Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Merapi (Indonesia) New domes appear in January and February 2021; large explosion on 27 January

Sinabung (Indonesia) Block avalanches, pyroclastic flows, and ash explosions continue through February 2021

Barren Island (India) Ash emissions in November and December 2020, then thermal anomalies through February 2021

Yasur (Vanuatu) Gas-and-ash emissions, SO2 plumes, and thermal anomalies during September 2020-February 2021

Rincon de la Vieja (Costa Rica) Frequent small phreatic explosions through 13 December 2020

Kilauea (United States) New eruption in December 2020 with an active lava lake, lava flows, spattering, and a dome fountain

Pacaya (Guatemala) Increasing activity with ash emissions, explosions, and lava flows on multiple flanks during December 2020-February 2021

Villarrica (Chile) Explosions, ash plumes, crater incandescence, and an active lava lake during September 2020-February 2021

Bezymianny (Russia) Lava dome growth in November 2020 and continuing thermal anomalies

Reventador (Ecuador) Continued ash emissions and incandescent blocks avalanches; new dome and lava flow emerge in August 2020

Popocatepetl (Mexico) Daily low-intensity emissions with ash and persistent tremor during August 2020-January 2021

Pacaya (Guatemala) Explosions continue, and effusive activity increases during August-November 2020



Merapi (Indonesia) — March 2021 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


New domes appear in January and February 2021; large explosion on 27 January

Merapi volcano in central Java, Indonesia, has a lengthy history of major eruptive episodes. Activity has included lava flows, pyroclastic flows, lahars, Plinian explosions with heavy ashfall, incandescent block avalanches, block-and-ash flows, and dome growth and destruction. Fatalities from these events were reported in 1994, 2006, and in 2010 when hundreds of thousands of people were evacuated. Renewed phreatic explosions in May 2018 cancelled airline fights and generated significant SO2 plumes. A new lava dome appeared in early August 2018; gradual dome growth and then destruction was accompanied by rockfalls, block-and-ash flows, periodic explosions, and pyroclastic flows through June 2020. The period from October 2020 through February 2021 is covered in this report and includes the growth of two new domes in early 2021. Information is provided primarily by Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG, which monitors activity specifically at Merapi, the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), and the Darwin Volcanic Ash Advisory Centre (VAAC).

Measurements in late July 2020 showed no change in the dome (BGVN 45:10), though satellite evidence for weak thermal activity near the NW crater rim persisted during August-October 2020 (figure 98). A significant increase in the deformation rate and the appearance of numerous rock avalanches at the end of October led PVMBG to raise the Alert Level from II to III and evacuate hundreds of local residents. During November and December 2020 the deformation rate continued to increase and numerous rock avalanches were reported. Incandescent block avalanches were first reported on 4 January 2021. Block-and-ash flows began on 7 January and increased in frequency throughout the month; a new dome was confirmed that day. The deformation rate decreased significantly as the dome grew in size during January. Hundreds of incandescent block avalanches were recorded through the end of the month. A large explosion on 27 January produced a 12.2-km-high ash plume and a large pyroclastic flow; ashfall was reported in numerous communities. Incandescent block avalanches and block-and-ash flows continued frequently during February 2021; a second dome was reported growing near the center of the summit crater on 17 February.

Figure (see Caption) Figure 98. A very small thermal anomaly was recorded in Sentinel-2 satellite data near the NW crater rim at the summit of Merapi during August-October 2020, along with gas emissions. Images are from 21 August 2020 (top left), 15 September 2020 (top right), 20 October 2020 (bottom left), and 13 January 2021 (bottom right). The January anomaly was much larger, noticeable even through cloud cover, six days after PBBTKG scientists confirmed the presence of a new dome growing near the SW crater rim. Courtesy of Sentinel Hub Playground.

The deformation rate at the summit, shortening determined by Electronic Distance Measurements (EDM) interpreted by PBBTK as inflation related to magma moving towards the surface, remained between 1-2 cm per week during August through early -October with just steam-and-gas plumes rising 150-250 m. During the week of 9-15 October PBBTKG reported a deformation rate of 1 cm/day. Drone photographs confirmed no change in the size or shape of the dome on 18 October 2020. The shortening rate increased to 2 cm/day during 16-22 October and the steam-and-gas plumes rose up to 500 m above the summit; the shortening rate increased to 4 cm/day during 23-29 October. PVMBG reported on 28 October that rock avalanches were heard twice in Babadan and Jrakah over the previous 24 hours, but fog prevented observations.

PVMBG raised the Alert Level from II to III on 5 November 2020 based on an increase in both seismicity and the deformation rate. Rock avalanches were heard that day from Babadan. Analyses of the crater area based on photographs from 30 October and 3 November did not show any morphological changes at the dome. The shortening rate, however, increased to 9-10 cm/day during the first three weeks of the month. Rock avalanches were observed on 8 November on the W flank moving as far as 3 km downslope and moving 2 km on 14 November. Photos comparing the SE flank on 11 and 19 November showed that part of the 2018 lava dome had collapsed. Drone images on 16 November also showed a collapse of part of the crater wall. On 22 November rock avalanches from the crater rim moved 1 km down the W flank. Steam and gas emissions were observed from the Babadan Observation Post rising 200-750 m above the summit during the second half of November (figure 99. A photo analysis on 26 November indicated that part of the 1954 lava dome had collapsed since 19 November. The deformation rate had increased to 11 cm/day by the last week of the month. During overflights on 26 and 27 November BNPB and BPPTKG observers noted many new avalanche deposits on the NW, W, and SW flanks. As of 27 November, there were 2,318 people who had been evacuated from the area around the volcano.

Figure (see Caption) Figure 99. Steam and gas emissions at Merapi were observed from the Babadan Observation Post rising 200-750 m above the summit during the second half of November, including on 25 November 2020 shown here. Courtesy of MAGMA Indonesia Volcano Photo Gallery.

Steam and gas plumes rose 150-400 m above the summit throughout December 2020. Rock avalanches were heard but not seen due to foggy weather during the first few days of the month. On 8 December they were seen falling 200 m upstream of Kali Lamat on the W flank and on 14 December they were observed moving downslope 1.5 km on the NW flank upstream of the Senowo River. Rock avalanches were also observed on 23 December moving 1.5 km down the W flank above Kali Sat ravine and on 31 December moving the same distance above the Senowo River. The deformation rate remained high during December, ranging from 9-11 cm/day through 24 December; it rose to 14 cm/day during the last week. Minor changes were seen in photographs of the summit area, but drone data on 5 and 14 December showed no new lava dome. No lava dome was visible in a clear view of the upper part of the SW flank on 20 December (figure 100); the head of BPPTKG-PVMBG noted that the first observed incandescence in that area was on 31 December.

Figure (see Caption) Figure 100. No lava dome was visible in a clear view of the upper part of the SW flank of Merapi on 20 December 2020, although rock avalanches had occurred a number of times during the month; the head of BPPTKG-PVMBG noted that the first observed incandescence in that area was on 31 December. Courtesy of BPPTKG and MAGMA Indonesia Volcano Photo Gallery.

The deformation rate remained very high at 15 cm/day during the first week of January 2021. Rock avalanches were observed on 1 and 3 January that moved 1.5 km from the summit towards Kali Lamat and Kali Senowo on the W and NW flanks. On 4 January incandescent material was observed with a thermal webcam, and rock avalanches were heard at the Babadan Observation Post (figure 101). Incandescent block avalanches were observed 19 times during 4-7 January, traveling 800 m to the upper reaches of Kali Krasak (figure 102). Four block-and-ash flows occurred on 7 January, moving less than 1 km downslope. Comparison of images between 24 December and 7 January revealed a new lava dome. Hanik Humaida, the head of BPPTKG-PVMBG concluded that incandescent lava had appeared at the bottom of the 1997 dome and noted that incandescence had first been observed late on 31 December. PVMBG issued VONAs on 7 and 9 January reporting block-and-ash flows that produced ash plumes which rose to 3.2 km altitude and drifted SW and NW.

Figure (see Caption) Figure 101. Incandescence from the growth of a new dome at Merapi on the SW flank appeared in a thermal webcam image on 4 January 20201. Courtesy of BPPTKG (Terjadi Peningkatan Aktivitas Vulkanik, Teramati Guguran Lava Pijar di Gunung Merapi, 5 January 2021).
Figure (see Caption) Figure 102. Numerous incandescent blocks fell down the SW flank of Merapi from the new lava dome, seen here on 6 January 2021. Courtesy of BPPTKG and MAGMA Indonesia Volcano Photo Gallery.

Incandescent block avalanches were observed 128 times during the second week of January moving as far as 900 m down the SW flank to the upper reaches of Kali Krasak. Two block-and-ash flows were also reported. On 14 January 2021, the measured volume of the new dome was 46,766 m3 with a growth rate of about 8,500 m3/day. Deformation decreased significantly to a shortening rate of 6 cm/day during the second week of the month. Incandescent avalanches continued at a high rate and were reported 282 times during the third week of January (figure 103); they traveled as far as 1,000 m to the upper reaches of the Kali Krasak and Kali Boyong. Block-and-ash flows were recorded 19 times during 15-21 January moving 1,800 m downslope to the SW (figure 104). Compared to the previous week, as measured on 21 January, the new dome had more than doubled in size to 104,000 m3 with an average growth rate of 8,600 m3/day.

Figure (see Caption) Figure 103. There were 20 incandescent block avalanches that fell up to 1,000 m down the SW flank of Merapi from the new dome on 16 January 2021. Courtesy of BPPTKG.
Figure (see Caption) Figure 104. PVMBG reported a block-and-ash flow (referred to as Awan Panas Guguran or APG) at Merapi that traveled approximately 1,000 m down the SW flank towards Kali Krasak on 18 January 2021. Courtesy of BPPTKG and BNPB (Gunung Merapi Kembali Keluarkan Awan Panas Guguran Sejauh 1.000 Meter, 18 January 2021).

The deformation rate decreased further to less than 1 cm/day by the end of the third week of January. A substantial block-and-ash flow on 19 January that moved 1,800 m down the Krasak and Boyong rivers produced a 500-m-high ash plume that drifted E. According to detikNews, ash fell on 19 January in several villages in Musuk and Tamansari Districts in the Boyolali Regency, and in the Kemalang District in the Klaten Regency (figure 105). The Darwin VAAC reported ash visible in the webcam on 20 and 26 January that drifted downwind close to the summit. Over 200 incandescent block avalanches were observed during the last week of January; the maximum distance traveled was 1,500 m down the SW flank. Block-and-ash flow activity increased significantly during 25-27 January with four flows on 25 January and 13 flows on 26 January which produced ash plumes that rose 300-400 m above the summit and traveled 600-1,500 m down the SW flank. PVMBG reported 31 block-and-ash flows on 27 January that traveled as far as 3 km down the SW flank (figure 106).

Figure (see Caption) Figure 105. Ash from Merapi covered plants in Tegalmulyo Village, in the Klaten Regency on 19 January 2021. Photo by Achmad Syauqi, courtesy of detik.com.
Figure (see Caption) Figure 106. A block-and-ash flow at Merapi with it’s associated ash plume seen here on 27 January 2021 was one of 36 such events reported by BPPTKG that day; they traveled up to 3 km from the summit down the SW flank. Courtesy of BNPB (Gunung Merapi Erupsi Besar, Begini Penjelasan BPPTKG, 27 January 2021).

The volume of the 2021 lava dome on 25 January 2021 was 157,000 m3, but by 28 January it was only 62,000 m3 as a result of block-and-ash flows, explosions, and pyroclastic flows that occurred on 26-27 January. An explosion on 27 January was reported by the Darwin VAAC, based on multiple ground reports of a significant eruption, although meteoric clouds obscured most ground observations. The ash plume rose to 12.2 km altitude, drifted NW, and was visible in satellite images. Ash emissions from a superheated pyroclastic flow rose to 6.1 km altitude and drifted NE (figure 107). Satellite imagery and pilot reports indicated that the 12.2 km ash plume dissipated after about five hours, while the plumes generated by the pyroclastic flow continued moving E at 3.7 km altitude for several more hours. Sand-sized ash was reported in several villages in the Tamansari District in Boyolali Regency on the E flank including the Dukuh Beling area, Sudimoro (Sangup Village), Lanjaran Village, Mriyan and in Boyolali City, Central Java on 27 January. Dense ash was also reported in Tegalmulyo Village; Sruni Village and Cluntang in the Musuk District also reported ashfall.

Figure (see Caption) Figure 107. A significant explosion at Merapi on 27 January 2021 produced an ash plume to 12.2 km altitude that drifted NW and a pyroclastic flow that sent ash to 6.1 km altitude and drifted NE. The pyroclastic flow is seen here from Ngrangkah, Umbulharjo, Cangkringan, Sleman Regency. Photo by Jauh Hari Wawan S, courtesy of detik.com.

Multiple incandescent rock avalanches were observed during the first week of February 2021. They traveled 500-1,200 m down the SW flank. On 4 February the volume of the 2021 lava dome on the SW flank was measured at 117,400 m3; the growth rate since 28 January was 12,600 m3/day. On 8 February, 23 incandescent block avalanches were reported that traveled as far as 1,500 m from the summit down the SW flank upstream of Kali Krasak and Kali Boyong. Six incandescent avalanches were reported on 9 February; webcams indicated multiple daily incandescent block avalanches for the rest of the month. When measured on 11 February, the dome had grown significantly to 295,000 m3 at a growth rate of 48,900 m3/day (figure 108).

Figure (see Caption) Figure 108. The 2021 lava dome at Merapi was located at the head of the SW flank, and was almost 300,000 m3 in size on 11 February, two days before this image taken on 13 February 2021. Courtesy of PVMBG and Rizal.

A drone observation on 17 February noted two lava domes at the summit. The first (the 2021 lava dome) was located on the SW flank and was attached to the 1997 lava dome, and a second new dome had appeared more in the center of the summit crater. Based on calculations from aerial photographs, the dome on the SW flank was 258 m long, 133 m wide, and 30 m high, with a volume of 397,500 m3 and growth rate of 25,200 m3/day. The lava dome in the center of the summit crater was 160 m long, 120 m wide, and 50 m high, with a volume of 426,000 m3 and an average growth rate of 10,000 m3/day. Deformation data showed no changes during February. During 24-27 February one or two block-and-ash flows occurred each day, the largest travelled 1,900 m SW (figure 109). The block-and-ash flow on 25 February 2021 at 1652 local time (WIB) produced traces of ashfall in Kali Tengah Lor, Kali Tengah Kidul, Deles, and Tlukan. The volume of the lava dome on the SW flank on 25 February was 618,700 m3 with a growth rate of 13,600 m3/day.

Figure (see Caption) Figure 109. A block-and-ash flow at Merapi on 27 February 2021 descended hundreds of meters down the SW flank and sent ash drifting E mostly below the level of the summit. Courtesy of BPPTKG and MAGMA Indonesia Volcano Photo Gallery.

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2,000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequent growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1, https://magma.esdm.go.id/v1/gunung-api/gallery); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, https://twitter.com/BPPTKG/status/1350508928740675584); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Detik news (URL: https://news.detik.com/, https://news.detik.com/berita-jawa-tengah/d-5339832/hujan-abu-gunung-merapi-jangkau-desa-di-wilayah-krb-ii-klaten, https://news.detik.com/berita-jawa-tengah/d-5350542/gunung-merapi-erupsi-sirene-bahaya-meraung-warga-turun-ke-tempat-aman, https://news.detik.com/berita-jawa-tengah/d-5350625/gunung-merapi-erupsi-besar-boyolali-diguyur-hujan-abu-campur-pasir?_ga=2.230047007.2076450499.1612195171-14950811.1611700211); Rizal (URL: https://twitter.com/Rizal06691023/status/1360488059649757191).


Sinabung (Indonesia) — March 2021 Citation iconCite this Report

Sinabung

Indonesia

3.17°N, 98.392°E; summit elev. 2460 m

All times are local (unless otherwise noted)


Block avalanches, pyroclastic flows, and ash explosions continue through February 2021

Indonesia’s Sinabung volcano in north Sumatra had its first confirmed Holocene eruption during August and September 2010. It remained quiet until September 2013 when a new eruptive phase began that continued through mid-2018. Dome growth and destruction resulted in block avalanches, multiple explosions with ash plumes, and deadly pyroclastic flows during the period. After a pause in activity from September 2018 through April 2019, explosions resumed during May and June 2019. Dome growth began again with an explosion on 8 August 2020, and similar activity continued through October 2020. This report covers ongoing activity from November 2020 through February 2021 with information provided by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), referred to by some agencies as CVGHM or the Indonesian Center of Volcanology and Geological Hazard Mitigation, and the Darwin Volcanic Ash Advisory Centre (VAAC). Additional information comes from satellite instruments and local news reports.

Activity at Sinabung during November 2020-February 2021 was characterized by tens of daily rock avalanches, periodic pyroclastic flows, and ash-bearing explosions. The rock avalanches traveled up to 1,000 m down the E and SE flanks. The pyroclastic flows also traveled down the E and SE flanks, and the largest reached 2.5 km from the summit. Periodic explosions produced ash plumes that rose up to 2 km above the summit and drifted in multiple directions. Although cloudy much of the time, intermittent satellite images showing two thermal anomalies at the summit suggested that the dome remained active (figure 85).

Figure (see Caption) Figure 85. Two thermal anomalies were present at the summit of Sinabung several times during the report period from November 2020-February 2021, including on 2 December 2020 and 10 February 2021, suggesting ongoing dome activity. In addition, frequent pyroclastic flows produced incandescent anomalies on the E flank multiple times including on 10 February 2021. Sentinel-2 images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

White steam emissions rose 50-500 m above the summit of Sinabung during most days in November 2020. Block avalanches were frequent during the first half of the month, traveling 200-1,000 m down the S and SE flanks. The Darwin VAAC reported small ash plumes from block avalanches on 1 and 2 November that rose to 3 km altitude and quickly dissipated. Clouds prevented observations during the last week of the month, but tens of seismic events interpreted by PVMBG as block avalanches were detected. Pyroclastic flows were either observed visually or measured seismically on 2-7, 10, 12, 16, 18 and 19 November (figure 86). They most often occurred on the E or SE flanks and traveled 1,500-2,500 m. Seismic signals indicating lahars were recorded on 26, 27, and 30 November.

Figure (see Caption) Figure 86. A pyroclastic flow descended the S flank of Sinabung on 7 November 2020. Courtesy of Rizal.

Nine explosions with ash plumes were reported during November 2020. On 2 November a gray ash plume rose 1,500 m above the summit, to about 3.9 km altitude, and drifted E. The next day the Darwin VAAC reported an explosion to 3.7 km altitude that drifted E. An ash explosion on 4 November was recorded seismically for 117 seconds but was not seen due to fog. An explosion on 10 November produced an ash plume that rose 2 km above the summit and drifted E, along with pyroclastic flows that traveled 1,500-2,500 m down the E and SE flanks. On 18 November an explosion created an ash plume that rose to 3.7 km altitude and drifted SW; it was measured seismically as a continuous volcanic tremor that lasted for 160 seconds. Seismic activity confirmed an explosion on 21 November, but meteoric clouds obscured observations of ash. An ash plume drifting SW at 3 km altitude, about 500 m above the summit, was reported on 25 November. On 29 November an explosion produced an ash plume to the same altitude that drifted E (figure 87). The next day seismic activity indicated another explosion, but it was not observed due to cloudy weather.

Figure (see Caption) Figure 87. An ash plume at Sinabung rose to 3 km altitude and drifted E on 29 November 2020. Courtesy of PVMBG and MAGMA Indonesia.

Explosive activity decreased during December 2020. Steam plumes rose 50-500 m and tens of rock avalanches were recorded seismically every day. On 6 December block avalanches rolled 300-500 m down the E and SE flanks; they traveled 500-1,000 m down the SE flank on 8 December. During 12-14 December they traveled 1,000-1,500 m down the E and S flanks. On 30 and 31 December they were seen moving 500-1,000 m down the same flanks. Lahars were measured seismically on 4 and 5 December with no reports of damage.

An explosion on 2 December produced an ash plume that rose about 500 m above the summit and drifted ESE. Clouds and rain prevented views of the summit on 5 December, but the seismogram recorded an explosive event that lasted for 168 seconds (figure 88). The Darwin VAAC reported an ash plume moving ESE at 3 km altitude on 13 December. Sentinel-2 satellite imagery captured a thermal anomaly on the E flank on 17 December that was likely from a pyroclastic flow (figure 89). Two explosions were recorded each day on 28 and 29 December. On the first day the ash plume from the first explosion rose to 500 m and drifted S. The second explosion was not observed due to weather, but a thermal anomaly was intermittently visible. The explosions on 29 December were only recorded seismically, as was one explosion on 30 December.

Figure (see Caption) Figure 88. The KESDM seismogram at Sinabung recorded an explosive event on 5 December 2020 that lasted for 168 seconds. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 89. A thermal anomaly on the E flank of Sinabung on 17 December 2020 was likely from a pyroclastic flow. The summit is obscured by clouds. Sentinel-2 image with Atmospheric penetration rendering (bands 12, 11, and 8a). Courtesy of Sentinel Hub Playground.

Tens of daily rock avalanches continued to be recorded during January 2021, although most were not observed. During 2-5 January they traveled 500-1,200 m down the E and SE flanks, and on 14 January they fell 700-1,000 m down the SE flank. The number of explosions with ash plumes increased significantly from December. On 3 January two explosions were recorded seismically; an ash plume from the first rose 1,000 m above the summit and drifted NW in the morning. A few hours later a second explosion was recorded but not observed due to clouds. Three explosions were recorded each day on 4 and 5 January. The first on 4 January produced a 700-m-high ash plume, the second and third sent ash 1,000 m above the summit to the W and NW (figure 90). The next day, the first explosion sent an ash plume 800 m above the summit that drifted E and SE; the other two were recorded seismically but not observed due to weather. One or two explosions were recorded daily during 6-10 January; most were obscured by clouds. One of the explosions on 8 January produced an ash plume that rose to 700 m and drifted N, and the explosion on 9 January rose to 1,000 m and drifted N and NE. Two explosions were recorded on 12 January, and two or three explosions were reported daily during 16-18 January. Explosions were also recorded on 20-21, 23, 25-27, and 29 January. The three ash plumes on 17 January all rose 500 m above the summit and drifted E, NE, or SE; the plumes on 21 and 27 January rose 500 m and drifted E and SE.

Figure (see Caption) Figure 90. An explosion at Sinabung on 4 January 2021 produced an ash emission that rose 1,000 m above the summit and drifted W and NW. Courtesy of PVMBG and MAGMA Indonesia.

Steam emissions rose 50-700 m above the summit throughout February 2021. Over 100 seismic events from rock avalanches were reported daily; on 6 February a maximum of 231 events were recorded. Numerous explosions, many with pyroclastic flows, were only detected seismically on 5-12, 14, 17, 22, 25, and 28 February. On 6 February the Darwin VAAC reported a continuous ash eruption identified in satellite imagery at 3.1 km altitude drifting NW. PVMBG also reported a pyroclastic flow that traveled 2,500 m down the S flank that day. The Antara News Agency reported an ash plume rising 1,000 m above the summit from a pyroclastic flow and drifting E, SE, and S on 7 February, and another pyroclastic flow on 9 February that traveled 1,000 m down the SE flank (figure 91). Cloudy weather obscured views on most days, but during 12-14 February blocks traveled 500-1,500 m down the S, SE, and E flanks.

Figure (see Caption) Figure 91. A pyroclastic flow traveled 1,000 m down the SE flank of Sinabung on 9 February 2021. Courtesy of Anadolu Agency.

The Darwin VAAC received a report on 10 February of an ash plume at 4.6 km altitude moving E; it was not identifiable in satellite imagery due to meteoric clouds. Two pyroclastic flows on 12 February moved as far as 2,000 m down the E and SE flanks. On 17 February an ash plume rose 1,000 m above the summit and drifted S and W and a pyroclastic flow was reported. A lahar was reported on 21 February. A pyroclastic flow on 22 February traveled 2,000 m down the E and SE flanks. The ash plume from the 25 February event rose to 1,500 m above the summit to about 3.9 km altitude and drifted E and SE (figure 92) and was accompanied by four pyroclastic flows that traveled 500-1,000 m down the E and SE flanks. A discrete ash plume was reported by the Darwin VAAC on 28 February that rose to 3.1 km altitude and drifted SW, dissipating withing six hours. Pyroclastic flow were observed that day moving 1,000-1,250 m down the S, SE, and E flanks.

Figure (see Caption) Figure 92. The ash plume at Sinabung from a 25 February 2021 explosion rose to 1,500 m above the summit and drifted E and SE. Courtesy of PVMBG and MAGMA Indonesia.

Geologic Background. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. The youngest deposit is a SE-flank pyroclastic flow 14C dated by Hendrasto et al. (2012) at 740-880 CE. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Rizal (URL: https://twitter.com/Rizal06691023/status/1324972883634917376); Antara News Agency (URL: https://www.antaranews.com/berita/1986704/guguran-abu-gunung-sinabung-teramati-setinggi-1000-meter); Anadolu Agency (URL: https://www.aa.com.tr/ba/svijet/indonezija-u-vulkanu-sinabung-odjeknula-eksplozija/2138389).


Barren Island (India) — March 2021 Citation iconCite this Report

Barren Island

India

12.278°N, 93.858°E; summit elev. 354 m

All times are local (unless otherwise noted)


Ash emissions in November and December 2020, then thermal anomalies through February 2021

Barren Island, an uninhabited possession of India in the Andaman Sea, had numerous historical eruptions observed during 1787-1832. No further evidence of activity was found until 1991 when ash plumes, Strombolian explosions, and lava flows that reached the ocean were observed. Intermittent similar eruptions since 2005 have lasted for months to years. Its remoteness makes ground observations rare, but satellite data and reports from the Darwin VAAC (Volcanic Ash Advisory Center) suggest that the most recent eruption which began in September 2018 with lava fountaining, lava flows, and ash emissions has continued with intermittent thermal anomalies at the summit and minor ash emissions since early 2019. This report covers activity from July 2020-February 2021.

The MIROVA thermal anomaly data from April 2020 through February 2021 indicate low levels of thermal activity from April through October 2020. Pulses of activity in early November and late January-early February 2021 correspond to increased thermal activity seen in satellite images during that time (figure 47). Ash emissions were reported by the Darwin VAAC in early November and early December 2020. A strong thermal anomaly was present in satellite imagery on 11 November, and moderate anomalies appeared during February 2021. In addition, during November-February faint thermal anomalies and/or small ash emissions were present in one or more satellite images each month.

Figure (see Caption) Figure 47. The MIROVA thermal anomaly data from April 2020 through February 2021 indicate low levels of thermal activity from April through October 2020. Pulses of activity in early November and late January-early February 2021 corresponded to increased thermal activity seen in satellite images. Courtesy of MIROVA.

After a small ash plume was observed on 24 June 2020 in Sentinel-2 satellite imagery (BGVN 45:08), the only evidence of further activity was a very weak thermal anomaly present inside the summit crater of the pyroclastic cone on 19 July 2020. Satellite images were mostly cloudy during August-October 2020, although the few clear images each month showed no sign of thermal anomalies or ash emissions. Single MODVOLC thermal alerts were issued for Barren Island on 2 and 4 November 2020. The Darwin VAAC reported continuous ash emissions drifting SW at 1.5 km altitude on 5 November. A very faint thermal anomaly was present inside the summit of the pyroclastic cone the next day. A large thermal anomaly and small ash plume were captured in satellite images on 11 November (figure 48). The bright anomaly at the center of the cone was surrounded by a weaker anomaly suggesting incandescent ejecta on the flanks of the cone. A smaller thermal anomaly and similar ash plume were visible in the 16 November 2020 Sentinel-2 satellite images (figure 49).

Figure (see Caption) Figure 48. A large thermal anomaly and small ash plume at Barren Island were captured in Sentinel-2 satellite images on 11 November 2020. In the left image the bright anomaly at the center of the cone was surrounded by a weaker anomaly suggesting incandescent ejecta on the flanks of the cone. Image uses Atmospheric penetration rendering (bands 12, 11, 8a). The ash emission immediately W of the summit crater is more visible in the Natural color rendering (right, bands 4,3,2). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 49. A thermal anomaly at the summit and a discrete ash emission slightly W of the summit of Barren Island were captured in Sentinel-2 satellite imagery on 16 November 2020. Left image uses Atmospheric penetration rendering (bands 12, 11, 8a) and right image shows a closeup of the summit and ash plume in Natural color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

The Darwin VAAC issued an ash advisory on 8 December 2020 of an ash plume drifting W at 1.8 km altitude. It was only visible in satellite imagery for about two hours before dissipating. A small thermal anomaly appeared at the summit on 21 December. During January 2021 faint thermal anomalies were visible on 5, 20, and 25 January, and ash plumes could be seen on 15 and 25 January in Sentinel-2 images (figure 50). The strength of the thermal activity increased during February 2021, with satellite evidence recorded on 4, 9, 19, and 24 February; an ash emission was visible on 9 February (figure 51).

Figure (see Caption) Figure 50. Ash plumes and thermal anomalies at Barren Island were present in Sentinel-2 satellite images several times during January 2021. The left image from 15 January shows an ash plume drifting W from the summit using Natural color rendering (bands 4, 3, 2). The right image shows a weak thermal anomaly at the summit on 25 January with an ash plume drifting S using Atmospheric penetration rendering (bands 12, 11, and 8A). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 51. Sentinel-2 satellite images showed thermal anomalies at Barren Island several times during February 2020 including on 4 (left) and 9 (right) February. An ash emission drifted S from the summit on 9 February. Images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Geologic Background. Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S volcanic arc extending between Sumatra and Burma (Myanmar). It is the emergent summit of a volcano that rises from a depth of about 2250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the west, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. Historical eruptions have changed the morphology of the pyroclastic cone in the center of the caldera, and lava flows that fill much of the caldera floor have reached the sea along the western coast.

Information Contacts: Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Yasur (Vanuatu) — April 2021 Citation iconCite this Report

Yasur

Vanuatu

19.532°S, 169.447°E; summit elev. 361 m

All times are local (unless otherwise noted)


Gas-and-ash emissions, SO2 plumes, and thermal anomalies during September 2020-February 2021

Yasur, located at the SE tip of Tanna Island, contains a 400-m-wide summit crater within the small Yenkahe caldera. Its current eruption has been ongoing since at least 1774 and has consisted of Strombolian and Vulcanian activity. More recently, Strombolian activity and gas-and-ash explosions have been reported (BGVN 45:03 and 45:09). This report covers activity from September 2020 through February 2021 that is characterized by ongoing explosions, gas-and-ash emissions, SO2 plumes, and thermal anomalies. Information primarily comes from monthly bulletins of the Vanuatu Meteorology and Geo-Hazards Department (VMGD) and various satellite data.

VMGD reported that ongoing explosions and gas-and-ash emissions continued at an elevated level throughout this reporting period, based on ground observations and seismic data. On clear weather days these emissions were captured by Sentinel-2 satellite imagery (figure 75). Some of the more intense explosions may result in larger ejecta falling in or around the summit crater. On 18 January 2021 a webcam image captured a gas-and-ash emission rising above the crater rim at 1500 (figure 76).

Figure (see Caption) Figure 75. Sentinel-2 satellite images showing gas-and-ash emissions rising from the summit crater of Yasur on clear weather days. Ash is visible during 17 October (left) and 21 December 2020 (middle), while white gas-and-steam emissions are observed on 14 February 2021 (right). Sentinel-2 satellite images with “Natural Color” (bands 4, 3, 2) rendering. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 76. Webcam photo of a gas-and-ash emission rising from Yasur on 18 January 2021 taken at 1500. Courtesy of VMGD.

Sulfur dioxide emissions were measured using the Sentinel-5P/TROPOMI satellite instrument for multiple days each month from September through February 2021 (figure 77). The density and drift direction of these SO2 plumes varied. During 17-19 January relatively dense SO2 plumes were detected consecutively, and drifted SE (figure 78).

Figure (see Caption) Figure 77. Occasional SO2 plumes of varying densities were observed from Yasur during each month of September 2020 through February 2021. Plumes drifted generally W on 28 September (top left), 29 October (top right), 6 December (middle right), 25 December 2020 (bottom left), slightly N on 14 November (middle left), and SW on 19 February 2021 (bottom right). Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 78. Relatively high-density SO2 plumes from Yasur during 17 (left), 18 (middle), and 19 (right) January 2021 were observed consecutively using the TROPOMI imaging spectrometer on the Sentinel-5P satellite. The plumes drifted SE on each of the days. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Intermittent thermal anomalies recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system during September 2020 through February 2021 were low to moderate in power (figure 79). Brief noticeable break in activity occurred during early December 2020 and for much of January 2021. The MODVOLC thermal alert data recorded 41 thermal signatures primarily within the summit crater over a total of 25 different days during September 2020-February 2021. Some of these thermal anomalies were also captured in Sentinel-2 thermal satellite imagery; thermal anomalies were visible in the N and S vents in the summit crater (figure 80).

Figure (see Caption) Figure 79. MIROVA (Log Radiative Power) thermal data for Yasur from 26 May 2020 through February 2021 showed persistent low to moderate thermal activity. A brief but noticeable break in activity occurred during early December, early January, and late January. Courtesy of MIROVA.
Figure (see Caption) Figure 80. Sentinel-2 thermal satellite images showing strong thermal anomalies (yellow-orange) in the N and S vents of the summit crater at Yasur each month from September 2020 through February 2021. During 22 September (top left), 17 October (top right), and 26 November (middle left), the two thermal anomalies in the crater were roughly the same intensity. On 21 December (middle right) the anomaly was accompanied by a small, gray ash plume. On 15 January (bottom left) and 24 February (bottom right) the intensity of the anomaly in the N vent and then the S vent had decreased slightly. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.

Geologic Background. Yasur, the best-known and most frequently visited of the Vanuatu volcanoes, has been in more-or-less continuous Strombolian and Vulcanian activity since Captain Cook observed ash eruptions in 1774. This style of activity may have continued for the past 800 years. Located at the SE tip of Tanna Island, this mostly unvegetated pyroclastic cone has a nearly circular, 400-m-wide summit crater. The active cone is largely contained within the small Yenkahe caldera, and is the youngest of a group of Holocene volcanic centers constructed over the down-dropped NE flank of the Pleistocene Tukosmeru volcano. The Yenkahe horst is located within the Siwi ring fracture, a 4-km-wide, horseshoe-shaped caldera associated with eruption of the andesitic Siwi pyroclastic sequence. Active tectonism along the Yenkahe horst accompanying eruptions has raised Port Resolution harbor more than 20 m during the past century.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Rincon de la Vieja (Costa Rica) — March 2021 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Frequent small phreatic explosions through 13 December 2020

Recent activity at Rincón de la Vieja has been dominated by frequent weak phreatic explosions, with an occasional ash plume, along with gas-and-steam emissions. Sporadic lahars have also been recently reported (BGVN 45:10). The volcano has a hot, churning, acid lake in its main crater. The current report describes activity during October 2020-February 2021, a continuation of the most recent eruptive period that began in January 2020. The primary information source for this report is weekly bulletin from the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA).

According to OVSICORI-UNA, small but frequent hydrothermal explosions continued in October through mid-December 2020, although less energetic than during previous months (figure 34). During the first half of October there were 1-2 daily small explosions. Plumes often rose 500-800 m above the crater rim, but on 1 and 6 October they rose 1 km. Then the number briefly increased to 5-7 small daily explosions before decreasing during the latter part of October; one explosion seen in webcam images on 24 October sent a plume to 1 km above the crater (figure 35).

Figure (see Caption) Figure 34. Graph showing the number of daily eruptions at Rincón de la Vieja during 2020. Following frequent phreatic explosions during April-June, weak intermittent explosions were detected again starting in late July and continuing through December 2020. Courtesy of OVSICORI-UNA.
Figure (see Caption) Figure 35. Webcam photo of Rincón de la Vieja taken on 24 October 2020 at 0808 local time. According to OVSICORI-UNA, the explosion lasted for about a minute and the resulting plume rose to 1 km above the crater. Courtesy of OVSICORI-UNA, as reported by The Nacion.

OVSICORI-UNA reported that in November small-to-moderate hydrothermal explosions increased in amplitude, but became more sporadic and by the end of the month had decreased to only one per day. An explosion at 0835 on 3 November produced a plume that rose 800 m above the crater rim. According to OVSICORI’s weekly bulletin for 23 November, there had been 1,437 explosions since the beginning of 2020. A large explosion on 13 December was the last through at least February 2021. During the week of 18 January OVSICORI changed the Alert Level from 3 to 2 due to the low level of activity.

Geodesic monitoring at the summit by GPS indicated no deformation trend in October, significant contraction in November, some extension in December, but then no significant changes through at least February 2021. Aerial observations on 13 February indicated that the crater lake was at a low water level and had sustained convection. The lake level had dropped 15-20 m since February 2020, and 5-10 m since May 2020. Gas monitoring during October 2020-February 2021 was carried out at the Ojo de Agua Santuarium (4 km N of the active crater); sulfur dioxide in the plume was not detected in significant quantities.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/, https://www.facebook.com/OVSICORI/); The Nacion (URL: https://www.nacion.com/).


Kilauea (United States) — March 2021 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


New eruption in December 2020 with an active lava lake, lava flows, spattering, and a dome fountain

Kilauea, which overlaps the E flank of the Mauna Loa shield volcano, is the southeastern-most volcano in Hawaii. It’s East Rift Zone (ERZ) has been intermittently active for at least 2,000 years; the most recent eruption period began in January 1983 and was characterized by open lava lakes and lava flows from the summit caldera and the East Rift Zone. During May 2018 lava migrated into the Lower East Rift Zone (LERZ) and opened 24 fissures along a 6-km-long NE-trending fracture zone that produced lava flows traveling in multiple directions. Lava fountaining was reported in these fissures and the lava lake in the Halema’uma’u crater drained (BGVN 43:10).

September 2018 marked the end of the previous eruption period after 36 years of continuous activity. A new eruption began during December 2020 in the Halema’uma’u crater, characterized by a new lava lake, lava flows, lava fountaining, and gas-and-steam emissions. This report covers the activity from December 2020 through January 2021 using information provided from the US Geological Survey's (USGS) Hawaiian Volcano Observatory (HVO) in the form of daily reports, volcanic activity notices, and abundant photo, map, and video data.

Monitoring through mid-December 2020. Monitoring data from HVO since the end of the previous eruption in September 2018 included variable rates of seismicity and ground deformation, low rates of sulfur dioxide emissions, and minor morphological changes. Areas of elevated ground temperatures and minor gas emissions persisted in the vicinity of the 2018 LERZ fissures. Since March 2019, GPS stations and tiltmeters at the summit had detected deformation consistent with slow magma accumulation approximately 1-2 km below ground level. In addition, GPS stations in the upper ERZ recorded increased rates of uplift beginning in September. The HVO seismic network recorded 1,450 earthquakes in September, a significant increase over previous months, followed by another increase to 2,100 events in October. The pond at the bottom of the Halema’uma’u crater, which appeared on 25 July 2019, continued to collect water over time, slowly expanding and deepening from 23 m in early January 2020 to 48 m by 3 November 2020 (figure 467).

Figure (see Caption) Figure 467. Photos comparing the growth of the water lake in the Halema’uma’u crater at Kilauea on 18 December 2019 (left) and 23 September 2020 (right). During this time, the lake had risen approximately 25 m and had a surface area of 0.033 km2, compared to December 2019 (0.011 km2). Photos taken from the E rim of Halema’uma’u by K. Mulliken and M. Patrick; courtesy of USGS HVO.

The number of earthquakes detected in November was 1,350, less than what was recorded in October. By late November seismic stations recorded an average of at least 480 shallow, small-magnitude, earthquakes per week underneath the summit and upper ERZ; during 29-30 November HVO recorded over 80 earthquakes beneath the summit, beginning at 2300 on 29 November and continuing for 11 hours. On 2 December, spikes in seismicity were reported, consistent with a small dike intrusion under the S part of the caldera; tiltmeters at the summit detected about 8 cm of caldera floor uplift. At 1745 earthquakes intensified and another spike occurred after 0000 to an average rate of 10-12 earthquakes per hour. Within 24 hours, up to 220 earthquakes were recorded, occurring in clusters under the caldera and upper ERZ, according to HVO. By the afternoon of 3 December, seismicity and ground deformation rates at the summit had decreased and returned to near background levels. On 17 December, the number and duration of long-period seismic signals increased.

Eruptive activity during 20-21 December 2020. On the evening of 20 December at 2030 an earthquake swarm was recorded, accompanied by ground deformation detected by tiltmeters. Shortly after 2130 HVO reported an orange glow within the Halema’uma’u crater at Kilauea’s summit caldera, observed on an infrared monitoring camera, as well as a vigorous gas-and-steam plume, which marked the beginning of the eruption. At 2236 an M 4.4 earthquake was detected below the S flank. The Volcano Alert Level (VAL) was raised to Warning and the Aviation Color Code was raised to Red.

An HVO Volcanic Activity Notice issued on 21 December at 1014 stated that the water lake in the summit crater had boiled away due to new effusive activity, producing a large gas-and-steam emission (figure 468). Three vents in the N, NW, and W walls of the Halema’uma’u crater generated lava flows that fed a growing lava lake at the base of the crater (figure 469). Minor lava fountaining at these vents rose 25 m high; the highest fountain reached 50 m high in the N fissure. The lava lake began rising several meters per hour since the start of the eruption and exhibited a circulating perimeter, but a stagnant center (figure 470). Occasional blasts originated from the ponded lava in the crater. The eruption was confined to the Halema’uma’u crater. On 21 December the VAL was lowered to Warning and the Aviation Color Code decreased to Orange. Sulfur dioxide emission rates remained high at around 30,000 tons/day. In comparison, the emission rates from the pre-2018 lava lake ranged between 3,000-6,500 tons/day.

Figure (see Caption) Figure 468. Webcam image of the summit of Kilauea at 0630 on 21 December 2020. The water lake had been replaced by a lava lake as fissure vents in the wall of Halema’uma’u effused lava into the crater. Strong gas-and-steam emissions were visible. Courtesy of HVO.
Figure (see Caption) Figure 469. Map of the Halema’uma’u crater at Kilauea showing the location of volcanic activity shortly after 2130 on 20 December 2020. The red spots are the approximate locations of the three initial fissure vents effusing lava into the bottom of the Halema’uma’u crater. The water lake at the base of the crater had been replaced with a growing lava lake. The lava is deeper by at least 10 m compared to the water lake in this base map. The base map is from imagery collected on 23 September 2020. The eastern-most vent was characterized by lava fountains up to 50 m high with minor fountaining on the W side. Courtesy of HVO.
Figure (see Caption) Figure 470. Aerial view of the summit of Kilauea during an overflight at 1120 on 21 December 2020 showing two active fissure vents that effused lava into the growing lava lake in the Halema’uma’u crater. The N fissure (right-most) is the dominant stream of lava. The fresh cooling lava appears black, surrounding the center of the lake, which was described as stagnant. Courtesy of HVO.

Activity during 22-25 December 2020. The effusive eruption continued on 22 December from at least two vents on the N and W sides of Halema’uma’u; the third vent between the N and W vents paused between 0730 and 0800. The middle and W vents became inundated by the growing lava lake, while the northern-most vent remained vigorous. As of 1151 the crater lake had grown to 487 m below the crater rim, which suggests that the lake had filled 134 m from the crater floor; the rate at which the lake rose was more than 1 m per hour. Measurements made on 22 December showed that approximately 10-12 million cubic meters of lava had been erupted to that point, with a surface area of about 0.13-0.22km2 (figure 471). Another measurement made during the afternoon showed that the volume of the lava lake grew an additional two million cubic meters. The dimensions of the lake were 690 m E-W and 410 m N-S. Overflights were made on 21 and 22 December to obtain natural color and thermal infrared images of the growing lava lake (figure 472).

Figure (see Caption) Figure 471. Location map showing the activity from the new eruption at the summit of Kilauea in the Halema’uma’u crater updated on 22 December 2020 at 1400. Two active fissure vents (orange dots) on the N and W side of the crater fed lava into the growing lava lake (red). The blue dashed line represents the extent of the former water lake (July 2019 to December 2020) that was present in the crater before the eruption and the black dashed line represents the extent of the lava lake that was present during 2008-2018. The current lava lake is larger than both the previous lakes and has formed slightly more N compared to the former lava lake. Map created by M. Zoeller; courtesy of USGS HVO.
Figure (see Caption) Figure 472. Comparison of thermal images taken on 21 December at 1120 (top) and 22 December 2020 at 1130 (bottom) showing the rise and infilling of the lava lake from wall vents in the Halema’uma’u crater at Kilauea’s summit. Images by M. Patrick; courtesy of HVO.

By 23 December the lava lake had deepened to 155 m (figure 473). Two fissure vents on the N and W walls remained active; the W vent fed two narrow channels into the lake and the N vent remained the most vigorous. An island of cooler, solidified, lava within the lava lake that measured 115 x 260 m was drifting slowly eastward, based on a thermal map. During an overflight made later in the day, the approximate surface area was 0.25 km2, with dimensions of 460 x 715 m. High SO2 emissions were an estimated 30,000-40,000 tons/day, based on measurements made on 21 and 23 December.

Figure (see Caption) Figure 473. Plot showing the increasing depth in Kilauea’s summit lava lake since the beginning of the eruption on 20 December 2020 at 2130. A laser rangefinder was used to take measurements of the lava lake surface about 2-3 times per day. The depth of the lake was about 155 m on 23 December at 0630 (top right) compared to 87 m on 21 December at 0630 (bottom right). In comparison, the water lake that was observed in Halema’uma’u before the start of the eruption was 51 m at its deepest. Plot by H. Dietterich; courtesy of HVO.

Measurements taken on 24 and 25 December showed a continuously growing lava lake that was 169 and 176 m deep, respectively, and the volume of the lake had reached 21 million cubic meters. By 25 December the vigorously erupting N fissure vent was starting to become inundated and the W vent displayed intermittent spattering (figure 474). Around 1400 the lake level had dropped by 2 m to reveal a narrow black ledge around the N edge of the crater. The rate of SO2 emissions decreased to 16,000-20,000 tons/day during 25 December.

Figure (see Caption) Figure 474. Photo of the Halema’uma’u crater at the summit of Kilauea at 0230 on 25 December 2020 showing lava flows and lava fountaining feeding the lake. The main N vent started to become inundated by the growing lava lake. Intermittent activity continued at the W vent. Photo taken from the S rim of the crater by J. Schmith and C. Parcheta; courtesy of HVO.

Activity during 26-31 December 2020. During the morning of 26 December, at 0240, the N vent continued to erupt lava into the lake while the W vent began to effuse more vigorously with up to three narrow lava flows feeding the lake (figure 475). The depth and volume of the lake remained the same as on 25 December: 176 m deep and 21 million cubic meters. Lava fountaining was visible up to 10 m high above the W vent. After 0300, the N vent declined in activity and started to drain lava from the lake. Summit tiltmeters continued to record some deformation. Effusive activity remained confined to Halema’uma’u; the lava lake was 177 m deep as of 0700 m on 27 December. The SO2 emissions continued to decrease to about 3,300-5,500 tons/day during 27-28 December. Summit tiltmeters continued to record weak inflation.

Figure (see Caption) Figure 475. Photo of the W vent in Halema’uma’u at Kilauea’s summit shows the effusive activity increased on 26 December 2020. Some lava fountaining in this vent was visible while lava flows continued to feed the lake from the N vent. The lava fountaining in the W vent rose at least 10 m high. Photo was taken at 0515 by H. Dietterich; courtesy of HVO.

On 28 December the volume of the lava lake had grown to 21.5 million cubic meters and a thermal map updated on 26 December showed the new dimensions of the lava lake were 520 x 790 m, covering a surface area of 0.29 km2. The narrow black ledge visible above the N edge of the crater was about 1-2 m above the lake surface. During 27-28 December the main central island of cooler, solidified, lava drifted slowly W and measured about 110 x 225 m. The island surface was about 6 m above the lake surface and was covered in tephra, possibly remnants of explosive activity generated when lava first reached the water lake. Reduced, but still elevated, SO2 emissions were 3,300 tons/day; the emission plume carried Pele’s Hair and Pele’s Tears SW, depositing the tephra in areas downwind.

Effusive activity continued, with the lava lake measuring 179-180 m deep with a narrow black ledge around it as of 0400 on 29 December. Multiple narrow lava channels from the W vent fed into the crater. The lava lake volume was slightly more than 22 million cubic meters. The central 135 x 250 m island of solidified lava had drifted slowly W until 2200 on 28 December, then during the morning of 29 December it stalled and began rotating. There were about 10 smaller islands to the E.

On the morning of 30 December, at 0345, the lava lake was 181 m deep with the narrow black ledge around it; the lava lake was an estimated volume of 23 million cubic meters. A spatter cone built around the W vent, while lava effused through crusted-over channels. The main central island was about 6-8 m above the surface of the lake. The rate of SO2 emissions were 3,800 tons/day.

Similar observations were made during 31 December; the lava lake continued to grow, with the depth of the lake measuring 181-186 m and dimensions of 530 x 800 m, based on thermal mapping. The total surface area was 0.33 km2. Spattering continued in the W vent while lava flowed through crusted-over channels into the lake (figure 476). The main island in the lake continued to drift slowly W while roughly 10 smaller islands were observed around the E end of the crater (figure 477). The SO2 emission rate increased to 4,500-6,300 tons/day, compared to the previous day.

Figure (see Caption) Figure 476. Photo of the active W vent in Halema’uma’u at the summit of Kilauea, viewed from the W crater rim on 31 December 2020 with incandescence, spattering, and a prominent spatter cone; the lava lake is visible in the right background. Photo by B. Carr; courtesy of HVO.
Figure (see Caption) Figure 477. Annotated photo taken from the S rim of Halema’uma’u at the summit of Kilauea at 1700 on 30 December 2020 showing the location of the main central island and the smaller islands located on the eastern part of the crater. The W vent continued to effuse lava, as well as some spattering, while the N vent was inactive. Photo by K. Lynn; courtesy of HVO.

Activity during January 2021. Effusive activity continued within Halema’uma’u during January 2021. Lava originated from the NW side of the crater, with the W vents exhibiting spattering and lava effusions through crusted-over channels into the lava lake. A levee had also begun to develop around the perimeter of the lake (figure 478), creating what is known as a “perched” lake. According to HVO, this is common in lava lakes at Kilauea, and is due to repeated small overflows and the rafting and piling of surface crust that fuses together to form a barrier. During 31 December and 1 January the main island of solidified lava (135 x 250 m) had moved W while the other 10 smaller islands remained near the E side of the lake. Summit tiltmeters recorded weak deflation during 1-2 January. Both SO2 emission rates and seismicity remained elevated; the SO2 emission rate was 4,400 tons/day on 1 January.

Figure (see Caption) Figure 478. Photo of the lava lake in Halema’uma’u at Kilauea on 1 January 2021 that has developed a levee (darker black) around the perimeter, allowing the lake to be slightly perched above its base. Photo by M. Patrick; courtesy of HVO.

During 2-3 January the depth of the lake had grown to 189-190 m, had a volume of 26 million cubic meters, and still maintained the narrow black ledge around its perimeter. Measurements on 3 January showed that the lake was perched about a meter above its E and W edges, and discontinuously on the N edge. A thermal webcam showed spatter originating from two places in the W vents and a small dome fountain above the lake crust in front of the W vents (figure 479). The dome fountain had formed where lava was entering the lake from a submerged inlet at the base of the W vent. The height of the dome fountain reached 5 m and the width was an estimated 10 m. The main island, about 6 m above the lake surface, continued to drift W in front of the W vents while the 10 smaller islands remained relatively stationary near the E end of the lake.

Figure (see Caption) Figure 479. Video data showed the lava at Kilauea’s summit crater formed a dome fountain at the inlet to the lava lake in Halema’uma’u during 2-3 January 2021. The fountain is located near the base of the W vents where the inlet had become partially submerged. The 5-m-high dome fountain was about 10 m wide. Video by H. Dietterich; courtesy of HVO.

Lava effusion continued during 4-5 January from vents on the NW side of the crater. The lava lake was perched 1-2 m above its edge and had deepened to 191-192 m (figure 480). A thermal map from 5 January showed the perched lake dimensions had slightly decreased in size to 520 x 760 m, with a volume of about 27 million cubic meters. Summit tiltmeters continued to record weak deflation. Spatter in the W vents was visible from the top of a small cone on the NW wall of Halema’uma’u; the dome fountain persisted in front of the W vents (figure 481). The main island was rotating counterclockwise in front of the W vent while the now 11 smaller islands had generally stayed in the E side of the crater. Measurements on 4 January showed that the island was 7-8 m above the lake surface.

Figure (see Caption) Figure 480. A comparison of the Digital Elevation Model (DEM) and topographic profiles of the Halema’uma’u crater at Kilauea created from aerial imagery collected during helicopter overflights, showing the change in depth and elevation of the lava lake between 26 December 2020 (left) and 5 January 2021 (right). The N vent remained inactive as it became inundated by the rising lava. The central island had migrated W and rotated by 5 January. The depth of the lava lake was 192 m on 5 January. DEMs created by B. Carr, graphic created by K. Mulliken; courtesy of USGS HVO.
Figure (see Caption) Figure 481. Photo of the Halema’uma’u crater at Kilauea at 0545 on 5 January 2021 showing ongoing activity at the W vent, generating a lava flow that feeds both the lake and the dome fountain. Photo by K. Lynn; courtesy of USGS HVO.

HVO continued to monitor the changes in the active lava lake on 6 January, which was 194 m deep and remained perched 1-2 m above its edge. At 1500 rapid deflationary tilt was recorded overnight into 7 January. Lava from the W vents continued to feed the dome fountain through crusted-over channels on the W side of the crater. During the morning of 7 January the dome fountain weakened giving way to spattering at the top of the vent and the formation of a second cone. A thermal map on 7 January showed that the lake size had decreased to 470 x 760 m, covering 0.28 km2; more of the E part appeared to be stagnant while solidified lava was being progressively pulled beneath the molten surface (figure 482). SO2 emissions were still elevated at 3,400 tons/day on 6 January, but had decreased to 2,700 tons/day the next day. During 7-8 January incandescence was visible from two small cones on the NW wall of Halema’uma’u while lava flowed into the lake through a crusted channel. The main island remained 135 x 250 m; it had moved slightly E while the 11 smaller islands remained stationary.

Figure (see Caption) Figure 482. Thermal image (top) and photo (bottom) of the lava lake at Kilauea showing the larger central island on the W side of the Halema’uma’u crater and 11 smaller islands on the E side of the crater, taken on 7 and 9 January 2021, respectively. The lake is slightly perched and surrounded by a lower ledge of cooler lava along the perimeter (appears pink-purple in the thermal image along the perimeter). The lava effusion at the W vent has become less intense and much of the E half of the lake has stagnated completely, likely because the lake level has not changed significantly in the last three days. Image by M. Patrick (top) and photo by H. Dietterich (bottom); courtesy of HVO.

Incandescence and spatter continued on 9 January at the two W vents as lava descended through a crusted channel into the lake. Summit tiltmeters recorded weak deflation since 1 January, but on the evening of 9 January weak inflation was detected. A newly installed instrument during 9-10 January showed that the lake had risen about a meter since the switch to inflationary tilt. The depth of the lake slightly increased to 196 m below the W vents on the morning of 10 January. The W vents exhibited strong lava flows during the afternoon with spattering and spatter-fed lava flows from the top of the small cones on the NW wall of Halema’uma’u; lava also flowed through crusted-over channels into the lake. Low lava fountaining was also visible during 10-11 January. The SO2 emission rates were 2,300 tons/day and 2,500 tons/day on 10 and 11 January, respectively.

During the morning of 12 January the lava lake remained at a depth of 196 m below the W vents; the stagnant E half of the lake was about 4 m shallower and had subsided below its perched rims. Low lava fountaining and flows through channels from the top of the small cones were visible. Measurements of the main island on 12 January showed that it was 8 m above the surface, with the highest point at 23 m. By 13 January, the depth of the lake had increased to 198 m. On 13 January a small portion of the active cone had collapsed, causing a second vent to open adjacent to the main vent and effuse lava for less than 20 minutes.

Activity continued in Halema’uma’u with low fountaining, lava flows, and spattering from the W vent through 22 January (figure 483). The depth of the lake continued to increase slowly to 204 m on 22 January. The entire lake was perched 1-2 m above the crust between the levees along the perimeter and the crater wall. All of the islands of solidified lava within the lake were stagnant; the dimensions of the main island were unchanged since 10 January. On 14 January the SO2 emissions increased to 4,700 tons/day, then decreased to 2,500 tons/day on 16 January. On 19 January at 1746 field crews observed a minor collapse event from the spatter cone on its N rim and open channel margins at the W vent (figure 484). Summit tiltmeters began to detect some deflation on 20 January; the rate of which began to slow by 21 January. Measurements on 22 January showed that the S end of the main island was 12 m above the lava lake surface, with the highest point still around 23 m.

Figure (see Caption) Figure 483. Photo of low fountaining and an accompanying lava flow at the W vent of Halema’uma’u at Kilauea on 15 January 2021. The vent formed a spatter cone around the fountaining as the flow moved through an open channel into the lake. Photo by M. Patrick; courtesy of HVO.
Figure (see Caption) Figure 484. Series of photos showing the W vent at Kilauea (seen from the S rim looking NW) that continued to feed the growing lava lake in Halema’uma’u through an open channel. At 1746 on 19 January field crews observed a minor collapse on the N rim of the spatter cone and channel margins. The photo at 1731 (top left) shows the vent just before the collapse; the photo at 1746 (top right) shows just after the collapse; the photos at 1749 (bottom left) and at 1811 (bottom right) show the destabilization and movement of the portion of the remaining cone flank surrounded by incandescence. Photos by H. Dietterich; courtesy of HVO.

During the morning of 23-25 January the lava lake was about 205 m deep; the W half remained active with low fountaining and a lava flow while the E half was stagnant (figure 485). The E side of the lake was elevated about 1-2 m and the W half was elevated about 4 m above the solidified lava adjacent to the crater wall. HVO reported that summit tiltmeters continued to record variable inflation and deflation. On 23 January SO2 emission rates were 2,200 tons/day.

Figure (see Caption) Figure 485. Map of the Halema’uma’u crater at the summit of Kilauea on 25 January 2021 showing the locations of the active lava lake (red), the extent of the lava lake (light red), the major islands of solidified lava (yellow), the active W vent (orange), and the inactive N vent (maroon). The depth of the lake is 205 m, the size of the lake is 0.1 km2, and the total lake volume is 31 million cubic meters. In comparison, the dashed blue line represents the final extent of the water lake that evaporated on 20 December 2020 and the dashed black line represents the extent of the 2008-2018 lava lake. Courtesy of USGS HVO.

The depth of the lava lake continued to deepen, and by the evening of 27 January it was 209 m, while the stagnant E half remained up to 5 m lower. The active lake surface no longer extended around the E side of the central island; surface circulation was limited to the W, N, and S sides of the island. Activity in the W vents consisted of slow surface movements at the base of the lava flow and overturning of the crust near its margins. The E side of the lake was elevated approximately 1 m while the W was 3 m above the solidified lava adjacent to the crater wall. All the islands within the lake were stationary. By 28 January only the W part of the lava lake was active. On 29 January, measurements made on the main island showed its edges were 7-8 m above the lake surface.

On the morning of 30 and 31 January, the active W part of the lava lake was 211 and 212 m deep, respectively; the W vent had crusted over except for a single (possibly two) openings that were mostly obscured by degassing, though several incandescent areas on the cone were visible. Surface lava continued to effuse into the central part of Halema’uma’u from the base of the cone (figure 486). A series of surface cracks separated the active and stagnant parts of the lake. During 30-31 January tiltmeters recorded inflation at the summit.

Figure (see Caption) Figure 486. Photo showing the leading edge of an active lava lobe moving S into the central part of Halema’uma’u at Kilauea on 31 January 2021. Photo by M. Patrick; courtesy of HVO.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI 96718, USA (URL: http://hvo.wr.usgs.gov/).


Pacaya (Guatemala) — March 2021 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Increasing activity with ash emissions, explosions, and lava flows on multiple flanks during December 2020-February 2021

Extensive lava flows, bomb-laden Strombolian explosions, and ash plumes emerging from Mackenney crater have characterized the persistent activity at Pacaya since 1961. The latest eruptive episode began with intermittent ash plumes and incandescence in June 2015; the growth of a new pyroclastic cone inside the summit crater was confirmed later that year. The cone has continued to grow, producing frequent loud Strombolian explosions rising above the crater rim and ongoing ash emissions. In addition, fissures on the flanks of the summit crater have been the source of an increasing number of lava flows traveling distances of over one kilometer down multiple flanks during 2019 and into 2021. Increasing explosive and effusive activity during December 2020-February 2021 is covered in this report with information provided by Guatemala's Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), multiple sources of satellite data, and numerous photographs from observers on the ground.

Eruptive activity increased substantially during December 2020-February 2021. During December, ash emissions were reported fewer than half the days of the month; by February, dense ash emissions drifted many kilometers most days, and ashfall was reported numerous times in the surrounding communities. Strombolian explosions in December generally rose 50-125 m above the summit of the pyroclastic cone; by February they were commonly rising 300 m or more and sending ejecta 500 m from the summit. Numerous lava flows were reported on the NW, W, and S flanks during the period; a flow that emerged on the SSW flank on 7 January 2021 persisted through the end of February and was 800-1,200 m long. Strombolian activity also occurred at the fissure where the flow emerged, and incandescent blocks rolled hundreds of meters beyond the front of the flow. A steady increase in thermal activity was recorded with the MIROVA Log Radiative Power graph during December 2020 – February 2021 (figure 145). This corresponded to the persistent lava flows on multiple flanks and constant Strombolian activity. Multiple MODVOLC thermal alerts were issued many days each month during the period.

Figure (see Caption) Figure 145. The MIROVA graph of thermal anomalies at Pacaya from 13 May 2020 through February 2021 shows activity increasing in frequency and intensity beginning in late August 2020. Multiple lava flows from fissures on the flanks and Strombolian activity from the pyroclastic cone inside Mackenney crater were reported throughout the period. Courtesy of MIROVA.

The Washington VAAC reported an ash emission at Pacaya that rose to 3.0 km altitude and drifted WSW on 3 December 2020; it dissipated within a few hours. INSIVUMEH reported daily gas and steam plumes that rose a few hundred meters and sometimes drifted as far as 10 km. They also reported ash emissions along with the gas and steam on 10, 12-14, 16-18, 24-25, and 28 December. The ash plumes usually rose 300-400 m and drifted a few kilometers with the wind. On the evening of 28 December ash reached populated places including San José El Rodeo. Strombolian explosions at the summit occurred daily and rose 50-125 m above the Mackenney crater rim (figure 146). Ejecta was reported to heights of 250 m on 13 December and 200 m on 21 December.

Figure (see Caption) Figure 146. Explosions sent ejecta up to 125 meters above the Mackenney cone crater at Pacaya on 29 December 2020. In addition, lava flows with multiple branches were active on the W flank. Courtesy of CONRED (LAVA FLOWS IN PACAYA VOLCANO CONTINUE ACTIVE, 29 December 2020, Informative Bulletin No. 582-2020).

Lava flow activity continued on the SW flank throughout December 2020 and high winds remobilized ash on the flanks a number of times during the month. On 1 December the flow was about 675 m long and moving to the SW. Two branches were active the next day and three were reported on 6 December. A second flow appeared on the NW flank on 9 December on the plateau near Cerro Chino and grew to 250 m long (figure 147). Both flows had incandescent block avalanches spalling off their fronts and rolling at least 100 m. The SW-flank flow remained 450-550 m long through 11 December, and then grew to around 700 m the next day. Branches from both flows extended 700-1,000 m by 15 December and were moving NW, W, and SW. The NW-flank flow was growing through 16 December. Three 600-m-long branches were active on the SW-flank flow on 21 December. In a special bulletin released on 23 December, INSIVUMEH noted that the SW-flank flow was still active from the same mid-flank fissure where it originated on 20 October 2020, and consisted of 5-7 branches with lengths varying from 600-750 m (figure 148). For the remainder of December, multiple branches of the active SW-flank flow were between 525 and 650 m long, with block avalanches falling off the front that generated ash clouds.

Figure (see Caption) Figure 147. Sentinel 2 satellite imagery of Pacaya from 10 December 2020 revealed a thermal anomaly at the summit (lower right of center image), a multi-branch flow 550 meters long on the W flank (left of center image), and a small anomaly from the beginning of a new flow on the NW flank. Courtesy of INSIVUMEH (BOLETÍN VULCANOLÓGICO ESPECIAL BEPAC # 119-2020, Guatemala, 10 de diciembre de 2020, 19:30 horas (Hora Local), “ACTUALIZACIÓN DE LA ACTIVIDAD VOLCÁNICA”).
Figure (see Caption) Figure 148. Sentinel 2 satellite imagery of Pacaya on 20 (left) and 30 (right) December 2020 indicated thermal activity at the summit and on the NW and W flanks. The NW-flank lava flow was active from 9-16 December, and still cooling in the 20 December image. The WSW-flank lava flow had multiple branches between 525 and 650 m long for the last half of the month. Images use Atmospheric Penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

In a special bulletin issued on 1 January 2021 INSIVUMEH reported an increase in eruptive activity that produced Strombolian explosions which sent ejecta 300 m high and up to 100 m from the summit. Constant rumblings like a train and shock waves were heard and felt in nearby communities. Strombolian explosions continued to rise 75-200 m above the rim throughout the month, and numerous gas emissions rose 100-300 m and drifted as far as 10 km (figure 149). Ash emissions were noted on 1, 6, 7, 11, 13, 18, 19, 21-23, 25, 27, and 31 January. On 7 January ash drifted SW at 3 km altitude and ejecta was reported 300 m from the summit. INSIVUMEH noted that the columns of ash reached 300-500 m above the crater that day, generating loud rumbling and shock waves that vibrated roofs and windows in nearby villages. On 12 January explosions sent material 300 m high. A VAAC report on 22 January noted an ash plume drifting NW from the summit at 3.4 km altitude. INSIVUMEH remarked in a special report that day that ash fell in San Vicente Pacaya and in San Francisco de Sales. The ash emissions on 25 January were brown to gray, sporadic overnight and more continuous in the early morning, drifting 1-4 km W. On 27 and 31 January ash drifted 10 km W.

Figure (see Caption) Figure 149. Strombolian explosions rose 75-200 m above the summit of the pyroclastic cone inside Pacaya’s Mackenney crater on 7 January 2020 and throughout the month. On the NW flank, multiple branches of lava appeared as red to white areas in this thermal image. Thermal image courtesy of INSIVUMEH (BOLETÍN VULCANOLÓGICO ESPECIAL BEPAC002-2021, 12:00 horas (Hora Local), EXPLOSIONES CON CENIZA).

Multiple lava flows emerged from the flanks of Pacaya during January 2021. The lava flow that began on 20 October 2020 on the W flank continued to be active through about 8 January with branches flowing 400-600 m W and SW. A flow on the SSW flank began on 2 January from a vent 200 m below the rim of Mackenney crater. By 6 January it was feeding 3-4 flows from the same point, each 400 m long with block avalanches falling off the fronts and moving W, SW, and S down the flanks (figure 150). In the morning of 7 January two flows were seen on the N flank, 200 and 50 m long. Later that night another flow appeared on the SSW flank that lengthened rapidly, reaching 425 m the next day, and was 1,200 m long on 9 January (figure 151). High temperatures were still present on the W and SW flanks from the earlier flows. The SSW flow reached 1,500 m in length on 10 January and fluctuated between 1,200 and 1,600 m through 17 January when Strombolian activity ejecting material 5-10 m high was reported from the fissure. More Strombolian activity at the fissure was noted on 22 January, and the flow remained 800-1,150 m long through the 23rd. The flow reached 1,700 m in length on 25 January; for the rest of the month, it was reported as 800-1,000 m long, with block avalanches traveling an additional 200-400 m from the flow front. Strombolian activity reached 65 m high from the fissure at the head of the flow on 28 January. On 30 January multiple branches of the SSW flow were visible from a vantage point south of the volcano (figure 152).

Figure (see Caption) Figure 150. Multiple flows emerged from a single vent at Pacaya on 5 January 2021. The fissure was located about 300 m below the rim of Mackenney crater on the SSW flank. Incandescent debris falls from the front of the flow generated an ash plume seen at the bottom center of the image. Copyrighted photo by Deybin Fotografia, used with permission.
Figure (see Caption) Figure 151. A lava flow at Pacaya that first emerged on 7 January 2021 on the SSW flank grew quickly to over a kilometer long by 9 January and remained 800-1,000 m long for the rest of the month, often with incandescent blocks falling several hundred meters beyond the front of the flow. A thermal anomaly persisted at the summit of the pyroclastic cone inside Mackenney crater as well from constant Strombolian activity. A weak anomaly was also visible on the NW flank from earlier activity. Atmospheric penetration rendering (bands 12, 11, 8a) of Sentinel 2 images. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 152. Multiple branches of Pacaya’s SSW-flank-flow that began on 7 January 2021 were visible from a vantage point S of the volcano on 30 January. The branches were at least 700 m long with incandescent blocks falling several hundred meters farther down the flanks. The white lights below the flow are from people approaching the flow. Courtesy of David Rojas, used with permission.

Increased Strombolian activity during February 2021 was accompanied by frequent ash emissions that rose to 3.0-3.5 km altitude. The explosions often reached 225 m above the crater rim, and higher during pulses of increased activity. On 5 February ash drifted W, NW, and SW about 4 km and ashfall was reported in San Francisco de Sales, Concepcion el Cedro, and Calderas. A pulse of increased Strombolian activity on 6 February sent ejecta 400-500 m around the pyroclastic cone and columns of ash drifted 6 km NW and N. Ashfall was reported in the same areas as the day before, plus in El Bejucal, Mesías Altas and other communities in that region. Abundant ash emissions were reported by INSIVUMEH overnight on 7-8 February; variable winds dispersed the ash 30 km to the NW and W and 10 km N (figure 153). The ash emissions were accompanied by ejecta that landed 300 m from the summit. By the next day, ash had drifted as far as 66 km W and NW and ashfall was reported in El Patrocinio, El Rodeo, and El Caracol. Prolonged rumbling as loud as an airplane engine was reported from strong degassing. The Washington VAAC reported ash emissions in satellite imagery on 9 February at 3.8 km altitude drifting NW about 65 km from the summit.

Figure (see Caption) Figure 153. Dense ash emissions increased in frequency at Pacaya during February 2021. Ash emissions on 6 (left) and 8 (right) February resulted in ashfall in multiple communities around the volcano and were accompanied by incandescent ejecta falling hundreds of meters from the summit. Courtesy of INSIVUMEH (BOLETÍN VULCANOLÓGICO ESPECIAL BEPAC 006-2021, 009-2021).

High levels of similar activity continued through 10 February when 500-m-high ejecta was observed inside Mackenney crater. An increase in the seismic amplitude on 11 February was accompanied by ash plumes rising to 3.0-3.2 km altitude and drifting 15-20 km W and SW. Ashfall was reported in Patrocinio and El Rodeo. The next day ashfall was reported in San Francisco de Sales, San Jose Calderas, and Concepción el Cedro. On 13 February the Washington VAAC reported ash plumes visible in satellite imagery at 4.3 km altitude moving ENE, and ash fell in Santa Elena Barillas, Mesillas Bajas, and Mesillas Altas as the wind carried ash 6 km W, N, and NE; ash on 14 February drifted 5 km E. A new pulse of activity late on 16 February, the third in a week, produced incandescent material 400 m high; high-pressure gas also created plane engine noises, with roofs and windows rattled in nearby communities. Ashfall from the event was reported in Los Llanos, Los Pocitos, El Cedro, and other communities within 4 km. Another pulse on 18 February sent ejecta 200 m high, variable winds sent ash primarily NE and S. Two more pulses of activity on the morning of 19 February were recorded as increases in seismic amplitude by the PCG5 seismic station (figure 154). The first pulse was accompanied by a new lava flow appearing on the NW flank. The second pulse coincided with ash emissions that rose 500 m above the crater and drifted 8 km S, producing ashfall in Los Pocitos and plantations in that vicinity.

Figure (see Caption) Figure 154. Two increases in seismic amplitude at Pacaya were recorded during the morning of 19 February 2021 at seismic station PCG5. The first corresponded to the effusion of a new lava flow on the NW flank (left), and the second coincided with a pulse of ash plumes that drifted S (right). Courtesy of INSIVUMEH (BOLETÍN VULCANOLÓGICO ESPECIAL BEPAC 31-2021, Incremento de actividad por emission de ceniza y surgimiento de nuevo flujo de lava).

Ash emissions from explosions on 20 February drifted 10-25 km S and SW, resulting in ashfall in El Rodeo and El Patrocinio. That evening incandescent material rose 300-400 m above the summit and ejecta reached 500 m down the flanks of the cone (figure 155). The next day ash plumes rose to 2.8-3.2 km altitude and drifted SW with ashfall reported in San Francisco de Sales, El Cedro, and other plantations in the area (figure 156). During 22-24 February ash emissions rose as high as 800 m above the summit and drifted 3-5 km W, SW, and S. Ashfall drifted over 30 km S and SW on 24 February with ashfall reported in the villages of Los Pocitos, Pacaya, El Rodeo, and El Patrocinio. Pulses of increased activity on 26 February produced an ash plume 2.5 km above the summit. With variable wind directions at different altitudes, the ash drifted both N and S. The Washington VAAC reported the plume drifting N at 3.9 km altitude. This activity was accompanied by incandescent explosions that rose 500 m above the Mackenney crater, and noises as loud as an airplane engine. Similar pulses of activity continued through the end of the month, producing ash plumes that rose to 3.5 km altitude and drifted W and SW; ashfall was reported in El Patrocinio on 28 February.

Figure (see Caption) Figure 155. During the weekend of 20-21 February 2021 when this photo was taken, Strombolian explosions at Pacaya sent ejecta 400 m above the summit of the cone and 500 m down the flanks, while a lava flow remained active on the SSW flank. Copyrighted photo by David Rojas, used with permission.
Figure (see Caption) Figure 156. On 21 February 2021, ash plumes at Pacaya rose to 2.8-3.2 km altitude and drifted SW with ashfall reported in San Francisco de Sales, El Cedro, and other plantations in the area. Courtesy of Luis Figueroa.

The lava flow on the SSW flank was about 900 m long at the beginning of February with block avalanches falling about 100 m from the front of the flow, and Strombolian explosions active at the fissure at the head of the flow. Two distinct branches of the flow were visible on 6 February, one 1,200 and one 800 m long; multiple branches were active throughout the month (figure 157). High levels of activity continued; during 10-12 February the flow was 1,200-1,300 m long and loose blocks were descending an additional 200 m. During 13-18 February high temperature zones were still present on the N and NW flanks from earlier flows. From 14-18 February the S-flank flow was 900-1,100 m long with multiple branches and Strombolian activity at the vent (figure 158). A new flow appeared briefly on the NW flank during 19-20 February. High-temperature zones remained on the NW flank during 22-24 February. The S-flank flow remained active throughout the rest of February and was 800-1,100 m long, with incandescent blocks traveling up to 600 m beyond the flow fronts (figure 159).

Figure (see Caption) Figure 157. Multiple branches of the S-flank lava flow at Pacaya were active throughout February 2021. Strombolian activity was observed at the fissure where the flow emerged, and incandescent blocks rolled hundreds of meters beyond the flow front. The fissure was located about 300 m below the crater rim. The thermal anomaly from the Strombolian activity at the summit of the pyroclastic cone inside Mackenney crater was also visible in most satellite images. Atmospheric penetration rendering of Sentinel 2 image uses bands 12, 11, 8a. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 158. A lava flow about 1 km long on the S flank of Pacaya was active throughout the month; on 16 February 2021 Strombolian activity at the summit and at the head of the flow were visible. Multiple branches of the flow sent incandescent blocks hundreds of meters beyond the flow front. Copyrighted image by Berner Villela, used with permission.
Figure (see Caption) Figure 159. The lava flow on the S flank of Pacaya had several active branches as seen in this thermal image on 21 February 2021. The source fissure vent was about 300 m below the rim of Mackenney crater. Incandescent blocks fell hundreds of meters beyond the fronts of the flows. Courtesy of INSIVUMEH and Roberto Iboy.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Deybin Fotografía (URL: https://www.facebook.com/Deybin-fotografía-2316704905277353, https://twitter.com/UniversoNews1/status/1347037016324792327); David Rojas (URL: https://twitter.com/DavidRojasGt/status/1360789438545149957); Luis Figueroa (URL: https://twitter.com/luisficarpediem/status/1363664541318598657); Berner Villela (URL: https://bernervillela.com/galerias/naturaleza, https://twitter.com/soy_502/status/1362846917743366146); Roberto Iboy (URL: https://twitter.com/IboyRoberto/status/1363688900401709057).


Villarrica (Chile) — March 2021 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Explosions, ash plumes, crater incandescence, and an active lava lake during September 2020-February 2021

Villarrica, located in Chile, has had historical eruptions dating back to 1558. The current eruption period began in December 2014 and more recently has been characterized by summit crater incandescence, Strombolian explosions, and ash emissions (BGVN 45:09). This report covers activity during September 2020 through February 2021, which consists of an active lava lake, explosions, ash plumes, and nighttime crater incandescence. Information is provided by the Southern Andes Volcano Observatory (Observatorio Volcanológico de Los Andes del Sur, OVDAS), part of Chile's National Service of Geology and Mining (Servicio Nacional de Geología y Minería, SERNAGEOMIN), the Projecto Observación Villarrica Internet (POVI), part of the Fundacion Volcanes de Chile, a private research group that studies volcanoes across Chile, the Buenos Aires Volcanic Ash Advisory Center (VAAC), and various satellite data.

Activity during September 2020 was characterized by an active lava lake, white gas-and-steam plumes that rose 500 m above the crater, nighttime crater incandescence that could be observed on clear days, and sporadic ash emissions produced by minor explosions. During 5 and 7 September tephra deposits extended up to 36 m on the E and SE flanks, according to satellite data. On 25 September the seismic network recorded a long-period earthquake associated with a moderate explosion at 1350, which produced an ash plume that rose 800 m above the crater and drifted ENE (figure 104); blocks of ejecta were deposited around the crater. A second explosion was recorded at 1829 in conjunction with another long-period event, which generated an ash plume that rose 450 m above the crater (figure 104). Sentinel L2 A satellite images were used to determine that ashfall extended 3.8 km SSE, 865 m SE, and 275 m N as a result of the explosions during the day. The POVI webcam captured incandescent ejecta at night on 27 September (figure 105).

Figure (see Caption) Figure 104. Explosions at Villarrica on 25 September 2020 at 1350 (top) and 1829 (bottom) produced a long-period seismic signal and ash plumes that rose 800 m and 450 m above the crater, respectively and drifted ENE. Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, Volcan Villarrica, 25 de septiembre de 2020, 14:35 Hora local y 25 de septiembre de 2020, 19:20 Hora local).
Figure (see Caption) Figure 105. Incandescent ejecta up to 100 m above the summit of Villarrica was captured in the POVI webcam at night on 27 September 2020. Courtesy of POVI.

Intermittent white gas-and-steam plumes, ash explosions, and nighttime crater incandescence continued during October. On 4 October SERNAGEOMIN reported a long-period event accompanied by a moderate explosion at 1130, generating an ash plume that rose 450 m above the crater and drifted NE. The next day on 5 October two long-period events were recorded at 1343 and 1347 associated with explosions, resulting in ash plumes that rose to 400 m above the crater and drifted SE (figure 106). On 12 October a satellite image showed an ash plume drifting 2.5 km NE and a strip of tephra deposits measuring 200 m wide and 3 km long on the NE flank, as a result of two eruptive events on 9 October, according to POVI and Sentinel-2 satellite imagery.

Figure (see Caption) Figure 106. Explosions at Villarrica on 5 October 2020 produced a long-period seismic signal and an ash plume that rose 400 m above the crater and drifted SE. Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, Volcan Villarrica, 5 de octubre de 2020, 14:20 Hora local).

Moderate explosions were detected at 0534 and 0804 on 15 October, associated with two long-period earthquakes. As a result, ash plumes rose as high as 900 m above the crater and gas-and-steam plumes rose to 450 m, according to SERNAGEOMIN. The explosion at 0534 was accompanied by crater incandescence and incandescent ejecta that were deposited on the E flank as far as 3 km. An analysis of Planet Scope and Sentinel-2 satellite images showed that ash deposits extended 4.4 km NE. On 20 October an explosion and long-period event were recorded at 1722 that resulted in an ash plume 240 m above the crater that drifted S (figure 107). Explosions recorded during 22-23 October produced ash plumes that rose 780 m and 180 m above the crater, respectively, according to a Buenos Aires VAAC report and SERNAGEOMIN. The event on 22 October deposited tephra up to 3.8 km on the E flank.

Figure (see Caption) Figure 107. An explosion at Villarrica on 20 October 2020 at 1722 was characterized by a long-period earthquake and a dense, gray ash plume that rose 240 m above the crater and drifted S. Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, Volcan Villarrica, 20 de octubre de 2020, 18:00 Hora local).

Ash explosions continued in November, accompanied by intermittent nighttime crater incandescence and white gas-and-steam plumes. On 5 November a pulse of ash was observed at 1442 that rose 350 m above the crater and drifted NW. Similar activity was noted on 6 November at 0757 and 0808 when ash rose 350 m above the crater and at 1412 when ash rose 250 m above the crater, both of which drifted NW (figure 108). According to a Buenos Aires VAAC report on 7 November, an isolated ash plume was detected in satellite images up to 4.3 km altitude, drifted ESE. A Differential Absorption Optical Spectroscopy Unit (DOAS) showed average values of SO2 totaling 140 tons/day during 7-8 and 15 November with a maximum daily value of 168 tons/day on 7 November. An explosive event at 0051 on 8 November ejected incandescent material and produced an ash plume that rose 220 m above the crater (figure 108). On 10 November OVDAS reported an ash plume rose 320 m above the crater and drifted SSW, accompanied by continuous seismic tremor at 1514. Ash continued to be reported during 16-17 November rising 160 m above the crater and to 3.7 km altitude, respectively. Data from the DOAS showed that SO2 emissions had slightly increased to an average of 166 tons/day during 16-30 November, with a maximum daily value of 549 tons/day on 22 November.

Figure (see Caption) Figure 108. Explosions that generated ash and incandescent ejecta at the summit of Villarrica were captured by the POVI webcam during 6-8 November 2020 (left to right). Courtesy of POVI.

The number of ash events decreased in December compared to the previous months, though similar activity persisted. On clear nights, crater incandescence was visible, accompanied by white gas-and-steam emissions. SERNAGEOMIN reported a single long-period earthquake associated with a moderate explosion at 1844 on 5 December with a resulting ash plume that rose 160 m above the crater and drifted SSE; some ashfall was detected within 500 m of the crater, based on Sentinel-2, Pleiades, and SkySat data, and incandescent material was deposited on the SSE flanks (figure 109). According to POVI, during an overflight on 9 December scientists observed a lava lake 10-15 m in diameter that was partially covered by solidified floating black lava. Small pulses of gas and ash were observed in the lava lake. Additionally, ballistic blocks and pyroclasts that measured a maximum of 20 cm in diameter had been ejected up to 800 m from the crater during previous eruptive events. The average SO2 value was 178 tons/day with a maximum daily value of 353 tons/day on 7 December 2020, according to DOAS data.

Figure (see Caption) Figure 109. An explosion at Villarrica on 5 December 2020 at 1844 produced a long-period seismic signal along with an ash plume that rose 160 m crater and drifted SSE. Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, Volcan Villarrica, 5 de diciembre de 2020, 19:50 Hora local).

On 16 December at both 1146 and 1156 SERNAGEOMIN reported two ash pulses associated with long-period events. The first ash emission rose 160 m above the crater and drifted NW; the second rose 280 m above the crater and drifted 500 m NE. On 17 December at 1716 another ash plume associated with a long-period event rose 720 m above the crater and drifted ESE (figure 110). Pyroclastic deposits were reported up to 1.3 km N, 3.3 km E, 5 km SE, and 1.8 km SW from the crater, according to data obtained from Sentinel-2 and SkySat. During 18-19 December seismicity increased, intense crater incandescence was visible, and a notable sulfur odor was noted, according to POVI reports. Minor ash emissions rose to low heights on 22 December.

Figure (see Caption) Figure 110. An explosion at Villarrica on 17 December 2020 at 1716 produced an ash plume that rose 720 m above the crater and drifted ESE. Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, Volcan Villarrica, 17 de diciembre de 2020, 17:50 Hora local).

During January 2021, the number of explosions with ash plumes continued to decrease compared to the previous months. On clear weather days, occasional nighttime crater incandescence was observed, as well as white gas-and-steam emissions of variable intensities. During an overflight on 2 January scientists observed an incandescent vent at the bottom of the crater that had a solidified lava bridge connecting across a partially crusted-over top (figure 111). DOAS data showed that the average mass of SO2 plumes had increased compared to November and December to 318 tons/day with a maximum daily value of 789 tons/day on 12 January. During 1-15 January, the highest ash plume reported rose 700 m above the crater, though it was mostly composed of gas-and-steam emissions. During 16-31 January gas-and-steam emissions continued, rising to 1.3 km above the crater on 20 January. The average value of SO2 plumes increased again to 430 tons/day with a maximum daily value of 789 tons/day on 22 January.

Figure (see Caption) Figure 111. Webcam image of two incandescent vents at Villarrica on 2 January 2021. A bridge of solidified lava separates the two sections and extends across the active lava lake. Courtesy of POVI.

Activity during February continued to decrease compared to the previous months and consisted of primarily white gas-and-steam plumes, nighttime crater incandescence, and SO2 plumes. On 10 February dense, white gas-and-steam plumes rose 700 m above the crater. During 1-15 February, the average value of SO2 plumes was 181 tons/day with a maximum daily value of 369 tons/day on 2 February. Long-period earthquakes were recorded by the seismic network at 1146 and 1156 on 16 February with an associated explosion that generated ash plumes 160 m above the crater that drifted NW and 280 m that drifted NE, respectively. During 16-28 February white gas-and-steam plumes rose to a high of 780 m above the crater; SO2 plumes were an average value of 402 tons/day with a maximum daily value of 1,026 tons/day on 21 February.

Low-power thermal activity was detected during September 2020 through January 2021, according to the MIROVA Log Radiative Power graph using MODIS infrared satellite information (figure 112). Three thermal anomalies were recorded in September, one in October, and four in November; a single stronger anomaly was observed in early November. The number of anomalies increased in late December through late January 2021, though they remained low in power. On clear weather days, a strong thermal anomaly in the summit crater was visible in Sentinel-2 thermal satellite imagery during each month of the reporting period; in February, the strength of the anomaly had slightly decreased compared to previous months (figure 113).

Figure (see Caption) Figure 112. Low-power thermal anomalies were detected in the MIROVA graph (Log Radiative Power) at Villarrica during September 2020 through late January 2021. A pulse of thermal anomalies was recorded during late December 2020 through late January 2021 compared to the previous month but remained low in power. Courtesy of MIROVA.
Figure (see Caption) Figure 113. Sentinel-2 thermal satellite images showing strong thermal anomalies on clear weather days in the summit crater of Villarrica each month from September 2020 through February 2021. The strength of the thermal anomaly in February decreased slightly compared to previous months. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.

Geologic Background. Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); Proyecto Observación Villarrica Internet (POVI) (URL: http://www.povi.cl/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Bezymianny (Russia) — March 2021 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Lava dome growth in November 2020 and continuing thermal anomalies

Bezymianny is located on the Kamchatka Peninsula as part of the Klyuchevskoy Group of volcanoes. It has had frequent eruptions dating back to 1955; the current eruptive period began in May 2010 and recent activity has been characterized by lava dome growth, thermal anomalies, and a single ash explosion that occurred on 22 October 2020 (BGVN 45:11). This report covers similar activity during November 2020 through February 2021 primarily using weekly and daily reports from the Kamchatka Volcano Eruptions Response Team (KVERT) and satellite data.

Activity during 1-13 November 2020 was characterized by continued lava dome growth in the summit crater, accompanied by strong fumarolic activity (figure 41) and a persistent thermal anomaly over the lava dome that was visible in satellite imagery on clear weather days. The KVERT weekly reports for 6 and 12 November reported that the N flank of the lava dome was active and had possibly advanced. Continuing gas-and-steam emissions and thermal anomalies were reported by KVERT from mid-November through the end of February 2021. The volcano was often obscured by clouds, making satellite observations difficult.

Figure (see Caption) Figure 41. Photo of Bezymianny showing strong fumarolic activity on 8 December 2020. Photo by S. Chirkov, IVS FEB RAS. Courtesy of IVS FEB RAS, KVERT.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system based on the analysis of MODIS data showed relatively strong and frequent thermal anomalies during early November to early December due to the continuing lava dome growth, followed by variable, intermittent thermal activity into mid-January 2021. About four low-power anomalies were detected in mid-February (figure 42). This thermal activity was also reflected in Sentinel-2 thermal satellite imagery; thermal anomalies were observed in the summit crater over the lava dome, occasionally accompanied by white gas-and-steam emissions (figure 43).

Figure (see Caption) Figure 42. Relatively strong and frequent thermal anomalies at Bezymianny were recorded by the MIROVA system (Log Radiative Power) during November through early December 2020, due to the growing lava dome. Thermal activity continued at intermittent intervals through mid-February 2021. Four low-power thermal anomalies were detected in February. Courtesy of MIROVA.
Figure (see Caption) Figure 43. Sentinel-2 thermal satellite images showing a thermal anomaly (dark orange) over the lava dome at Bezymianny’s summit crater on 10 November (top left), 5 December (top right), 23 December 2020 (bottom left), and 29 January 2021 (bottom right). The thermal anomaly is frequently accompanied by strong gas-and-steam emissions, as shown in each of these images. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.

Geologic Background. Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Reventador (Ecuador) — February 2021 Citation iconCite this Report

Reventador

Ecuador

0.077°S, 77.656°W; summit elev. 3562 m

All times are local (unless otherwise noted)


Continued ash emissions and incandescent blocks avalanches; new dome and lava flow emerge in August 2020

The andesitic Volcán El Reventador lies almost 100 km E of the main axis of active volcanoes in Ecuador and has historical eruptions with numerous lava flows and explosive events going back to the 16th century. An eruption in November 2002 generated a 17-km-high eruption cloud, pyroclastic flows that traveled 8 km, and multiple lava flows. Eruptive activity has been continuous since 2008. Daily explosions with ash emissions and ejecta of incandescent blocks rolling hundreds of meters down the flanks have been typical for many years. Similar activity continued during August 2020-January 2021, the period covered in this report, with information provided by Ecuador's Instituto Geofisico (IG-EPN), the Washington Volcano Ash Advisory Center (VAAC), and infrared satellite data.

Near-daily emissions of gas and ash often rose 500-1,000 m above the summit and drifted mostly in a westerly direction throughout August 2020-January 2021. Incandescence at night was produced by explosions of ejecta that sent blocks rolling hundreds of meters down the flanks of the pyroclastic cone inside the summit caldera. IG-EPN reported the presence of a new dome inside the crater in early August. A small lava flow about 400 m long persisted on the NE flank through at least the end of 2020; another flow was observed on the N flank in January. Small pyroclastic flows were reported a few times, and ashfall occurred in the San Rafael region (10 km SSE) at the end of October. After a relatively quiet June 2020, thermal activity increased to moderate levels and remained there throughout the period (figure 132).

Figure (see Caption) Figure 132. Thermal activity at Reventador was consistent at moderate to high levels from late June 2020 through January 2021, according to this MIROVA project graph of log radiative power at the volcano. Courtesy of MIROVA.

Gas and ash emissions rose 500-1,000 m above the summit almost every day during August 2020 (figure 133). Incandescence and explosions at the summit crater, visible at night, were accompanied many nights by incandescent blocks that rolled 500-700 m down various flanks. The Washington VAAC issued 1-4 alerts most days, reporting ash observed in satellite data that rose 700-1,400 m above the summit. Drift directions were generally NW, W, or SW. IG reported a pyroclastic flow on the NE flank on 4 August, and a new 200-m-long lava flow near the summit on the NE flank was seen on 10 August (figure 134). By 19 August the lava flow had reached 350 m long; it remained active for the rest of the month but didn’t increase in length. Based on the analysis of webcam photographs and infrared images, they confirmed the growth of a new dome on 17 August (figure 135). MODVOLC thermal alerts were recorded on 3 and 11 August.

Figure (see Caption) Figure 133. Gas and ash rose 500-1,000 m above the summit of Reventador most days during August 2020, as seen here on 17 August. Courtesy of IG-EPN (INFORME DIARIO DEL ESTADO DEL VOLCÁN REVENTADOR No. 2020-231, LUNES, 17 AGOSTO 2020).
Figure (see Caption) Figure 134. IG-EPN reported a new lava flow on the NE flank of Reventador on 10 August 2020. It was about 400 m long and persisted through the end of 2020. Courtesy of IG-EPN (INFORME DIARIO DEL ESTADO DEL VOLCÁN REVENTADOR No. 2020-224, LUNES, 10 AGOSTO 2020).
Figure (see Caption) Figure 135. Infrared images show volcanic activity at Reventador during August 2020, including a pyroclastic flow on 4 August (top right), a lava flow on 6 August (middle left), and a lava dome on 17 August (middle right and bottom row). Courtesy of IG-EPN (Prepared by Cámar IR, S Vallejo; Informe Especial del Volcán El Reventador No. 2-2020).

Incandescence from summit explosions was visible most nights in September 2020; explosions sent glowing blocks 500-800 m down multiple flanks on many nights. The lava flow on the NE flank remained active, growing slightly from 350 to 400 m in length. Three or four VAAC alerts were issued each day for ash plumes that rose usually 700-1,400 m above the summit and drifted NW. IG webcams captured images of ash emissions rising 600-900 m above the summit on most days; a few exceeded 1,000 m in height. IG reported pyroclastic flows on the N flank on 3 and 4 September, and on the W flank on 6 September. Pyroclastic deposits were observed on the E flank of the cone on 26 September, and the webcams captured a pyroclastic flow in the early morning of 29 September along the WSW flank that reached 600 m from the summit (figure 136). All of the pyroclastic flows remained inside the summit caldera. MODVOLC thermal alerts were recorded on 11, 12, and 20 September.

Figure (see Caption) Figure 136. A pyroclastic flow was visible on the WSW flank of Reventador on 29 September 2020 along with an ash plume that rose hundreds of meters above the summit. Courtesy of IG-EPN (IGAlInstante Informativo VOLCÁN REVENTADOR No. 005, MARTES, 29 SEPTIEMBRE 2020).

The 400- to 450-m-long lava flow that first emerged on the NE flank in early August remained active, as seen in thermal imagery, throughout October 2020 (figure 137). Emissions of gas and ash continued rising daily 500-1,000 m above the summit and drifting in multiple different directions. Multiple VAAC reports were issued on most days; the plumes increased in height and frequency during the second half of the month, reaching 1,400 m above the summit. Incandescent blocks rolled 500-800 m down the flanks on most nights. MODVOLC thermal alerts were issued on five days during the month, on 2, 11, 14, 25, and 27 October; five alerts were issued on 25 October. Occasional pyroclastic flows were recorded on the N flank on 21 October. Fine-grained ashfall was reported in the San Rafael region (on the border between the Napo and Sucumbios provinces, 10 km ESE) on 28 and 30 October (figure 138).

Figure (see Caption) Figure 137. The lava flow on the NE flank of Reventador was about 450 m long and active throughout October 2020. In this 6 October 2020 infrared image incandescent ejecta rose from the summit and the lava flow was visible on the NE flank. Courtesy of IG-EPN (INFORME DIARIO DEL ESTADO DEL VOLCÁN REVENTADOR No. 2020-281, MARTES, 6 OCTUBRE 2020).
Figure (see Caption) Figure 138. IGEPN official S. Vallejo reported ashfall on a vehicle in the San Rafael region on the border between the Napo and Sucumbios provinces, 10 km ESE of Reventador on 28 and 30 October. US penny for scale. Photo by S. Vallejo, courtesy of IG-EPN (IGAlInstante Informativo VOLCÁN REVENTADOR No. 007, VIERNES, 30 OCTUBRE 2020).

Steam, gas, and ash emissions continued throughout November 2020, with many plumes rising 800-1,000 m above the summit and drifting NW (figure 139). Multiple daily VAAC reports indicated plumes visible in satellite imagery 1,000-1,400 m above the summit on most days. The lava flow remained active on the NE flank with thermal imagery indicating a strong heat signal 400-450 m from the summit. The explosions that produced the incandescent blocks were strongest during 5-7 November when the blocks rolled as far as 1,000 m from the summit. Cloudy weather and rain obscured views of activity at the end of the month, and a lahar was measured by seismic instruments on 27 November, but no damage was reported. MODVOLC alerts were issued on 3, 10, 26, and 30 November. Cloudy weather during the first week of December prevented many observations, but clearer skies later in the month indicated ongoing activity that included gas and ash emissions rising about 1,000 m and drifting NW; incandescent blocks rolled 500 m down the flanks following explosions inside the crater. Only a single MODVOLC alert was issued on 25 December. The 450-m-long lava flow on the NE flank remained active.

Figure (see Caption) Figure 139. Many ash plumes at Reventador rose 800-1,000 m above the summit during November 2020. They were visible on some days when the mountain was not; clear days revealed blocks rolling down the NE flank and raising ash clouds as they rolled (bottom left). Courtesy of IG-EPN (INFORME DIARIO DEL ESTADO DEL VOLCÁN REVENTADOR Nos. 2020-312, 2020-315, 2020-323, and 2020-327).

A new pulse of lava was first reported from a vent on the N flank on 10 January 2021 and remained active for the rest of the month. That same day incandescent blocks traveled 700 m down the NE flank. Pyroclastic flows were observed on the night of 14 January on the N flank. Satellite imagery on 16 January showed multiple areas of thermal activity at the summit and on the NNE flank (figure 140). On 21 January the ejecta from the explosions rose a hundred meters or more into the air over the pyroclastic cone in addition to traveling several hundred meters down the NE flank (figure 141). MODVOLC thermal alerts were issued on 4, 13, and 31 January.

Figure (see Caption) Figure 140. Sentinel-2 satellite imagery of Reventador on 16 January 2021 indicated strong thermal anomalies at the summit and on the NE flank, even through the frequently dense cloud cover. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 141. On 21 January 2021 the ejecta from explosions at Reventador could be seen rising a hundred meters or more over the pyroclastic cone in addition to traveling several hundred meters down the NE flank. Courtesy of IG-EPN (INFORME DIARIO DEL VOLCAN REVENTADOR No. 2021-021, Quito, jueves 21 de enero de 2021).

Geologic Background. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Information Contacts: Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Popocatepetl (Mexico) — February 2021 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Daily low-intensity emissions with ash and persistent tremor during August 2020-January 2021

Volcán Popocatépetl is an active stratovolcano near Mexico City that has had frequent historical eruptions dating back to the 14th century. The current eruption has been ongoing since January 2005 and has more recently consisted of lava dome growth and destruction, frequent explosions, and emissions of ash plumes and incandescent ejecta. Activity through July 2020 was characterized by hundreds of daily low-intensity emissions that included gas-and-steam and small amounts of ash, and multiple daily minor and moderate explosions that sent ash plumes more than 1 km above the crater (BGVN 45:08). This report covers somewhat decreased activity from August 2020 through January 2021 using information from México's Centro Nacional de Prevención de Desastres (CENAPRED), the Washington Volcanic Ash Advisory Center (VAAC), and various satellite data.

Popocatépetl had ongoing water vapor, gas, and ash emissions throughout August 2020-January 2021, but far fewer minor and moderate explosions than during the period of the previous report. Ash emissions generally rose to 5.8-7.1 km altitude and drifted in many different directions. Ashfall was reported in multiple communities during August, October, and numerous times in January 2021. Thermal anomalies were recorded in satellite images inside the summit crater a few times each month. The MIROVA thermal anomaly data indicated persistent, low levels of activity throughout the reporting period (figure 162). CENAPRED reported the number of low-intensity emissions or ‘exhalations’ and the number of minutes of tremor in their daily reports (figure 163). Tremor activity was very high at the beginning of August, and then again during January 2021. The daily number of exhalations was highest during late October and November 2020.

Figure (see Caption) Figure 162. MIROVA thermal anomaly data for Popocatépetl for the year ending on 3 February 2021 showed persistent low levels of activity from August 2020 through January 2021, the period covered in this report. Courtesy of MIROVA.
Figure (see Caption) Figure 163. CENAPRED reported the number of exhalations (low-intensity emissions) and the number of minutes of tremor at Popocatépetl in their daily reports. Tremor activity was very high at the beginning of August, and then again during January 2021 (yellow columns). The daily number of exhalations was highest during late October and November 2020 (blue columns). Data courtesy of CENAPRED daily monitoring reports.

During August 2020 daily water vapor and gas emissions often contained small quantities of ash. In addition, low-intensity emissions or exhalations with larger quantities of ash occurred tens of times per day. The daily number of minutes of tremor was over 1,000 at the beginning of the month but dropped back to lower levels of a few tens or hundreds of minutes later in the month. Slight amounts of ashfall were reported in Amecameca and Ozumba in the State of Mexico on 1 August. On 2 August the 1159 minutes of tremor were sometimes accompanied by incandescent ejecta that fell into and a short distance from the summit crater. The Washington VAAC observed an ash emission drifting NE at 6.1 km altitude on 2 August that later rose to 7.6 km altitude. It fanned out from the summit to the N and E for about 15 km. Similar observations were made virtually every day of the month; ash or gas-and-ash emissions generally rose to 5.8-7.6 km altitude and drifted a few tens of kilometers in different directions before dissipating. Constant gas emissions and incandescence were reported at night during 10-23 August; an ash emission that rose to 600 m above the crater rim and drifted W on 14 August was captured in the webcam (figure 164). The largest SO2 emissions during the period were captured by the TROPOMI instrument on the Sentinel-5P satellite during 2-5 August (figure 165).

Figure (see Caption) Figure 164. An ash emission at Popocatépetl rose to 600 m above the crater rim and drifted W on 14 August 2020. Dense steam emissions also drifted just above the summit. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl hoy 14 de Agosto).
Figure (see Caption) Figure 165. The largest SO2 emissions at Popocatépetl during the period were captured by the TROPOMI instrument on the Sentinel-5P satellite during 2-5 August 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Gas and occasional weak ash emissions accompanied the tens of daily low-intensity emissions during September 2020; thermal activity was very low with weak anomalies inside the summit present in satellite images on 3, 8, and 13 September. Ash emissions were visible from a webcam on 18 September and in satellite imagery on 23 September (figure 166). Weak incandescence above the crater was only reported by CENAPRED during 26 and 27 September. The Washington VAAC reported intermittent ash emissions throughout the month that commonly rose to 6-7 km altitude and drifted over 50 km downwind before dissipating.

Figure (see Caption) Figure 166. Ash emissions were visible from a webcam at Popocatépetl on 18 September (left) and in satellite imagery on 23 September 2020 (right). Right image is from Sentinel-2 with natural color rendering (bands 4, 3, 2). Left image courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl hoy 18 de septiembre). Right image courtesy of Sentinel Hub Playground.

Water-vapor and gas emissions with small quantities of ash similar to those seen in September were also typical activity during October 2020. Tens or a few hundred daily low-intensity emissions often produced ash plumes visible in the webcams (figure 167). Ashfall was reported in Tetela del Volcano (20 km SW), in the state of Morelos, and in Amecameca (20 km NW), Atlautla (17 km W), Ayapango (22 km NW) and Ecatzingo (15 km SW), in the State of Mexico on 7 October; a small amount of ashfall was also reported in Amecameca on 13 October. The Washington VAAC issued multiple daily ash advisories throughout the month; many ash plumes were visible in satellite imagery. Incandescence appeared over the summit crater at night during 10-16 October, and was noted in satellite imagery on 3, 8, 18, 23, and 28 October. Incandescence and ash emissions were both captured in satellite imagery on 8 and 18 October (figure 168). Personnel from the Institute of Geophysics of the National Autonomous University of Mexico (UNAM) and the National Center for Disaster Prevention (CENAPRED) conducted an overflight on 16 October and verified that the inner crater at the summit was covered in tephra and about 360-390 m in diameter and 120-170 m deep (figure 169).

Figure (see Caption) Figure 167. Ash plumes and steam rose hundreds of meters above Popocatépetl on 5 (left) and 10 (right) October 2020. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl hoy 5 de octubre y 10 de octubre de 2020).
Figure (see Caption) Figure 168. Thermal anomalies at the summit of Popocatépetl and ash plumes drifting SW were both present in satellite imagery on 8 (left) and 18 (right) October 2020. Images are using Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 169. Personnel from the Institute of Geophysics of the National Autonomous University of Mexico (UNAM) and the National Center for Disaster Prevention (CENAPRED) conducted an overflight of Popocatépetl on 16 October 2020 and verified that the inner crater at the summit was covered in tephra, about 360-390 m in diameter, and 120-170 m deep. Courtesy of CENAPRED (Sobrevuelo al volcán Popocatépetl, 16 de octubre de 2020).

Activity during November 2020 consisted primarily of weak emissions of steam and gas with occasional small quantities of ash that rose a short distance above the summit crater (figure 170). The Washington VAAC reported ash emissions on 19 days during the month, most rising to 5.8-6.7 km altitude and drifting for a few tens of kilometers before dissipating. CENAPRED reported a few hundred low-intensity emissions daily, but only a few tens of minutes of tremor each day, significantly lower than previous months. Satellite imagery showed weak thermal anomalies inside the summit crater on 2, 7, 12, 22, and 27 November.

Figure (see Caption) Figure 170. Activity during November 2020 at Popocatépetl consisted primarily of weak emissions of steam and gas with occasional small quantities of ash that rose a short distance above the summit crater such as this one on 2 November. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl hoy 02 de noviembre).

Emissions of steam and gas with occasional low quantities of ash continued during December 2020. Six explosions on 5 December produced small ash plumes that rose 500-1,000 m above the crater. The next day two explosions produced plumes that rose less than 1,500 m above the crater and drifted NE. Incandescent ejecta was captured in the webcam on 14 December (figure 171). The Washington VAAC issued multiple aviation alerts nearly every day of the month; ash plumes generally rose to 6-7 km altitude and drifted 30-50 km before dissipating. Activity increased during the second half of the month (figure 172). Visible ejecta was seen in webcams during low-energy emissions on 24 December, accompanied by an ash plume that rose 1,000 m above the crater. The next day an ash emission rose 300 m. Ejecta was noted on the SE flank after an explosion on 27 December, and ash plumes rose to 500-1,400 m above the crater each day through the end of December and into January 2021. Thermal anomalies appeared in satellite data inside the summit crater on 2, 17, 22, and 27 December.

Figure (see Caption) Figure 171. Explosions at Popocatépetl produced dense ash emissions and incandescent ejecta. On 6 December the ash plume rose to 1,500 m above the crater and drifted NE (left). On 14 December 2020 incandescent ejecta rose a few hundred meters above the summit crater (right). Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl, 7 de diciembre y 15 de Diciembre de 2020).
Figure (see Caption) Figure 172. Ash emissions occurred daily at Popocatépetl during December 2020. On 20 December the dense plume rose about one kilometer above the summit (left). On 31 December a thermal inversion was the likely reason that the ash from the summit flowed down the flank towards the webcam (right). Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl, 20 de diciembre y 31 de Diciembre de 2020).

Daily ash emissions were reported by the Washington VAAC during January 2021, rising to 5.8-7.0 km altitude and drifting tens or hundreds of kilometers before dissipating (figure 173). Ash plumes rose 500-600 m above the crater on 1 and 2 January; at least one explosion each of those days produced incandescent ejecta in and around the crater. The Washington VAAC reported the ash plume from 1 January as visible in the webcam and satellite imagery over 200 km NE from the summit before dissipating, and one on 6 January visible about 100 km E of the volcano (figure 174). Ashfall was reported each day during 4-6 January in Puebla to the NW. On 8 January ashfall occurred in Atlixco (23 km SE), San Andrés Cholula (35 km E), San Nicolás de los Ranchos (15 km ENE) and Domingo Arenas (22 km NE), all in the state of Puebla. The following day ashfall was reported in San Salvador el Verde (30 km NNE) and San Nicolás de los Ranchos. Multiple explosions with ash plumes rising 500-700 m were reported on 14 and 15 January followed the next day by ashfall in San Nicolás de los Ranchos. Trace amounts of ash were reported in Tetela del Volcán (18 km SW) in the State of Morelos on 22 January. An explosion on 26 January ejected ash 700 m high and sent incandescent fragments a short distance from the crater rim. Ashfall on 28 January was reported in Ixtlacuixtla de Mariano, Nativitas and part of the center of Tlaxcala (50 km NE). The circular inner crater rim at the summit was sharply defined in a satellite image taken on 31 January 2021; a thermal anomaly was also present inside the crater (figure 175).

Figure (see Caption) Figure 173. Ash plumes were reported daily at Popocatépetl during January 2021, including on 19 (left) and 21 (right) January, some rising over a kilometer above summit and drifting for tens of kilometers before dissipating. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl, 20 y 21 de Enero de 2021).
Figure (see Caption) Figure 174. The Washington VAAC reported an ash plume at Popocatépetl from 1 January 2020 as visible over 200 km NE from the summit before dissipating (left), and one on 6 January as visible about 100 km E of the volcano (right). Sentinel-2 satellite images are with Natural color (bands 4, 3, 2) and Atmospheric penetration (bands 12, 11, 8a) rendering. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 175. A thermal anomaly inside the summit crater of Popocatépetl seen in this Sentinel-2 image was surrounded by a distinct gray circle that was the rim of the inner crater on a clear 31 January 2021. Image uses Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Centro Nacional de Prevención de Desastres (CENAPRED), Av. Delfín Madrigal No.665. Coyoacan, México D.F. 04360, México (URL: http://www.cenapred.unam.mx/, Daily Report Archive https://www.gob.mx/cenapred/archivo/articulos); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Pacaya (Guatemala) — February 2021 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Explosions continue, and effusive activity increases during August-November 2020

Extensive lava flows, bomb-laden Strombolian explosions, and ash plumes emerging from Mackenney crater have characterized the persistent activity at Pacaya since 1961. The latest eruptive episode began with intermittent ash plumes and incandescence in June 2015; the growth of a new pyroclastic cone inside the summit crater was confirmed later that year. The pyroclastic cone has continued to grow, producing Strombolian explosions rising above the crater rim and frequent loud explosions. In addition, fissures on the flanks of the summit crater have produced an increasing number of lava flows traveling distances of over one kilometer down multiple flanks during 2019 and 2020 (figure 129). Increasing explosive and effusive activity during August-November 2020 is covered in this report with information provided by Guatemala's Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), multiple sources of satellite data, and numerous photographs from observers on the ground.

Figure (see Caption) Figure 129. Lava flows traveled down the flank of Pacaya during July 2019 while ash emissions and incandescent ejecta marked the summit of Fuego located 30 km NW. The large edifice on the right is Agua, and the one between it and Fuego is Acatenango, which last erupted in the early 20th century. Photo courtesy David Rojas, used with permission.

After a brief pause in effusive activity at the end of July 2020, two lava flows appeared on the NW flank on 12 August. Another flow began on the NE flank ten days later, and multiple flows were active for the remainder of the month, some reaching 650 m long. Multiple lava flows issued from fissures on the N flank and elsewhere throughout September. A flow on the NE flank was reported as 1,200 m long and was visible from Guatemala City on 8 September. A new flow on the S flank was very active later in the month. Flows were persistent on most of the flanks throughout October; a flow appeared from a fissure on the W flank on 20 October and reached 1 km in length by 24 October. Block avalanches spalled off the front of the flows and generated small ash plumes. Multi-branched flows on the W and SW flanks from the W flank fissure remained active throughout November. The slowdown in effusive activity in late July and early August 2020 is apparent in the MIROVA thermal anomaly data, as is the significant increase in activity during September that persisted into November 2020 (figure 130).

Figure (see Caption) Figure 130. Thermal activity at Pacaya decreased in late July and early August 2020 but then increased significantly in early September and remained high through November 2020; numerous lava flows were reported during the periods of increased thermal activity. Thermal data is shown from 3 February through November 2020. Courtesy of MIROVA.

The break in the lava flow activity that began on 25 July 2020 (BGVN 45:08) lasted until 12 August. During that time, steam plumes were reported rising 25-75 m above the summit and drifting generally S or SW as far as 6 km before dissipating. Strombolian explosions rose 25-150 m above the rim of Mackenney crater and ejecta reached 50 m from the rim; noises as loud as a train engine were heard in nearby communities. Incandescence was observed nearly constantly along with persistent seismic tremor activity. On 12 August two lava flows emerged on the NW flank, each reaching about 150 m long. Incandescence from the flows was visible each day through 21 August on the NW flank in the area just above Cerro Chino (figure 131). The active flows were 100-200 m long during this period. A new lava flow appeared on the NE flank and grew to 300 m in length on 22 August.

Figure (see Caption) Figure 131. A thermal anomaly from a lava flow on the NNW flank of Pacaya was present in Sentinel-2 satellite imagery on 17 August 2020 in addition to a thermal anomaly at the center of the pyroclastic cone inside the summit crater. Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Multiple lava flows were active on the NW, N, and NE flanks for the rest of the August. Incandescence on 24 August from the NW-flank flow near Cerro Chino indicated it was 250-300 m long. During 27 and 28 August flows were reported on the N and NNE flanks, 600 and 300 m long, respectively (figure 132). Incandescent pulses were reported from the crater overnight on 28-29 August; the NW flank flow remained active and was 300 m long. MODVOLC reported three thermal alerts on 29 August. The next day, 30 August, incandescence from the 650-m-long N flank flow and 300-m-long NE flank flow continued. Constant crater incandescence accompanied dense gray ash emissions on 31 August; the lava flow on the N flank remained incandescent for 350-400 m, but there was no incandescence or degassing from the NE-flank flow on the last day of the month.

Figure (see Caption) Figure 132. A 600-m-long lava flow was visible on the N flank of Pacaya as seen from Villa Nueva, part of Guatemala City, late on 27 August 2020. Courtesy of Sh!ft.

White and blue steam and gas plumes were present daily throughout September 2020. They drifted in multiple directions as far as 8 km from the summit before dissipating. Strombolian activity was constant, building up the pyroclastic cone inside of Mackenney crater and sending ejecta as far as 50 m from the rim. Ejecta rose 50-150 m on most days; it was reported at 200 m high on 3, 9, and 14 September and was heard loudly and rattled windows nearby on 17 and 27 September. Constant crater incandescence with prolonged degassing of dense gray ash plumes was reported on 5, 10, 15, 17, and 21 September.

Multiple lava flows issued from fissures on the N flank and elsewhere throughout the month. Two lava flows on 1 September on the N flank were 50 and 350 m long. The next day three flows on the same flank were 300, 350, and 650 m long. On 3 September a new flow appeared on the E flank and extended 600 m from its source in addition to two flows on the N flank. For the next several days multiple flows were active on the N and NE flanks, reaching 450 m on the NE flank on 7 September. The next day the flow on the NE flank reached 1,200 m in length and was visible from Guatemala City. Activity continued with multiple flows 150-300 m long through 12 September (figure 133).

Figure (see Caption) Figure 133. Lava flows at Pacaya were active on multiple flanks on 11 September 2020, including one that reached over a kilometer in length on the NE flank. Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

On 13 September 2020 the flows on the N and NE flanks reached 600 and 300 m long, while a third flow reached 150 m down the S flank. The flow on the S flank was the most active during 14-23 September, extending 550 m from its source and producing numerous block avalanches from the flow front (figure 134). During the last week of the month the focus of the flow activity returned to the NE, N, and NW flanks where multiple flows were reported, some up to 550 m long, along with constant Strombolian activity (figures 135). Increased thermal activity resulted in MODVOLC thermal alerts reported on seven days during the second half of the month.

Figure (see Caption) Figure 134. A large lava flow on the S flank of Pacaya during 14-23 September 2020 produced block avalanches from the flow front. It was seen here in Sentinel-2 satellite imagery on 21 September 2020 using atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 135. Strombolian explosions sent ejecta 40-70 m above the crater at Pacaya on 26 September 2020. In addition, a lava flow 200 m long descended the N flank. Courtesy of CONRED.

Gas and steam plumes persisted throughout October 2020. They generally rose a few hundred meters above the summit and usually drifted S or W up to 10 km. Strombolian explosions continued daily, reported at 75-150 m high for most of the month. In a special report on 8 October INSIVUMEH noted increased Strombolian activity that sent bombs and fine ash 200-300 m above the crater, with ash emissions drifting 12 km W. During the last week of the month the ejecta reached 250 m high on several days. Loud noises and shock waves were periodically reported; vibrations were felt in San Francisco de Sales on 23 October and in areas to the S of Guatemala City on 27 October. INSIVUMEH reported ash emissions that drifted 8-10 km S and W from the summit on 23 October. The Washington VAAC reported ash emissions seen in satellite imagery drifting 15 km NE at 3.7 km altitude on 28 October. Weak sulfur dioxide emissions were recorded by the TROPOMI instrument on 6, 20, and 26 October (figure 136).

Figure (see Caption) Figure 136. Weak SO2 emissions from Pacaya were recorded by the TROPOMI instrument on the Sentinel 5P satellite on 6, 20, and 26 October 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Numerous lava flows were active throughout the month of October 2020 on multiple flanks (figure 137). During 1-4 October INSIVUMEH reported one or two flows active on the N and NE flanks that were 100-500 m long (figure 138). On 4 October there was a 200-m-long flow on the S flank, and another flow on the W flank. The S-flank flow grew to 250 m long by 8 October, had block avalanches spalling off the front, and fine ash that was stirred up by the wind. The next day three flows were active; they were 400 m long on the NE flank, 300 m on the N flank, and 200 m on the W flank. The N-flank flow was the most active during 11-15 October, reaching 650 m long. The W-flank flow was very active from 20 October through the end of the month, issuing from a fissure at mid-flank. It reached 1 km in length by 24 October and burned vegetation at the flow front (figures 139). A flow on the NE flank was 350 m long on 26 October (figure 140). MODVOLC issued thermal alerts on 7 days of the month, including seven alerts on 5 October.

Figure (see Caption) Figure 137. Numerous lava flows were active throughout the month of October 2020 on multiple flanks of Pacaya. On 1 October the flows were concentrated on the N flank (left), and on 31 October a long flow was active on the W flank in addition to strong thermal activity at the summit crater (right). Atmospheric penetration rendering (bands 12, 11, and 8a) of Sentinel-2 satellite data. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 138. A lava flow 125 m long on the N flank of Pacaya was active on 1 October 2020. Courtesy of CONRED.
Figure (see Caption) Figure 139. A flow on the W flank of Pacaya was over 1 km long by 24 October 2020 when it was burning vegetation as it traveled downslope. Courtesy of Noti7.
Figure (see Caption) Figure 140. An active flow on the SW flank of Pacaya issuing from a fissure on the W flank was over 1 km long on 26 October 2020 and had multiple branches flowing down the slope. Numerous people were camped on the slope below the flow. Photo by Mariana Lemus.

Although the weather was cloudy for much of November 2020, white steam and blue gas plumes were visible drifting S or W from the summit on many days, some reaching 10 km from the volcano before dissipating. Sporadic Strombolian explosions rose 100-200 m above the pyroclastic cone inside Mackenney crater; the explosions were often accompanied by small ash plumes that rose a few hundred meters and drifted downwind 8-10 km before dissipating. A small SO2 plume was recorded in the TROPOMI satellite data on 8 November, the same day that INSIVUMEH and the Washington VAAC reported an ash emission drifting NE at 3.4 km altitude over the village of Los Llanos and others in the area (figure 141). An increase in activity reported by INSIVUMEH on 15 November consisted of Strombolian explosions sending material up to 300 m above the summit and ejecting bombs up to 100 m outside the crater.

Figure (see Caption) Figure 141. Ash and steam emissions were observed at Pacaya on 8 November 2020. Courtesy of CONRED.

Lava flows were still very active on the SW flank throughout November, emerging from a fissure a few hundred meters down from the summit that initially opened on 20 October. The main flow was 600 m long on 1 November and grew to 1,200 m long by 11 November (figure 142). On 5 November there were four separate branches of the SW-flank flow that were active. Block avalanches were common at the flow front. On 14 November a second flow was observed emerging from a fissure higher up on the SW flank from the earlier flow; they both were active for several days. INSIVUMEH issued a special report indicating increased effusion on 15 November from the SW-flank fissure. Block avalanches were occurring from the front of the 1-km-long flow, which had several branches. The blocks were 1-3 m in diameter and created small plumes of ash when moving as far as 500 m down the slope. An explosion during the night of 14-15 November at the SW-flank fissure created incandescent ejecta and ash emissions for several hours (figure 143). The flow remained active throughout the rest of November; on 26 November two flows were active from the main fissure, 500 and 400 m long (figure 144). On 30 November the main flow on the SW flank had three branches and extended 600 m from the mid-flank fissure.

Figure (see Caption) Figure 142. A fissure on the W flank of Pacaya that opened on 20 October 2020 sent multiple flows down the W and SW flanks during November. The flow extended more than a kilometer on 10 November (left). It had moved in a SW direction by 20 November (center) and had three major branches active on 25 November (right). Atmospheric penetration rendering (bands 12, 11, and 8a) of Sentinel-2 satellite data. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 143. An explosion at the fissure on the W flank of Pacaya during the night of 14-15 November 2020 produced incandescent ejecta almost as bright as that coming from the Strombolian activity inside the summit crater. For several hours dense ash emissions were visible at the fissure vent (inset). Large copyrighted photo courtesy of David Rojas, used with permission; inset courtesy of Prensa Objetiva.
Figure (see Caption) Figure 144. Two flows with multiple branches were active on the W and SW flanks of Pacaya on 26 November 2020. Both copyrighted photos courtesy of David Rojas, used with permission.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Coordinadora Nacional para la Reducción de Desastres (CONRED), Av. Hincapié 21-72, Zona 13, Guatemala City, Guatemala (URL: http://conred.gob.gt/www/index.php) (URL: https://twitter.com/ConredGuatemala/status/1310057080162844673, https://conred.gob.gt/monitoreo-a-flujo-de-lava-en-el-volcan-pacaya/) ; NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); David Rojas, Guatemala (URL: https://www.instagram.com/davidrojasgtfoto/, https://twitter.com/DavidRojasGt/); Mariana Lemus, Guatemala (URL: https://www.instagram.com/marianalemusgt/); Noti7 (URL: https://twitter.com/Noti7Guatemala/status/1320169410833883136); Sh!ft (URL: https://twitter.com/kevingt_/status/1299204020662304768); Prensa Objetiva (URL: https://twitter.com/noticiasprensa/status/1328102695832612865).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 46, Number 04 (April 2021)

Managing Editor: Edward Venzke

Yasur (Vanuatu)

Gas-and-ash emissions, SO2 plumes, and thermal anomalies during September 2020-February 2021



Yasur (Vanuatu) — April 2021 Citation iconCite this Report

Yasur

Vanuatu

19.532°S, 169.447°E; summit elev. 361 m

All times are local (unless otherwise noted)


Gas-and-ash emissions, SO2 plumes, and thermal anomalies during September 2020-February 2021

Yasur, located at the SE tip of Tanna Island, contains a 400-m-wide summit crater within the small Yenkahe caldera. Its current eruption has been ongoing since at least 1774 and has consisted of Strombolian and Vulcanian activity. More recently, Strombolian activity and gas-and-ash explosions have been reported (BGVN 45:03 and 45:09). This report covers activity from September 2020 through February 2021 that is characterized by ongoing explosions, gas-and-ash emissions, SO2 plumes, and thermal anomalies. Information primarily comes from monthly bulletins of the Vanuatu Meteorology and Geo-Hazards Department (VMGD) and various satellite data.

VMGD reported that ongoing explosions and gas-and-ash emissions continued at an elevated level throughout this reporting period, based on ground observations and seismic data. On clear weather days these emissions were captured by Sentinel-2 satellite imagery (figure 75). Some of the more intense explosions may result in larger ejecta falling in or around the summit crater. On 18 January 2021 a webcam image captured a gas-and-ash emission rising above the crater rim at 1500 (figure 76).

Figure (see Caption) Figure 75. Sentinel-2 satellite images showing gas-and-ash emissions rising from the summit crater of Yasur on clear weather days. Ash is visible during 17 October (left) and 21 December 2020 (middle), while white gas-and-steam emissions are observed on 14 February 2021 (right). Sentinel-2 satellite images with “Natural Color” (bands 4, 3, 2) rendering. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 76. Webcam photo of a gas-and-ash emission rising from Yasur on 18 January 2021 taken at 1500. Courtesy of VMGD.

Sulfur dioxide emissions were measured using the Sentinel-5P/TROPOMI satellite instrument for multiple days each month from September through February 2021 (figure 77). The density and drift direction of these SO2 plumes varied. During 17-19 January relatively dense SO2 plumes were detected consecutively, and drifted SE (figure 78).

Figure (see Caption) Figure 77. Occasional SO2 plumes of varying densities were observed from Yasur during each month of September 2020 through February 2021. Plumes drifted generally W on 28 September (top left), 29 October (top right), 6 December (middle right), 25 December 2020 (bottom left), slightly N on 14 November (middle left), and SW on 19 February 2021 (bottom right). Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 78. Relatively high-density SO2 plumes from Yasur during 17 (left), 18 (middle), and 19 (right) January 2021 were observed consecutively using the TROPOMI imaging spectrometer on the Sentinel-5P satellite. The plumes drifted SE on each of the days. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Intermittent thermal anomalies recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system during September 2020 through February 2021 were low to moderate in power (figure 79). Brief noticeable break in activity occurred during early December 2020 and for much of January 2021. The MODVOLC thermal alert data recorded 41 thermal signatures primarily within the summit crater over a total of 25 different days during September 2020-February 2021. Some of these thermal anomalies were also captured in Sentinel-2 thermal satellite imagery; thermal anomalies were visible in the N and S vents in the summit crater (figure 80).

Figure (see Caption) Figure 79. MIROVA (Log Radiative Power) thermal data for Yasur from 26 May 2020 through February 2021 showed persistent low to moderate thermal activity. A brief but noticeable break in activity occurred during early December, early January, and late January. Courtesy of MIROVA.
Figure (see Caption) Figure 80. Sentinel-2 thermal satellite images showing strong thermal anomalies (yellow-orange) in the N and S vents of the summit crater at Yasur each month from September 2020 through February 2021. During 22 September (top left), 17 October (top right), and 26 November (middle left), the two thermal anomalies in the crater were roughly the same intensity. On 21 December (middle right) the anomaly was accompanied by a small, gray ash plume. On 15 January (bottom left) and 24 February (bottom right) the intensity of the anomaly in the N vent and then the S vent had decreased slightly. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.

Geologic Background. Yasur, the best-known and most frequently visited of the Vanuatu volcanoes, has been in more-or-less continuous Strombolian and Vulcanian activity since Captain Cook observed ash eruptions in 1774. This style of activity may have continued for the past 800 years. Located at the SE tip of Tanna Island, this mostly unvegetated pyroclastic cone has a nearly circular, 400-m-wide summit crater. The active cone is largely contained within the small Yenkahe caldera, and is the youngest of a group of Holocene volcanic centers constructed over the down-dropped NE flank of the Pleistocene Tukosmeru volcano. The Yenkahe horst is located within the Siwi ring fracture, a 4-km-wide, horseshoe-shaped caldera associated with eruption of the andesitic Siwi pyroclastic sequence. Active tectonism along the Yenkahe horst accompanying eruptions has raised Port Resolution harbor more than 20 m during the past century.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports