Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Shishaldin (United States) New eruption with significant Strombolian explosions, ash plumes, and ashfall

Ioto (Japan) New eruption with discolored water, ejecta, and floating pumice during October-December 2023

Purace (Colombia) Gas-and-ash emission on 16 November 2023

Etna (Italy) Strombolian explosions, lava fountains, and lava flows during July-August 2023

Suwanosejima (Japan) Eruption plumes, crater incandescence, and occasional explosions during July-October 2023

Aira (Japan) Explosions, ash plumes, ash fall, and crater incandescence during July-October 2023

Nishinoshima (Japan) Gray emissions during October 2023

Kilauea (United States) Strong lava fountains, lava flows, and spatter at Halema’uma’u during January-September 2023

Tinakula (Solomon Islands) Continued lava flows and thermal activity during June through November 2023

Fuego (Guatemala) Daily explosions, gas-and-ash plumes, and block avalanches during August-November 2023

Santa Maria (Guatemala) Continuing lava effusion, explosions, ash plumes, and pyroclastic flows during August-November 2023

Karangetang (Indonesia) Incandescent avalanches, pyroclastic flows, and ash plumes during July-September 2023



Shishaldin (United States) — December 2023 Citation iconCite this Report

Shishaldin

United States

54.756°N, 163.97°W; summit elev. 2857 m

All times are local (unless otherwise noted)


New eruption with significant Strombolian explosions, ash plumes, and ashfall

Shishaldin is located on the eastern half of Unimak Island, one of the Aleutian Islands. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century. The previous eruption ended in May 2020 and was characterized by intermittent thermal activity, increased seismicity and surface temperatures, ash plumes, and ash deposits (BGVN 45:06). This report covers a new eruption during July through November 2023, which consisted of significant explosions, ash plumes, ashfall, and lava fountaining. Information comes from daily, weekly, and special reports from the Alaska Volcano Observatory (AVO) and various satellite data. AVO monitors the volcano using local seismic and infrasound sensors, satellite data, web cameras, and remote infrasound and lightning networks.

AVO reported that intermittent tremor and low-frequency earthquakes had gradually become more regular and consistent during 10-13 July. Strongly elevated surface temperatures at the summit were identified in satellite images during 10-13 July. On 11 July AVO raised the Aviation Color Code (ACC) to Yellow (the second color on a four-color scale) and Volcano Alert Level (VAL) to Advisory (the second level on a four-level scale) at 1439. Later in the day on 11 July summit crater incandescence was observed in webcam images. Observations of the summit suggested that lava was likely present at the crater, which prompted AVO to raise the ACC to Orange (the second highest color on a four-color scale) and the VAL to Watch (the second highest level on a four-level scale). The US Coast Guard conducted an overflight on 12 July and confirmed that lava was erupting from the summit. That same day, sulfur dioxide emissions were detected in satellite images.

A significant explosion began at 0109 on 14 July that produced an ash plume that rose to 9-12 km altitude and drifted S over the Pacific Ocean (figure 43). Webcam images and photos taken around 0700 from a ship SW off Unimak Island showed small lahar deposits, which were the result of the interaction of hot pyroclastic material and snow and ice on the flanks. There was also ashfall on the SW and N flanks. A smaller explosion at 0710 generated an ash plume that rose to 4.5 km altitude. Webcam images and pilot reports showed continued low-level ash emissions during the morning, rising to less than 4.6 km altitude; those emissions included a small ash plume near the summit around 1030 resulting from a small explosion.

Figure (see Caption) Figure 43. Photo of a strong ash plume that rose to 9-12 km altitude on the morning of 14 July 2023. Lahar deposits were visible on the SW flank (white arrows). Photo has been color corrected. Courtesy of Christopher Waythomas, AVO.

Seismic tremor amplitude began increasing at around 1700 on 15 July; strongly elevated surface temperatures were also reported. An ash plume rose to 4.6 km altitude and drifted SSE at 2100, based on a satellite image. A continuous ash plume during 2150 through 2330 rose to 5 km altitude and extended 125 km S. At 2357 AVO raised the ACC to Red (the highest color on a four-color scale) and the VAL to Warning (the highest level on a four-level scale), noting that seismicity remained elevated for more than six hours and explosion signals were frequently detected by regional infrasound (pressure sensor) networks. Explosions generated an ash plume that rose to 4.9 km altitude and drifted as far as 500 km SE. Activity throughout the night declined and by 0735 the ACC was lowered to Orange and the VAL to Watch. High-resolution satellite images taken on 16 July showed pyroclastic deposits extending as far as 3 km from the vent; these deposits generated lahars that extended further down the drainages on the flanks. Ash deposits were mainly observed on the SSE flank and extended to the shore of Unimak Island. During 16-17 July lava continued to erupt at the summit, which caused strongly elevated surface temperatures that were visible in satellite imagery.

Lava effusion increased at 0100 on 18 July, as noted in elevated surface temperatures identified in satellite data, increasing seismic tremor, and activity detected on regional infrasound arrays. A significant ash plume at 0700 rose to 7 km altitude and continued until 0830, eventually reaching 9.1 km altitude and drifting SSE (figure 44). As a result, the ACC was raised to Red and the VAL to Warning. By 0930 the main plume detached, but residual low-level ash emissions continued for several hours, remaining below 3 km altitude and drifting S. The eruption gradually declined and by 1208 the ACC was lowered to Orange and the VAL was lowered to Watch. High-resolution satellite images showed ash deposits on the SW flank and pyroclastic deposits on the N, E, and S flanks, extending as far as 3 km from the vent; lahars triggered by the eruption extended farther down the flanks (figure 45). Lava continued to erupt from the summit crater on 19 July.

Figure (see Caption) Figure 44. Photo of an ash-rich plume rising above Shishaldin to 9.1 km altitude on 18 July 2023 that drifted SE. View is from the N of the volcano and Isanotski volcano is visible on the left-hand side of the image. Photo has been color corrected. Courtesy of Chris Barnes, AVO.
Figure (see Caption) Figure 45. Near-infrared false-color satellite image of Shishaldin taken on 18 July 2023 showing ash deposits on the N, E, and S flanks extending as far as 3 km from the vent due to recent eruption events. Courtesy of Matthew Loewen, AVO.

Elevated surface temperatures were detected in satellite images during 19-25 July, despite occasional weather cloud cover, which was consistent with increased lava effusion. During 22-23 July satellite observations acquired after the eruption from 18 July showed pyroclastic flow and lahar deposits extending as far as 3 km down the N, NW, and NE flanks and as far as 1.5 km down the S and SE flanks. Ash deposits covered the SW and NE flanks. No lava flows were observed outside the crater. On 22 July a sulfur dioxide plume was detected in satellite data midday that had an estimated mass of 10 kt. In a special notice issued at 1653 on 22 July AVO noted that eruptive activity had intensified over the previous six hours, which was characterized by an hours-long steady increase in seismic tremor, intermittent infrasound signals consistent with small explosions, and an increase in surface temperatures that were visible in satellite data. Pilots first reported low-level ash plumes at around 1900. At 2320 an ash plume had risen to 9 km altitude based on additional pilot reports and satellite images. The ACC was increased to Red and the VAL to Warning at 2343. Satellite images indicated growth of a significantly higher ash plume that rose to 11 km altitude continued until 0030 and drifted NE. During the early morning hours of 23 July ash plumes had declined to 4.6 k altitude. Seismic tremor peaked at 0030 on 23 July and began to rapidly decline at 0109; active ash emissions were no longer visible in satellite data by 0130. The ACC was lowered to Orange and the VAL to Watch at 0418; bursts of increased seismicity were recorded throughout the morning, but seismicity generally remained at low levels. Elevated surface temperatures were visible in satellite data until about 0600. On 24 July pilots reported seeing vigorous gas-and-steam plumes rising to about 3 km altitude; the plumes may have contained minor amounts of ash.

During 24-25 July low level seismicity and volcanic tremor were detected at low levels following the previous explosion on 23 July. Strongly elevated surface temperatures were observed at the summit crater in satellite data. Around 2200 on 25 July seismicity began to increase, followed by infrasound signals of explosions after 0200 on 26 July. An ash plume rose to 3 km altitude at 0500 and drifted ENE, along with an associated sulfur dioxide plume that drifted NE and had an estimated mass of 22 kt. Diffuse ash emissions were visible in satellite data and rose to 6.1-7.6 km altitude and extended 125 km from the volcano starting around 1130. These ash events were preceded by about seven hours of seismic tremor, infrasound detections of explosions, and five hours of increased surface temperatures visible in satellite data. Activity began to decline around 1327, which included low-frequency earthquakes and decreased volcanic tremor, and infrasound data no longer detected significant explosions. Surface temperatures remained elevated through the end of the month.

Seismicity, volcanic tremor, and ash emissions remained at low levels during early August. Satellite images on 1 August showed that some slumping had occurred on the E crater wall due to the recent explosive activity. Elevated surface temperatures continued, which was consistent with cooling lava. On 2 August small explosive events were detected, consistent with low-level Strombolian activity. Some episodes of volcanic tremor were reported, which reflected low-level ash emissions. Those ash emissions rose to less than 3 km altitude and drifted as far as 92.6 km N. Pilots that were located N of the volcano observed an ash plume that rose to 2.7 km altitude. Seismicity began to increase in intensity around 0900 on 3 August. Seismicity continued to increase throughout the day and through the night with strongly elevated surface temperatures, which suggested that lava was active at the surface.

An ash cloud that rose to 7.6-7.9 km altitude and drifted 60-75 km NE was visible in a satellite image at 0520 on 4 August. Pilots saw and reported the plume at 0836 (figure 46). By 0900 the plume had risen to 9.1 km altitude and extended over 100 km NE. AVO raised the ACC to Red and the VAL to Warning as a result. Seismic tremor levels peaked at 1400 and then sharply declined at 1500 to slightly elevated levels; the plume was sustained during the period of high tremor and drifted N and NE. The ACC was lowered to Orange and the VAL to Watch at 2055. During 5-14 August seismicity remained low and surface temperatures were elevated based on satellite data due to cooling lava. On 9 August a small lava flow was observed that extended from the crater rim to the upper NE flank. It had advanced to 55 m in length and appeared in satellite imagery on 11 August. Occasional gas-and-steam plumes were noted in webcam images. At 1827 AVO noted that seismic tremor had steadily increased during the afternoon and erupting lava was visible at the summit in satellite images.

Figure (see Caption) Figure 46. Photo showing an ash plume rising above Shishaldin during the morning of 4 August 2023 taken by a passing aircraft. The view is from the N showing a higher gas-rich plume and a lower gray ash-rich plume and dark tephra deposits on the volcano’s flank. Photo has been color corrected. Courtesy of Chris Barnes, AVO.

Strong explosion signals were detected at 0200 on 15 August. An ash cloud that was visible in satellite data extended 100 km NE and may have risen as high as 11 km altitude around 0240. By 0335 satellite images showed the ash cloud rising to 7.6 km altitude and drifting NE. Significant seismicity and explosions were detected by the local AVO seismic and infrasound networks, and volcanic lightning was detected by the World Wide Lightning Location Network (WWLLN). A sulfur dioxide plume associated with the eruption drifted over the S Bering Sea and parts of Alaska and western Canada. Seismicity was significantly elevated during the eruption but had declined by 1322. A pilot reported that ash emissions continued, rising as high as 4.9 km altitude. Elevated surface temperatures detected in satellite data were caused by hot, eruptive material (pyroclastic debris and lava) that accumulated around the summit. Eruptive activity declined by 16 August and the associated sulfur dioxide plume had mostly dissipated; remnants continued to be identified in satellite images at least through 18 August. Surface temperatures remained elevated based on satellite images, indicating hot material on the upper parts of the volcano. Small explosions were detected in infrasound data on the morning of 19 August and were consistent with pilot reports of small, short-lived ash plumes that rose to about 4.3 km altitude. Low-level explosive activity was reported during 20-24 August, according to seismic and infrasound data, and weather clouds sometimes prevented views. Elevated surface temperatures were observed in satellite images, which indicated continued hot material on the upper parts of the volcano.

Seismic tremor began to increase at around 0300 on 25 August and was followed by elevated surface temperatures identified in satellite images, consistent with erupting lava. Small explosions were recorded in infrasound data. The ACC was raised to Red and the VAL to Warning at 1204 after a pilot reported an ash plume that rose to 9.1 km altitude. Seismicity peaked at 1630 and began to rapidly decline at around 1730. Ash plumes rose as high as 10 km altitude and drifted as far as 400 km NE. By 2020 the ash plumes had declined to 6.4 km altitude and continued to drift NE. Ash emissions were visible in satellite data until 0000 on 26 August and seismicity was at low levels. AVO lowered the ACC to Orange and the VAL to Watch at 0030. Minor explosive activity within the summit crater was detected during 26-28 August and strongly elevated surface temperatures were still visible in satellite imagery through the rest of the month. An AVO field crew working on Unimak Island observed a mass flow that descended the upper flanks beginning around 1720 on 27 August. The flow produced a short-lived ash cloud that rose to 4.5 km altitude and rapidly dissipated. The mass flow was likely caused by the collapse of spatter that accumulated on the summit crater rim.

Similar variable explosive activity was reported in September, although weather observations sometimes prevented observations. A moderate resolution satellite image from the afternoon of 1 September showed gas-and-steam emissions filling the summit crater and obscuring views of the vent. In addition, hot deposits from the previous 25-26 August explosive event were visible on the NE flank near the summit, based on a 1 September satellite image. On 2 and 4 September seismic and infrasound data showed signals of small, repetitive explosions. Variable gas-and-steam emissions from the summit were visible but there was no evidence of ash. Possible summit crater incandescence was visible in nighttime webcam images during 3-4 September.

Seismicity began to gradually increase at around 0300 on 5 September and activity escalated at around 0830. A pilot reported an ash plume that rose to 7.6 km altitude at 0842 and continued to rise as high as possibly 9.7 km altitude and drifted SSE based on satellite images (figure 47). The ACC was raised to Red and the VAL to Warning at 0900. In addition to strong tremor and sustained explosions, the eruption produced volcanic lightning that was detected by the WWLLN. Around 1100 seismicity decreased and satellite data confirmed that the altitude of the ash emissions had declined to 7.6 km altitude. By 1200 the lower-altitude portion of the ash plume had drifted 125 km E. Significant ash emissions ended by 1330 based on webcam images. The ACC was lowered to Orange and the VAL to Watch at 1440. Satellite images showed extensive pyroclastic debris flows on most of the flanks that extended 1.2-3.3 km from the crater rim.

Figure (see Caption) Figure 47. Webcam image taken from the S of Shishaldin showing a vertical ash plume on 5 September 2023. Courtesy of AVO.

During 6-13 September elevated surface temperatures continued to be observed in satellite data, seismicity remained elevated with weak but steady tremor, and small, low-frequency earthquakes and small explosions were reported, except on 12 September. On 6 September a low-level ash plume rose to 1.5-1.8 km altitude and drifted SSE. Occasional small and diffuse gas-and-steam emissions at the summit were visible in webcam images. Around 1800 on 13 September seismic tremor amplitudes began to increase, and small explosions were detected in seismic and infrasound data. Incandescent lava at the summit was seen in a webcam image taken at 0134 on 14 September during a period of elevated tremor. No ash emissions were reported during the period of elevated seismicity. Lava fountaining began around 0200, based on webcam images. Satellite-based radar observations showed that the lava fountaining activity led to the growth of a cone in the summit crater, which refilled most of the crater. By 0730 seismicity significantly declined and remained at low levels.

Seismic tremor began to increase around 0900 on 15 September and rapidly intensified. An explosive eruption began at around 1710, which prompted AVO to raise the ACC to Red and the VAL to Warning. Within about 30 minutes ash plumes drifted E below a weather cloud at 8.2 km altitude. The National Weather Service estimated that an ash-rich plume rose as high as 12.8 km altitude and produced volcanic lightning. The upper part of the ash plume detached from the vent around 1830 and drifted E, and was observed over the Gulf of Alaska. Around the same time, seismicity dramatically decreased. Trace ashfall was reported in the community of False Pass (38 km ENE) between 1800-2030 and also in King Cove and nearby marine waters. Activity declined at around 1830 although seismicity remained elevated, ash emissions, and ashfall continued until 2100. Lightning was again detected beginning around 1930, which suggested that ash emissions continued. Ongoing explosions were detected in infrasound data, at a lower level than during the most energetic phase of this event. Lightning was last detected at 2048. By 2124 the intensity of the eruption had decreased, and ash emissions were likely rising to less than 6.7 km altitude. Seismicity returned to pre-eruption levels. On 16 September the ACC was lowered to Orange and the VAL to Watch at 1244; the sulfur dioxide plume that was emitted from the previous eruption event was still visible over the northern Pacific Ocean. Elevated surface temperatures, gas-and-steam emissions from the vent, and new, small lahars were reported on the upper flanks based on satellite and webcam images. Minor deposits were reported on the flanks which were likely the result of collapse of previously accumulated lava near the summit crater.

Elevated seismicity with tremor, small earthquakes, and elevated surface temperatures were detected during 17-23 September. Minor gas-and-steam emissions were visible in webcam images. On 20 September small volcanic debris flows were reported on the upper flanks. On 21 September a small ash deposit was observed on the upper flanks extending to the NE based on webcam images. Seismic tremor increased significantly during 22-23 September. Regional infrasound sensors suggested that low-level eruptive activity was occurring within the summit crater by around 1800 on 23 September. Even though seismicity was at high levels, strongly elevated surface temperatures indicating lava at the surface were absent and no ash emissions were detected; weather clouds at 0.6-4.6 km altitude obscured views. At 0025 on 24 September AVO noted that seismicity continued at high levels and nearly continuous small infrasound signals began, likely from low-level eruptive activity. Strongly elevated surface temperatures were identified in satellite images by 0900 and persisted throughout the day; the higher temperatures along with infrasound and seismic data were consistent with lava erupting at the summit. Around 1700 similarly elevated surface temperatures were detected from the summit in satellite data, which suggested that more vigorous lava fountaining had started. Starting around 1800 low-level ash emissions rose to altitudes less than 4.6 km altitude and quickly dissipated.

Beginning at midnight on 25 September, a series of seismic signals consistent with volcanic flows were recorded on the N side of the volcano. A change in seismicity and infrasound signals occurred around 0535 and at 0540 a significant ash cloud formed and quickly reached 14 km altitude and drifted E along the Alaska Peninsula. The cloud generated at least 150 lightning strokes with thunder that could be heard by people in False Pass. Seismicity rapidly declined to near background levels around 0600. AVO increased the ACC to Red and the VAL to Warning at 0602. The ash cloud detached from the volcano at around 0700, rose to 11.6 km altitude, and drifted ESE. Trace to minor amounts of ashfall were reported by the communities of False Pass, King Cove, Cold Bay, and Sand Point around 0700. Ash emissions continued at lower altitudes of 6-7.6 km altitude at 0820. Small explosions at the vent area continued to be detected in infrasound data and likely represented low-level eruptive activity near the vent. Due to the significant decrease in seismicity and ash emissions the ACC was lowered to Orange and the VAL to Watch at 1234. Radar data showed significant collapses of the crater that occurred on 25 September. Satellite data also showed significant hot, degassing pyroclastic and lahar deposits on all flanks, including more extensive flows on the ENE and WSW sections below two new collapse scarps. Following the significant activity during 24-25 September, only low-level activity was observed. Seismicity decreased notably near the end of the strong activity on 25 September and continued to decrease through the end of the month, though tremor and small earthquakes were still reported. No explosive activity was detected in infrasound data through 2 October. Gas-and-steam emissions rose to 3.7 km altitude, as reported by pilots and seen in satellite images. Satellite data from 26 September showed that significant collapses had occurred at the summit crater and hot, steaming deposits from pyroclastic flows and lahars were present on all the flanks, particularly to the ENE and WSW. A small ash cloud was visible in webcam images on 27 September, likely from a collapse at the summit cone. High elevated surface temperatures were observed in satellite imagery during 27-28 September, which were likely the result of hot deposits on the flanks erupted on 25 September. Minor steaming at the summit crater and from an area on the upper flanks was visible in webcam images on 28 September.

During October, explosion events continued between periods of low activity. Seismicity significantly increased starting at around 2100 on 2 October; around the same time satellite images showed an increase in surface temperatures consistent with lava fountaining. Small, hot avalanches of rock and lava descended an unspecified flank. In addition, a distinct increase in infrasound, seismicity, and lightning detections was followed by an ash plume that rose to 12.2 km altitude and drifted S and E at 0520 on 3 October, based on satellite images. Nighttime webcam images showed incandescence due to lava fountaining at the summit and pyroclastic flows descending the NE flank. AVO reported that a notable explosive eruption started at 0547 and lasted until 0900 on 3 October, which prompted a rise in the ACC to Red and the VAL to Warning. Subsequent ash plumes rose to 6-7.6 km altitude by 0931. At 1036 the ACC was lowered back to Orange and the VAL to Watch since both seismic and infrasound data quieted substantially and were slightly above background levels. Gas-and-steam emissions were observed at the summit, based on webcam images. Trace amounts of ashfall were observed in Cold Bay. Resuspended ash was present at several kilometers altitude near the volcano. During the afternoon, low-level ash plumes were visible at the flanks, which appeared to be largely generated by rock avalanches off the summit crater following the explosive activity. These ash plumes rose to 3 km altitude and drifted W. Trace amounts of ashfall were reported by observers in Cold Bay and Unalaska and flights to these communities were disrupted by the ash cloud. Satellite images taken after the eruption showed evidence of pyroclastic flows and lahar deposits in drainages 2 km down the SW flank and about 3.2 km down the NE flank, and continued erosion of the crater rim. Small explosion craters at the end of the pyroclastic flows on the NE flank were noted for the first time, which may have resulted from gas-and-steam explosions when hot deposits interact with underlying ice.

During 4 October seismicity, including frequent small earthquakes, remained elevated, but was gradually declining. Ash plumes were produced for over eight hours until around 1400 that rose to below 3.7 km altitude. These ash plumes were primarily generated off the sides of the volcano where hot rock avalanches from the crater rim had entered drainages to the SW and NE. Two explosion craters were observed at the base of the NE deposits about 3.2 km from the crater rim. Webcam images showed the explosion craters were a source of persistent ash emissions; occasional collapse events also generated ash. Seismicity remained elevated with sulfur dioxide emissions that had a daily average of more than 1,000 tons per day, and frequent small earthquakes through the end of the month. Frequent elevated surface temperatures were identified in satellite images and gas-and-steam plumes were observed in webcam images, although weather conditions occasionally prevented clear views of the summit. Emissions were robust during 14-16 October and were likely generated by the interaction of hot material and snow and ice. During the afternoon of 21 October a strong gas-and-steam plume rose to 3-4.6 km altitude and extended 40 km WSW, based on satellite images and reports from pilots. On 31 October the ACC was lowered to Yellow and the VAL was lowered to Advisory.

Activity in November was characterized by elevated seismicity with ongoing seismic tremor and small, low-frequency earthquakes, elevated surface temperatures, and gas-and-steam emissions. There was an increase in seismic and infrasound tremor amplitudes starting at 1940 on 2 November. As a result, the ACC was again raised to Orange and the VAL was increased to Watch, although ash was not identified in satellite data. An ash cloud rose to 6.1 km altitude and drifted W according to satellite data at 2000. By 0831 on 3 November ash emissions were no longer visible in satellite images. On 6 and 9 November air pressure sensors detected signals consistent with small explosions. Small explosions were detected in infrasound data consistent with weak Strombolian activity on 19 and 21 November. Seismicity started to decrease on 21 November. On 25 November gas-and-steam emissions were emitted from the vent as well as from a scarp on the NE side of the volcano near the summit. A gas-and-steam plume extended about 50 km SSE and was observed in satellite and webcam images on 26 November. On 28 November small explosions were observed in seismic and local infrasound data and gas-and-steam emissions were visible from the summit and from the upper NE collapse scarp based on webcam images. Possible small explosions were observed in infrasound data on 30 November. Weakly elevated surface temperatures and a persistent gas-and-steam plume from the summit and collapse scarps on the upper flanks. A passing aircraft reported the gas-and-steam plume rose to 3-3.4 km altitude on 30 November, but no significant ash emissions were detected.

Satellite data. MODIS thermal anomaly data provided through MIROVA (Middle InfraRed Observation of Volcanic Activity) showed a strong pulse of thermal activity beginning in July 2023 that continued through November 2023 (figure 48). This strong activity was due to Strombolian explosions and lava fountaining events at the summit crater. According to data from MODVOLC thermal alerts, a total of 101 hotspots were detected near the summit crater in July (11-14, 16-19, 23-24 and 26), August (4, 25-26, and 29), September (5, 12, and 17), and October (3, 4, and 8). Infrared satellite data showed large lava flows descending primarily the northern and SE flanks during the reporting period (figure 49). Sulfur dioxide plumes often exceeded two Dobson Units (DUs) and drifted in different directions throughout the reporting period, based on satellite data from the TROPOMI instrument on the Sentinel-5P satellite (figure 50).

Figure (see Caption) Figure 48. Graph of Landsat 8 and 9 OLI thermal data from 1 June 2024 showing a strong surge in thermal activity during July through November 2023. During mid-October, the intensity of the hotspots gradually declined. Courtesy of MIROVA.
Figure (see Caption) Figure 49. Infrared (bands B12, B11, B4) satellite images show several strong lava flows (bright yellow-orange) affecting the northern and SE flanks of Shishaldin on 18 July 2023 (top left), 4 June 2023 (top right), 26 September 2023 (bottom left), and 3 October 2023 (bottom right). Courtesy of Copernicus Browser.
Figure (see Caption) Figure 50. Strong sulfur dioxide plumes were detected at Shishaldin and drifted in different directions on 15 August 2023 (top left), 5 September 2023 (top right), 25 September 2023 (bottom left), and 6 October 2023 (bottom right). Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. The symmetrical glacier-covered Shishaldin in the Aleutian Islands is the westernmost of three large stratovolcanoes in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." Constructed atop an older glacially dissected edifice, it is largely basaltic in composition. Remnants of an older edifice are exposed on the W and NE sides at 1,500-1,800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is covered by massive aa lava flows. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century. A steam plume often rises from the summit crater.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Ioto (Japan) — January 2024 Citation iconCite this Report

Ioto

Japan

24.751°N, 141.289°E; summit elev. 169 m

All times are local (unless otherwise noted)


New eruption with discolored water, ejecta, and floating pumice during October-December 2023

Ioto (Iwo-jima), located about 1,200 km S of Tokyo, lies within a 9-km-wide submarine caldera along the Izu-Bonin-Mariana volcanic arc. Previous eruptions date back to 1889 and have consisted of dominantly phreatic explosions, pumice deposits during 2001, and discolored water. A submarine eruption during July through December 2022 was characterized by discolored water, pumice deposits, and gas emissions (BGVN 48:01). This report covers a new eruption during October through December 2023, which consisted of explosions, black ejecta, discolored water, and floating pumice, based on information from the Japan Meteorological Association (JMA), the Japan Coast Guard (JCG), and satellite data.

JMA reported that an eruption had been occurring offshore of Okinahama on the SE side of the island since 21 October, which was characterized by volcanic tremor, according to the Japan Maritime Self-Defense Force (JMSDF) Iwo Jima Air Base (figure 22). According to an 18 October satellite image a plume of discolored water at the site of this new eruption extended NE (figure 23). During an overflight conducted on 30 October, a vent was identified about 1 km off the coast of Okinahama. Observers recorded explosions every few minutes that ejected dark material about 20 m above the ocean and as high as 150 m. Ejecta from the vent formed a black-colored island about 100 m in diameter, according to observations conducted from the air by the Earthquake Research Institute of the University of Tokyo in cooperation with the Mainichi newspaper (figure 24). Occasionally, large boulders measuring more than several meters in size were also ejected. Observations from the Advanced Land Observing Satellite Daichi-2 and Sentinel-2 satellite images also confirmed the formation of this island (figure 23). Brown discolored water and floating pumice were present surrounding the island.

Figure (see Caption) Figure 22. Map of Ioto showing the locations of recorded eruptions from 1889 through December 2023. The most recent eruption occurred during October through December 2023 and is highlighted in red just off the SE coast of the island and E of the 2001 eruption site. A single eruption highlighted in green was detected just off the NE coast of the island on 18 November 2023. From Ukawa et al. (2002), modified by JMA.
Figure (see Caption) Figure 23. Satellite images showing the formation of the new island formation (white arrow) off the SE (Okinahama) coast of Ioto on 18 October 2023 (top left), 27 November 2023 (top right), 2 December 2023 (bottom left), and 12 December 2023 (bottom right). Discolored water was visible surrounding the new island. By December, much of the island had been eroded. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 24. Photo showing an eruption off the SE (Okinahama) coast of Ioto around 1230 on 30 October 2023. A column of water containing black ejecta is shown, which forms a new island. Occasionally, huge boulders more than several meters in size were ejected with the jet. Dark brown discolored water surrounded the new island. Photo has been color corrected and was taken from the S by the Earthquake Research Institute, University of Tokyo in cooperation of Mainichi newspaper. Courtesy of JMA.

The eruption continued during November. During an overflight on 3 November observers photographed the island and noted that material was ejected 169 m high, according to a news source. Explosions gradually became shorter, and, by the 3rd, they occurred every few seconds; dark and incandescent material were ejected about 800 m above the vent. On 4 November eruptions were accompanied by explosive sounds. Floating, brown-colored pumice was present in the water surrounding the island. There was a brief increase in the number of volcanic earthquakes during 8-14 November and 24-25 November. The eruption temporarily paused during 9-11 November and by 12 November eruptions resumed to the W of the island. On 10 November dark brown-to-dark yellow-green discolored water and a small amount of black floating material was observed (figure 25). A small eruption was reported on 18 November off the NE coast of the island, accompanied by white gas-and-steam plumes (figure 23). Another pause was recorded during 17-19 November, which then resumed on 20 November and continued erupting intermittently. According to a field survey conducted by the National Institute for Disaster Prevention Science and Technology on 19 November, a 30-m diameter crater was visible on the NE coast where landslides, hot water, and gray volcanic ash containing clay have occurred and been distributed previously. Erupted blocks about 10 cm in diameter were distributed about 90-120 m from the crater. JCG made observations during an overflight on 23 November and reported a phreatomagmatic eruption. Explosions at the main vent generated dark gas-and-ash plumes that rose to 200 m altitude and ejected large blocks that landed on the island and in the ocean (figure 26). Discolored water also surrounded the island. The size of the new island had grown to 450 m N-S x 200 m E-W by 23 November, according to JCG.

Figure (see Caption) Figure 25. Photo of the new land formed off the SE (Okinahama) coast of Ioto on 10 November showing discolored water and a small amount of black floating material were visible surrounding the island. Photo has been color corrected. Photographed by JCG courtesy of JMA.
Figure (see Caption) Figure 26. Photo of the new land formed off the SE (Okinahama) coast of Ioto on 23 November showing a phreatomagmatic eruption that ejected intermittent pulses of ash and dark material that rose to 200 m altitude. Photo has been color corrected. Photographed by JCG courtesy of JMA.

The eruption continued through 11 December, followed by a brief pause in activity, which then resumed on 31 December, according to JMA. Intermittent explosions produced 100-m-high black plumes at intervals of several minutes to 30 minutes during 1-10 December. Overflights were conducted on 4 and 15 December and reported that the water surrounding the new island was discolored to dark brown-to-dark yellow-green (figure 27). No floating material was reported during this time. In comparison to the observations made on 23 November, the new land had extended N and part of it had eroded away. In addition, analysis by the Geospatial Information Authority of Japan using SAR data from Daichi-2 also confirmed that the area of the new island continued to decrease between 4 and 15 December. Ejected material combined with wave erosion transformed the island into a “J” shape, 500-m-long and with the curved part about 200 m offshore of Ioto. The island was covered with brown ash and blocks, and the surrounding water was discolored to greenish-brown and contained an area of floating pumice. JCG reported from an overflight on 4 December that volcanic ash-like material found around the S vent on the NE part of the island was newly deposited since 10 November (figure 28). By 15 December the N part of the “J” shaped island had separated and migrated N, connecting to the Okinahama coast and the curved part of the “J” had eroded into two smaller islands (figure 27).

Figure (see Caption) Figure 27. Photos of the new island formed off the SE (Okinahama) coast of Ioto on 4 December 2023 (left) and 15 December 2023 (right). No gas-and-ash emissions or lava flows were observed on the new land. Additionally, dark brown-to-dark yellow-green discolored water was observed surrounding the new land. During 4 and 15 December, the island had eroded to where the N part of the “J” shape had separated and migrated N, connecting to the Okinahama coast and the curved part of the “J” had eroded into two smaller islands. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 28. Photo of new volcanic ash-deposits (yellow dashed lines) near the S vent on the NE coast of Ioto taken by JCG on 4 December 2023. White gas-and-steam emissions were also visible (white arrow). Photo has been color corrected. Courtesy of JMA.

References. Ukawa, M., Fujita, E., Kobayashi, T., 2002, Recent volcanic activity of Iwo Jima and the 2001 eruption, Monthly Chikyu, Extra No. 39, 157-164.

Geologic Background. Ioto, in the Volcano Islands of Japan, lies within a 9-km-wide submarine caldera. The volcano is also known as Ogasawara-Iojima to distinguish it from several other "Sulfur Island" volcanoes in Japan. The triangular, low-elevation, 8-km-long island narrows toward its SW tip and has produced trachyandesitic and trachytic rocks that are more alkalic than those of other volcanoes in this arc. The island has undergone uplift for at least the past 700 years, accompanying resurgent doming of the caldera; a shoreline landed upon by Captain Cook's surveying crew in 1779 is now 40 m above sea level. The Motoyama plateau on the NE half of the island consists of submarine tuffs overlain by coral deposits and forms the island's high point. Many fumaroles are oriented along a NE-SW zone cutting through Motoyama. Numerous recorded phreatic eruptions, many from vents on the W and NW sides of the island, have accompanied the uplift.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Japan Coast Guard (JCG) Volcano Database, Hydrographic and Oceanographic Department, 3-1-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8932, Japan (URL: https://www1.kaiho.mlit.go.jp/GIJUTSUKOKUSAI/kaiikiDB/kaiyo22-2.htm); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Asahi, 5-3-2, Tsukiji, Chuo Ward, Tokyo, 104-8011, Japan (URL: https://www.asahi.com/ajw/articles/15048458).


Purace (Colombia) — December 2023 Citation iconCite this Report

Purace

Colombia

2.3095°N, 76.3948°W; summit elev. 4650 m

All times are local (unless otherwise noted)


Gas-and-ash emission on 16 November 2023

Puracé, located in Colombia, is a stratovolcano that contains a 500-m-wide summit crater. It is part of the Los Coconucos volcanic chain that is a NW-SE trending group of seven cones and craters. The most recent eruption occurred during March 2022 that was characterized by frequent seismicity and gas-and-steam emissions (BGVN 47:06). This report covers a brief eruption during November 2023 based on monthly reports from the Popayán Observatory, part of the Servicio Geologico Colombiano (SGC).

Activity during November 2022 through November 2023 primarily consisted of seismicity: VT-type events, LP-type events, HB-type events, and TR-type events (table 4). Maximum sulfur dioxide values were measured weekly and ranged from 259-5,854 tons per day (t/d) during November 2022 through April 2023. White gas-and-steam emissions were also occasionally reported.

SGC issued a report on 25 October that noted a significant increase in the number of earthquakes associated with rock fracturing. These earthquakes were located SE of the crater between Puracé and Piocollo at depths of 1-4 km. There were no reported variations in sulfur dioxide values, but SGC noted high carbon dioxide values, compared to those recorded in the first half of 2023.

SGC reported that at 1929 on 16 November the seismic network detected a signal that was possibly associated with a gas-and-ash emission, though it was not confirmed in webcam images due to limited visibility. On 17 November an observer confirmed ash deposits on the N flank. Webcam images showed an increase in degassing both inside the crater and from the NW flank, rising 700 m above the crater.

Table 4. Seismicity at Puracé during November 2022-November 2023. Volcano-tectonic (VT), long-period (LP), hybrid (HB), and tremor (TR) events are reported each month. Courtesy of SGC.

Month Volcano-tectonic Long-period Hybrid Tremor
Nov 2022 429 2,023 5 831
Dec 2022 423 1,390 9 834
Jan 2023 719 1,622 0 957
Feb 2023 598 1,701 2 1,124
Mar 2023 331 2,408 147 607
Apr 2023 614 4,427 33 148
May 2023 620 3,717 170 109
Jun 2023 467 3,293 86 148
Jul 2023 1,116 5,809 183 542
Aug 2023 692 2,927 94 321
Sep 2023 887 1,505 82 848
Oct 2023 2,373 2,949 135 692
Nov 2023 1,212 2,302 69 293

Geologic Background. Puracé is an active andesitic volcano with a 600-m-diameter summit crater at the NW end of the Los Coconucos Volcanic Chain. This volcanic complex includes nine composite and five monogenetic volcanoes, extending from the Puracé crater more than 6 km SE to the summit of Pan de Azúcar stratovolcano. The dacitic massif which the complex is built on extends about 13 km NW-SE and 10 km NE-SW. Frequent small to moderate explosive eruptions reported since 1816 CE have modified the morphology of the summit crater, with the largest eruptions in 1849, 1869, and 1885.

Information Contacts: Servicio Geologico Colombiano (SGC), Diagonal 53 No. 34-53 - Bogotá D.C., Colombia (URL: https://www.sgc.gov.co/volcanes).


Etna (Italy) — December 2023 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3357 m

All times are local (unless otherwise noted)


Strombolian explosions, lava fountains, and lava flows during July-August 2023

Etna, located on the Italian island of Sicily, has had documented eruptions dating back to 1500 BCE. Activity typically originates from multiple cones at the summit, where several craters have formed and evolved. The currently active craters are Northeast Crater (NEC), Voragine (VOR), and Bocca Nuova (BN), and the Southeast Crater (SEC); VOR and BN were previously referred to as the “Central Crater”. The original Southeast crater formed in 1978, and a second eruptive site that opened on its SE flank in 2011 was named the New Southeast Crater (NSEC). Another eruptive site between the SEC and NSEC developed during early 2017 and was referred to as the "cono della sella" (saddle cone). The current eruption period began in November 2022 and has been characterized by intermittent Strombolian activity, lava flows, and ash plumes (BGVN 48:08). This report updates activity during July through October 2023, which includes primarily gas-and-steam emissions; during July and August Strombolian explosions, lava fountains, and lava flows were reported, based on weekly and special reports by the Osservatorio Etneo (OE), part of the Catania Branch of Italy's Istituo Nazionale di Geofisica e Vulcanologica (INGV) and satellite data.

Variable fumarolic degassing was reported at all summit craters (BN, VOR, NEC, and SEC) throughout the entire reporting period (table 15). The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system based on the analysis of MODIS data showed frequent low-to-moderate power thermal anomalies during the reporting period (figure 399). During mid-August there was a pulse in activity that showed an increase in the power of the anomalies due to Strombolian activity, lava fountains, and lava flows. Infrared satellite imagery captured strong thermal anomalies at the central and southeast summit crater areas (figure 400). Accompanying thermal activity were occasional sulfur dioxide plumes that exceeded 2 Dobson Units (DUs) recorded by the TROPOMI instrument on the Sentinel-5P satellite (figure 401).

Table 15. Summary of activity at the four primary crater areas at the summit of Etna during July-October 2023. Information is from INGV weekly reports.

Month Bocca Nuova (BN) Voragine (VOR) Northeast Crater (NEC) Southeast Crater (SEC)
Jul 2023 Continuous degassing. No observations. Weak gas emissions. Continuous degassing. Sporadic and weak-to-moderate ash emissions. Strombolian explosions.
Aug 2023 Continuous degassing. No observations. No observations. Continuous degassing. Occasional ash emissions. Strombolian activity, lava fountaining, and lava flows.
Sep 2023 Variable degassing. Crater incandescence. Weak fumarolic activity. Weak fumarolic activity. Variable degassing.
Oct 2023 Continuous degassing. Weak fumarolic activity. Weak fumarolic activity. Continuous degassing.
Figure (see Caption) Figure 399. Frequent thermal activity at Etna varied in strength during July through October 2023, as shown on this MIROVA plot (Log Radiative Power). There was a spike in power during mid-August, which reflected an increase in Strombolian activity. Courtesy of MIROVA.
Figure (see Caption) Figure 400. Infrared (bands B12, B11, B4) satellite images showing strong thermal anomalies at Etna’s central and Southeast crater areas on 21 July 2023 (top left), 27 August 2023 (top right), 19 September 2023 (bottom left), and 29 October 2023 (bottom right). Courtesy of Copernicus Browser.
Figure (see Caption) Figure 401. Sulfur dioxide plumes that exceeded 2 Dobson Units (DUs) rose above Etna on 14 July 2023 (top left), 14 August 2023 (top right), 2 September 2023 (bottom left), and 7 October 2023 (bottom right). These plumes drifted NE, S, SE, and SW, respectively. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Activity during July and August was relatively low and mainly consisted of degassing at the summit craters, particularly at SEC and BN. Cloudy weather prevented clear views of the summit during early July. During the night of 2 July some crater incandescence was visible at SEC. Explosive activity resumed at SEC during 9-10 July, which was characterized by sporadic and weak ash emissions that rapidly dispersed in the summit area (figure 402). INGV reported moderate Strombolian activity began at 2034 on 14 July and was confined to the inside of the crater and fed by a vent located in the E part of SEC. An ash emission was detected at 2037. A new vent opened on 15 July in the SE part of BN and began to produce continuous gas-and-steam emissions. During an inspection carried out on 28 July pulsating degassing, along with audible booms, were reported at two active vents in BN. Vigorous gas-and-steam emissions intermittently generated rings. On rare occasions, fine, reddish ash was emitted from BN1 and resuspended by the gas-and-steam emissions.

Figure (see Caption) Figure 402. Webcam image taken by the Monta Cagliato camera showing an ash emission rising above Etna’s Southeast Crater (SEC) on 10 July 2023. Photo has been color corrected. Courtesy of INGV (Report 28/2023, ETNA, Bollettino Settimanale, 03/07/2023 - 09/07/2023).

Around 2000 on 13 August INGV reported a sudden increase in volcanic tremor amplitude. Significant infrasonic activity coincided with the tremor increase. Incandescent flashes were visible through the cloud cover in webcam images of SEC (figure 403). Strombolian activity at SEC began to gradually intensify starting at 2040 as seismicity continued to increase. The Aviation Color Code (ACC) was raised to Yellow (the second lowest-level on a four-color scale) at 2126 and then to Orange (the second highest-level on a four-color scale) at 2129 due to above-background activity. The activity rapidly transitioned from Strombolian activity to lava fountains around 2333 that rose 300-400 m above the crater (figure 403). Activity was initially focused on the E vent of the crater, but then the vent located above the S flank of the cone also became active. A lava flow from this vent traveled SW into the drainage created on 10 February 2022, overlapping with previous flows from 10 and 21 February 2022 and 21 May 2023, moving between Monte Barbagallo and Monte Frumento Supino (figure 404). The lava flow was 350 m long, oriented NNE-SSW, and descended to an elevation of 2.8 km. Flows covered an area of 300,000 m2 and had an estimated volume of 900,000 m3. The ACC was raised to Red at 2241 based on strong explosive activity and ashfall in Rifugio Sapienza-Piano Vetore at 1.7 km elevation on the S flank. INGV reported that pyroclastic flows accompanied this activity.

Figure (see Caption) Figure 403. Webcam images of the lava fountaining event at Etna during 13-14 August 2023 taken by the Milos (EMV) camera. Images show the start of the event with increasing incandescence (a-b), varying intensity in activity (c-e), lava fountaining and pyroclastic flows (f-g), and a strong ash plume (g). Courtesy of INGV (Report 33/2023, ETNA, Bollettino Settimanale, 08/08/2023 - 14/08/2023).
Figure (see Caption) Figure 404. Map of the new lava flow (yellow) and vent (red) at SEC (CSE) of Etna on 13 August 2023. The background image is a shaded model of the terrain of the summit area obtained by processing Skysat images acquired during on 18 August. The full extent of the lava flow was unable to be determined due to the presence of ash clouds. The lava flow extended more than 350 m to the SSW and reached an elevation of 2.8 km and was located W of Mt. Frumento Supino. CSE = Southeast Crater; CNE = Northeast Crater; BN = Bocca Nuova; VOR = Voragine. Courtesy of INGV (Report 34/2023, ETNA, Bollettino Settimanale, 14/08/2023 - 20/08/2023).

Activity peaked between 0240 and 0330 on 14 August, when roughly 5-6 vents erupted lava fountains from the E to SW flank of SEC. The easternmost vents produced lava fountains that ejected material strongly to the E, which caused heavy fallout of incandescent pyroclastic material on the underlying flank, triggering small pyroclastic flows. This event was also accompanied by lightning both in the ash column and in the ash clouds that were generated by the pyroclastic flows. A fracture characterized by a series of collapse craters (pit craters) opened on the upper SW flank of SEC. An ash cloud rose a few kilometers above the crater and drifted S, causing ash and lapilli falls in Rifugio Sapienza and expanding toward Nicolosi, Mascalucia, Catania, and up to Syracuse. Ashfall resulted in operational problems at the Catania airport (50 km S), which lasted from 0238 until 2000. By 0420 the volcanic tremor amplitude values declined to background levels. After 0500 activity sharply decreased, although the ash cloud remained for several hours and drifted S. By late morning, activity had completely stopped. The ACC was lowered to Orange as volcanic ash was confined to the summit area. Sporadic, minor ash emissions continued throughout the day. At 1415 the ACC was lowered to Yellow and then to Green at 1417.

During the night of 14-15 August only occasional flashes were observed, which were more intense during avalanches of material inside the eruptive vents. Small explosions were detected at SEC at 2346 on 14 August and at 0900 on 26 August that each produced ash clouds which rapidly dispersed into the atmosphere (figure 405). According to a webcam image, an explosive event detected at 2344 at SEC generated a modest ash cloud that was rapidly dispersed by winds. The ACC was raised to Yellow at 2355 on 14 August due to increasing unrest and was lowered to Green at 0954 on 15 August.

Figure (see Caption) Figure 405. Webcam image of an ash plume rising above Etna’s SEC at 0902 (local time) on 26 August taken by the Montagnola EMOV camera. Photo has been color corrected. Courtesy of INGV (Report 35/2023, ETNA, Bollettino Settimanale, 21/08/2023 - 27/08/2023).

Activity during September and October was relatively low and mainly characterized by variable degassing from BN and SEC. Intense, continuous, and pulsating degassing was accompanied by roaring sounds and flashes of incandescence at BN both from BN1 and the new pit crater that formed during late July (figure 406). The degassing from the new pit crater sometimes emitted vapor rings. Cloudy weather during 6-8 September prevented observations of the summit craters .

Figure (see Caption) Figure 406. Webcam image (top) showing degassing from Etna’s Bocca Nuova (BN) crater accompanied by nighttime crater incandescence at 0300 (local time) on 2 September 2023 by the Piedimonte Etneo (EPVH) camera and a photo of incandescence at BN1 and the new pit crater (bottom) taken by an observatory scientist from the E rim of BN during a survey on 2 September 2023. Courtesy of INGV (Report 36/2023, ETNA, Bollettino Settimanale, 28/08/2023 - 03/09/2023).

Geologic Background. Mount Etna, towering above Catania on the island of Sicily, has one of the world's longest documented records of volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sezione di Catania - Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/it/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard MD 20771, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Suwanosejima (Japan) — December 2023 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Eruption plumes, crater incandescence, and occasional explosions during July-October 2023

Suwanosejima is an 8-km-long island that consists of a stratovolcano and two active summit craters, located in the northern Ryukyu Islands, Japan. Volcanism over the past century has been characterized by Strombolian explosions, ash plumes, and ashfall. The current eruption began in October 2004 and has more recently consisted of frequent eruption plumes, explosions, and incandescent ejecta (BGVN 48:07). This report covers similar activity of ash plumes, explosions, and crater incandescence during July through October 2023 using monthly reports from the Japan Meteorological Agency (JMA) and satellite data.

Thermal activity during the reporting period was relatively low; only one low-power thermal anomaly was detected during mid-July and one during early August, based on a MIROVA (Middle InfraRed Observation of Volcanic Activity) Log Radiative Power graph of the MODIS thermal anomaly data. On two clear weather days, a thermal anomaly was visible in infrared satellite images (figure 81).

Figure (see Caption) Figure 81. Infrared (bands B12, B11, B4) satellite imagery showing a thermal anomaly (bright yellow-orange) at the Otake crater of Suwanosejima on 23 September 2023 (left) and 18 October 2023 (right). Courtesy of Copernicus Browser.

Low-level activity was reported at the Otake crater during July and no explosions were detected. Eruption plumes rose as high as 1.8 km above the crater. On 13 July an ash plume rose 1.7 km above the crater rim, based on a webcam image. During the night of the 28th crater incandescence was visible in a webcam image. An eruptive event reported on 31 July produced an eruption plume that rose 2.1 km above the crater. Seismicity consisted of 11 volcanic earthquakes on the W flank, the number of which had decreased compared to June (28) and 68 volcanic earthquakes near the Otake crater, which had decreased from 722 in the previous month. According to observations conducted by the University of Tokyo Graduate School of Science, Kyoto University Disaster Prevention Research Institute, Toshima Village, and JMA, the amount of sulfur dioxide emissions released during the month was 400-800 tons per day (t/d).

Eruptive activity in the Otake crater continued during August and no explosions were reported. An eruptive event produced a plume that rose 1 km above the crater at 1447 on 12 August. Subsequent eruptive events were recorded at 0911 on 16 August, at 1303 on 20 August, and at 0317 on 21 August, which produced ash plumes that rose 1-1.1 km above the crater and drifted SE, SW, and W. On 22 August an ash plume was captured in a webcam image rising 1.4 km above the crater (figure 82). Multiple eruptive events were detected on 25 August at 0544, 0742, 0824, 1424, and 1704, which generated ash plumes that rose 1.1-1.2 km above the crater and drifted NE, W, and SW. On 28 August a small amount of ashfall was observed as far as 1.5 km from the crater. There were 17 volcanic earthquakes recorded on the W flank of the volcano and 79 recorded at the Otake crater during the month. The amount of sulfur dioxide emissions released during the month was 400-800 t/d.

Figure (see Caption) Figure 82. Webcam image of an ash plume rising 1.4 km above Suwanosejima’s Otake crater rim on 22 August 2023. Courtesy of JMA (Volcanic activity commentary for Suwanosejima, August 2023).

Activity continued at the Otake crater during September. Occasionally, nighttime crater incandescence was observed in webcam images and ashfall was reported. An eruptive event at 1949 on 4 September produced an ash plume that rose 1 km above the crater and drifted SW. On 9 September several eruption events were detected at 0221, 0301, and 0333, which produced ash plumes that rose 1.1-1.4 km above the crater rim and drifted W; continuous ash emissions during 0404-0740 rose to a maximum height of 2 km above the crater rim (figure 83). More eruptive events were reported at 1437 on 10 September, at 0319 on 11 September, and at 0511 and 1228 on 15 September, which generated ash plumes that rose 1-1.8 km above the crater. During 25, 27, and 30 September, ash plumes rose as high as 1.3 km above the crater rim. JMA reported that large blocks were ejected as far as 300 m from the center of the crater. There were 18 volcanic earthquakes detected beneath the W flank and 82 volcanic earthquakes detected near the Otake crater. The amount of sulfur dioxide released during the month ranged from 600 to 1,600 t/d.

Figure (see Caption) Figure 83. Webcam image of an ash plume rising 2 km above Suwanosejima’s Otake crater rim on 9 September 2023. Courtesy of JMA (Volcanic activity commentary for Suwanosejima, September 2023).

Activity during early-to-mid-October consisted of occasional explosions, a total number of 13, and ash plumes that rose as high as 1.9 km above the Otake crater rim on 29 October (figure 84). These explosions are the first to have occurred since June 2023. Continuous ash emissions were reported during 0510-0555 on 1 October. Explosions were recorded at 0304, 2141, and 2359 on 2 October, at 0112 on 3 October, and at 1326 on 6 October, which produced ash plumes that rose as high as 1 km above the crater rim and drifted SW and W. An explosion was noted at 0428 on 3 October, but emission details were unknown. A total of eight explosions were recorded by the seismic network at 1522 on 14 October, at 0337, 0433, 0555, 1008, and 1539 on 15 October, and at 0454 and 0517 on 16 October. Ash plumes from these explosions rose as high as 900 m above the crater and drifted SE. Eruptive events during 25-27 and 29-30 October generated plumes that rose as high as 1.9 km above the crater and drifted SE, S, and SW. Ash was deposited in Toshima village (3.5 km SSW). Eruptive activity occasionally ejected large volcanic blocks as far as 600 m from the crater. Nighttime crater incandescence was visible in webcams. Intermittent ashfall was reported as far as 1.5 km from the crater. There were 43 volcanic earthquakes detected on the W flank during the month, and 184 volcanic earthquakes detected near the Otake crater. The amount of sulfur dioxide emitted ranged between 400 and 900 t/d.

Figure (see Caption) Figure 84. Webcam image of an ash plume rising 1.9 km above Suwanosejima’s Otake crater on 29 October 2023. Courtesy of JMA (Volcanic activity commentary for Suwanosejima, October 2023).

Geologic Background. The 8-km-long island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two active summit craters. The summit is truncated by a large breached crater extending to the sea on the E flank that was formed by edifice collapse. One of Japan's most frequently active volcanoes, it was in a state of intermittent Strombolian activity from Otake, the NE summit crater, between 1949 and 1996, after which periods of inactivity lengthened. The largest recorded eruption took place in 1813-14, when thick scoria deposits covered residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed, forming a large debris avalanche and creating an open collapse scarp extending to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Aira (Japan) — December 2023 Citation iconCite this Report

Aira

Japan

31.5772°N, 130.6589°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Explosions, ash plumes, ash fall, and crater incandescence during July-October 2023

Aira caldera, located in the northern half of Kagoshima Bay, Japan, contains the post-caldera Sakurajima volcano. Eruptions typically originate from the Minamidake crater, and since the 8th century, ash deposits have been recorded in the city of Kagoshima (10 km W), one of Kyushu’s largest cities. The Minamidake summit cone and crater has had persistent activity since 1955; the Showa crater on the E flank has also been intermittently active since 2006. The current eruption period began during March 2017 and has recently been characterized by intermittent explosions, eruption plumes, and ashfall (BGVN 48:07). This report updates activity during July through October 2023 and describes explosive events, ash plumes, nighttime crater incandescence, and ashfall, according to monthly activity reports from the Japan Meteorological Agency (JMA) and satellite data.

Thermal activity remained at low levels during this reporting period, according to the MIROVA (Middle InfraRed Observation of Volcanic Activity) system (figure 149). There was a slight increase in the number of anomalies during September through October. Occasional thermal anomalies were visible in infrared satellite images mainly at the Minamidake crater (Vent A is located to the left and Vent B is located to the right) (figure 150).

Table 30. Number of monthly explosive events, days of ashfall, area of ash covered, and sulfur dioxide emissions from Sakurajima’s Minamidake crater at Aira during July-October 2023. Note that smaller ash events are not listed. Ashfall days were measured at Kagoshima Local Meteorological Observatory and ashfall amounts represent material covering all the Kagoshima Prefecture. Data courtesy of JMA monthly reports.

Month Explosive events Days of ashfall Ashfall amount (g/m2) SO2 emissions (tons/day)
Jul 2023 3 0 0 1,600-3,200
Aug 2023 3 10 7 1,800-3,300
Sep 2023 3 7 3 1,600-2,300
Oct 2023 33 8 61 2,200-4,200
Figure (see Caption) Figure 149. Thermal activity at Sakurajima in the Aira caldera was relatively low during July through October 2023, based on this MIROVA graph (Log Radiative Power). There was an increase in the number of detected anomalies during September through October. Courtesy of MIROVA.
Figure (see Caption) Figure 150. Infrared (bands B12, B11, B4) satellite images show a persistently strong thermal anomaly (bright yellow-orange) at the Minamidake crater at Aira’s Sakurajima volcano on 28 September 2023 (top left), 3 October 2023 (top right), 23 October 2023 (bottom left), and 28 October 2023 (bottom right). Vent A is located to the left and Vent B is to the right of Vent A; both vents are part of the Minamidake crater. Courtesy of Copernicus Browser.

JMA reported that during July, there were eight eruptions, three of which were explosion events in the Showa crater. Large blocks were ejected as far as 600 m from the Showa crater. Very small eruptions were occasionally reported at the Minamidake crater. Nighttime incandescence was observed in both the Showa and Minamidake crater. Explosions were reported on 16 July at 2314 and on 17 July at 1224 and at 1232 (figure 151). Resulting eruption plumes rose 700-2,500 m above the crater and drifted N. On 23 July the number of volcanic earthquakes on the SW flank of the volcano increased. A strong Mw 3.1 volcanic earthquake was detected at 1054 on 26 July. The number of earthquakes recorded throughout the month was 545, which markedly increased from 73 in June. No ashfall was observed at the Kagoshima Regional Meteorological Observatory during July. According to a field survey conducted during the month, the daily amount of sulfur dioxide emissions was 1,600-3,200 tons per day (t/d).

Figure (see Caption) Figure 151. Webcam image showing a strong, gray ash plume that rose 2.5 km above the crater rim of Aira’s Showa crater at 1232 on 17 July 2023. Courtesy of JMA monthly report (Sakurajima volcanic activity explanatory material, July 2023).

There were three eruptions reported at the Minamidake crater during August, each of which were explosive. The explosions occurred on 9 August at 0345, on 13 August at 2205, and on 31 August at 0640, which generated ash plumes that rose 800-2,000 m above the crater and drifted W. There were two eruptions detected at Showa crater; on 4 August at 2150 ejecta traveled 800 m from the Showa crater and associated eruption plumes rose 2.3 km above the crater. The explosion at 2205 on 13 August generated an ash plume that rose 2 km above the crater and was accompanied by large blocks that were ejected 600 m from the Minamidake crater (figure 152). Nighttime crater incandescence was visible in a high-sensitivity surveillance camera at both craters. Seismicity consisted of 163 volcanic earthquakes, 84 of which were detected on the SW flank. According to the Kagoshima Regional Meteorological Observatory there was a total of 7 g/m2 of ashfall over the course of 10 days during the month. According to a field survey, the daily amount of sulfur dioxide emitted was 1,800-3,300 t/d.

Figure (see Caption) Figure 152. Webcam image showing an eruption plume rising 2 km above the Minamidake crater at Aira at 2209 on 13 August 2023. Courtesy of JMA monthly report (Sakurajima volcanic activity explanatory material, August 2023).

During September, four eruptions were reported, three of which were explosion events. These events occurred at 1512 on 9 September, at 0018 on 11 September, and at 2211 on 13 September. Resulting ash plumes generally rose 800-1,100 m above the crater. An explosion produced an ash plume at 2211 on 13 September that rose as high as 1.7 km above the crater. Large volcanic blocks were ejected 600 m from the Minamidake crater. Smaller eruptions were occasionally observed at the Showa crater. Nighttime crater incandescence was visible at the Minamidake crater. Seismicity was characterized by 68 volcanic earthquakes, 28 of which were detected beneath the SW flank. According to the Kagoshima Regional Meteorological Observatory there was a total of 3 g/m2 of ashfall over the course of seven days during the month. A field survey reported that the daily amount of sulfur dioxide emitted was 1,600-2,300 t/d.

Eruptive activity during October consisted of 69 eruptions, 33 of which were described as explosive. These explosions occurred during 4 and 11-21 October and generated ash plumes that rose 500-3,600 m above the crater and drifted S, E, SE, and N. On 19 October at 1648 an explosion generated an ash plume that rose 3.6 km above the crater (figure 153). No eruptions were reported in the Showa crater; white gas-and-steam emissions rose 100 m above the crater from a vent on the N flank. Nighttime incandescence was observed at the Minamidake crater. On 24 October an eruption was reported from 0346 through 0430, which included an ash plume that rose 3.4 km above the crater. Ejected blocks traveled 1.2 km from the Minamidake crater. Following this eruption, small amounts of ashfall were observed from Arimura (4.5 km SE) and a varying amount in Kurokami (4 km E) (figure 154). The number of recorded volcanic earthquakes during the month was 190, of which 14 were located beneath the SW flank. Approximately 61 g/m2 of ashfall was reported over eight days of the month. According to a field survey, the daily amount of sulfur dioxide emitted was 2,200-4,200 t/d.

Figure (see Caption) Figure 153. Webcam image showing an ash plume rising 3.6 km above the Minamidake crater at Aira at 1648 on 19 October 2023. Photo has been color corrected. Courtesy of JMA monthly report (Sakurajima volcanic activity explanatory material, October 2023).
Figure (see Caption) Figure 154. Photo showing ashfall (light gray) in Kurokami-cho, Sakurajima on 24 October 2023 taken at 1148 following an eruption at Aira earlier that day. Courtesy of JMA monthly report (Sakurajima volcanic activity explanatory material, October 2023).

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim and built an island that was joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4,850 years ago, after which eruptions took place at Minamidake. Frequent eruptions since the 8th century have deposited ash on the city of Kagoshima, located across Kagoshima Bay only 8 km from the summit. The largest recorded eruption took place during 1471-76.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Nishinoshima (Japan) — November 2023 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 100 m

All times are local (unless otherwise noted)


Gray emissions during October 2023

Nishinoshima is a small island in the Ogasawara Arc, about 1,000 km S of Tokyo, Japan. It contains prominent submarine peaks to the S, W, and NE. Recorded eruptions date back to 1973, with the current eruption period beginning in October 2022. Eruption plumes and fumarolic activity characterize recent activity (BGVN 48:10). This report covers the end of the eruption for September through October 2023, based on information from monthly reports of the Japan Meteorological Agency (JMA) monthly reports, and satellite data.

No eruptive activity was reported during September 2023, although JMA noted that the surface temperature was slightly elevated compared to the surrounding area since early March 2023. The Japan Coast Guard (JCG) conducted an overflight on 20 September and reported white gas-and-steam plumes rising 3 km above the central crater of the pyroclastic cone, as well as multiple white gas-and-steam emissions emanating from the N, E, and S flanks of the crater to the coastline. In addition, dark reddish brown-to-green discolored water was distributed around almost the entire circumference of the island.

Similar low-level activity was reported during October. Multiple white gas-and-steam emissions rose from the N, E, and S flanks of the central crater of the pyroclastic cone and along the coastline; these emissions were more intense compared to the previous overflight observations. Dark reddish brown-to-green discolored water remained visible around the circumference of the island. On 4 October aerial observations by JCG showed a small eruption consisting of continuous gas-and-steam emissions emanating from the central crater, with gray emissions rising to 1.5 km altitude (figure 129). According to observations from the marine weather observation vessel Keifu Maru on 26 October, white gas-and-steam emissions persisted from the center of the pyroclastic cone, as well as from the NW, SW, and SE coasts of the island for about five minutes. Slightly discolored water was visible up to about 1 km.

Figure (see Caption) Figure 129. Aerial photos of gray emissions rising from the central crater of Nishinoshima’s pyroclastic cone to an altitude of 1.5 km on 4 October 2023 taken at 1434 (left) and 1436 (right). Several white gas-and-steam emissions also rose from the N, E, and S flanks of the central crater. Both photos have been color corrected. Courtesy of JCG via JMA (monthly reports of activity at Nishinoshima, October, 2023).

Frequent low-to-moderate power thermal anomalies were recorded in the MIROVA graph (Middle InfraRed Observation of Volcanic Activity) during September (figure 130). Occasional anomalies were detected during October, and fewer during November through December. A thermal anomaly was visible in the crater using infrared satellite imagery on 6, 8, 11, 16, 18, 21, and 23 September and 8, 13, 21, 26, and 28 October (figure 131).

Figure (see Caption) Figure 130. Low-to-moderate power thermal anomalies were detected at Nishinoshima during September through December 2023, showing a decrease in the frequency of anomalies after September, according to this MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 131. Infrared (bands B12, B11, B4) satellite images showing a strong thermal anomaly at the crater of Nishinoshima on 21 September 2023 (left) and 13 October 2023 (right). A strong gas-and-steam plume accompanied the thermal activity, extending NW. Courtesy of Copernicus Browser.

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Multiple eruptions that began in 2013 completely covered the previous exposed surface and continued to enlarge the island. The island is the summit of a massive submarine volcano that has prominent peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the ocean surface 9 km SSE.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Kilauea (United States) — October 2023 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Strong lava fountains, lava flows, and spatter at Halema’uma’u during January-September 2023

Kīlauea is on the island of Hawai’i and overlaps the E flank of the Mauna Loa volcano. Its East Rift Zone (ERZ) has been intermittently active for at least 2,000 years. An extended eruption period began in January 1983 and was characterized by open lava lakes and lava flows from the summit caldera and the East Rift Zone. During May 2018 magma migrated into the Lower East Rift Zone (LERZ) and opened 24 fissures along a 6-km-long NE-trending fracture zone that produced lava flows traveling in multiple directions. As lava emerged from the fissures, the lava lake at Halema'uma'u drained and explosions sent ash plumes to several kilometers altitude (BGVN 43:10).

The current eruption period started during September 2021 and has been characterized by low-level lava effusions in the active Halema’uma’u lava lake (BGVN 48:01). This report covers three notable eruption periods during February, June, and September 2023 consisting of lava fountaining, lava flows, and spatter during January through September 2023 using information from daily reports, volcanic activity notices, and abundant photo, map, and video data from the US Geological Survey's (USGS) Hawaiian Volcano Observatory (HVO).

Activity during January 2023. Small earthquake swarms were recorded on 2 January 2023; increased seismicity and changes in the pattern of deformation were noted on the morning of 5 January. At around 1500 both the rate of deformation and seismicity drastically increased, which suggested magma movement toward the surface. HVO raised the Volcano Alert Level (VAL) to Watch (the second highest level on a four-level scale) and the Aviation Color Code (ACC) to Orange (the second highest color on a four-color scale) at 1520.

Multiple lava fountains and lava effusions from vents in the central eastern portion of the Halema’uma’u crater began on 5 January around 0434; activity was confined to the eastern half of the crater and within the basin of the western half of the crater, which was the focus of the eruption in 2021-2022 (figure 525). Incandescence was visible in webcam images at 1634 on 5 January, prompting HVO to raise the VAL to Warning (the highest level on a four-level scale) and the ACC to Red (the highest color on a four-color scale). Lava fountains initially rose as high as 50 m above the vent at the onset of the eruption (figure 526) but then declined to a more consistent 5-6 m height in the proceeding days. By 1930 that same day, lava had covered most of the crater floor (an area of about 1,200,000 m2) and the lava lake had a depth of 10 m. A higher-elevation island that formed during the initial phase of the December 2020 eruption remained exposed, appearing darker in images, along with a ring of older lava around the lava lake that was active prior to December 2022. Overnight during 5-6 January the lava fountains continued to rise 5 m high, and the lava effusion rate had slowed.

Figure (see Caption) Figure 525. A reference map of Kīlauea showing activity on 6 January 2023, based on measurements taken from the crater rim at approximately 0900. Multiple eruptive vents (orange color) are on the E floor of Halema’uma’u crater effusing into a lava lake (red color). Lava from these vents flowed laterally across the crater floorcovering an area of 880,000 m2. The full extent of new lava from this eruption (red and pink colors) is approximately 1,120,000 m2. An elevated part of the lake (yellow color) that is higher in elevation compared to the rest of the crater floor was not covered in lava flows. Courtesy of USGS, HVO.
Figure (see Caption) Figure 526. Image of the initial lava fountain at the onset of Kīlauea’s eruption on 5 January 2023 from a newly opened vent in the Halema’uma’u crater at 0449. This lava fountain rose as high as 50 m and ejected lava across the crater floor. Courtesy of USGS, HVO.

On 6 January at 0815 HVO lowered the VAL to Watch and the ACC to Orange due to the declining effusion rates. Sulfur dioxide emission rates ranged from 3,000-12,500 tonnes per day (t/d), the highest value of which was recorded on 6 January. Lava continued to erupt from the vents during 6-8 January, although the footprint of the active area had shrunk; a similar progression has been commonly observed during the early stages of recent eruptions at Halema’uma’u. On 9 January HVO reported one dominant lava fountain rising 6-7 m high in the E half of the crater. Lava flows built up the margins of the lake, causing the lake to be perched. On 10 January the eastern lava lake had an area of approximately 120,000 m2 that increased to 250,000 m2 by 17 January. During 13-31 January several small overflows occurred along the margins of the E lake. A smaller area of lava was active within the basin in the W half of the crater that had been the focus of activity during 2021-2022. On 19 January just after 0200 a small ooze-out was observed on the crater’s W edge.

Activity during February 2023. Activity continued in the E part of Halema’uma’u crater, as well as in a smaller basin in the W part of the 2021-2022 lava lake (figure 527). The E lava lake contained a single lava fountain and frequent overflows. HVO reported that during the morning of 1 February the large E lava lake began to cool and crust over in the center of the lake; two smaller areas of lava were observed on the N and S sides by the afternoon. The dominant lava fountain located in the S part of the lava lake paused for roughly 45 minutes at 2315 and resumed by midnight, rising 1-2 m. At 0100 on 2 February lava from the S part was effusing across the entire E lava lake area, covering the crusted over portion in the center of the lake and continuing across the majority of the previously measured 250,000 m2 by 0400. A small lava pond near the E lake produced an overflow around 0716 on 2 February. On 3 February some lava crust began to form against the N and E levees, which defined the 250,000 m2 eastern lava lake. The small S lava fountain remained active, rising 1-6 m high during 3-9 February; around 0400 on 5 February occasional bursts doubled the height of the lava fountain.

Figure (see Caption) Figure 527. An aerial visual and thermal image taken of Kīlauea’s Halema’uma’u crater on 2 February 2023. The largest lava lake is in the E part of the crater, although lava has also filled areas that were previously active in the W part of the crater. The colors of the map indicate temperature, with blues indicative of cooler temperatures and reds indicative of warmer temperatures. Courtesy of USGS, HVO.

A large breakout occurred overnight during 2100 on 4 February to 0900 on 5 February on the N part of the crater floor, equal to or slightly larger in size than the E lava lake. A second, smaller lava fountain appeared in the same area of the E lava lake between 0300 and 0700 on 5 February and was temporarily active. This large breakout continued until 7 February. A small, brief breakout was reported in the S of the E lava lake around midnight on 7 February. In the W lake, as well as the smaller lava pond in the central portion of the crater floor, contained several overflows during 7-10 February and intermittent fountaining. Activity at the S small lava pond and the small S lava fountain within the E lake declined during 9-10 February. The lava pond in the central portion of the crater floor had nearly continuous, expansive flows during 10-13 February; channels from the small central lava pond seemed to flow into the larger E lake. During 13-18 February a small lava fountain was observed in the small lava pond in the central portion of the crater floor. Continuous overflows persisted during this time.

Activity in the eastern and central lakes began to decline in the late afternoon of 17 February. By 18 February HVO reported that the lava effusions had significantly declined, and that the eastern and central lakes were no longer erupting. The W lake in the basin remained active but at a greatly reduced level that continued to decline. HVO reported that this decrease in activity is attributed to notable deflationary tilt that began early on the morning of 17 February and lasted until early 19 February. By 19 February the W lake was mostly crusted over although some weak lava flows remained, which continued through 28 February. The sulfur dioxide emission rates ranged 250-2,800 t/d, the highest value of which was recorded on 6 February.

Activity during March 2023. The summit eruption at Halema’uma’u crater continued at greatly reduced levels compared to the previous two months. The E and central vents stopped effusing lava, and the W lava lake remained active with weak lava flows; the lake was mostly crusted over, although slowly circulating lava intermittently overturned the crust. By 6 March the lava lake in the W basin had stopped because the entire surface was crusted over. The only apparent surface eruptive activity during 5-6 March was minor ooze-outs of lava onto the crater floor, which had stopped by 7 March. Several hornitos on the crater floor still glowed through 12 March according to overnight webcam images, but they did not erupt any lava. A small ooze-out of lava was observed just after 1830 in the W lava lake on 8 March, which diminished overnight. The sulfur dioxide emission rate ranged from 155-321 t/d on 21 March. The VAL was lowered to Advisory, and the ACC was lowered to Yellow (the second lowest on a four-color scale) on 23 March due to a pause in the eruption since 7 March.

Activity during April-May 2023. The eruption at Halema’uma’u crater was paused; no lava effusions were visible on the crater floor. Sulfur dioxide emission rates ranged from 75-185 t/d, the highest of which was measured on 22 April. During May and June summit seismicity was elevated compared to seismicity that preceded the activity during January.

Activity during June 2023. Earthquake activity and changes in the patterns of ground deformation beneath the summit began during the evening of 6 June. The data indicated magma movement toward the surface, prompting HVO to raise the VAL to Watch and the ACC to Orange. At about 0444 on 7 June incandescence in Halema’uma’u crater was visible in webcam images, indicating that a new eruption had begun. HVO raised the VAL to Warning and the ACC to Red (the highest color on a four-color scale). Lava flowed from fissures that had opened on the crater floor. Multiple minor lava fountains were active in the central E portion of the Halema’uma’u crater, and one vent opened on the W wall of the caldera (figure 528). The eruptive vent on the SW wall of the crater continued to effuse into the lava lake in the far SW part of the crater (figure 529). The largest lava fountain consistently rose 15 m high; during the early phase of the eruption, fountain bursts rose as high as 60 m. Lava flows inundated much of the crater floor and added about 6 m depth of new lava within a few hours, covering approximately 10,000 m2. By 0800 on 7 June lava filled the crater floor to a depth of about 10 m. During 0800-0900 the sulfur dioxide emission rate was about 65,000 t/d. Residents of Pahala (30 km downwind of the summit) reported minor deposits of fine, gritty ash and Pele’s hair. A small spatter cone had formed at the vent on the SW wall by midday, and lava from the cone was flowing into the active lava lake. Fountain heights had decreased from the onset of the eruption and were 4-9 m high by 1600, with occasional higher bursts. Inflation switched to deflation and summit earthquake activity greatly diminished shortly after the eruption onset.

Figure (see Caption) Figure 528. Photo of renewed activity at Kīlauea’s Halema’uma’u crater that began at 0444 on 7 June 2023. Lava flows cover the crater floor and there are several active source vents exhibiting lava fountaining. Courtesy of USGS, HVO.
Figure (see Caption) Figure 529. Photo of a lava fountain on the SW wall of Kīlauea’s Halema’uma’u crater on 7 June 2023. By midday a small cone structure had been built up. The fissure was intermittently obscured by gas-and-steam plumes. Courtesy of USGS, HVO.

At 0837 on 8 June HVO lowered the VAL to Watch and the ACC to Orange because the initial high effusion rates had declined, and no infrastructure was threatened. The surface of the lava lake had dropped by about 2 m, likely due to gas loss by the morning of 8 June. The drop left a wall of cooled lava around the margins of the crater floor. Lava fountain heights decreased during 8-9 June but continued to rise to 10 m high. Active lava and vents covered much of the W half of Halema’uma’u crater in a broad, horseshoe-shape around a central, uplifted area (figure 530). The preliminary average effusion rate for the first 24 hours of the eruption was about 150 cubic meters per second, though the estimate did not account for vesiculated lava and variations in crater floor topography. The effusion rate during the very earliest phases of the eruption appeared significantly higher than the previous three summit eruptions based on the rapid coverage of the entire crater floor. An active lava lake, also referred to as the “western lava lake” was centered within the uplifted area and was fed by a vent in the NE corner. Two small active lava lakes were located just SE from the W lava lake and in the E portion of the crater floor.

Figure (see Caption) Figure 530. A compilation of thermal images taken of Kīlauea’s Halema’uma’u crater on 7 June 2023 (top left), 8 June 2023 (top right), 12 June 2023 (bottom left), and 16 June 2023 (bottom right). The initial high effusion rates that consisted of numerous lava fountains and lava flows that covered the entire crater floor began to decline and stabilize. A smaller area of active lava was detected in the SW part of the crater by 12 June. The colors of the thermal map represent temperature, with blue colors indicative of cooler temperatures and red colors indicative of warmer temperatures. Courtesy of USGS, HVO.

During 8-9 June the lava in the central lava lake had a thickness of approximately 1.5 m, based on measurements from a laser rangefinder. During 9-12 June the height of the lava fountains decreased to 9 m high. HVO reported that the previously active lava lake in the E part of the crater appeared stagnant during 10-11 June. The surface of the W lake rose approximately 1 m overnight during 11-12 June, likely due to the construction of a levee around it. Only a few small fountains were active during 12-13 June; the extent of the active lava had retreated so that all activity was concentrated in the SW and central parts of Halema’uma’u crater. Intermittent spattering from the vent on the SW wall was visible in overnight webcam images during 13-18 June. On the morning of 14 June a weak lava effusion originated from near the western eruptive vent, but by 15 June there were no signs of continued activity. HVO reported that other eruptive vents in the SW lava lake had stopped during this time, following several days of waning activity; lava filled the lake by about 0.5 m. Lava circulation continued in the central lake and no active lava was reported in the northern or eastern parts of the crater. Around 0800 on 15 June the top of the SW wall spatter cone collapsed, which was followed by renewed and constant spattering from the top vent and a change in activity from the base vent; several new lava flows effused from the top of the cone, as well as from the pre-existing tube-fed flow from its base. Accumulation of lava on the floor resulted in a drop of the central basin relative to the crater floor, allowing several overflows from the SW lava lake to cascade into the basin during the night of 15 June into the morning of 16 June.

Renewed lava fountaining was reported at the eruptive vent on the SW side of the crater during 16-19 June, which effused lava into the far SW part of the crater. This activity was described as vigorous during midday on 16 June; a group of observatory geologists estimated that the lava was consistently ejected at least 10 m high, with some spatter ejected even higher and farther. Deposits from the fountain further heightened and widened the spatter cone built around the original eruptive vent in the lower section of the crater wall. Multiple lava flows from the base of the cone were fed into the SW lava lake and onto the southwestern-most block from the 2018 collapse within Halema’uma’u on 17 June (figure 531); by 18 June they focused into a single flow feeding into the SW lava lake. On the morning of 19 June a second lava flow from the base of the eruptive cone advanced into the SW lava lake.

Figure (see Caption) Figure 531. Nighttime photo of the upwelling area at the base of the spatter cone at Kīlauea’s Halema’uma’u crater on 17 June 2023. This upwelling feeds a lava flow that spreads out to the E of the spatter cone. Courtesy of M. Cappos, USGS.

Around 1600 on 19 June there was a rapid decline in lava fountaining and effusion at the eruptive vent on the SW side of the crater; vent activity had been vigorous up to that point (figure 532). Circulation in the lava lake also slowed, and the lava lake surface dropped by several meters. Overnight webcam images showed some previously eruptive lava still flowing onto the crater floor, which continued until those flows began to cool. By 21 June no lava was erupting in Halema’uma’u crater. Overnight webcam images during 29-30 June showed some incandescence from previously erupted lava flows as they continued to cool. Seismicity in the crater declined to low levels. Sulfur dioxide emission rates ranged 160-21,000 t/d throughout the month, the highest measurement of which was recorded on 8 June. On 30 June the VAL was lowered to Advisory (the second level on a four-level scale) and the ACC was lowered to Yellow. Gradual inflation was detected at summit tiltmeters during 19-30 June.

Figure (see Caption) Figure 532. Photos showing vigorous lava fountaining and lava flows at Kīlauea’s Halema’uma’u crater at the SW wall eruptive vent on 18 June 2023 at 1330 (left). The eruption stopped abruptly around 1600 on 19 June 2023 and no more lava effusions were visible, as seen from the SW wall eruptive vent at 1830 on 19 June 2023 (right). Courtesy of M. Patrick, USGS.

Activity during July-August 2023. During July, the eruption paused; no lava was erupting in Halema’uma’u crater. Nighttime webcam images showed some incandescence from previously erupted lava as it continued to cool on the crater floor. During the week of 14 August HVO reported that the rate in seismicity increased, with 467 earthquakes of Mw 3.2 and smaller occurring. Sulfur dioxide emission rates remained low, ranging from 75-86 t/d, the highest of which was recorded on 10 and 15 August. On 15 August beginning at 0730 and lasting for several hours, a swarm of approximately 50 earthquakes were detected at a depth of 2-3 km below the surface and about 2 km long directly S of Halema’uma’u crater. HVO reported that this was likely due to magma movement in the S caldera region. During 0130-0500 and 1700-2100 on 21 August two small earthquake swarms of approximately 20 and 25 earthquakes, respectively, occurred at the same location and at similar depths. Another swarm of 50 earthquakes were recorded during 0430-0830 on 23 August. Elevated seismicity continued in the S area through the end of the month.

Activity during September 2023. Elevated seismicity persisted in the S summit with occasional small, brief seismic swarms. Sulfur dioxide measurements were relatively low and were 70 t/d on 8 September. About 150 earthquakes occurred during 9-10 September, and tiltmeter and Global Positioning System (GPS) data showed inflation in the S portion of the crater.

At 0252 on 10 September HVO raised the VAL to Watch and the ACC to Orange due to increased earthquake activity and changes in ground deformation that indicated magma moving toward the surface. At 1515 the summit eruption resumed in the E part of the caldera based on field reports and webcam images. Fissures opened on the crater floor and produced multiple minor lava fountains and flows (figure 533). The VAL and ACC were raised to Warning and Red, respectively. Gas-and-steam plumes rose from the fissures and drifted downwind. A line of eruptive vents stretched approximately 1.4 km from the E part of the crater into the E wall of the down dropped block by 1900. The lava fountains at the onset of the eruption had an estimated 50 m height, which later rose 20-25 m high. Lava erupted from fissures on the down dropped block and expanded W toward Halema’uma’u crater. Data from a laser rangefinder recorded about 2.5 m thick of new lava added to the W part of the crater. Sulfur dioxide emissions were elevated in the eruptive area during 1600-1500 on 10 September, measuring at least 100,000 t/d.

Figure (see Caption) Figure 533. Photo of resumed lava fountain activity at Kīlauea’s Halema’uma’u crater on 10 September 2023. The main lava fountain rises approximately 50 m high and is on the E crater margin. Courtesy of USGS, HVO.

At 0810 on 11 September HVO lowered the VAL and ACC back to Watch and Orange due to the style of eruption and the fissure location had stabilized. The initial extremely high effusion rates had declined (but remained at high levels) and no infrastructure was threatened. An eruption plume, mainly comprised of sulfur dioxide and particulates, rose as high as 3 km altitude. Several lava fountains were active on the W side of the down dropped block during 11-15 September, while the easternmost vents on the down dropped block and the westernmost vents in the crater became inactive on 11 September (figure 534). The remaining vents spanned approximately 750 m and trended roughly E-W. The fed channelized lava effusions flowed N and W into Halema’uma’u. The E rim of the crater was buried by new lava flows; pahoehoe lava flows covered most of the crater floor except areas of higher elevation in the SW part of the crater. The W part of the crater filled about 5 m since the start of the eruption, according to data from a laser rangefinder during 11-12 September. Lava fountaining continued, rising as high as 15 m by the morning of 12 September. During the morning of 13 September active lava flows were moving on the N and E parts of the crater. The area N of the eruptive vents that had active lava on its surface became perched and was about 3 m higher than the surrounding ground surface. By the morning of 14 September active lava was flowing on the W part of the down dropped block and the NE parts of the crater. The distances of the active flows progressively decreased. Spatter had accumulated on the S (downwind) side of the vents, forming ramparts about 20 m high.

Figure (see Caption) Figure 534. Photo of a strong lava fountain in the E part of Kīlauea’s Halema’uma’u crater taken on the morning of 11 September 2023. The lava fountains rise as high as 10-15 m. Courtesy of J. Schmith, USGS.

Vigorous spattering was restricted to the westernmost large spatter cone with fountains rising 10-15 m high. Minor spattering occurred within the cone to the E of the main cone, but HVO noted that the fountains remained mostly below the rim of the cone. Lava continued to effuse from these cones and likely from several others as well, traveled N and W, confined to the W part of the down-dropped block and the NE parts of Halema’uma’u. Numerous ooze-outs of lava were visible over other parts of the crater floor at night. Laser range-finder measurements taken of the W part of the crater during 14-15 September showed that lava filled the crater by 10 m since the start of the eruption. Sulfur dioxide emissions remained elevated after the onset of the eruption, ranging 20,000-190,000 t/d during the eruption activity, the highest of which occurred on 10 September.

Field crews observed the eruptive activity on 15 September; they reported a notable decrease or stop in activity at several vents. Webcam images showed little to no fountaining since 0700 on 16 September, though intermittent spattering continued from the westernmost large cone throughout the night of 15-16 September. Thermal images showed that lava continued to flow onto the crater floor. On 16 September HVO reported that the eruption stopped around 1200 and that there was no observable activity anywhere overnight or on the morning of 17 September. HVO field crews reported that active lava was no longer flowing onto Halema’uma’u crater floor and was restricted to a ponded area N of the vents on the down dropped block. They reported that spattering stopped around 1115 on 16 September. Nighttime webcam images showed some incandescence on the crater floor as lava continued to cool. Field observations supported by geophysical data showed that eruptive tremor in the summit region decreased over 15-16 September and returned to pre-eruption levels by 1700 on 16 September. Sulfur dioxide emissions were measured at a rate of 800 t/d on 16 September while the eruption was waning, and 200 t/d on 17 September, which were markedly lower compared to measurements taken the previous week of 20,000-190,000 t/d.

Geologic Background. Kilauea overlaps the E flank of the massive Mauna Loa shield volcano in the island of Hawaii. Eruptions are prominent in Polynesian legends; written documentation since 1820 records frequent summit and flank lava flow eruptions interspersed with periods of long-term lava lake activity at Halemaumau crater in the summit caldera until 1924. The 3 x 5 km caldera was formed in several stages about 1,500 years ago and during the 18th century; eruptions have also originated from the lengthy East and Southwest rift zones, which extend to the ocean in both directions. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1,100 years old; 70% of the surface is younger than 600 years. The long-term eruption from the East rift zone between 1983 and 2018 produced lava flows covering more than 100 km2, destroyed hundreds of houses, and added new coastline.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI 96718, USA (URL: http://hvo.wr.usgs.gov/).


Tinakula (Solomon Islands) — December 2023 Citation iconCite this Report

Tinakula

Solomon Islands

10.386°S, 165.804°E; summit elev. 796 m

All times are local (unless otherwise noted)


Continued lava flows and thermal activity during June through November 2023

Tinakula is a remote 3.5 km-wide island in the Solomon Islands, located 640 km ESE of the capital, Honiara. The current eruption period began in December 2018 and has more recently been characterized by intermittent lava flows and thermal activity (BGVN 48:06). This report covers similar activity during June through November 2023 using satellite data.

During clear weather days (20 July, 23 September, 23 October, and 12 November), infrared satellite imagery showed lava flows that mainly affected the W side of the island and were sometimes accompanied by gas-and-steam emissions (figure 54). The flow appeared more intense during July and September compared to October and November. According to the MODVOLC thermal alerts, there were a total of eight anomalies detected on 19 and 21 July, 28 and 30 October, and 16 November. Infrared MODIS satellite data processed by MIROVA (Middle InfraRed Observation of Volcanic Activity) detected a small cluster of thermal activity occurring during late July, followed by two anomalies during August, two during September, five during October, and five during November (figure 55).

Figure (see Caption) Figure 54. Infrared (bands B12, B11, B4) satellite images showed lava flows mainly affecting the W flank of Tinakula on 20 July 2023 (top left), 23 September 2023 (top right), 23 October 2023 (bottom left), and 12 November 2023 (bottom right). Some gas-and-steam emissions accompanied this activity. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 55. Low-power thermal anomalies were sometimes detected at Tinakula during July through November 2023, as shown on this MIROVA plot (Log Radiative Power). A small cluster of thermal anomalies were detected during late July. Then, only two anomalies were detected during August, two during September, five during October, and five during November. Courtesy of MIROVA.

Geologic Background. The small 3.5-km-wide island of Tinakula is the exposed summit of a massive stratovolcano at the NW end of the Santa Cruz islands. It has a breached summit crater that extends from the summit to below sea level. Landslides enlarged this scarp in 1965, creating an embayment on the NW coast. The Mendana cone is located on the SE side. The dominantly andesitic volcano has frequently been observed in eruption since the era of Spanish exploration began in 1595. In about 1840, an explosive eruption apparently produced pyroclastic flows that swept all sides of the island, killing its inhabitants. Recorded eruptions have frequently originated from a cone constructed within the large breached crater. These have left the upper flanks and the steep apron of lava flows and volcaniclastic debris within the breach unvegetated.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Fuego (Guatemala) — December 2023 Citation iconCite this Report

Fuego

Guatemala

14.4748°N, 90.8806°W; summit elev. 3799 m

All times are local (unless otherwise noted)


Daily explosions, gas-and-ash plumes, and block avalanches during August-November 2023

Fuego is one of three large stratovolcanoes overlooking the city of Antigua, Guatemala. It has been erupting since January 2002, with observed eruptions dating back to 1531 CE. Typical activity is characterized by ashfall, pyroclastic flows, lava flows, and lahars. Frequent explosions with ash emissions, block avalanches, and lava flows have been reported since 2018. More recently, activity has been characterized by multiple explosions and ash plumes each day, ashfall, block avalanches, and pyroclastic flows (BGVN 48:09). This report describes similar activity of explosions, gas-and-ash plumes, and block avalanches during August through November 2023 based on daily reports from the Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH) and various satellite data.

Multiple explosions each day were reported during August through November 2023 that produced ash plumes that rose to 4.9 km altitude and drifted as far as 30 km in different directions. The explosions also caused rumbling sounds of varying intensities, with shock waves that vibrated the roofs and windows of homes near the volcano. Incandescent pulses of material rose as high as 350 m above the crater, accompanied by block avalanches that descended multiple drainages. Light ashfall was often reported in nearby communities (table 29). MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed intermittent low-to-moderate power thermal activity during the reporting period (figure 175). A total of seven MODVOLC thermal alerts were issued on 11 August, 1, 13, and 23 September, and 10, 17, and 18 November. On clear weather days thermal anomalies were also visible in infrared satellite imagery in the summit crater (figure 176).

Table 29. Activity at Fuego during August through November 2023 included multiple explosions every hour. Ash emissions rose as high as 4.9 km altitude and drifted in multiple directions as far as 30 km, causing ashfall in many communities around the volcano. Data from daily INSIVUMEH reports.

Month Explosions per hour Maximum ash plume altitude (km) Ash plume direction and distance (km) Drainages affected by block avalanches Communities reporting ashfall
Aug 2023 1-11 4.8 W, NW, SW, N, NE, and E 8-30 km Ceniza, Santa Teresa, Seca, Taniluyá, Las Lajas, El Jute, Trinidad, and Honda Panimaché, Morelia, Santa Sofía, Yepocapa, Finca Palo Verde, Sangre de Cristo, Acatenango, Aldeas, El Porvenir, La Reunión, San Miguel Dueñas, Cuidad Vieja, Antigua, Quisaché, and El Sendero
Sep 2023 3-11 4.8 SW, W, NW, S, and SE 10-30 km Seca, Taniluyá, Ceniza, Las Lajas, Honda, Santa Teresa, Trinidad, and El Jute Panimaché I and II, Morelia, Palo Verde, Sangre de Cristo, Yepocapa, El Porvenir, Aldeas, Santa Sofía, Montellano, El Socorro, La Rochela, La Asunción, San Andrés Osuna, Guadalupe, and La Trinidad
Oct 2023 2-10 4.9 W, SW, S, NW, N, NE, and SE 10-30 km Ceniza, Santa Teresa, Taniluyá, Trinidad, Seca, El Jute, Las Lajas, and Honda Aldeas, Panimaché I and II, Morelia, Santa Sofía, El Porvenir, Sangre de Cristo, Yepocapa, Yucales, Palo Verde, Acatenango, Patzicía, San Miguel Dueñas, Alotenango, La Soledad, El Campamento, La Rochela, Las Palmas, and Quisaché
Nov 2023 1-10 4.8 W, SW, S, E, SE, NW, and N 10-30 km Seca, Taniluyá, Ceniza, Las Lajas, EL Jute, Honda, Santa Teresa, and Trinidad Panimaché I and II, Morelia, Yepocapa, Santa Sofía, Aldeas, Sangre de Cristo, Palo Verde, El Porvenir, Yucales, La Rochela, San Andrés Osuna, Ceilán, Quisaché, Acatenango, and La Soledad
Figure (see Caption) Figure 175. Intermittent low-to-moderate power thermal activity was detected at Fuego during August through November 2023, based on this MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 176. Infrared (bands B12, B11, B4) satellite images showing a persistent thermal anomaly at the summit crater of Fuego on 27 August 2023 (top left), 1 September 2023 (top right), 16 October 2023 (bottom left), and 30 November 2023 (bottom right). Courtesy of Copernicus Browser.

Activity during August consisted of 1-11 explosions each day, which generated ash plumes that rose to 4-4.8 km altitude and drifted 8-30 km W, NW, SW, N, NE, and E. Fine ashfall was reported in Panimaché I and II (8 km SW), Morelia (9 km SW), Santa Sofía (12 km SW), Yepocapa (8 km NW), Finca Palo Verde (10 km WSW), Sangre de Cristo (8 km WSW), Acatenango (8 km E), Aldeas, El Porvenir (11 km SW), La Reunión (7 km SE), San Miguel Dueñas (10 km NE), Ciudad Vieja (13.5 km NE), Antigua (18 km NE), Quisaché (8 km NW), and El Sendero. The explosions sometimes ejected incandescent material 50-250 m above the crater and generated weak-to-moderate block avalanches that descended the Santa Teresa (W), Seca (W), Taniluyá (SW), Ceniza (SSW), Las Lajas (SE), El Jute (ESE), Trinidad (S), and Honda (E) drainages. Lahars were reported in the Ceniza drainage on 8-9, 16, 26-27, and 29 August, carrying fine and hot volcanic material, branches, tree trunks, and blocks measured 30 cm up to 1.5 m in diameter. Similar lahars affected the Las Lajas, El Jute, Seca, and El Mineral (W) drainages on 27 August.

Daily explosions ranged from 3-11 during September, which produced ash plumes that rose to 4-4.8 km altitude and drifted 10-30 km SW, W, NW, S, and SE. The explosions were accompanied by block avalanches that affected the Seca, Taniluyá, Ceniza, Las Lajas, Honda, Santa Teresa, Trinidad, and El Jute drainages and occasional incandescent ejecta rose 50-300 m above the crater. Fine ashfall was reported in Panimaché I and II, Morelia, Palo Verde, Sangre de Cristo, Yepocapa, El Porvenir, Aldeas, Santa Sofía, Montellano, El Socorro, La Rochela (8 km SSW), La Asunción (12 km SW), San Andrés Osuna (11 km SSW), Guadalupe, La Trinidad (S). Lahars triggered by rainfall were detected in the Ceniza drainage on 3-4, 8, 13-14, 17, 20-21, 24, 26, 29-30 September, which carried fine and hot volcanic material, branches, tree trunks, and blocks measuring 30 cm to 3 m in diameter. Similar lahars were also detected in the Seca, El Mineral, Las Lajas, and El Jute drainages on 27 September.

There were 2-10 explosions recorded each day during October, which produced ash plumes that rose to 4-4.9 km altitude and drifted 10-30 km W, SW, S, NW, N, NE, and SE. Incandescent pulses of material rose 50-350 m above the crater. Many of the explosions generated avalanches that descended the Ceniza, Santa Teresa, Taniluyá, Trinidad, Seca, El Jute, Las Lajas, and Honda drainages. Ashfall was reported in Aldeas, Panimaché I and II, Morelia, Santa Sofía, El Porvenir, Sangre de Cristo, Yepocapa, Yucales, Palo Verde, Acatenango, Patzicía, Alotenango, La Soledad (11 km N), El Campamento, La Rochela, Las Palmas, and Quisaché. Lahars continued to be observed on 2-5, 7, 9, 11, and 21-22 October, carrying fine and hot volcanic material, branches, tree trunks, and blocks measuring 30 cm to 3 m in diameter. Similar lahars were also reported in the Seca and Las Lajas drainage on 2 October and in the Las Lajas drainage on 4 October. On 4 October lahars overflowed the Ceniza drainage toward the Zarco and Mazate drainages, which flow from Las Palmas toward the center of Siquinalá, resulting from intense rainfall and the large volume of pyroclastic material in the upper part of the drainage. On 9 October a lahar was reported in the Seca and Las Lajas drainages, and lahars in the Las Lajas and El Jute drainages were reported on 11 October. A lahar on 22 October was observed in the Seca drainage, which interrupted transportation between San Pedro Yepocapa and the communities in Santa Sofía, Morelia, and Panimaché.

During November, 1-10 daily explosions were recorded, sometimes accompanied by avalanches, rumbling sounds, and shock waves. Gas-and-ash plumes rose 4.5-4.8 km altitude and extended 10-30 km W, SW, S, E, SE, NW, and N. Incandescent pulses of material rose 50-200 m above the crater. Fine ashfall was reported in Panimaché I and II, Morelia, Yepocapa, El Porvenir, Palo Verde, Santa Sofía, Aldeas, Sangre de Cristo, Yucales, La Rochela, San Andrés Osuna, Ceilán (9 km S), Quisaché, Acatenango, La Soledad. Avalanches of material descended the Seca, Taniluyá, Ceniza, Las Lajas, El Jute, Honda, Santa Teresa, and Trinidad drainages.

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Santa Maria (Guatemala) — December 2023 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Continuing lava effusion, explosions, ash plumes, and pyroclastic flows during August-November 2023

The Santiaguito lava dome complex of Guatemala’s Santa María volcano has been actively erupting since 1922. The lava dome complex lies within a large crater on the SW flank of Santa María that was formed during the 1902 eruption. Ash explosions, pyroclastic flows, and lava flows have emerged from Caliente, the youngest of the four vents in the complex for more than 40 years. A lava dome that appeared within Caliente’s summit crater in October 2016 has continued to grow, producing frequent block avalanches down the flanks. More recently, activity has been characterized by frequent explosions, lava flows, ash plumes, and pyroclastic flows (BGVN 48:09). This report covers activity during August through November 2023 based on information from Guatemala's INSIVUMEH (Instituto Nacional de Sismologia, Vulcanologia, Meterologia e Hidrologia) and various satellite data.

Activity during August consisted of weak-to-moderate explosions, avalanches of material, gas-and-ash plumes, and incandescence observed at night and in the early morning. Weak degassing plumes rose 300-600 m above the crater. Frequent explosions were detected at a rate of 1-2 per hour, which produced gas-and-ash plumes that rose 200-1,000 m above the crater and drifted W, NW, SW, S, E, and NE. Two active lava flows continued mainly in the Zanjón Seco (SW) and San Isidro (W) drainages. Incandescent block avalanches and occasional block-and-ash flows were reported on the W, S, E, SE, and SW flanks, as well as on the lava flows. On 26 and 29 August, fine ash plumes rose to 3.5 km altitude and drifted E and NE, causing ashfall in Belén (10 km S) and Calaguache (9 km S), as well as Santa María de Jesús (5 km SE) on 29 August.

Daily degassing, weak-to-moderate explosions, gas-and-ash plumes, and nighttime and early morning incandescence in the upper part of the dome continued during September. Explosions occurred at a rate of 1-2 per hour. Gas-and-ash plumes rose 200-1,000 m above the crater and drifted SW, W, SE, and NW. Block avalanches descended the SW, S, SE, and E flanks, often reaching the base of the Caliente dome. These avalanches were sometimes accompanied by short pyroclastic flows, resulting in fires in some vegetated areas. Block-and-ash flows descended all flanks of the Caliente dome on 16 and 24 September following the eruption of gas-and-ash plumes that rose 700-1,000 m above the crater. Gray ash was primarily deposited in the drainages.

Continuous gas-and-steam emissions occurred in October, along with weak-to-moderate explosions, block avalanches, crater incandescence, and an active lava flow on the WSW flank. Explosions occurred at a rate of 1-4 per hour, that generated gas-and-ash plumes rose 200-1,000 m above the crater and drifted in different directions. Block avalanches traveled down the SW, S, SE, and E flanks, sometimes accompanied by small pyroclastic flows. On 21 and 25 October as many as 50 explosions occurred over the course of 24 hours.

Similar activity persisted during November, with frequent explosions, crater incandescence, and block avalanches. The active lava flow persisted on the WSW flank. Weak-to-moderate explosions occurred at a rate of 1-4 per hour. Incandescence was observed at night and in the early morning. Gas-and-ash emissions rose 700-900 m above the crater and drifted W, SW, S, and NW. Block avalanches were reported on the SW, W, S, SE, and E flanks, which deposited gray ash material in the drainages, sometimes reaching the base of the Caliente dome. Those avalanches were sometimes accompanied by small pyroclastic flows that reached the base of the dome on the W, SW, and S flanks. Ashfall was reported in Las Marías (10 km S), El Viejo Palmar (12 km SSW), El Patrocinio, and San Marcos (8 km SW) on 18 and 22 November. On 26 and 30 November ashfall was reported in San Marcos and Loma Linda Palajunoj (7 km SW).

The MIROVA (Middle InfraRed Observation of Volcanic Activity) graph showed frequent moderate-power thermal anomalies during the reporting period (figure 140). A total of 26 MODVOLC thermal alerts were issued on 6, 7, 7, 15, 16, and 21 August, 15 and 23 September, 19, 26, 27, and 29 October, and 2, 7, 11, 27, 28, and 29 November. Clouds covered the summit of the volcano on most days, so thermal anomalies could not be identified in most Sentinel infrared satellite images.

Figure (see Caption) Figure 140. Moderate-power thermal anomalies were frequently detected at Santa María during August through November 2023, as shown on this MIROVA graph (Log Radiative Power). Courtesy of MIROVA.

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing E towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Karangetang (Indonesia) — November 2023 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Incandescent avalanches, pyroclastic flows, and ash plumes during July-September 2023

Karangetang (also known as Api Siau), at the northern end of the island of Siau, Indonesia, contains five summit craters along a N-S line. More than 40 eruptions have been recorded since 1675; recent eruptions have included frequent explosive activity, sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters and collapses of lava flow fronts have also produced pyroclastic flows. The two active summit craters are Kawah Dua (the N crater) and Kawah Utama (the S crater, also referred to as the “Main Crater”). The most recent eruption began in early February 2023 and was characterized by lava flows, incandescent avalanches, and ash plumes (BGVN 48:07). This report covers similar activity through the end of the eruption during July through September 2023 using reports from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), MAGMA Indonesia, the Darwin VAAC (Volcano Ash Advisory Center), and satellite data.

Webcam images occasionally showed crater incandescence and lava flows on the flanks of Main Crater during July. Near daily white gas-and-steam plumes rose 50-400 m above the crater and drifted in multiple directions. A webcam image taken at 1732 on 1 July suggested that a pyroclastic flow descended the SE flank, as evident from a linear plume of gas-and-ash rising along its path (figure 66). Incandescent material extended about 1 km down the S flank and about 600 m down the SSW and SW flank, based on a Sentinel satellite image taken on 2 July (figure 67). During the evening of 3 July a lava avalanche descended the Kahetang drainage (SE), extending 1-1.8 km, and the Timbelang and Beha drainages, extending 700-1,000 m. There were 53 earthquakes also detected that day. According to a news article from 6 July the lava avalanche from 2 July continued down the SW flank of Main Crater toward the Batang, Timbelang, and Beha Barat drainages for 1.5 km. An avalanche was also visible on the S flank, affecting the Batuawang and Kahetang drainages, and extending 1.8 km. Incandescent avalanches were reported during 8-9 July, traveling 1.8 km toward the Kahetang, Batuawang (S), and Timbelang drainages (figure 68). PVMBG issued two VONAs (Volcano Observatory Notices for Aviation) at 0759 and 0850 on 10 July, which reported two pyroclastic flows that traveled about 2 km toward the Kahetang drainage (figure 69). There were also 55 earthquakes detected on 10 July. As a result, 17 residents from Bolo Hamlet, Tarorane Village, East Siau District, Sitaro Islands Regency, North Sulawesi were evacuated.

Figure (see Caption) Figure 66. Webcam image showing a possible pyroclastic flow descending the SE flank of Karangetang at 1732 on 1 July 2023. Photo has been color corrected. Courtesy of MAGMA Indonesia.
Figure (see Caption) Figure 67. Incandescent avalanches of material and summit crater incandescence was visible in infrared (bands B12, B11, B4) satellite images at both the N and S summit craters of Karangetang on 2 July 2023 (top left), 16 August 2023 (top right), 25 September 2023 (bottom left), and 25 October 2023 (bottom right). The incandescent avalanches mainly affected the S flank and gas-and-steam plumes (blue color) were also sometimes visible. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 68. Webcam image showing crater incandescence and lava flows from Main Crater descending Karangetang at 1936 on 8 July 2023. Courtesy of MAGMA Indonesia.
Figure (see Caption) Figure 69. Webcam image showing a pyroclastic flow descending the SE flank of Karangetang at 0850 on 10 July 2023. Courtesy of MAGMA Indonesia.

An incandescent avalanche of material descended 1-1.8 km down the Kahetang drainage and 1 km down the Batang drainage on 14 July. During 18-29 July lava avalanches continued to move 1-1.8 km toward the Kahetang drainage, 700-1,000 m toward the Batuawang and Batang drainages, 700-1,000 m toward the Timbelang and Beha Barat drainage, and 1.5 km toward the West Beha drainage. Gray-and-white plumes accompanied the lava avalanches. During 20 July crater incandescence was visible in the gas-and-steam column 10-25 m above the crater. The Darwin VAAC reported that ash plumes rose to 2.4 km altitude at 1710 on 21 July, at 1530 on 22 July, and at 0850 on 23 July, which drifted NE and E. According to a news article, there were 1,189 earthquakes associated with lava avalanches recorded during 24-31 July.

Incandescent avalanches originating from Main Crater and extending SW, S, and SE persisted during August. Frequent white gas-and-steam plumes rose 25-350 m above the crater and drifted in different directions during August. Incandescent avalanches of material traveled S as far as 1.5 km down the Batuawang drainage, 1.8-1.9 km down the Kahetang drainage, and 2-2.1 km down the Keting drainage and SW 800-1,500 m down the Batang, Timbelang, and Beha Barat drainages. Occasional gray plumes accompanied this activity. According to a news article, 1,899 earthquakes associated with lava avalanches were recorded during 1-7 August. Incandescent ejecta from Main Crater was visible up to 10-25 m above the crater. Nighttime crater incandescence was visible in the N summit crater. There were 104 people evacuated from Tatahadeng and Tarorane during the first week of August, based on information from a news article that was published on 9 August. According to a news article published on 14 August the frequency of both earthquakes and lava avalanches decreased compared to the previous week; there were 731 earthquakes associated with avalanches detected during 8-15 August, and 215 during 24-31 August . Lava avalanches descending the Batang and Timbelang drainages continued through 24 August and the Batuawang, Kahetang, and Keting through 30 August. A news article published on 17 August reported pyroclastic flows due to collapsing accumulated material from lava flows.

Near-daily white gas-and-steam plumes rose 25-300 m above the crater and drifted in multiple directions during September. According to news articles, lava avalanches from Main Crater continued toward the Batuawang, Kahetang, and Keting drainages, reaching distances of 1-1.8 km. Lava avalanches also descended the Batang, Timbelang, and Beha Barat drainages as far as 1 km from Main Crater. Main Crater and N Crater incandescence were visible as high as 10 m above the crater. During 1-7 September the number of earthquakes associated with avalanches declined, although effusive activity continued. During 8-15 September lava effusion at Main Crater was not visible, although sounds of avalanches were sometimes intense, and rumbling was also occasionally heard. According to a news article published on 26 September, avalanches were no longer observed.

On 29 November PVMG lowered the Volcano Alert Level (VAL) to 2 (the second lowest level on a scale of 1-4) due to declining activity. Seismic data and visual observations indicated that effusion had decreased or stopped, and lava avalanches were no longer observed.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed strong thermal activity during July through August 2023, which was mainly characterized by incandescent avalanches of material and lava flows (figure 70). During August, the frequency and intensity of the thermal anomalies declined and remained relatively low through December. There was a brief gap in activity in late September. According to data recorded by the MODVOLC thermal algorithm, there were a total of 22 during July and 19 during August. Infrared satellite images showed summit crater incandescence at both the N and S craters and occasional incandescent avalanches of material affecting mainly the S flank (figure 67).

Figure (see Caption) Figure 70. Strong thermal activity was detected at Karangetang during July through August 2023, as recorded by this MIROVA graph (Log Radiative Power). The frequency and intensity of the thermal anomalies declined during August and remained relatively low through December. A brief gap in activity was visible in late September. Courtesy of MIROVA.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented (Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Antara News, Jalan Antara Kav. 53-61 Pasar Baru, Jakarta Pusat 10710, Indonesia (URL: antaranews.com).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 32, Number 01 (January 2007)

Dukono (Indonesia)

Inferred ash plume on 5 December 2006

Fournaise, Piton de la (France)

Extruding lava flows during 28 July-14 August 2006

Fukutoku-Oka-no-Ba (Japan)

Discolored water attributed to submarine volcanism

Karthala (Comoros)

Elevated seismicity followed by January 2007 eruption

Macdonald (France)

Swarm of T-wave events during October 2005

Monowai (New Zealand)

Elevated number of T-waves during 2005-6

Nyamulagira (DR Congo)

October seismic swarm followed by the eruption of 27 November 2006

Obituary Notices (Unknown)

Death of Jim Luhr, Director of the Global Volcanism Program

Pagan (United States)

December 2006 eruption's long plumes and ashfall

Soputan (Indonesia)

December 2006 lava dome still venting ash

Taal (Philippines)

Elevated seismicity, deformation, and hydrothermal activity during 2006

Talang (Indonesia)

Short eruptive episode in April 2005; elevated activity in late 2006



Dukono (Indonesia) — January 2007 Citation iconCite this Report

Dukono

Indonesia

1.6992°N, 127.8783°E; summit elev. 1273 m

All times are local (unless otherwise noted)


Inferred ash plume on 5 December 2006

Situated on Halmahera Island in northern Indonesia, Dukono released an ash plume 5 December 2006. The Moderate Resolution Imaging Spectroradiometer (MODIS) flying onboard NASA's Terra satellite captured the 5 December plume (figure 3) drifting E away from meteorological clouds. NASA affiliate Jesse Allen has interpreted the plume as ash bearing.

Figure (see Caption) Figure 3. Inferred ash plume of Dukono volcano streaming E and then S on 5 December 2006. NASA image created by Jesse Allen, Earth Observatory, using data provided courtesy of the MODIS Rapid Response team.

As of early 2007, the Darwin Volcanic Ash Advisory Center (VAAC) reported that plumes from Dukono were visible on satellite imagery several times during 2006, and once in January 2007 (see table 3). Satellite images suggested modest successive plumes with ash concentrations varying from diffuse to dense.

Table 3. Summary of plumes reported from Dukono, January 2006-January 2007. Courtesy of the Darwin VAAC.

Date Plume top (altitude) Plume drift direction Comment
12 Jan 2006 3 km SW ash
23 Aug 2006 -- NNE diffuse ash
05 Dec 2006 3 km ENE ash
22 Dec 2006 -- SE diffuse ash
16 Jan 2007 -- SSE diffuse

Thermal anomalies were detected by MODIS (table 4) on 13 December 2006 and then on four days in February 2007. These were the first anomalies detected by the MODVOLC system since October 2004 (BGVN 31:06).

Table 4. Thermal anomalies at Dukono based on MODIS-MODVOLC retrievals and processing from October 2004 through February 2007. Courtesy of Hawai'i Institute of Geophysics and Planetology Thermal Alerts System.

Date (UTC) Time (UTC) Pixels Satellite
04 Oct 2004 1350 2 Terra
13 Dec 2006 1350 1 Terra
13 Feb 2007 1405 1 Terra
13 Feb 2007 1700 1 Aqua
15 Feb 2007 1350 1 Terra
18 Feb 2007 1715 1 Aqua
24 Feb 2007 1345 1 Terra

Geologic Background. The Dukono complex in northern Halmahera is on an edifice with a broad, low profile containing multiple peaks and overlapping craters. Almost continuous explosive eruptions, sometimes accompanied by lava flows, have occurred since 1933. During a major eruption in 1550 CE, a lava flow filled in the strait between Halmahera and the Gunung Mamuya cone, 10 km NE. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also had reported eruptions.

Information Contacts: Center of Volcanology and Geological Hazard Mitigation (CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Center (VAAC), Bureau of Meteorology, Darwin, Australia (URL: http://www.bom.gov.au/); Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Piton de la Fournaise (France) — January 2007 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


Extruding lava flows during 28 July-14 August 2006

This report extends reporting of the Observatoire Volcanologique du Piton de la Fournaise (OVPF) and covers the period from 28 July 2006 to 22 February 2007.

At 0400 on [20 July] a tremor recorded by the Bory seismic station was interpreted as the start of an eruption. Subsequent observation noted a fissure had opened between 2,380 m and 2,250 m elevation on the SW flank. A lava flow went down E of Rivals crater. At 0540 a second 50-m long fissure opened at the 2,150 m elevation on the S flank between Rivals crater and "Ch?teau Fort" that began building a small cone, and producing a 2-km-long lava flow.

Fifteen days after the initial eruption began on 20 July, activity at the cone which was slowly developing at 2,150 m elevation on the S flank almost ceased; however it continued to emit a visible plume and the OVPF reported "a considerable" degasification. The eruption, which had started on 20 July, stopped at 2300 local time on 14 August. The total lava output was estimated to be 2-3 x 106 m3.

On 30 August, a small seismic event occurred at 1000 hours, and a summit eruption started from the SSE edge of Dolomieu Crater at 1135. A fissure opened on the crater floor, and a large portion of the crater floor was covered with lava by the afternoon. A second fissure opened just outside of the crater and produced a lava flow on the E flank. On 9 Oct, a second vent, formed about 100 m SW of the first one, which was still active.

The eruption continued through the middle of October, within the Dolomieu Crater. A new cone about 20-25 m high was formed in the SE part of Dolomieu, and lava flows up to 10 m thick filled up 75% of the crater floor. The E part of the crater was filled up to the rim and lava flowed over and down the flank for hundreds of meters.

Between 25-26 November a hornito grew in the center of Dolomieu crater. After 27 November, a new overflow of the Dolomieu crater started and a 4 to 5 m diameter lava tube drained lava to the Piton de la Fournaise east flank and fed a ~ 2.5 km long lava flow that passed south of crater Jean, but did not reach the "Grandes Pentes."

As of 14 December, OVPF reported that the eruption, which had started on August 30, was continuing (then 3.5 months). A second 25-m-high crater, named Piton Moinama, formed within Dolomieu about 100 m SSW of the first crater, Piton Wouandzani. Abundant lava flows totally covered Dolomieu crater floor again with a 10-30 m deep and reached the eastern border of the crater. Several small lava flows overflowed the rim but never reached more than 100-200 m long.

On 22 December, tremor signals increased, and a third eruptive vent opened on the evening of 27 December between Piton Wouandzani and the Piton Moinama. On 2 January 2007 OVPDLF reported that the eruption of Piton de la Fournaise that began on 30 August 2006 was believed to have ceased on 1 January.

On 18 February, after a "seismic event" that began at 1611, and which lasted only a few minutes, the summit inclinometers indicated strong inflation. A new eruptive phase began at 1638 that afternoon. The exact location of the eruption was not determined; however, the signals recorded at the observatory most probably place it at the summit. The cessation of volcanic tremor the next day at 0155 marked the end of the eruption. A fissure that crossed Dolomieu crater from the west was seen during an aerial observation on 18 February.

On 19 February, seven small (M 0.7) seismic tremors were recorded at the summit. On 22 February, a fissure was observed halfway up the E side of the summit cone.

Geologic Background. Piton de la Fournaise is a massive basaltic shield volcano on the French island of Réunion in the western Indian Ocean. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three scarps formed at about 250,000, 65,000, and less than 5,000 years ago by progressive eastward slumping, leaving caldera-sized embayments open to the E and SE. Numerous pyroclastic cones are present on the floor of the scarps and their outer flanks. Most recorded eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest scarp, which is about 9 km wide and about 13 km from the western wall to the ocean on the E side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures outside the scarps.

Information Contacts: Thomas Staudacher, Observatoire Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris, 14 route nationale 3, 27 ème km, 97418 La Plaine des Cafres, La Réunion, France (URL: http://www.ipgp.fr/fr/ovpf/observatoire-volcanologique-piton-de-fournaise); Serge Gélabert, 85, rue juliette Dodu, 97400 Saint-Denis, Ile de La Réunion, France.


Fukutoku-Oka-no-Ba (Japan) — January 2007 Citation iconCite this Report

Fukutoku-Oka-no-Ba

Japan

24.285°N, 141.481°E; summit elev. -29 m

All times are local (unless otherwise noted)


Discolored water attributed to submarine volcanism

Oliver Hyvernaud twice notified the Bulletin of Notice to Mariners reports of discolored sea water observed on 4 October and 15 November 2006 at about 24°17'N, 141°29'E. Both warnings referred to the same general location, encompassing an area of ocean 93 km SSW of Iwo Jima. In reality, the two positions noted below are ~ 1.3 km apart, perhaps overlapping each other. The warnings were as follows:

1) Discolored water with submarine volcanic activity reported within 1,700 m of 24°17.5' N, 141°29.4 E at 0400 UTC on 4 October 2006 [ref. Notice to Mariners, 14 October 2006 (no. 41), HYDROPAC Warning 1921/06(97) North Pacific, issued 1009 UTC on 4 October 2006].

2) Discolored water with submarine volcanic activity reported within 2,000 m of 24°17.1' N, 141°28.8 E at 0236 UTC on 15 November 2006 [ref. Notice to Mariners, 2 December 2006 (no. 48), HYDROPAC Warning 2225/06(97) North Pacific, issued 1133 UTC on 16 November 2006]

For the locations given for warnings 1 and 2, the respective deviations from coincidence with Fukutoku-Okanoba (at the coordinates given above) are 1.4 and 0.8 km. That seamount frequently produces discolored seawater and is known to erupt on occasions as well, and is thus the probable source for the discolored water.

According to the Japan Meteorological Agency, observations on 15 November 2006 by the Japan Maritime Self Defense Force and aerial observations on 21 November 2006 by the Japan Coast Guard revealed areas of discolored water on the sea surface above the volcano. Those cases seemed to be caused by volcanic activities.

Geologic Background. Fukutoku-Oka-no-ba is a submarine volcano located 5 km NE of the island of Minami-Ioto. Water discoloration is frequently observed, and several ephemeral islands have formed in the 20th century. The first of these formed Shin-Ioto ("New Sulfur Island") in 1904, and the most recent island was formed in 1986. The volcano is part of an elongated edifice with two major topographic highs trending NNW-SSE, and is a trachyandesitic volcano geochemically similar to Ioto.

Information Contacts: Olivier Hyvernaud, Laboratoire de Géophysique, BP 640 Pamatai, Tahiti, French Polynesia; Notice to Mariners, National Geospatial-Intelligence Agency, National Ocean Service, and U.S. Coast Guard, Office of Corporate Relations, Public Affairs Division, MS D-54, 4600 Sangamore Road, Bethesda, MD 20816-5003, USA (URL: http://www.nga.mil/portal/site/maritime/); Japan Meteorological Agency, 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/).


Karthala (Comoros) — January 2007 Citation iconCite this Report

Karthala

Comoros

11.75°S, 43.38°E; summit elev. 2361 m

All times are local (unless otherwise noted)


Elevated seismicity followed by January 2007 eruption

Karthala, in the Comoros Islands (figure 28), was a scene of elevated seismicity from October 2006 to January 2007. The last time an eruption of Karthala caused significant damage was in the 1970s when it destroyed a village S of the capital, Moroni. Presently, Karthala is monitored using seismic and ground deformation surveys. The seismic activity that began 28 May 2006 (BGVN 31:07) appeared to have been a singular event. Renewed seismicity on 29 October 2006 prompted authorities to warn island residents that one of the two volcanoes on the main island of Grand Comore (Karthala or La Grille) could erupt within the next few weeks.

Figure (see Caption) Figure 28. Map illustrating the regional setting of Karthala volcano in the Comoros Islands with comments relevant to the January 2007 crisis. Courtesy of ReliefWeb, a part of the United Nations Office for the Coordination of Humanitarian Affairs - Integrated Regional Information Networks (IRIN).

Following earthquakes (which measured M 4 and larger on the Richter scale) that occurred on 12 January 2007, authorities again alerted the local population about hazards due to Karthala and activated a National Emergency Preparedness Plan. According to news reports, Hamidi Soule Saadi, director of the Karthala Volcano Observatory (KVO), warned that magma and gas were trapped inside the mountain.

According to a 15 January news article obtained from the ReliefWeb News, scientists from the KVO reported that an eruption occurred during the evening of 12 January. The news article noted Moroni residents observing jets of red flames above the summit (on the night of 12-13 January). A low eruptive tremor was detected 13 January and was accompanied by a number of M 4 earthquakes. An ash plume was observed above the volcano. Aerial observers on 15 January saw a lava lake forming within the crater.

The KVO said there was no immediate risk of a lava flow, and that there were three scenarios to consider: (1) seismic activity could decrease, reflecting diminished volcanic activity; (2) cracks or fissures could occur on the flanks, resulting in lava flowing down the side of the mountain; or (3) seismicity could intensify and increase lava production, which could flow over the crater rim. On 18 January, the volcano shook twice more but the tremors seemed to be weakening.

No evacuations of the island's 300,000 people occurred during the elevated seismicity; however, frightened residents were sleeping outside on football fields and in their gardens, fearing collapse of their homes. UN Resident Coordinator in the Comoros, Giuseppina Mazza, later reported that "There are now fewer earthquakes and their intensity has reduced, the population is not panicking."

The IRIN news article noted that volcanic activity is common to Grande Comoro Island. Karthala erupted twice in 2005, affecting 40,000 people in April and 175,000 more in November. After an eruption on 28 May 2006 (BGVN 32:07), volcanic dust and debris covered large areas of the island. Volcanic ash contaminated water supplies, raising concerns about the health of people and livestock, along with its effects on agriculture.

According to the UN Office for the Coordination of Humanitarian Affairs (OCHA), since the 12 January volcanic activity, the authorities kept the hazard status at "red alert" and "have activated the national emergency response preparedness plan. They established a crisis management cell (CMC) which includes government departments, UN agencies, the Comoros Red Crescent Society, as well as local NGOs and diplomatic missions ... [and the] partners are reviewing preparedness arrangements."

Geologic Background. The southernmost and largest of the two shield volcanoes forming Grand Comore Island (also known as Ngazidja Island), Karthala contains a 3 x 4 km summit caldera generated by repeated collapse. Elongated rift zones extend to the NNW and SE from the summit of the Hawaiian-style basaltic shield, which has an asymmetrical profile that is steeper to the S. The lower SE rift zone forms the Massif du Badjini, a peninsula at the SE tip of the island. Historical eruptions have modified the morphology of the compound, irregular summit caldera. More than twenty eruptions have been recorded since the 19th century from the summit caldera and vents on the N and S flanks. Many lava flows have reached the sea on both sides of the island. An 1860 lava flow from the summit caldera traveled ~13 km to the NW, reaching the W coast to the N of the capital city of Moroni.

Information Contacts: Hamidi Soule Saadi, Karthala Volcano Observatory (KVO), Observatoire Volcanologique du Karthala, Centre National de Documentation et de la Recherche Scientifique des Comores, BP 169 Moroni, République Fédérale Islamique des Comores; Giuseppina Mazza, UN Resident Coordinator in Comoros, BP 648, Moroni, Comoros; Hamidou Nassor, Université de la Réunion, BP 7151, 15 Avenue, René Cassin, 97715 Saint-Denis, La Réunion, France; United Nations Office for the Coordination of Humanitarian Affairs?Integrated Regional Information Networks (IRIN), 3rd Floor, Sandton 2146, PO Box 1617, Parklands, 2121, Johannesburg, Republic of South Africa; Reuters.


Macdonald (France) — January 2007 Citation iconCite this Report

Macdonald

France

28.98°S, 140.25°W; summit elev. -39 m

All times are local (unless otherwise noted)


Swarm of T-wave events during October 2005

After more than 17-years in quiescence, Macdonald seamount entered into a short phase of hydroacoustic activity starting at 1400 UTC on 13 October 2005. The seamount is ~ 6,000 km S of Honolulu, Hawaii (figure 2). When hydroacoustic activity has been of sufficient amplitude and duration, it has often been inferred to suggest submarine eruptions. In this case the signals were relatively weak and of modest duration, indicating seismic swarms without a clear association with volcanism.

Figure (see Caption) Figure 2. Shaded view of seafloor topography for the Cook-Austral island chains (see upper inset for location). Map projection is made along direction of the present motion of Pacific plate (which moves from right to the left). White lines correspond to crustal magnetic anomalies, and their corresponding ages, in millions of years (Ma), are in white numerals. Black diamonds represent places where K-Ar or Ar/Ar ages are known. These ages, in Ma, are printed in black. From A. Bonneville (undated, post-2002 website, see References below).

Over five days the Polynesian Seismic Network (RSP for Réseau Sismique Polynésien) recorded 423 small- and medium-amplitude T-wave events from the seamount (figure 3). The best inland seismic station recording the event was at East Tuamotu, ~ 750 km from Macdonald. The ground response there was in the range of 50-300 nanometers.

Figure (see Caption) Figure 3. A plot of the cumulative number and amplitude of T-wave events from Macdonald seamount during 13-17 October 2005. The x-axis shows the date. The y-axis scale is on the right and indicates the cumulative number of events (for the curve labeled Nb), which ultimately totaled 423. The y-axis scale is on the left and gives the amplitudes of ground motion for each of the 423 events (diamonds, some of which may be superimposed). Courtesy of Dominique Reymond and Olivier Hyvernaud, Laboratoire de Géophysique, CEA/DASE/LDG, Tahiti.

According to Robert Dziak, hundreds of medium to large amplitude T-wave events were also recorded on the NOAA/PMEL hydrophone array in the eastern Equatorial Pacific located some 2,200 km away from Macdonald. There was an absence of Pn and Sn seismic phases (the P- and S-wave phases that propagate at the base of ocean crust along the Moho discontinuity) suggesting the swarm was composed of comparatively low-magnitude events. Accordingly, geophysicists from both the RSP and NOAA/PMEL all interpreted the activity as a modest seismic swarm.

Many of the October 2005 T-wave signals were well located, with an error ellipse of less than 1 km in diameter. The strongest signals were seen on Tahiti, Rangiroa, and parts of the East Tuamotu networks; and consequently, these yielded the smaller error ellipses. The weakest T waves were seen on parts of the East Tuamotu network, resulting in the large NE-trending error ellipses.

The signals stopped at 0700 UTC on 17 October 2005. Dominique Reymond and Olivier Hyvernaud of the RSP were not aware of any witnessed eruptive signs or any detected hydroacoustic activity at or near Macdonald following the 2005 episode through 2006.

Additional research. Our previous reports on Macdonald seamount discussed activity during the 1980s, most recently during January 1989 (SEAN 14:01). Since then, several papers have shed light on the region (including Stoffers and others, 1989; McNutt and others, 1997; Sleep, 1997). McNutt and others (1997) presented high-resolution swath bathymetry in the Southern Austral islands, and noted more than one lone seamount in the area of Macdonald.The seamounts at Macdonald were morphologically distinct from their neighbors to the W along the Austral island chain in both their tall form and their slopes, which curved concave-upward.

References. Bonneville, A., (undated-post 2002), The Cook-Austral volcanic chain, URL: http://www.mantleplumes.org/Cook-Austral.html.

McNutt, M.K., Caress, D.W. Reynolds, J., Jordahl1, K.A., and Duncan, R.A., 1997, Failure of plume theory to explain midplate volcanism in the southern Austral islands: Nature, v. 389, p. 479-482.

Sleep, N., 1997 (2 October), Earth Science: The puzzle of the South Pacific: Nature, v. 389, p. 439-440.

Stoffers, P., Botz1, R., Cheminée, J-L., Devey, C.W., Froger, V., Glasby, G.P., Hartmann, M., Hékinian, R., Kögler, F., Laschek, D., Larqué, P., Michaelis, W., M?he1, R.K., Puteanus, D., and Richnow, H.H., 1989, Geology of Macdonald Seamount region, Austral Islands: Recent hotspot volcanism in the south Pacific: Journal Marine Geophysical Researches, v. 11, no. 2/June, p. 101-112.

Geologic Background. Discovered by the detection of teleseismic waves in 1967, Macdonald seamount (also known as Tamarii seamount) rises from a depth of about 1,800 m to within 27 m of the ocean surface at the eastern end of the Austral Islands. The basaltic submarine volcano marks the site of a hotspot that was the source of the Austral-Cook island chain. The summit, named after volcanologist Gordon Macdonald, consists of a flat plateau about 100 x 150 m wide with an average depth of about 40 m. The summit plateau is capped with spatter cones that form steep-sided pinnacles. Most eruptions have been seismically detected, but in 1987 and 1989 pumice emission was observed from research vessels. Pumice rafts observed in the South Pacific in 1928 and 1936 may also have originated here.

Information Contacts: Dominique Reymond and Olivier Hyvernaud, Laboratoire de Géophysique, Commissariat a l'Energie Atomique, CEA/DASE/LDG, PO Box 640, Papeete, Tahiti, French Polynesia; Robert P. Dziak, Oregon State University, 2115 SE OSU Drive Newport OR 97365, USA.


Monowai (New Zealand) — January 2007 Citation iconCite this Report

Monowai

New Zealand

25.887°S, 177.188°W; summit elev. -132 m

All times are local (unless otherwise noted)


Elevated number of T-waves during 2005-6

According to Dominique Reymond and Olivier Hyvernaud (affiliates of Laboratoire de Geophysique, in Saint Martin d' Heres, France), activity at Monowai from 2005-2006 was remarkable because of the more than 1,650 events recorded as hydroacoustic waves (also called T-phase waves or T-waves) on the Polynesian Seismic Network (Réseau Sismique Polynésien, or RSP). Such waves are generated by submarine earthquakes and/or volcanic eruptions that can be monitored at great distances via seismic stations close to the shore and/or by hydrophones. The amplitudes of T-waves are related to the strength or intensity of submarine volcanism at the seamount.

The T-wave activity after 2002 appeared in two main stages (figure 17). The initial stage extended from early 2003 to August 2004, followed by a period of repose that lasted until March 2005. A second stage of T-wave activity then continued until July 2006, followed by another six months of quiet. Reymond and Hyvernaud noted that individual T-wave swarms typically had durations varying between 1 day and 3 weeks.

Figure (see Caption) Figure 17. Cumulative number of events recorded by the RSP for Monowai from 1 November 2002 to 31 December 2006. Courtesy of Dominique Reymond and Olivier Hyvernaud.

It appears that another cycle started 12 December 2006 (figure 17), continuing at least until the end of the month. The average number of events from the end of 2002 until the end of 2006 was about 950 per year. In the last two years (2005-2006), a slightly lower rate of 825 events per year was measured (figure 18).

Figure (see Caption) Figure 18. Cumulative number of T-waves at Monowai recorded by the RSP over the period 2005-2006, with dates indicating the start and end of each swarm. The duration of the swarms varied between 1 day and 3 weeks. Courtesy of Dominique Reymond and Olivier Hyvernaud.

The amplitudes of T-waves recorded during 2005-2006 at the TVO seismic station in Tahiti never reached 1/3 of the amplitude that was recorded on 24 May 2002. It was that day when amplitudes of 350 nm were reached (figure 19). The average values for T-wave amplitudes during the period shown in figure 19 are in the 5-50 nm range.

Figure (see Caption) Figure 19. Amplitude (in nanometers of ground motion) for Monowai T-waves recorded at the TVO station over the last 4 years (2002-2006). While the average values are in the range of 5- 50 nm, only one exceptional value of 350 nm was recorded on 24 May 2002 (BGVN 27:05). Courtesy of Dominique Reymond and Olivier Hyvernaud.

Geologic Background. Monowai, also known as Orion seamount, is a basaltic stratovolcano that rises from a depth of about 1,500 to within 100 m of the ocean surface about halfway between the Kermadec and Tonga island groups, at the southern end of the Tonga Ridge. Small cones occur on the N and W flanks, and an 8.5 x 11 km submarine caldera with a depth of more than 1,500 m lies to the NNE. Numerous eruptions have been identified using submarine acoustic signals since it was first recognized as a volcano in 1977. A shoal that had been reported in 1944 may have been a pumice raft or water disturbance due to degassing. Surface observations have included water discoloration, vigorous gas bubbling, and areas of upwelling water, sometimes accompanied by rumbling noises. It was named for one of the New Zealand Navy bathymetric survey ships that documented its morphology.

Information Contacts: Dominique Reymond and Olivier Hyvernaud, Laboratoire de Géophysique, Commissariat a l'Energie Atomique, CEA/DASE/LDG, PO Box 640, Papeete, Tahiti, French Polynesia.


Nyamulagira (DR Congo) — January 2007 Citation iconCite this Report

Nyamulagira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


October seismic swarm followed by the eruption of 27 November 2006

Jacques Durieux, the United Nations manager for Volcano Risk Reduction for the Goma Volcano Observatory (GVO), reported that at about 2000 on 26 October 2006 the observatory began to record sustained seismic activity. The activity took place in the Virunga area, located in the central part of Western arm of the East African rift valley. The swarm of long-period earthquakes was located around Nyamuragira and persisted for a month, through 1700 on 27 November 2006. The volcano was the scene of several seismic swarms in middle and late 2005 (BGVN 31:01).

GVO observed the beginning of a new eruption at 2000 on 27 November 2006 (figure 26). Seen from ~ 30 km S of the volcano in Goma, the eruption site appeared to be located on the S flank; intense red glow suggested typical lava fountains and lava flows.

Figure (see Caption) Figure 26. Aerial photograph of Nyamuragira in vigorous eruption with fire fountains venting along a broad linear zone, as seen from above the city of Goma. The photo was taken 27 November 2006 at 2300, one hour after the beginning of the eruption. Copyrighted photo provided by J. Durieux.

The local security situation prevented closer field observations. GVO was attempting to organize helicopter overflights to collect more information for updates. One concern was that foraging animals could fall ill after eating ash-coated vegetation. In assessing the situation, authorities considered Goma to be safe from any potential lava flows as Mount Nyiragongo would serve as a buffer.

Based on satellite imagery, the Toulouse VAAC reported that during 29 November-2 December 2006 emissions produced ash plumes to altitudes of 3-6.1 km. Those plumes drifted W and NW. By mid-morning on 2 December, ash plumes were no longer reported.

Besides ash and possible lava, the volcano also released extensive sulfur dioxide (SO2), a feature of this volcano that has been mentioned repeatedly in the literature (see some references below). The Ozone Monitoring Instrument (OMI) on NASA's Aura satellite tracked the emission of this gas from the volcano from 28 November to 4 December 2006 (figure 27). The SO2 gas was most concentrated around the eruption site and thinned as it moved away. The plume first traveled W, then curved along an arc progressing in a clockwise direction toward the NE and then E. It remained clearly detectable over NW India, a distance of ~ 9,000 km.

Figure (see Caption) Figure 27. OMI measurements for 28 November-4 December 2006 looking at SO2 emitted by Nyamuragira. OMI (which is basically a spectrometer) measured the atmospheric column daily, assessing the region between the satellite and the surface of the Earth, and this graphic depicts the average values of SO2 thickness-concentration product during the multi-day interval. The thickness-concentration products are shown on a logarithmic color scale which utilizes Dobson Units (DU) [(1 milli-atm-cm = 1 DU = 10 ppm at STP (0°C, 1,013.25 hPa). If all SO2 in the air column were flattened into a thin layer at the Earth's surface at a temperature of 0°C, one Dobson Unit would make a layer of SO2 0.01 millimeters thick.] On the colored version of this figure, the greatest concentrations appear in red and the smallest concentrations appear in pale pinkish-lavender. Courtesy of NASA Earth Observatory and Simon Carn.

The latest eruption of Nyamuragira was its 15th since 1980. Table 2 shows OMI's estimated SO2 loadings during 28 November to 4 December 2006 as computed by Simon Carn. Carn also presented daily OMI images (like figure 27) during the same date range as table 2.

Table 2. Daily SO2 flux at Nyamuragira, measured by OMI during 28 November to 4 December 2006. Courtesy of Simon Carn.

Date Sulfur dioxide, Tg (tetragram = 1012 g)
28 Nov 2006 0.21
29 Nov 2006 0.46
30 Nov 2006 0.68
01 Dec 2006 0.77
02 Dec 2006 0.78
03 Dec 2006 0.71
04 Dec 2006 0.59
Total 4.20

References. Carn, S.A., Bluth, G.J.S., and Head, E., (in progress), Virunga Volcanic SO2 Emissions Research (ViSOR) project (discussed at URL: http://userpages.umbc.edu/~scarn/virunga/).

Carn, S.A., 2004, Eruptive and passive degassing of sulfur dioxide at Nyiragongo volcano (D.R. Congo): the 17 January 2002 eruption and its aftermath: Acta Vulcanologica, v. 14-15, p. 75-86.

Carn, S.A., and Bluth, G.J.S., 2003, Prodigious sulfur dioxide emissions from Nyamuragira volcano, D.R. Congo: Geophys. Res. Lett., v. 30, no. 23, p. 2211, doi:10.1029/2003GL018465.

Bluth, G.J.S, and Carn, S.A., (in progress), Exceptional sulphur degassing from Nyamuragira volcano, 1979-2005: Int. J. Remote Sensing.

Tedesco, D., Vaselli, O., Papale, P., Carn, S.A., Voltaggio, M., Sawyer, G.M., Durieux, J., Kasereka, M., and Tassi, F., (in progress), The January 2002 Eruption of Nyiragongo volcano, Democratic Republic of Congo: J. Geophys. Res.

Geologic Background. Africa's most active volcano, Nyamulagira (also known as Nyamuragira), is a massive high-potassium basaltic shield about 25 km N of Lake Kivu and 13 km NNW of the steep-sided Nyiragongo volcano. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Documented eruptions have occurred within the summit caldera, as well as from the numerous flank fissures and cinder cones. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Recent lava flows extend down the flanks more than 30 km from the summit as far as Lake Kivu; extensive lava flows from this volcano have covered 1,500 km2 of the western branch of the East African Rift.

Information Contacts: Jacques Durieux, Observatoire Volcanologique de Goma, Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; NASA, Earth Observatory Natural Hazards website (URL: http://earthobservatory.nasa.gov/NaturalHazards); Simon Carn, Joint Center for Earth Systems Technology (JCET), University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, USA (URL: https://jcet.umbc.edu/); Toulouse Volcanic Ash Advisory Center (VAAC), Météo-France, 42 Avenue Gaspard Coriolis, F-31057 Toulouse cedex, France (URL: http://www.meteo.fr/vaac/).


Obituary Notices (Unknown) — January 2007 Citation iconCite this Report

Obituary Notices

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


Death of Jim Luhr, Director of the Global Volcanism Program

Jim Luhr, director of our volcano program since 1995, passed away unexpectedly in his sleep on 1 January 2007. He was 53 years of age, and died of complications from influenza. He leaves behind his wife Karen Prestegaard, a professor at the University of Maryland, and their two school-aged daughters.

One of Jim's legacies is the greatly expanded public access to Smithsonian volcano data resulting from his promotion of the growth of our widely used website. In the mid-1990s, he helped create a new exhibit hall exposing millions of visitors each year to displays with significant emphasis on geophysics, plate tectonics, and volcanology (giving visitors electronic access to geologic and geophysical information).

Jim acted as chief editor of the graphically stunning book Earth. He also co-edited the book "Paricutín: The Volcano Born in a Mexican Cornfield," an outgrowth of his many detailed field and laboratory studies of Mexican volcanoes. Jim was well known for his work on the petrology of young volcanic rocks and the atmospheric impact of eruptions.

[Notice from BGVN 31:11] With deep regret we announce that Jim Luhr passed away unexpectedly and peacefully in his sleep on 1 January 2007 at the age of 53. He directed the Smithsonian's Global Volcanism Program during 1995 through 2006, and in that role helped elevate both this Bulletin and its younger sister publication, the Smithsonian / USGS Weekly Volcanic Activity Report. Jim was well-known for well-crafted, multifaceted analytical studies of his beloved Mexican volcanoes.

Geologic Background. Obituary notices for volcanologists are sometimes written when scientists are killed during an eruption or have had a special relationship with the Global Volcanism Program.

Information Contacts:


Pagan (United States) — January 2007 Citation iconCite this Report

Pagan

United States

18.13°N, 145.8°E; summit elev. 570 m

All times are local (unless otherwise noted)


December 2006 eruption's long plumes and ashfall

At 1800 on 4 December 2006 scientists from the Hawaiian Volcano Observatory (HVO) and Emergency management Office (EMO) were advised by Pagan residents of ashfall at their camp. They continued to report light ashfall (through an unreported date), with up to a centimeter per day accumulating 3 km SW of the summit and a plume rising about 60 m above the vent. There were no felt earthquakes or noise from the volcano, but occasional sulfur smells wafted through the camp.

Visible satellite imagery interpreted by the Washington VAAC showed a small gas plume, possibly with minor ash, at 0733 on 5 December. Cloud cover made satellite observations difficult, but during 5-6 December plumes could be distinguished extending as far as 185 km W. A Terra MODIS image on 6 December (figure 6) showed the plume near the island to be light brown in color, indicating ash content. A serpentine-shaped plume at 0833 on 7 December extended 140 km WSW from the island. Later that day, at 1300, a faint narrow plume could still be seen to a distance of about 300 km W. The last visible imagery that showed an ash plume was at 1633 on 8 December; the plume was very narrow and at low altitudes.

Figure (see Caption) Figure 6. Terra MODIS image showing a light brown ash plume blowing W from Pagan, 6 December 2006. Courtesy of NASA Earth Observatory and the MODIS Rapid Response Team at Goddard Space Flight Center.

Although significant eruptive activity seemed to have ended on 8 December, observations from the International Space Station revealed a plume on 11 January 2007 (figure 7). The very diffuse plume was most likely steam. There were no reports of ash plumes from the island or warnings to aviators based on satellite data after 8 December 2006.

Figure (see Caption) Figure 7. Photograph showing a thin plume extending SW from Pagan on 11 January 2007. [Astronaut photograph ISS014-E-11872 was acquired with a Kodak 760C digital camera using a 180 mm lens.] Courtesy of NASA Earth Observatory, the ISS Crew Earth Observations experiment, and the Image Science & Analysis Laboratory, Johnson Space Center.

Eruption during 1993-94. The eruption that began around mid-January 1993 (BGVN 18:03) continued through at least 30 April 1994 (figure 8). Fieldwork by USGS and EMO scientists during April and May 1994 was not previously reported in the Bulletin. Trusdell and others (2006) noted that following the eruption in 1981 (SEAN 06:04), "Intermittent light ejection of chiefly phreatic ash continued until 1996, with maximum post-1981 accumulation estimated at as much as 1-2 m on the source cone."

Figure (see Caption) Figure 8. Ash plume erupting from Pagan, 30 April 1994. View is to the S. Courtesy of Frank Trusdell, USGS.

References. Sako, M.K., Trusdell, F.A., Koyanagi, R.Y., Kojima, G., and Moore, R.B., 1995, Volcanic investigations in the Commonwealth of the Northern Mariana islands, April to May 1994: U. S. Geological Survey Open-File Report 94-705, 57 p.

Trusdell, F.A., Moore, R.B., and Sako, M.K., 2006, Preliminary geologic map of Mount Pagan volcano, Pagan Island, Commonwealth of the Northern Mariana Islands: U. S. Geological Survey Open-File Report 2006-1386, 32 p.

Geologic Background. Pagan Island, the largest and one of the most active of the Mariana Islands volcanoes, consists of two stratovolcanoes connected by a narrow isthmus. Both North and South Pagan stratovolcanoes were constructed within calderas, 7 and 4 km in diameter, respectively. North Pagan at the NE end of the island rises above the flat floor of the northern caldera, which may have formed less than 1,000 years ago. South Pagan is a stratovolcano with an elongated summit containing four distinct craters. Almost all of the recorded eruptions, which date back to the 17th century, have originated from North Pagan. The largest eruption during historical time took place in 1981 and prompted the evacuation of the sparsely populated island.

Information Contacts: Emergency Management Office of the Commonwealth of the Northern Mariana Islands (EMO-CNMI), PO Box 100007, Saipan, MP 96950, USA (URL: http://www.cnmihsem.gov.mp/); U.S. Geological Survey, Hawaiian Volcano Observatory (HVO), PO Box 51, Hawaii National Park, HI 96718, USA (URL: https://volcanoes.usgs.gov/nmi/activity/); NASA Earth Observatory (URL: http://earthobservatory.nasa.gov/).


Soputan (Indonesia) — January 2007 Citation iconCite this Report

Soputan

Indonesia

1.112°N, 124.737°E; summit elev. 1785 m

All times are local (unless otherwise noted)


December 2006 lava dome still venting ash

Growth of the lava dome at Soputan began in 1991 (BGVN 16:06), eventually overtopping the crater rim and generating rockfalls to distances of 2-4 km downslope. Phreatic eruptions since that time have been triggered during the rainy season, and ash explosions have been frequent since 2000. An eruption and dome collapse in July 2005 sent a pyroclastic flow to a distance of 3 km from the summit. The nearest residents are at a distance of 8 km, so none of these events created hazards to the local population. Following pyroclastic avalanches and Strombolian activity in late December 2005 (BGVN 31:04), the Centre of Volcanology and Geological Hazard Mitigation (CVGHM) did not report further activity at Soputan until December 2006.

Lava dome volume in early December 2006 was reported to be 34 million cubic meters. Rockfall signals from the lava dome typically occur at a rate of about 75 per day, but the number of these events increased to 153 on 11 December, and remained high over the next two days: 120 on 12 December and 126 on the 13th. Volcanic tremor amplitude also increased on 11 December. Although thick fog hampered observations, "white smoke" was seen rising 25-30 m above the summit. At 1400 on 14 December a "thunderous" eruption was heard at the CVGHM observation post 8 km from the summit. Gray ash plumes rising 250 m above the summit caused ashfall within a 15-km radius. On 15 December the Alert Level was raised from 2 to 3 (on a scale of 1-4) due to this increase in activity.

A precautionary aviation advisory was issued by the Darwin VAAC on 18 December based on information from the CVGHM. A few hours later a plume was detected on an MTSAT image taken at 1933. The high-level eruption may have reached an altitude of 12 km altitude with the plume extending 37 km to the W.

Geologic Background. The Soputan stratovolcano on the southern rim of the Quaternary Tondano caldera on the northern arm of Sulawesi Island is one of Sulawesi's most active volcanoes. The youthful, largely unvegetated volcano is the only active cone in the Sempu-Soputan volcanic complex, which includes the Soputan caldera, Rindengan, and Manimporok (3.5 km ESE). Kawah Masem maar was formed in the W part of the caldera and contains a crater lake; sulfur has been extracted from fumarolic areas in the maar since 1938. Recent eruptions have originated at both the summit crater and Aeseput, a prominent NE-flank vent that formed in 1906 and was the source of intermittent major lava flows until 1924.

Information Contacts: Center of Volcanology and Geological Hazard Mitigation (CVGHM), Diponegoro 57, Bandung, Jawa Barat 40122, Indonesia (URL: http://vsi.esdm.go.id/); Jenny Farlow, Darwin Volcanic Ash Advisory Centre, Bureau of Meteorology, Australia (URL: http://www.bom.gov.au/info/vaac/).


Taal (Philippines) — January 2007 Citation iconCite this Report

Taal

Philippines

14.0106°N, 120.9975°E; summit elev. 311 m

All times are local (unless otherwise noted)


Elevated seismicity, deformation, and hydrothermal activity during 2006

On 26 September 2006, the Philippine Institute of Volcanology and Seismology (PHILVOLCS) announced ongoing seismic unrest at Taal (a low lying caldera ~ 45 km S of Manila). The Main Crater Seismic Station recorded 29 volcanic earthquakes during the 24 hours after 0600 on 25 September 2006. Five (5) of these occurred at 0233, 0234, 0242, 0247, and 0249 and were felt at Intensities II to III by residents on Volcano Island (figure 7 and 8). These earthquakes were accompanied by rumbling sounds. Initial computations showed epicenters generally dispersed toward northerly locations in the vicinity of Daang Kastila (NE), Tibag (N), Tablas (NE), Mataas na Gulod (NE), and Panikihan (NW).

Figure (see Caption) Figure 7. A map of Taal volcano indicating the location of components of the monitoring network (seismic stations, telemetry repeater stations, reflector, and various kinds of survey and measuring points). Volcano island (the large island in the N-central part of the caldera lake) is the site of all historical eruptions. Contour interval is 100 m. Courtesy of PHIVOLCS.
Figure (see Caption) Figure 8. Photograph taken from the top of the N topographic margin of Taal, looking S across Lake Taal and Volcano Island, 28 May 2001. The topographic high on the far side of the lake is Mt. Macolod. Copyrighted photograph by Franck Landais (provided by Panoramio.com).

This seismic activity was notably higher than usual, which during quiet periods is generally only five or less events detected in 24 hours. Surface thermal observations, however, did not indicate significant change in the thermal and steam emission manifestations in the Main Crater Lake area. The increase in seismicity reflected a low-level episode of unrest. However, there is still no indication of an impending eruption.

Taal manifested a sustained moderate level of seismic activity since 18 November 2006, characterized by occasional large amplitude volcanic earthquakes. During one 24-hour period, 10 volcanic earthquakes were detected. Ground deformation surveys conducted during 28 November-6 December 2006 revealed the edifice inflated 14.0 mm, suggesting possible magma intrusion. The Main Crater lake water became more acidic since 12 September 2006, and the newly formed mud geyser, which is now merged with the Crater Lake due to increase in water level, continues to be very active. The increasing acidity and hydrothermal activity are probably caused by the injection of hot gases and fluids coming from below the crater floor.

According to PHIVOLCS in its Taal Volcano Advisory of 14 December 2006, the above observations indicated a significant increase in activity although no eruption is imminent. Alert Level 1 continued, making the Main Crater off-limits to the public because of the chance of sudden steam explosions and high toxic gas concentrations.

Geologic Background. Taal is one of the most active volcanoes in the Philippines and has produced some powerful eruptions. The 15 x 20 km Talisay (Taal) caldera is largely filled by Lake Taal, whose 267 km2 surface lies only 3 m above sea level. The maximum depth of the lake is 160 m, with several submerged eruptive centers. The 5-km-wide Volcano Island in north-central Lake Taal is the location of all observed eruptions. The island is composed of coalescing small stratovolcanoes, tuff rings, and scoria cones. Powerful pyroclastic flows and surges have caused many fatalities.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), University of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph); Panoramio.com, Calle Rosa Zaragoza 8, 03360 Callosa de Segura (Alicante), Spain (URL: http://www.panoramio.com/photo/40914).


Talang (Indonesia) — January 2007 Citation iconCite this Report

Talang

Indonesia

0.979°S, 100.681°E; summit elev. 2575 m

All times are local (unless otherwise noted)


Short eruptive episode in April 2005; elevated activity in late 2006

Indonesian volcanologists with the Center of Volcanology and Geological Hazard Mitigation (CVGHM) (previously known by other names, including the Volcanological Survey of Indonesia) maintain an observation post and seismic network at Talang. After intermittent activity during September 2001 (BGVN 26:10) until June 2002 (BGVN 27:06), there was no additional reported activity until 2005 and 2006.

Activity during April 2005. On 12 April 2005 an eruption at Talang during 0340-0600 produced an ash plume that rose to ~ 1 km above the crater. About 4 mm of ash fell in the village of Bukit Sileh, NE of the crater. On the afternoon of 10 April observers had noted a "grey ash cloud" rising ~ 100 m, followed the next day by a diffuse white cloud around the summit. Volcanologist Dalipa, who heads the Batu Bajanjang observation post, told The Jakarta Post that there had been five large eruptions and hundreds of small eruptions before 1200 on 12 April that caused ashfall as far as 10 km away. He added that between the evening of 12 April and 0600 the next morning there were only six small eruptions.

An infrared image (GOES-9) taken at 0425 on 12 April 2005, analyzed by the Darwin VAAC, showed the eruption plume. There was a weak ash signature in the small cloud for a couple of hours before it became difficult to track. Plume height was estimated to be 7.5 km because the upper part of the cloud went NW, and winds below that were more or less westerly. The height of the cloud would have been difficult to see from the ground during the peak activity before dawn.

Simon Carn reported that the Ozone Monitoring Instrument (OMI) on EOS/Aura detected an SO2 plume from Talang on 12 April at 1402, and possible much weaker emissions on 13 April. The plume on 12 April extended roughly ESE towards central Sumatra, so was presumably at a lower elevation than the upper part of the ash cloud imaged earlier by the Darwin VAAC. The preliminary estimated SO2 mass was around 1,000 metric tons. Weak emissions were reported several days prior to the 12 April event, but OMI data only showed SO2 emissions from nearby Kerinci volcano.

A local government official told news media on 14 April that 25,150 residents from five villages in Lembang Jaya and Gunung Talang districts, located within a 5-km radius from the danger zone, had been evacuated. Winds were reportedly carrying ash downslope along with volcanic gases.

On 13 April volcanic and seismic activity decreased in comparison to the previous day. A "white-gray ash plume" rose 250 m from three points inside Kawah Mati crater, and white gas was emitted from Gabuo Atas crater. There was a decrease in the number of deep volcanic, shallow volcanic, and explosion earthquakes. By 0600 on 14 April the only reported activity was a diffuse "white ash" plume rising 250-300 m above the crater. However, news media quoting a government geologist reported that Talang "sent out fresh clouds of dust and continued to rumble" on 15 April.

By 17 April, activity had decreased and volcanologists lowered the hazard status to 3 (on a scale of 1-4). People were permitted to return their homes near the volcano, but no one could enter within 1 km of the summit. Due to a continued decrease in seismicity during 24-28 April (less than 10 volcanic events per day), the Alert Level was dropped to 2 on 28 April. Due to the hazards of minor phreatic eruptions, unstable land, and toxic gases, the area within a 1-km radius of the crater remained closed.

Activity during July 2005. Small phreatic eruptions occurred on 2 and 3 July 2005. The eruptions occurred at the main crater and a crater on the S slope. Ash columns reached 300-500 m above the volcano and caused 0.5-1 mm of ashfall around Kampung Batu, 2 km S of the summit. On the N slope, the Gabuo Atas, Gabuo Bawah, and Kapundan Panjang craters emitted "white-brown steam" to low altitudes. The temperature of Batu Bajanjang hotspring, located below the summit, was 41.9-61.3°C. The hazard status remained unchanged at Alert level 2 (on a scale of 1-4).

Increased seismicity on 18 July prompted an change in the Alert Level to 3. During 15-18 July, the seismic network recorded 93 deep volcanic earthquakes, one low-frequency tremor, and three "felt shocks" around the N slope of the crater. Minor phreatic activity occurred at the S and N slope craters, with dark gray ash plumes rising 0.5-1.5 km above the crater on 18 July.

Activity during September 2006. Increasing seismicity and gas emissions led to the hazard status being raised to Alert Level 3 on 9 September 2006. The next day "brownish smoke" was being emitted to heights of 250 m. The daily number of volcanic earthquakes and tremor fluctuated over the next few months, reaching a high of 33 events on 23 November. After that date seismicity showed a decreasing trend through late January 2007. Weak gas emissions continued during this period from both South Crater and Main Crater. Due to the lowered levels of activity, the hazards status was once again dropped to Alert Level 2 on 27 January.

Geologic Background. Talang, which forms a twin volcano with the extinct Pasar Arbaa volcano, lies ESE of the major city of Padang and rises NW of Dibawah Lake. Talang has two crater lakes on its flanks; the largest of these is 1 x 2 km wide Danau Talang. The summit exhibits fumarolic activity, but which lacks a crater. Historical eruptions have mostly involved small-to-moderate explosive activity first documented in the 19th century that originated from a series of small craters in a valley on the upper NE flank.

Information Contacts: Center of Volcanology and Geological Hazard Mitigation, Diponegoro 57, Bandung, Jawa Barat 40122, Indonesia (URL: http://vsi.esdm.go.id/); Andrew Tupper, Darwin Volcanic Ash Advisory Centre, Bureau of Meteorology, Australia (URL: http://www.bom.gov.au/info/vaac/); Simon Carn, Joint Center for Earth Systems Technology (JCET), University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA; Agence France-Presse (AFP) (URL: http://www.afp.com/english/home/); Indahnesia.com (URL: http://news.indahnesia.com/); The Jakarta Post, Indonesia (URL: http://www.thejakartapost.com/); Associated Press (URL: http://www.ap.org/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports