, is one of the most active volcanoes of the New Hebrides Arc. A thick, almost exclusively pyroclastic sequence, initially dacitic then basaltic, overlies lava flows of a pre-caldera shield volcano. The caldera was formed during a major Plinian eruption with dacitic pyroclastic flows about 1,900 years ago. Post-caldera eruptions, primarily from Marum and Benbow cones, have partially filled the caldera floor and produced lava flows that ponded on the floor or overflowed through gaps in the caldera rim. Post-caldera eruptions have also formed a series of scoria cones and maars along a fissure system oriented ENE-WSW. Eruptions have apparently occurred almost yearly during historical time from cones within the caldera or from flank vents. However, from 1850 to 1950, reporting was mostly limited to extra-caldera eruptions that would have affected local populations.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, MD 20771, USA (URL: https://so2.gsfc.nasa.gov/).


Erta Ale (Ethiopia) — May 2022 Citation iconCite this Report

Erta Ale

Ethiopia

13.6°N, 40.67°E; summit elev. 613 m

All times are local (unless otherwise noted)


Intermittent surges of activity at both caldera pit craters, September 2021-April 2022

Ethiopia's Erta Ale basaltic shield volcano has had at least one active lava lake since the mid-1960s, and possibly much earlier. Two active craters (north and south pits) within the larger oval-shaped summit caldera have exhibited periodic lava fountaining and lava lake overflows for many years. During January 2017-March 2020 a vent at the southeast caldera, a few kilometers SE of the summit caldera, produced lava flows that extended many kilometers from the main vents. Since March 2020 pulses of activity from both pit craters in the summit caldera have been recorded in numerous satellite thermal images. This report covers activity from September 2021-April 2022 when both the north and south pits were intermittently active. Information comes primarily from satellite imagery and thermal data, although reports and photographs from ground-based expeditions that periodically visit the site are occasionally available.

Multiple breakouts from persistent lava flows originating at the southeast caldera tapered off in March 2020; after this, intermittent low levels of thermal activity were focused at the N and S pit craters of the summit caldera, with occasional pulses of stronger activity in late November 2020 at the S pit crater and in late March and late May 2021 at the N pit crater (BGVN 46:02, 46:10). A return to more vigorous thermal activity in September 2021 was indicated by MODIS satellite data as an increased number of MODVOLC thermal alerts, increases in the MIROVA log radiative power frequency and intensity (figure 107), and numerous Sentinel-2 satellite images of thermal anomalies. Visitors to the site in December 2021, and January and February 2022, confirmed the active lava lake at the S pit crater.

Figure (see Caption) Figure 107. The Log Radiative Power for thermal activity at Erta Ale increased during September 2021 and remained elevated through April 2022, as seen in the MIROVA graph of activity from 6 June 2021 through April 2022 (top). The MIROVA distance graph (bottom) confirms that all of the activity was located at the N and S pit craters, compared with the earlier flow activity located many kilometers from the summit and southeast calderas (figure 97, BGVN 45:05). Courtesy of MIROVA.

Only a few of the Sentinel-2 satellite images of Erta Ale are cloudy, providing a consistent record of the changes in thermal activity in the summit caldera during the period. The S pit crater had thermal anomalies of varying intensity throughout, but the N pit crater was more intermittent. A very weak anomaly appeared at the N pit on 31 August 2021, but then not again until 10 October. It was larger on 15 October and bright on 30 October. At the S pit, the anomaly was present in all September and October images, and brightest on 20 September. Double anomalies appeared at the S pit for most of October (figure 108). MODVOLC thermal alerts were recorded on four days in September and nine days of October.

Figure (see Caption) Figure 108. A very weak anomaly appeared at the N pit of Erta Ale on 31 August 2021 (top left), but then not again until 10 October. It was larger on 15 October (bottom 2nd from left) and very bright on 30 October (bottom right). At the S pit, the anomaly was present in all September and October images, and brightest on 20 September (top, 2nd from right). Double anomalies appeared at the S pit for most of October (bottom). Sentinel-2 images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

The thermal anomaly was weak at the N pit on 4 November 2021, brighter on 19 November, brightest on 24 November, and very weak or absent on 29 November. It was very bright on 14 December, but absent the other days of December. At the S pit, two anomalies were present in most images, one much brighter than the other, with a similar size and intensity throughout (figure 109). MODVOLC thermal alerts were issued on eleven days during November and six days during December.

Figure (see Caption) Figure 109. The thermal anomaly was weak at the N pit of Erta Ale on 4 November 2021 (top left), brighter on 19 November (top, 2nd from left), brightest on 24 November (top, 2nd from right) and very weak or absent on 29 November (right). It was very bright on 14 December (bottom 2nd from left), but absent the other days of December. At the S pit, two anomalies were present in most images from November and December, one much brighter than the other, with a similar size and intensity throughout the period. Sentinel-2 images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

No thermal anomaly was present at the N pit for all of January or February 2022. At the S pit, a single weak anomaly was present during January, and a brighter single or double anomaly was present throughout February and early March (figure 110). A single MODVOLC thermal alert was issued on 24 January, and alerts were reported on four days during February. A weak thermal anomaly was present at the N pit in the 29 March 2022 image and persisted in all of the April images. Consistent size and intensity double anomalies, one bright and one dim, were present at the S pit in all images for March and April (figure 111). MODVOLC thermal alerts were issued for five days during March and six days during April 2022.

Figure (see Caption) Figure 110. No thermal anomaly was present in satellite images at the N pit of Erta Ale for all of January and February 2022. At the S pit, a single weak anomaly was present during January, and a brighter single or double anomaly was present throughout February and early March. Sentinel-2 images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 111. A weak thermal anomaly was present at the N pit of Erta Ale in the 29 March 2022 image (top right), and persisted in all of the April images (bottom). Double anomalies of consistent size and intensity, one bright and one dim, were present at the S pit in all images for March and April. Sentinel-2 images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Visitors to the S pit crater in late December 2021 and early January 2022 reported that the lake measured about 200 m in diameter and the level was about 30 m below the edge of the crater with fresh lava overhanging the crater rim (figure 112). Two collapses of the crater rim, widening the lake, were observed on 31 December-1 January 2022. In a second visit during 28-29 January 2022 the lake was still about 200 m in diameter with periodic small lava fountains (figure 113). On a 24 February 2022 visit the lava lake showed signs of constant activity with slabs of solidified crust moving around on the surface, bright orange lava in the cracks and spattering of lava a few tens of meters above the lake surface (figure 114).

Figure (see Caption) Figure 112. Visitors to Erta Ale on 31 December-1 January 2022 reported that the crater at the S pit was about 200 m in diameter and the lava lake was about 30 m below the rim, with fresh lava hanging off the crater rim. Photo by Enku Mulugeta, courtesy of Volcano Discovery.
Figure (see Caption) Figure 113. The lava lake at Erta Ale’s S pit crater was still about 200 m wide on 28 January 2022 and active with periodic lava fountains. Photo by Enku Mulugeta, courtesy of Volcano Discovery.
Figure (see Caption) Figure 114. On a 24 February 2022 visit, Erta Ale’s lava lake at the S pit crater showed signs of constant activity with slabs of solidified crust moving around on the surface with bright orange lava in the cracks and spattering of lava a few tens of meters above the lake surface. Photo by Enku Mulugeta, courtesy of Volcano Discovery.

Geologic Background. The Erta Ale basaltic shield volcano is the most active in Ethiopia, with a 50-km-wide edifice that rises more than 600 m from below sea level in the barren Danakil depression. It is the namesake and most prominent feature of the Erta Ale Range. The volcano includes a 0.7 x 1.6 km elliptical summit crater hosting steep-sided pit craters. Another larger 1.8 x 3.1 km wide depression elongated parallel to the trend of the Erta Ale range is located SE of the summit and is bounded by curvilinear fault scarps on the SE side. Fresh-looking basaltic lava flows from these fissures have poured into the caldera and locally overflowed its rim. The summit caldera usually also holds at least one long-term lava lake that has been active since at least 1967, or possibly since 1906. Recent fissure eruptions have occurred on the N flank.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports