Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Tinakula (Solomon Islands) Thermal anomalies in satellite data December 2018-June 2019; ship visit January 2019

Piton de la Fournaise (France) Eruptive episodes in February-March and June 2019; multiple fissures and lava flows

Semeru (Indonesia) Decreased activity after October 2018

Heard (Australia) Thermal hotspots continue during October 2018-March 2019 at the summit and on the upper flanks

Dukono (Indonesia) Numerous ash explosions from October 2018 through March 2019

Rincon de la Vieja (Costa Rica) Occasional weak phreatic explosions continue through February 2019

Turrialba (Costa Rica) Frequent passive ash emissions continue through February 2019

San Cristobal (Nicaragua) Weak ash explosions in January and March 2019

Semisopochnoi (United States) Minor ash explosions during September and October 2018

Asosan (Japan) Multiple brief ash emission events during April and May 2019; minor ashfall in adjacent villages

Nyamuragira (DR Congo) Lava lake reappears in central crater in April 2018; activity tapers off during April 2019

Tengger Caldera (Indonesia) New explosions with ash plumes from Bromo Cone mid-February-April 2019



Tinakula (Solomon Islands) — July 2019 Citation iconCite this Report

Tinakula

Solomon Islands

10.386°S, 165.804°E; summit elev. 796 m

All times are local (unless otherwise noted)


Thermal anomalies in satellite data December 2018-June 2019; ship visit January 2019

Remote Tinakula lies 100 km NE of the Solomon Trench at the N end of the Santa Cruz Islands, which are part of the country of the Solomon Islands located 400 km to the W. It has been uninhabited since an eruption with lava flows and ash explosions in 1971 when the small population was evacuated (CSLP 87-71). The nearest communities live on Te Motu (Trevanion) Island (about 30 km S), Nupani (40 km N), and the Reef Islands (60 km E); residents occasionally report noises from explosions at Tinakula. Ashfall from larger explosions has historically reached these islands. The most recent eruptive episode was a large ash explosion and substantial SO2 plume during 21-26 October 2017; satellite imagery suggested that a flow of some type traveled down the scarp on the W flank. Renewed thermal activity that was recognized in satellite imagery beginning in December 2018 continued intermittently through June 2019 and is covered in this report. Satellite imagery and thermal data are the primary sources of information for this volcano. It is occasionally visited by members of the National Disaster Management Office (NDMO) of the Solomon Islands Government, tourists, and research vessels who are able to capture ground-based information.

Satellite images from December 2018 to February 2019 show thermal anomalies at the summit vent. Excellent ship-based photographs of the island on 24-25 January 2019 provided by a crewmember from the R/V Petrel identify numerous volcanic features and show a steam-and-gas plume at the vent. Satellite images from April and May 2019 show thermal anomalies at both the summit vent and along the W flank scarp suggesting flow activity during that time.

A stream of incandescence on the NW flank of Tinakula in a Sentinel 2 satellite image on 24 October 2017 confirmed that some type of high-temperature flow accompanied the explosions and eruptive activity of 21-25 October 2017 (BGVN 43:02). Satellite imagery during most of 2018 recorded steam plumes drifting in several directions from the summit, but no thermal activity (figure 24). There was no further evidence of activity in satellite visible or thermal data until almost exactly one year later when the MIROVA project recorded two thermal alerts in the third week of October 2018 (figure 25). Satellite images from that week were cloudy and did not confirm any surface activity.

Figure (see Caption) Figure 24. Sentinel-2 satellite imagery of Tinakula provides valuable information about activity at this remote volcano in the South Pacific. A large explosion with ash plumes and flows occurred during 21-26 October 2017. Top left: a strong E-W linear thermal anomaly suggesting a flow event from the summit was evident on the NW flank on 24 October 2017. Top right: a small steam plume rose from the summit vent on a cloudless 11 February 2018. Bottom left: a dense steam plume drifted SE from the summit vent on 4 September 2018. Bottom right: clouds and dense steam obscure the summit on 24 October 2018, about the same time that MIROVA reported a thermal anomaly. Top left image uses bands 12, 11, 8A, others use 12, 4, 2. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 25. The MIROVA project recorded the first thermal anomaly in a year from Tinakula during the third week of October 2018. Courtesy of MIROVA.

The first satellite imagery confirming renewed thermal activity appeared on 8 December 2018, around the same time as a small MIROVA anomaly. After that, several images during January and February 2019 confirmed moderately strong thermal activity at the summit (figure 26). Whether the anomalies were the result of active lava effusion or strong incandescent gases from the summit vent is uncertain.

Figure (see Caption) Figure 26. Thermal anomalies at the summit vent of Tinakula were recorded six times between early December 2018 and early February 2019 with Sentinel-2 satellite images. Top row: 8 December 2018 and 2 January 2019. Middle row: 12 (anomaly is just below date) and 27 January 2019. Bottom row: 1 and 6 February 2019. All images are bands 12, 4, 2. Courtesy of Sentinel Hub Playground.

Visual confirmation of activity at Tinakula is rare, but the research vessel R/V Petrel sailed past the volcano on 24 and 25 January 2019 and a crewmember provided detailed images of the W flank and vent area. The summit vent is located at the top of a W facing scarp, and steam is frequently observed rising from the vent (figures 27). Recent flows and volcaniclastic deposits were visible in the ravine on the W flank (figures 28 and 29). Fresh-looking lava was also visible near the summit vent on top of older deposits (figure 30). Eroded volcaniclastic deposits near the base of the scarp on the W flank were visible on top of older veined and layered volcanic rocks (figure 31). Crewmembers on the vessel R/V Petrel could clearly see an incandescent glow from the summit crater at night (figure 32).

Figure (see Caption) Figure 27. A view from the SW of the W flank of Tinakula on 24-25 January 2019. The summit vent is at the top of a W facing scarp, the steam plume drifted E. Used with permission from Paul G Allen's Vulcan Inc.
Figure (see Caption) Figure 28. The W flank of Tinakula as seen from the W on 24-25 January 2019. The steam plume drifted E. Recent flows and volcaniclastic deposits appeared dark in the steep ravine on the W face (left side). Used with permission from Paul G Allen's Vulcan Inc.
Figure (see Caption) Figure 29. Steam and gas rose from the summit vent at Tinakula on 24-25 January 2019. Recent lava deposits are visible in front of the plume and in the ravine on the left (the W flank). Used with permission from Paul G Allen's Vulcan Inc.
Figure (see Caption) Figure 30. The edge of the summit vent of Tinakula on 24-25 January 2019 had recent lava on older deposits; steam and gas is rising from the vent in the background. Used with permission from Paul G Allen's Vulcan Inc.
Figure (see Caption) Figure 31. The W flank of Tinakula on 24-25 January 2019. Eroded volcaniclastic deposits overlie older veined and layered volcanic rocks. Used with permission from Paul G Allen's Vulcan Inc.
Figure (see Caption) Figure 32. Incandescence was clearly visible from the summit vent at Tinakula on 24-25 January 2019. Used with permission from Paul G Allen's Vulcan Inc.

During April and May 2019, both the MIROVA project and MODVOLC measured a number of thermal anomalies (figure 33) using MODIS satellite data. MODVOLC alerts were issued on 4 and 20 April, and 11, 18, and 27 May. Sentinel-2 satellite images during the period confirmed that a flow on the W flank was a likely source of the thermal energy in addition to the summit vent (figure 34). Thermal anomalies appeared again at the end of June in MIROVA data, but no satellite images showed anomalies at that time.

Figure (see Caption) Figure 33. The number and intensity of MIROVA thermal anomalies increased at Tinakula during April and May 2019. After a short pause, they returned at the end of June. Courtesy of MIROVA.
Figure (see Caption) Figure 34. Sentinel-2 satellite images captured thermal anomalies at the summit and on the W flank of Tinakula during April and May 2019 suggesting the presence of an incandescent flow down the W scarp. Top row: 7 and 22 April 2019 (bands 12, 8, 4). Bottom row: 27 April and 12 May 2019 (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Geologic Background. The small 3.5-km-wide island of Tinakula is the exposed summit of a massive stratovolcano at the NW end of the Santa Cruz islands. Similar to Stromboli, it has a breached summit crater that extends from the summit to below sea level. Landslides enlarged this scarp in 1965, creating an embayment on the NW coast. The satellitic cone of Mendana is located on the SE side. The dominantly andesitic volcano has frequently been observed in eruption since the era of Spanish exploration began in 1595. In about 1840, an explosive eruption apparently produced pyroclastic flows that swept all sides of the island, killing its inhabitants. Frequent historical eruptions have originated from a cone constructed within the large breached crater. These have left the upper flanks and the steep apron of lava flows and volcaniclastic debris within the breach unvegetated.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Vulcan Inc. (URL: https://www.vulcan.com/), additional details about the R/V Petrel (URL: https://www.paulallen.com/).


Piton de la Fournaise (France) — July 2019 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


Eruptive episodes in February-March and June 2019; multiple fissures and lava flows

Short pulses of intermittent eruptive activity have characterized Piton de la Fournaise, the large basaltic shield volcano on La Réunion Island in the western Indian Ocean, for several thousand years. For the last 20 years, frequent effusive basaltic eruptions have occurred on average twice per year. The activity is characterized by lava fountains and lava flows, and occasional explosive eruptions that shower blocks over the summit area and produce ash plumes. Almost all of the recent activity has occurred within the Enclos Fouqué caldera, although past eruptions in 1977, 1986, and 1998 have occurred at vents outside of the caldera. Four separate eruptive episodes were reported during 2018; from 3-4 April, 27 April-1 June, 13 July, and 15 September-1 November (BGVN 43:12, 43:09). Two episodes from 2019 during February-March and June are covered in this report, with information provided primarily by the Observatoire Volcanologique du Piton de la Fournaise (OVPF) as well as satellite instruments.

Piton de la Fournaise experienced two eruptions during November 2018-June 2019. The first lasted from 18 February to 10 March 2019, and the second episode was 11-13 June. The episode in February-March started consisted of multiple fissures opening on the E flank of the Dolomieu crater on 18 February with lava flows that traveled several hundred meters. After a brief pause, one new fissure opened nearby on 19 February and produced up to 3 million m3 of lava in a little over four days. Although the flow rate then declined, the eruption continued until 10 March. During the last three days, 7-10 March, two new fissures opened nearby and produced large volumes of lava, bringing the total eruptive volume to about 14.5 million m3. After little activity during April and May, a small eruption occurred on the SSE outer slope of Dolomieu crater that lasted for about 48 hours on 11-13 June; multiple small flows traveled about 1,000 m down the steep flank before ceasing. The MIROVA thermal anomaly graph of log radiative power clearly showed the abruptness of the beginning and ends of the last three eruptive episodes at Piton de la Fournaise from August 2018 through June 2019 (figure 165).

Figure (see Caption) Figure 165. The MIROVA graph of thermal energy from Piton de la Fournaise from 30 July 2018 through June 2019 shows the last three eruptive episodes at the volcano. From 15 September through 1 November 2018 fissures and flows were active on the SW flank of Dolomieu crater near Rivals crater (BGVN 43:12). Fissures opened on the E flank of the crater on 18 February 2019, and after a brief pause resumed on 19 February at the foot of Piton Madoré. Lava flows remained active until 10 March 2019. A short episode of lava effusion occurred on 11-12 June 2019 on the SSE outer slope of Dolomieu crater. Courtesy of MIROVA.

Activity during November 2018-March 2019. Following the end of the 15 September-1 November 2018 eruption, seismic activity immediately below the summit remained low (with only 20 shallow and two deep earthquakes during November). The inflationary signal recorded since the beginning of September stopped, and the OVPF deformation networks did not record any significant deformation. There were 35 shallow earthquakes (0-2 km depth) below the summit crater during December, and one deep earthquake. Only 12 shallow earthquakes and one deep earthquake (greater than 2 km below the surface) were reported in January.

OVPF reported an increase in CO2 concentrations beginning in December 2018, and noted the beginning of inflation on 13 February 2019. A seismic swarm of 379 earthquakes accompanied by minor but rapid deformation (less than 1 cm) was reported on 16 February 2019. A new seismic swarm of 208 earthquakes began early on 18 February with a much larger ground deformation (10 cm of elongation of the summit zone). A volcanic tremor indicative of the arrival of magma near the surface began at 0948 that morning. Webcams indicated that eruptive fissures had opened in the NE part of the Enclos Fouqué caldera. The onset of the eruption was marked by a sudden drop in CO2 flux which then stabilized. The eruptive sites were confirmed visually around 1130. Three fissures with actively flowing lava opened on the E flank of Dolomieu Crater; the fountains of lava were less than 30 m high. The front of the longest flow had reached 1,900 m elevation after one hour. The eruption lasted a little over 12 hours and was over by 2200 that evening; it covered about 150-200 m of the hiking trail to the summit.

Seismicity remained high after the event ended, and at 1500 on 19 February 2019 another seismic swarm of 511 deep earthquakes located under the E flank at about 2.5 km depth occurred. It was not accompanied by a significant amount of deformation. At 1710 tremor signals appeared on the observatory seismographs and the first gas plumes and lava ejection were observed at 1750 and 1912, respectively. During an overflight the next day (20 February), OVPF team members observed the new eruptive site at an elevation of 1,800 m at the foot of Piton Madoré. One fissure and one fountain were active at 0620 on 20 February and the flow front was at 1,300 m elevation (figure 166). During the night of 20-21 February the flow front crossed over the "Grandes Pentes" area in the eastern half of the Enclos Fouque (figure 167).

Figure (see Caption) Figure 166. The eruption which began on 19 February 2019 on the E flank of Dolomieu crater at Piton de la Fournaise produced a lava fountain and flow which traveled down at least 500 m of elevation by the next morning when this photo was taken at 0620 local time. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du mercredi 20 février 2019 à 11h00, Heure locale).
Figure (see Caption) Figure 167. The active fissure at Piton de la Fournaise was producing lava fountains and an active flow during the evening of 20 February 2019. Overnight the flow crossed over the "Grandes Pentes" area of the caldera. Photo courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du jeudi 21 février 2019 à 14H00, Heure locale).

OVPF reported on 22 February 2019 that 22 shallow earthquakes had been reported since the eruption began on 19 February. Surface flow rates estimated from satellite data, via the HOTVOLC system (OPGC - University of Auvergne), were between 2.5 and 15 m3/s. The quantity of lava emitted between 19 and 22 February was between 1 and 3 million m3. OVPF observed the growth of an eruptive cone that was filled with a small lava lake producing ejecta during a morning overflight on 22 February. A channelized flow moved downstream from the cone and split into two lobes about 1 km from (and 200 m below) the cone (figure 168). The split in the flow occurred near the Guyanin crater. The N flowing lobe, about 50 m wide, had an actively flowing front located at 1,320 m elevation; the incandescent flow was travelling over a recent flow (likely from the previous night). The S-flowing lobe spread to 200 m wide and split into two tongues 300 m SE of Guyanin crater.

Figure (see Caption) Figure 168. During an overflight on the morning of 22 February 2019 scientists from OVPF observed a growing spatter cone with a small lava lake at Piton de la Fournaise. A channelized flow moved downstream from the fissure and split into two flows. Photo courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du vendredi 22 février 2019 à 13h30, Heure locale).

Incandescent ejecta from the cone was captured in a webcam image overnight on 22-23 February 2019 (figure 169). The rate of advance of the flow slowed significantly by 24 February, but the intensity of the eruptive tremor remained relatively constant. Mapping of the lava flow on 28 February carried out by the OI2 platform (OPGC - University Clermont Auvergne) from satellite data confirmed the slow progress of the flow after 24 February (300 m in 5 days) (figure 170). The flow front was located at 1,200 m elevation, and only the N arm was active; the lava had traveled about 2.2 km from the vent by 28 February.

Figure (see Caption) Figure 169. Incandescent ejecta from the eruptive cone at Piton de la Fournaise was captured in the webcam in the early hours of 23 February 2019. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du samedi 23 février 2019 à 13h30, Heure locale).
Figure (see Caption) Figure 170. Contours of the lava flows at Piton de la Fournaise from 18-28 February 2019 were determined from satellite data by the OI2 platform (Université Clermont Auvergne), dated 18 (red) and 19 (blue) February (top image); 20 (green), 21 (red), 22 (blue), 27 (turquoise), and 28 (pink) February (bottom image). Courtesy of and copyright by OVPF/IPGP. Top: Bulletin d'activité du vendredi 22 février 2019 à 13h30 (Heure locale); bottom: Bulletin d'activité du jeudi 28 février 2019 à 16h30 (Heure locale).

Between 28 February and 1 March 2019 a third lobe of lava appeared flowing NE from the vent on the N side of the new flow area; it split into two lobes sometime on 1 March. Very little new lava was recorded on the other lobes. By 4 March the flow rate estimated by satellite data was about 7.5 m3/s. During a site visit on the morning of 5 March OVPF scientists sampled the N lobe of the flow and bombs and tephra near the cone, and acquired infrared and visible images. They noted the continued growth of the cone which still had an open vent at the summit and a base 100 m in diameter. It was 25 m high with a 50-m-wide eruptive vent at the top (figure 171). High-temperature gas emissions and strong Strombolian activity issued from the vent. Steam emissions were present around the base of the cone, suggesting the presence of lava tunnels. A single lobe of lava flowed N from the cone.

Figure (see Caption) Figure 171. The eruptive cone at Piton de la Fournaise on 5 March 2019 had a 100-m-diameter base, 25 m of vertical height, and 50-m-wide vent at the summit. Courtesy of and copyright by OVPF/IPGP, (Bulletin d'activité du mardi 5 mars 2019 à 17h30, Heure locale).

A new fissure that opened about 150 m from the main vent on the NW flank of Piton Madoré was first observed on the morning of 6 March (figure 172); OVPF concluded that it had opened late on 5 March. A small cone was forming and a new flow traveled N from the main eruptive site. At least six new emission points were noted the following morning (7 March) around the Piton Madoré. Poor weather prevented confirmation by aerial reconnaissance that day, but in a site visit on 8 March OVPF scientists determined that the new fissure from 5 March remained active; a small cone about 10 m high had two flow lobes on the W and N sides (figure 173). A fissure that opened on 7 March was located 300 m S of the 19 February vent and oriented E-W. It was very active on the morning of 8 March with two 50-m-high lava fountains (figure 174). Samples collected by OVPF indicated that the vents of 5 and 7 March produced lava of different compositions.

Figure (see Caption) Figure 172. A new fissure that opened about 150 m from the main vent on the NW flank of Piton Madoré at Piton de la Fournaise was first observed on the morning of 6 March 2019; OVPF concluded that it had opened late on 5 March. A small cone was forming on the flank of an old one and a new flow traveled N from the main eruptive site. Courtesy of OVPF/IPGP, copyright by Helicopter Coral (Bulletin d'activité du jeudi 7 mars 2019 à 15h00 Heure locale).
Figure (see Caption) Figure 173. The 5 March 2019 fissure at Piton de la Fournaise on the NW flank of Piton Madoré still had two active flow lobes emerging from it and heading N and W on 8 March 2019. Courtesy of and copyright by OVPF/IPGP (Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, March 2019).
Figure (see Caption) Figure 174. A fissure that opened on 7 March 2019 at Piton de la Fournaise was located 300 m S of the 19 February vent and oriented E-W. It was very active on the morning of 8 March 2019 with two 50-m-high lava fountains. Courtesy of and copyright by OVPF/IPGP (Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, March 2019).

There was a strong increase in the eruptive tremor intensity on 7 March, related to the opening of the two new fissures on 5 and 7 March (figure 175). As a result, the surface flow estimates made from satellite data increased significantly to high values greater than 50 m3/s, with the average values on 7-8 March of around 20-25 m3/s. The increased flow rates resulted in the flows traveling much greater distances. By the morning of 9 March the active flow had reached 650-700 m above sea level. The flow front had traveled about 1 km in 24 hours. Strong seismicity had been increasing under the summit zone for the previous 48 hours. After a phase of very strong surface activity observed overnight on 9-10 March that included lava fountains 50-100 m high (figure 176), surface activity ceased around 0630 on 10 March, and seismic activity decreased significantly. OVPF noted that sudden increases in seismicity and flow rates near the end of an eruption have occurred at about half of the eruptions at Piton de la Fournaise in recent years. Lava volumes emitted on the surface between 18 February and 10 March 2019 were estimated at about 14.5 million m3 (figure 177).

Figure (see Caption) Figure 175. An infrared view of the eruptive site on the E flank of Dolomieu crater at Piton de la Fournaise on 8 March 2019 clearly showed the original fissure from 19 February (bottom right of center), the fissure on Piton Madore that opened on 5 March (right) and the fissures that opened on 7 March (upper, right of center). The combined activity produced significant thermal and seismic activity at the volcano. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du vendredi 8 mars 2019 à 17h00, Heure locale).
Figure (see Caption) Figure 176. Lava fountains 50-100 m high were the result of very strong surface activity observed overnight on 9-10 March 2019 at Piton de la Fournaise. Surface activity ceased around 0630 on 10 March, and seismic activity decreased significantly. Photo taken on 9 March 2019 around midnight from the RN2. Courtesy of OVPF/IPGP, copyright by A. Finizola LGSR/IPGP (Bulletin d'activité du dimanche 10 mars 2019 à 19h30 Heure locale).
Figure (see Caption) Figure 177. A sudden increase in the flow rate at the end of the 18 February-10 March 2019 eruption at Piton de la Fournaise was recorded by researchers at the Université Clermont Auvergne. OVPF noted this was typical of about half of the eruptions at Piton de la Fournaise. Courtesy of OVPF/IPGP, copyright by HOTVOLC, Université Clermont Auvergne (OVPF Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, March 2019).

Significant SO2 plumes were captured by the TROPOMI instrument on the Sentinel 5-P satellite throughout the 18 February-10 March eruption (figure 178). After the surface eruption ceased, shallow seismicity continued at a lower rate of about 12 earthquakes per day. The end of the eruption (7-10 March) was accompanied by a marked deflation, interpreted by OVPF as the rapid emptying of the magma reservoir. Following the end of the eruption, inflation resumed for the rest of March but then ceased. Seismicity continued at a lower level during April with an average of six shallow earthquakes per day.

Figure (see Caption) Figure 178. Multiple days of high DU value SO2 plumes were recorded by the TROPOMI instrument on the Sentinel 5-P satellite during the 18 February-10 March 2019 eruption at Piton de la Fournaise. Top row: during 18, 21, and 22 February SO2 plumes drifted SE. Middle row: during 23, 24, and 25 February the wind direction changed from SE through S to SW and left a curling trail of SO2. Bottom row: 5, 7, and 8 March showed an increase in SO2 emissions that corresponded with increased seismicity and lava flow output before the eruption ceased.

Activity during May-June 2019. OVPF reported slight inflation near the summit beginning in early May, and an increase in CO2 concentration in the soil near Plaine des Cafres and Plaine des Palmistes. Strong shallow seismicity reappeared on 27 May 2019 and recurred on 30 and 31 May. Two small seismic swarms were measured on 31 May in the early morning. A new seismic swarm beginning at 0603 on 11 June accompanied by rapid deformation suggested a new eruption was imminent. A tremor near the summit area was first noted at 0635 local time; the webcams indicated a plume of gas, but poor visibility prevented evidence of fresh lava. Around 0930 that morning OVPF confirmed that five fissures had opened on the outer SSE slope of Dolomieu crater at elevations ranging from 2480 to 2025 m (figure 179). The flow fronts were not visible due to weather. Lava fountains under 30 m in height and lava flows were present in the three lowest fissures. The flows traveled rapidly down the steep flank of the crater (figure 180).

Figure (see Caption) Figure 179. Around 0930 on the morning of 11 June 2019 OVPF confirmed that five fissures had opened on the outer SSE slope of Dolomieu crater at Piton de la Fournaise at elevations ranging from 2480 to 2025 m. Courtesy of and copyright by OVPF-IPGP and Imazpress (Bulletin d'activité du mardi 11 juin 2019 à 11h00).
Figure (see Caption) Figure 180. Thermal imaging of the 11-12 June 2019 eruptive site at Piton de la Fournaise showed multiple streams of lava traveling rapidly down the steep flank from several fissures on 11 June 2019. Courtesy of and copyright by OVPF-IPGP (Bulletin d'activité du mardi 11 juin 2019 à 11h00).

The intensity of the eruptive tremor decreased throughout the day, and by 1530 only the lowest elevation fissure was still active (figure 181). The next afternoon (12 June) images in the OVPF webcam located in Piton des Cascades indicated the flow front was at about 1,200-1,300 m elevation. Seismographs indicated that the eruption stopped around 1200 on 13 June. Poor weather obscured visibility of the flow activity. Seismic activity decreased following the eruption, but appeared to increase again beginning on 21 June, with 10 events detected on 30 June. SO2 plumes were recorded in satellite data on 11 and 12 June 2019.

Figure (see Caption) Figure 181. The intensity of the eruptive activity at Piton de la Fournaise on 11 June 2019 decreased throughout the day, and by 1530 only the lowest elevation fissure was still active. Courtesy of and copyright by OVPF-IPGP (Bulletin d'activité du mardi 11 juin 2019 à 17h45 Heure locale).

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Observatoire Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris, 14 route nationale 3, 27 ème km, 97418 La Plaine des Cafres, La Réunion, France (URL: http://www.ipgp.fr/fr); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Semeru (Indonesia) — April 2019 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Decreased activity after October 2018

The ongoing eruption at Semeru has been characterized by numerous ash explosions and thermal anomalies, but activity apparently diminished in 2018 (BGVN 43:01 and 43:09); this decreased activity continued through at least February 2019. The current report summarizes activity from 24 August 2018 to 28 February 2019.

The Indonesian volcano monitoring agency, Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), reported ongoing daily seismicity, dominated by explosion earthquakes and emission-related events from late November through February (figure 35). Ash plumes resulting in aviation advisories by the Darwin Volcanic Ash Advisory Centre (VAAC) were reported on 4, 6-7, and 19 September, and 12 October 2018. The next significant ash plume reported by the VAAC wasn't until 24 February 2019 (table 23).

Figure (see Caption) Figure 35. Seismicity recorded at Semeru during 28 November 2018-26 February 2019. Plot shows explosion earthquakes ('Letusan'), emission-related events ('Hembusan'), felt earthquakes ('Gempa Terasa'), local tectonic events ('Tektonic Lokal'), and distant tectonic events ('Tektonic Jauh'). Courtesy of PVMBG and MAGMA Indonesia.

Table 23. Summary of ash plumes at Semeru during 25 August 2018 through February 2019. The summit is at 3,657 m elevation. Data courtesy of Darwin VAAC.

Date Plume altitude (km) Plume drift Remarks
04 Sep 2018 4.3 W --
06-07 Sep 2018 4.3 SW --
19 Sep 2018 4 SSW Possible ash-and-steam plume.
12 Oct 2018 4.5 W Discrete eruption.
24 Feb 2019 4.3 W Discrete volcanic ash eruption.

Thermal anomalies using MODIS satellite instruments processed by the MODVOLC algorithm were only recorded on 26, 28, and 30 August 2018, and 22 and 31 October 2018. The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected numerous hotspots within 5 km of the volcano during August and early September, with a significant decrease in frequency through October (figure 36); only a few scattered hotspots were recorded from November 2018 through February 2019.

Figure (see Caption) Figure 36. MIROVA plot of thermal anomalies (Log Radiative Power) at Semeru during July 2018-February 2019. Courtesy of MIROVA.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Heard (Australia) — April 2019 Citation iconCite this Report

Heard

Australia

53.106°S, 73.513°E; summit elev. 2745 m

All times are local (unless otherwise noted)


Thermal hotspots continue during October 2018-March 2019 at the summit and on the upper flanks

Heard Island, in the Southern Indian Ocean, includes the large Big Ben stratovolcano and the smaller, apparently inactive, Mt. Dixon. Because of the island's remoteness, satellites are the primary monitoring tool. Big Ben has been active intermittently since 1910, and was active during October 2017-September 2018 (BGVN 43:10). Activity continued during October 2018-March 2019.

Satellite photos using Sentinel Hub showed hotspots every month between October 2018 and March 2019. Because the area was frequently covered by a heavy cloud layer, most of the hotspot signals were partially obscured. Though thermal anomalies are usually seen at summit vents, on 18 October 2018 an anomaly was present about 300 m down the E flank. Similarly, on 1 January 2019, a weak anomaly beginning about 200 m down the NW flank was about 300 m long (figure 40).

The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected three hotspots, two in October and one in early November 2018, all of low radiative power. There were no MODVOLC alert pixels during this period.

Figure (see Caption) Figure 40. Sentinel-2 L1C image of Heard Island's Big Ben volcano on 1 January 2019 one summit hotspot and an elongated thermal anomaly to the NW. Scale bar (bottom right) is 200 m. The photo was taken in atmospheric penetration view (bands 12, 11, and 8A), courtesy of Sentinel Hub Playground.

Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon volcano lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben volcano because of its extensive ice cover. The historically active Mawson Peak forms the island's 2745-m high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported in historical time at this isolated volcano, but observations are infrequent and additional activity may have occurred.

Information Contacts: Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Dukono (Indonesia) — April 2019 Citation iconCite this Report

Dukono

Indonesia

1.693°N, 127.894°E; summit elev. 1229 m

All times are local (unless otherwise noted)


Numerous ash explosions from October 2018 through March 2019

The eruption at Dukono that began in 1933 has showered the area with ash from frequent explosions (BGVN 43:04, 43:12). The Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), also known as the Center for Volcanology and Geological Hazard Mitigation (CVGHM), is responsible for monitoring this volcano.

This long-term pattern of intermittent ash explosions continued during October 2018-March 2019, with ash plumes rising to between 1.5 and 2.7 km altitude, or about 300-1,500 m above the summit (table 19). Although meteorological clouds often obscured views, satellite imagery captured typical ash plumes on 28 September 2018 (figure 10) and 5 February 2019 (figure 11). Instruments aboard NASA satellites (TROPOMI and OMPS) detected high levels of sulfur dioxide near or directly above the volcano on multiple days during January-March 2019. The Alert Level remained at 2 (on a scale of 1-4), and visitors were warned to remain outside of the 2-km exclusion zone.

Table 19. Monthly summary of reported ash plumes from Dukono for October 2018-March 2019. The direction of drift for the ash plume through each month was highly variable. Data courtesy of the Darwin VAAC and PVMBG.

Month Plume Altitude (km) Notable Plume Drift
Oct 2018 1.5-2.1 --
Nov 2018 1.5-2.1 --
Dec 2018 1.5-2.4 --
Jan 2019 1.8-2.1 --
Feb 2019 1.8-2.7 --
Mar 2019 1.5-2.4 --
Figure (see Caption) Figure 10. Satellite image from Sentinel-2 (LC1 natural color) of an ash plume at Dukono on 28 September 2018 with the plume blowing towards the NE. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 11. Satellite image from Sentinel-2 (LC1 natural color) of an ash plume at Dukono on 5 February 2019, with the plume blowing SW. Courtesy of Sentinel Hub Playground.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Rincon de la Vieja (Costa Rica) — April 2019 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Occasional weak phreatic explosions continue through February 2019

Intermittent small phreatic explosions from the acid lake of Rincón de la Vieja's active crater has most recently occurred since 2011 (BGVN 42:08, 43:03, and 43:09). This activity continued through at least February 2019. The volcano is monitored by the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), and the information below comes from its weekly bulletins between 18 August 2018 and 28 February 2019. Weather conditions often prevented webcam views and estimates of plume heights. The volcano was in Activity Level 3 throughout the reporting period (volcano erupting, steady state).

According to OVSICORI-UNA, two distinct, 2-minute-long explosions occurred on 31 August 2018 beginning at 0434 and 1305. Several hours after the eruption tremor became continuous but low-frequency long-period (LP) earthquakes ceased. OVSICORI-UNA reported a gas emission late on 7 September. An unconfirmed small phreatic explosion occurred on 11 September at 0634, and another on 17 September at 1014. The seismic record showed continuous background tremor and very sporadic LP earthquakes.

Intermittent background tremor was recorded during the first half of October, along with a few emissions and phreatic explosions. Deformation measurements during October showed a contraction between the N and S of the volcano, with subsidence. On 17 October there was another phreatic explosion, and thereafter tremor disappeared and seismicity decreased. On 23 and 27 October seismic stations signaled additional possible phreatic explosions.

OVSICORI-UNA reported that a series of explosions began at 1945 on 4 November and consisted of at least three 2-minute-long episodes. The next day at 1511 a plume of water vapor and diffuse gas, recorded by a webcam and visible to residents to the N, rose about 100 m above the crater rim and drifted W. On 9 November a 2-minute-long explosion began at 1703. Another explosion on 27 November at 0237 produced a plume of water vapor and gas that rose 600 m above the crater rim and drifted SW. A short 1-minute explosion began at 1054 on 3 December.

Based on OVSICORI-UNA weekly bulletins, activity remained stable in January 2019 with small-amplitude phreatic explosions on 11, 12, and 14 January. More energetic phreatomagmatic explosions on 17 and 20 January produced lahars. Several small-amplitude explosions were detected at the end of the month. During January, a few LPs, no VTs, and intermittent tremor were recorded.

OVSICORI-UNA reported that two small-scale explosions occurred on 1 February, along with possible events at 1906 and 1950 on 5 February and at 0120 on 6 February. An event at 0000 on 6 February was also recorded; the report noted that poor weather conditions prevented visual observations of the crater. On 16 and 17 February strong degassing was observed. No LPs were recorded, but two significant VTs were detected on 17 and 22 February near or under the crater.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/).


Turrialba (Costa Rica) — April 2019 Citation iconCite this Report

Turrialba

Costa Rica

10.025°N, 83.767°W; summit elev. 3340 m

All times are local (unless otherwise noted)


Frequent passive ash emissions continue through February 2019

This report summarizes activity at Turrialba during September 2018-February 2019. During this period there was similar activity as described earlier in 2018 (BGVN 43:09), with occasional ash explosions and numerous, sometimes continuous, periods of gas-and-ash emissions (table 8). Data were provided by the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA).

Table 8. Ash emissions at Turrialba, September 2018-February 2019. Cloudy weather sometimes obscured observations. Maximum plume height is above the crater rim. Information courtesy of OVSICORI-UNA.

Date Time Max plume height Plume drift Remarks
27 Aug-05 Sep 2018 -- 100 m SW, W Continuous gas-and-ash emissions.
06 Sep 2018 -- -- -- Mostly gas, punctuated by small sporadic ash plumes.
10 Sep 2018 1210 300 m NW --
01-13 Sep 2018 -- -- -- Continuous gas-and-ash emissions.
17-18 Sep 2018 -- 300 m SW, NW --
27 Sep 2018 0915 200 m NW --
30 Sep-01 Oct 2018 -- 500 m NW, NE --
03 Oct 2018 -- -- -- Incandescence.
08 Oct 2018 0800 500 m N --
10-16 Oct 2018 -- 1,000 m Various Intermittent emissions; some explosions, including an energetic one on 14 Oct at 1712. Clouds prevented estimate of plume height.
17-23 Oct 2018 -- 200-500 m E, NW, SW Periodic gas-and-ash emissions. Frequent Strombolian events since 5 Oct.
25-30 Oct 2018 -- -- -- Periodic ash emissions when weather conditions allowed observations.
26 Oct 2018 0134 500 m NE Ashfall in neighborhoods of Coronado (San José, 35 km WSW) and San Isidro de Heredia (Heredia, 38 km W).
29 Oct 2018 0231 500 m NW --
30 Oct 2018 1406 500 m W --
24 Oct-01 Nov 2018 -- 500 m -- Continuous emissions.
01-06 Nov 2018 0530-0640 500 m SW --
02 Nov 2018 1523, 1703 500 m -- --
03 Nov 2018 0109 500 m -- Short (2-3 minutes) duration events. Ashfall reported in Coronado.
05 Nov 2018 0620 600 m NW --
06-11 Nov 2018 -- 500 m -- Low-level, continuous gas-and-ash emissions occasionally punctuated by energetic explosions that sent plumes as high as 500 m and caused ashfall in several areas downwind, including Cascajal de Coronado, Desamparados (35 km WSW), San Antonio, Guadalupe (32 km WSW), Sabanilla, San Pedro Montes de Oca, Moravia (31 km WSW), Heredia, and Coronado (San José, 35 km WSW). Weather prevented observations on 12 Nov.
13-19 Nov 2018 -- -- -- Periodic, passive ash emissions visible in webcam images or during cloudy conditions inferred from the seismic data.
22 Nov 2018 0710 100 m W --
23 Nov 2018 -- -- -- Frequent pulses of ash.
23-25 Nov 2018 -- 500 m -- Occasional Strombolian explosions ejected lava bombs deposited near the crater; residents of Cascajal de Coronado reported hearing several booming sounds.
26-27 Nov 2018 -- -- -- Passive emissions with small quantities of ash visible. Minor ashfall in San Jose (Cascajal de Coronado and Dulce Nombre), San Pedro Montes de Oca, and neighborhoods of Heredia.
28 Nov-03 Dec 2018 -- 500 m N, NW, SW Ashfall in Santo Domingo (36 km WSW) on 2 Dec.
05 Dec 2018 -- -- -- Minor emission.
06 Dec 2018 -- -- S Emission.
08 Dec 2018 0749 500 m NW --
09 Dec 2018 -- 1,000 m -- Ashfall in areas of Valle Central.
10 Dec 2018 -- -- -- Emissions periodically observed during periods of clear viewing. Ashfall in Moravia (31 km WSW) and Santa Ana, and residents of Heredia noted a sulfur odor.
11-12 Dec 2018 -- 500 m NW, SW The Tico Times stated some flights were delayed at San Jose airport, 67 km away.
13 Dec 2018 -- -- -- Pulsing ash emissions; ashfall in Guadalupe (32 km WSW) and Valle Central.
14-16 Dec 2018 -- -- W, SW Emissions with diffuse amounts of ash.
05-06 Jan 2019 0815 -- -- Increased after midnight on 6 Jan.
28 Jan-04 Feb 2019 -- -- -- Minor, sporadic ash emissions rose to low heights during most days.
01 Feb 2019 0640 1,500 m NW --
08 Feb 2019 0540 200 m -- Sporadic ash emissions for more than one hour.
11 Feb 2019 -- -- -- Very small ash emission.
13-15 Feb 2019 200-300 m NW, W, SW Almost continuous gas emissions with minor ash content.
15 Feb 2019 1330 1,000 m W --
18 Feb 2019 1310 500 m W --
21 Feb 2019 -- 300 m NW Frequent ash pulses.
22-24 Feb 2019 -- 300 m NW, SW Frequent ash emissions of variable intensity and duration. On 22 Feb ash fell in Santa Cruz (31 km WSW) and Santa Ana, and a sulfur odor was evident in Moravia.
28 Feb 2019 1050 500 m SW Ash pulses.

According to OVSICORI-UNA's annual summary for 2018, a slow decline in activity occurred after the volcano reached its highest emission rate during 2016. Activity during 2018 was consistent with an open system, generating frequent passive ash emissions. The volcano emitted ash on 58% of the days during the year. Some explosions were large enough to eject ballistics more than 400 m around the crater. Typical activity can be seen in a photo from 11 September 2018 (figure 50) and satellite imagery on 7 November 2018 (figure 51).

Figure (see Caption) Figure 50. Photo of an ash explosion at Turrialba taken on 11 September 2018. Courtesy of Red Sismologica Nacional (RSN: UCR-ICE), Universidad de Costa Rica.
Figure (see Caption) Figure 51. Sentinel-2 satellite image of an ash emission from Turrialba on 7 November 2018, taken in natural color (gamma adjusted). Courtesy of Sentinel Hub Playground.

During January into early February 2019, passive ash emissions continued irregularly and with less intensity and duration. Emissions sometimes lacked ash. In their report of 4 February 2019, OVSICORI-UNA indicated that passive ash emissions were weak and slow. For the rest of February, they characterized ash emissions as frequent, but of low intensity.

Seismic activity. On 1 November 2018 OVSICORI-UNA reported that seismicity remained high, and involved low-amplitude banded volcanic tremor along with long-period (LP) and volcano-tectonic (VT) earthquakes. In late January-early February 2019, OVSICORI-UNA reported that seismicity remained relatively stable, although a small increase was associated with the hydrothermal system. VT earthquakes were absent, and tremors had decreased in both energy and duration. The number of low-frequency LP volcanic earthquakes remained stable, although they had decreasing amplitudes. No explosions were documented, and emissions were weak and had short durations and very dilute ash content.

Thermal anomalies. No thermal anomalies were recorded during the reporting period using MODIS satellite instruments processed by MODVOLC algorithm. The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected five scattered hotspots during September-October 2018, none during November-December 2018, and two during January-February 2019. All were within 2 km of the volcano and of low radiative power.

Gas measurements. Significant sulfur dioxide levels near the volcano were recorded by NASA's satellite-borne ozone instruments only on 29 September 2018 (both NPP/OMPS and Aura/OMI instruments) and on 11 February 2019 (Sentinel 5P/TROPOMI instrument). OVSICORI-UNA's gas measuring instruments were compromised in September 2018 through January 2019 due to vandalism. In early February, however, they detected hydrogen sulfide for the first time since 2016.

Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); Red Sismologica Nacional (RSN) a collaboration between a) the Sección de Sismología, Vulcanología y Exploración Geofísica de la Escuela Centroamericana de Geología de la Universidad de Costa Rica (UCR), and b) the Área de Amenazas y Auscultación Sismológica y Volcánica del Instituto Costarricense de Electricidad (ICE), Costa Rica (URL: https://rsn.ucr.ac.cr/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Costa Rica Star (URL: https://news.co.cr); The Tico Times (URL: https://ticotimes.net).


San Cristobal (Nicaragua) — April 2019 Citation iconCite this Report

San Cristobal

Nicaragua

12.702°N, 87.004°W; summit elev. 1745 m

All times are local (unless otherwise noted)


Weak ash explosions in January and March 2019

San Cristóbal has produced occasional weak explosions since 1999, with intermittent gas-and-ash emissions. The only reported explosion during the first half of 2018 was on 22 April, the first since November 2017 (BGVN 43:03). The current report covers activity between 1 August 2018 and 1 May 2019. The volcano is monitored by the Instituto Nicaragüense de Estudios Territoriales (INETER).

According to INETER, a series of explosions occurred on 9 January 2019 that lasted several hours. INETER stated that one explosion occurred at 1643; the Washington VAAC's first advisory stated that an explosion occurred at 1145 (local time). The weak explosions, which occurred after a period of heightened seismic activity, generated an ash plume that reached 200 m above the edge of the crater and drifted W. The Washington VAAC reported volcanic ash plumes on 10-11 January extending about 92 km SW, and on 24-25 January extending about 185 km WSW. A low-energy explosion was detected by the seismic network at 1550 on 4 March 2019. The event produced a gas-and-ash plume that rose 400 m above the crater rim and drifted SW.

Monitoring data reported by INETER (table 6) showed elevated levels of seismicity during October 2018 through January 2019. Sulfur dioxide was also measured at higher levels in January 2019.

Table 6. Monthly sulfur dioxide measurements and seismicity reported at San Cristóbal during August 2018-March 2019. "Most" indicates that type of seismicity was dominant that month. Data courtesy of INETER.

Month Average SO2 Total earthquakes Degassing-type earthquakes Volcano-tectonic (VT) earthquakes
Aug 2018 461 t/d 6,464 6,147 251
Sep 2018 893 t/d 9,659 9,586 73
Oct 2018 269 t/d 11,698 3,509 8,189
Nov 2018 -- 19,593 19,586 7
Dec 2018 -- 30,901 -- Most
Jan 2019 1,286 t/d 11,504 Most Very few
Feb 2019 695 t/d 3,470 Most Very few
Mar 2019 -- 3,882 Most Very few

Geologic Background. The San Cristóbal volcanic complex, consisting of five principal volcanic edifices, forms the NW end of the Marrabios Range. The symmetrical 1745-m-high youngest cone, named San Cristóbal (also known as El Viejo), is Nicaragua's highest volcano and is capped by a 500 x 600 m wide crater. El Chonco, with several flank lava domes, is located 4 km W of San Cristóbal; it and the eroded Moyotepe volcano, 4 km NE of San Cristóbal, are of Pleistocene age. Volcán Casita, containing an elongated summit crater, lies immediately east of San Cristóbal and was the site of a catastrophic landslide and lahar in 1998. The Plio-Pleistocene La Pelona caldera is located at the eastern end of the complex. Historical eruptions from San Cristóbal, consisting of small-to-moderate explosive activity, have been reported since the 16th century. Some other 16th-century eruptions attributed to Casita volcano are uncertain and may pertain to other Marrabios Range volcanoes.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://webserver2.ineter.gob.ni/vol/dep-vol.html); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html).


Semisopochnoi (United States) — February 2019 Citation iconCite this Report

Semisopochnoi

United States

51.93°N, 179.58°E; summit elev. 1221 m

All times are local (unless otherwise noted)


Minor ash explosions during September and October 2018

The remote Semisopochnoi comprises the uninhabited volcanic island of the same name, ~20 km in diameter, in the Rat Islands group of the western Aleutians (figure 1). Plumes had been reported several times in the 18th and 19th centuries, and most recently observed in April 1987 from Sugarloaf Peak (SEAN 12:04). The volcano is dominated by an 8-km diameter caldera that contains a small lake (Fenner Lake) and a number of post-caldera cones and craters. Monitoring is done by the Alaska Volcano Observatory (AVO) using an on-island seismic network along with satellite observations and lightning sensors. An infrasound array on Adak Island, about 200 km E, may detect explosive emissions with a 13 minute delay if atmospheric conditions permit.

On 16 September 2018 increased seismicity was detected at 0831, prompting AVO to raise the Aviation Color Code (ACC) to Yellow and Volcano Alert Level (VAL) to Advisory. Retrospective analysis of satellite data acquired on 10 September revealed small ash deposits on the N flank of Mount Cerberus, possibly associated with two bursts of tremor recorded on 8 September (figure 5). This new information, coupled with intensifying seismicity and a strong tremor signal recorded at 1249 on 17 September, resulted in AVO raising the ACC to Orange and the VAL to Watch. Seismicity remained elevated on 18 September with nearly constant tremor recorded by local sensors. At the same time, no ash emissions were observed in cloudy satellite images and no eruptive activity was recorded on regional pressure sensors at Adak.

Figure (see Caption) Figure 1. Minor ash deposits can be seen on the south and west flanks of the N cone of Mount Cerberus, Semisopochnoi Island, in this ESA Sentinel-2 image from 1200 on 10 September 2018. Also note probable minor steam emissions obscuring the crater of the N cone. Image courtesy of AVO.

During 19-25 September 2018 seismicity remained elevated, alternating between periods of continuous and intermittent bursts of tremor. Tremor bursts at 1319 on 21 September and at 1034 on 22 September produced airwaves detected on a regional infrasound array on Adak Island; no ash emissions were identified above the low cloud deck in satellite data, and the infrasound detections likely reflected an atmospheric change instead of volcanic activity.

Seismicity remained elevated during 3-9 October 2018, with intermittent bursts of tremor. No volcanic activity was detected in infrasound or satellite data. On 11 October satellite data indicated partial erosion of a tephra cone in the crater of Cerberus's N cone. A crater lake about 90 m in diameter filled the vent. The data also suggested that the vent had not erupted since 1 October. Seismicity remained elevated and above background levels. The next day AVO lowered the Aviation Color Code to Yellow and the Volcano Alert Level to Advisory, noting the recent satellite data results and lack of tremor recorded during the previous week. AVO reported that unrest continued during 11-24 October.

An eruptive event began at 2047 on 25 October 2018, identified based on seismic data; strong volcanic tremor lasted about 20 minutes and was followed by 40 minutes of weak tremor pulses. A weak infrasound signal was detected by instruments on Adak Island. The Aviation Color Code was raised to Orange (the second highest level on a four-color scale) and Volcano Alert Level was raised to Watch (the second highest level on a four-level scale). A dense meteorological cloud deck prevented observations below 3 km, but a diffuse cloud was observed in satellite data rising briefly above the cloud deck, though it was unclear if it was related to eruptive activity. Tremor ended after the event, and seismicity returned to low levels.

Small explosions were detected by the seismic network at 2110 and 2246 on 26 October 2018, and 0057 and 0603 on 27 October. No ash clouds were identified in satellite data, but the volcano was obscured by high meteorological clouds. Additional small explosions were detected in seismic and infrasound data during 28-29 October; no ash clouds were observed in partly-cloudy-to-cloudy satellite images.

AVO reported on 31 October 2018 that unrest continued. Two small explosions were detected, one just before 0400 and the other around 1000. Satellite views were obscured by clouds at the time, and no ash clouds were observed. Unrest continued through 1 November, at which time the satellite link and the seismic line failed. On 21 November the ACC was lowered to Yellow and the VAL was lowered to Advisory.

Geologic Background. Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is 1221-m-high Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked 774-m-high Mount Cerberus volcano was constructed during the Holocene within the caldera. Each of the peaks contains a summit crater; lava flows on the northern flank of Cerberus appear younger than those on the southern side. Other post-caldera volcanoes include the symmetrical 855-m-high Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented historical eruptions have originated from Cerberus, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone within the caldera could have been active during historical time.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).


Asosan (Japan) — July 2019 Citation iconCite this Report

Asosan

Japan

32.884°N, 131.104°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Multiple brief ash emission events during April and May 2019; minor ashfall in adjacent villages

Japan's 24-km-wide Asosan caldera on the island of Kyushu has been active throughout the Holocene. Nakadake has been the most active of 17 central cones within the caldera for 2,000 years. Historical eruptions have been primarily basaltic to basaltic-andesitic ash eruptions, with periodic Strombolian activity, all from Nakadake Crater 1. The most recent major eruptive episode began in late November 2014 and continued through 1 May 2016. Another eruption, with the largest ash plume in 20 years, occurred on 8 October 2016. Asosan remained quiet until renewed activity from Crater 1 began in mid-April 2019; it is covered in this report, through the end of June 2019. The Japan Meteorological Agency (JMA) provides monthly reports of activity; the Tokyo Volcanic Ash Advisory Center (VAAC) issues aviation alerts reporting on possible ash plumes.

Asosan remained quiet during 2017 and 2018 with steam plumes rising a few hundred meters from Crater 1 and low levels of SO2 emissions; a warm acidic lake was present within the crater. Fumarolic activity from two areas on the S and SW wall of the crater rim generated occasional thermal anomalies in satellite data and incandescence at night. A brief period of increased seismicity was reported in mid-March 2019. An increase in seismic amplitude on 14 April 2019 preceded a small explosion on 16 April; it produced an ash plume which rose 200 m above the crater rim and drifted NW. It was followed by additional small explosions on 19 April. A new explosion on 3 May produced minor ashfall in adjacent communities; ash emissions were reported multiple times during May with plumes reaching 1,400 m above the crater rim. No additional ash emissions were reported in June.

Activity during 2017 and 2018. JMA reported that no eruptions occurred during 2017. Amplitudes of volcanic tremor increased somewhat during March but were generally low for the rest of the year. The earthquake hypocenters were mostly located near the active crater at around sea level. SO2 emissions were slightly less than 1,000 tons per day (t/d) from January through April; for the rest of the year they ranged from 600 to 2,500 t/d. The Alert Level had been lowered from 2 to 1 on 7 February 2017 where it remained throughout the year. Steam plumes generally rose no more than 600 m above the active crater rim (figure 42). JMA noted that from January to June they often observed crater incandescence at night with a high-sensitivity surveillance camera; Sentinel-2 satellite images also captured thermal anomalies a few times (figure 43). The green lake inside the crater persisted throughout the year with water temperatures of 50-60°C. Two fumaroles were present with high-temperature gas emissions on the SW and S crater walls. Temperatures at the S crater wall were over 600°C from February to May; they decreased to 320-560°C during the rest of the year (figure 44). Sulfur deposits were visible around the SW crater wall fumarole during July.

Figure (see Caption) Figure 42. Steam plumes that rose around 600 m above Nakadake Crater 1 at Asosan were typical activity throughout 2017. Images taken with JMA webcam on 9 June (top left), 22 August (top right), 12 November (bottom left), and 20 December (bottom right) 2017. Courtesy of JMA (Aso volcano monthly activity reports, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 43. Sentinel-2 images captured thermal anomalies at the S rim of the green lake at Asosan's Nakadake Crater 1 on 16 February (left) and 27 May 2017 (right). JMA reported that incandescence was occasionally visible during the night from January-June from the same area. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 44. High-temperature gas and steam from fumaroles on the S wall of the Nakadake Crater 1 at Asosan on 24 August (top) and 17 November 2017 (bottom) were persistent all year, with temperatures ranging from 300 to over 600°C. The green lake inside the crater persisted throughout the year as well with water temperatures of 50-60°C. Courtesy of JMA (Aso volcano monthly activity reports, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).

The Alert Level did not change at Asosan during 2018, and no eruptions were reported. Sulfur dioxide emissions fluctuated between 400 and 1,800 t/d throughout the year. Steam plumes generally rose less than 500 m above the active crater (figure 45); incandescence was observed at night during May-October and sometimes observed in satellite imagery as thermal anomalies (figure 46). The temperature of the green lake inside the crater ranged from 58 to 75°C throughout the year. The thermal anomaly on the S wall of the crater was consistently in the 300-500°C range, and had a high temperature in April of 580°C; in December the high temperature had risen to 738°C (figure 47). A brief increase in the number of isolated tremors occurred during March, with 1,044 reported on 4 March, exceeding the previous maximum of 1,000 on 27 October 2014. Seismicity also increased briefly during June, with more than 400 events reported each day on 8, 18, and 20 June. The Minami Aso village Yoshioka fumarole zone, located about 5 km W of Nakadake Crater 1, continued to produce modest steam plumes throughout 2017 and 2018 (figure 48).

Figure (see Caption) Figure 45. Typical steam plumes at Asosan during 2018 rose around 500 m above the Nakadake Crater 1. Images are from 4 March (top left), 22 July (top right), 17 August (lower left), and 13 September 2018 (lower right). Courtesy of JMA (Aso volcano monthly activity reports, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 46. Nighttime incandescence was reported by JMA during May-October 2018 from the S rim of Nakadake Crater 1 at Asosan; Sentinel-2 satellite images (bands 12, 4, 2) captured thermal anomalies from the same area numerous times during 2018 including on 16 June (top left), 26 July and 19 September (middle row), and 18 and 23 November (bottom row). JMA photographed incandescence at night on 17 July 2018 at the S fumarole area (top right). Courtesy of Sentinel Hub Playground and JMA (Aso volcano Monthly Report for July 2018).
Figure (see Caption) Figure 47. The "Green Tea Pond" inside Nakadake Crater 1 at Asosan had temperatures that ranged from 58 to 75°C during 2018 (top row, 26 March 2018); the thermal anomaly on the S wall of the crater consistently had temperatures measured in the 300-500°C range and the SW fumarole area had somewhat lower temperatures (bottom row, 22 June 2018). Courtesy of JMA (monthly Asosan reports for March, May, and June 2018).
Figure (see Caption) Figure 48. The Minami Aso village Yoshioka fumarole zone, located about 5 km W of Nakadake Crater 1 at Asosan, continued to produce modest steam plumes throughout 2017 and 2018. It is shown here on 20 December 2017 (top) and 12 March 2018 (bottom). Courtesy of JMA (December 2017 and March 2018 monthly volcano reports).

Activity during 2019. Steam plumes rose to 800 m above the crater rim during January 2019. Overall activity increased slightly during February; SO2 emissions peaked at 2,200 t/d early in the month; they ranged from 800 to 1,800 t/d for most of the month. The amplitude of volcanic tremor also increased slightly during February. A further increase in tremor amplitude on 11 March 2019 prompted JMA to raise the Alert Level from 1 to 2 the following morning. Volcanic tremor amplitude decreased on 15 March; JMA determined that activity had decreased, and the Alert Level was lowered back to 1 on 29 March 2019. The amount of water in the crater decreased significantly between 27 February and 20 March, exposing part of the crater floor.

The surface temperature of the lake rose during the first part of 2019; it was 78°C in February and 84°C in March. Steam plumes rose to 1,200 m above the crater rim during March and April. SO2 emissions rose to 4,500 t/d on 12 March but dropped to a lower range of 1,300-2,400 for the rest of the month. Another surge in SO2 emissions on 12 April 2019 to 3,600 t/d prompted a special report from JMA the following day. SO2 emissions varied from about 1,700 to 4,100 t/d during the month; values remained high during the second half of the month. JMA noted that the color of the water in the lake inside Nakadake Crater 1 changed from green to gray after 4 April. Fountains of muddy water were periodically observed; they reached 15 m high on 9 April. The temperatures of both the lake (82°C) and around the two fumarole areas (S area about 530°C, SW area about 310°C) remained constant during April and similar to March.

A large increase in the amplitude of volcanic tremor early on 14 April 2019 prompted JMA to raise the Alert Level from 1 to 2 later in the day. The epicenters of the earthquakes were very shallow, located within 1 km beneath the crater. A small eruption occurred at 1828 on 16 April at Nakadake Crater 1; it produced a gray and white plume that rose 200 m above the crater rim and was the first eruption since 8 October 2016 (figure 49). Incandescence was observed inside the crater on 3 and 17 April. The amplitude of seismic tremors decreased on 18 April. Three very small eruptions on 19 April produced ash and steam plumes that rose 500 m above the crater rim. During a site visit that day JMA measured a high-temperature area that produced incandescence from the bottom of the crater at night (figure 50).

Figure (see Caption) Figure 49. The first eruption since October 2016 at Nakadake Crater 1 at Asosan on 16 April 2019 sent an ash plume 200 m above the crater rim (top). Incandescent gas appeared on the crater floor the next day (bottom). Courtesy of JMA (Aso volcano monthly activity reports, April 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 50. Three small explosions on 19 April 2019 at Asosan's Nakadake Crater 1 produced small ash emissions that rose 500 m above the crater rim (top). A strong thermal signal also appeared from the bottom of the crater. Courtesy of JMA (Aso volcano monthly activity reports, April 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).

A new eruption began at 1540 on 3 May that lasted until 0620 on 5 May (figure 51). Initially the ash plume rose 600 m above the crater rim, but a few hours later the volume of ash increased, and the plume reached 2 km above the crater rim for a brief period. Incandescence was visible from the webcam. The Tokyo VAAC reported the ash plume at 3 km altitude drifting SE on 3 May. Later in the day it rose to 3.7 km altitude and drifted SW. During a field survey the following day (4 May) JMA reported a steam and ash plume rising from the center of the active crater. The infrared thermal imaging camera recorded the temperature of the plume at about 500°C (figure 52).

Figure (see Caption) Figure 51. An explosion at Asosan's Nakadake Crater 1 on 3 May 2019 produced an ash plume that reached 2 km above the crater rim (top) and incandescence visible from the webcam (bottom). Courtesy of JMA (Aso volcano monthly activity reports, April 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 52. During a site visit on 4 May 2019, staff from JMA witnessed an ash and steam plume rising from the bottom of Nakadake Crater 1 at Asosan (top). The infrared thermal imaging camera recorded the temperature of the plume at about 500°C (bottom). Courtesy of JMA (Aso volcano monthly activity reports, May 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).

Ash fell on the S flank, and a small amount of ashfall on 4 May was confirmed by evidence on a car windshield in Takamori Town (6 km S), Kumamoto Prefecture (figure 53). Ashfall was also reported in Takamori-machi, Minami Aso village (9 km SW), and part of Yamato-cho (25 km SW), also in the Kumamoto Prefecture. SO2 emissions were measured as high as 4,000 t/d on 4 May. Additional explosions with ash plumes were reported from Asosan on 9, 12-16, 29, and 31 May; the plumes rose from 200 to 1,400 m above the crater rim but were not visible in satellite imagery. The TROPOMI instrument on the Sentinel-5 satellite captured SO2 plumes on 3 and 26 May 2019 (figure 54).

Figure (see Caption) Figure 53. Ashfall was reported on 4 May 2019 in Takamori Town, Kumamoto Prefecture, from the eruption at Asosan's Nakadake Crater 1 on 3 May 2019. Courtesy of JMA (Aso volcano monthly activity reports, May 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 54. Plumes of SO2 from Asosan were recorded by the TROPOMI instrument on the Sentinel-5P satellite on 3 (left) and 26 (right) May 2019. Courtesy of NASA Goddard Space Flight Center.

Steam plumes rose to 1,700 m above the crater rim during June 2019 (figure 55). During field visits on 6 and 25 June diffuse ash emissions were observed rising from the center of the active crater, but they did not extend significantly above the crater rim (figure 56). The maximum temperature of the plume was measured at about 340°C with a thermal imaging camera. Almost all of the water in the crater bottom had evaporated since early May; incandescence continued to be observed within the crater at night with the high-resolution webcam (figure 57).

Figure (see Caption) Figure 55. Steam plumes rose to 1,700 m above the crater rim at Asosan's Nakadake Crater 1 on 10 June 2019. Courtesy of JMA (Aso volcano monthly activity reports, June 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 56. Plumes of gas and minor ash were visible at Asosan's Nakadake Crater 1 during site visits by JMA on 6 (left) and 25 (right) June 2019. Courtesy of JMA (Aso volcano monthly activity reports, June 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 57. Incandescent gas was visible from the vent at Asosan's Nakadake Crater 1 on 18 (left) and 25 (right) June 2019. Courtesy of JMA (Aso volcano monthly activity reports, June 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Nyamuragira (DR Congo) — May 2019 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Lava lake reappears in central crater in April 2018; activity tapers off during April 2019

The Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo is part of the western branch of the East African Rift System. Nyamuragira (or Nyamulagira), a high-potassium basaltic shield volcano on the W edge of VVP, includes a lava field that covers over 1,100 km2 and contains more than 100 flank cones in addition to a large central crater (see figure 63, BGVN 42:06). A lava lake that had been active for many years emptied from the central crater in 1938. Numerous flank eruptions were observed after that time, the most recent during November 2011-March 2012 on the NE flank. This was followed by a period of degassing with unusually SO2-rich plumes from April 2012 through April 2014 (BGVN 42:06). The lava lake reappeared during July 2014-April 2016 and November 2016-May 2017, producing a strong thermal signature. After a year of quiet, a new lava lake appeared in April 2018, reported below (through May 2019) with information provided by the Observatoire Volcanologique de Goma (OVG), MONUSCO (the United Nations Organization working in the area), and satellite data and imagery from multiple sources.

Fresh lava reappeared inside the summit crater in mid-April 2018 from a lava lake and adjacent spatter cone. Satellite imagery and very limited ground-based observations suggested that intermittent pulses of activity from both sources produced significant lava flows within the summit crater through April 2019 when the strength of the thermal signal declined significantly. Images from May 2019 showed a smaller but persistent thermal anomaly within the crater.

Activity from October 2017-May 2019. Indications of thermal activity tapered off in May 2017 (BGVN 42:11). On 20 October 2017 OVG released a communication stating that a brief episode of unspecified activity occurred on 17 and 18 October, but the volcano returned to lower activity levels on 20 October. There was no evidence of thermal activity during the month. The volcano remained quiet with no reports of thermal activity until April 2018 (figure 73).

Figure (see Caption) Figure 73. Sentinel-2 satellite images (bands 12, 4, 2) indicated no thermal activity at Nyamuragira on 19 November (top left), 14 December 2017 (top right) and 18 January 2018 (bottom). However, Nyiragongo (about 13 km SE) had an active lava lake with a gas plume drifting SW on 18 January 2018 (bottom right). Courtesy of Sentinel Hub Playground.

OVG reported the new lava emissions beginning on 14 April 2018 as appearing from both the lava lake and a small adjacent spatter cone (figure 74). The first satellite image showing thermal activity at the summit appeared on 18 April 2018 (figure 75) and coincided with the abrupt beginning of strong MIROVA thermal signals (figure 76). MODVOLC thermal alerts also first appeared on 18 April 2018. An image of the active crater taken on 9 May 2018 showed the lake filled with fresh lava and two adjacent incandescent spatter cones (figure 77).

Figure (see Caption) Figure 74. Fresh lava reappeared at Nyamuragira's crater during April 2018 from the lava lake (left) and the adjacent small spatter cone (right). Courtesy of OVG (Republique Democratique du Congo, Ministere de la Recherche Scientifique, Observatoire Volcanologique de Goma, Direction Generale Goma, Rapport Avril 2018).
Figure (see Caption) Figure 75. The first satellite image (bands 12, 4, 2) indicating renewed thermal activity at the Nyamuragira crater appeared on 18 April 2018; the signal remained strong a few weeks later on 3 May 2018. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 76. A strong thermal signal appeared in the MIROVA graph of Log Radiative Power on 18 April 2018 for Nyamuragira, indicating a return of the lava lake at the summit crater. Courtesy of MIROVA.
Figure (see Caption) Figure 77. Fresh lava filled the lake inside the crater at Nyamuragira on 9 May 2018. Two spatter cones were incandescent with gas emissions. Courtesy of OVG (Republique Democratique du Congo, Ministere de la Recherche Scientifique, Observatoire Volcanologique de Goma, Direction Generale Goma, Rapport Mai 2018).

Satellite images confirmed that ongoing activity from the lava lake remained strong during June -September 2018 (figure 78). A mission to Nyamuragira was carried out by helicopter provided by MONUSCO on 20 July 2018; lava lake activity was observed along with gas emissions from the small spatter cone (figure 79). OVG reported increased volcanic seismicity during 1-3 and 10-17 September 2018, and also during October, located in the crater area, mostly at depths of 0-5 km.

Figure (see Caption) Figure 78. Sentinel-2 satellite images (bands 12, 4, 2) confirmed that ongoing activity from the lava lake at Nyamuragira remained strong during June-September 2018, likely covering the crater floor with a significant amount of fresh lava. Image are from 12 June (top left), 7 July (top right), 17 July (middle left), 22 July (middle right), 11 August (bottom left), and 20 September (bottom right). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 79. The crater at Nyamuragira on 20 July 2018 had an active lava lake and adjacent incandescent spatter cone with gas emissions. Courtesy of OVG (Republique Democratique du Congo, Ministere de la Recherche Scientifique, Observatoire Volcanologique de Goma, Direction Generale Goma, Rapport Juillet 2018).

Personnel from OVG and MONUSCO (United Nations Organization Stabilization Mission in DR Congo) made site visits on 11 October and 2 November 2018 and concluded that the level of the active lava lake had increased during that time (figure 80). On 2 November OVG measured the height from the base of the active cone to the W rim of the crater as 58 m (figure 81).

Figure (see Caption) Figure 80. OVG scientists reported a rise in the lake level between site visits to the Nyamuragira crater on 11 October (top) and 2 November 2018 (bottom). Top image courtesy of MONUSCO and Culture Vulcan, bottom image courtesy of OVG (Republique Democratique du Congo, Ministere de la Recherche Scientifique, Observatoire Volcanologique de Goma, Direction Generale Goma, Rapport Octobre 2018).
Figure (see Caption) Figure 81. On 2 November 2018 scientists from OVG measured the height from the base of the active cone to the W rim of the crater as 58 m. Courtesy of OVG (Republique Democratique du Congo, Ministere de la Recherche Scientifique, Observatoire Volcanologique de Goma, Direction Generale Goma, Rapport Octobre 2018).

Seismicity remained high during November 2018 but decreased significantly during December. Instrument and access issues in January 2019 prevented accurate assessment of seismicity for the month. The lava lake remained active with periodic surges of thermal activity during November 2018-March 2019 (figure 82). Multiple images show incandescence in multiple places within the crater, suggesting significant fresh overflowing lava.

Figure (see Caption) Figure 82. The active lava lake at Nyamuragira produced strong thermal signals from November 2018 through March 2019 that were recorded in Sentinel-2 satellite images (bands 12, 4, 2). Several images suggest fresh lava cooling around the rim of the crater in addition to the active lake. A relatively cloud-free day on 19 November 2018 (top left) revealed no clear thermal signal, but a strong signal was recorded on 29 November (top right) despite significant cloud cover. Images from 13 and 28 January 2019 (second row) both showed evidence of incandescent lava in multiple places within the crater. The thermal signal was smaller and focused on the center of the crater on 12 and 27 February 2019 (third row). Images taken on 9 and 19 March 2019 clearly showed incandescent material at the center of the crater and around the rim (bottom row). Courtesy of Sentinel Hub Playground.

On 12 April 2019 a Ukrainian Aviation Unit supported by MONUSCO provided support for scientists visiting the crater for observations and seismic analysis. Satellite data confirmed ongoing thermal activity into May, although the strength of the signal appeared to decrease (figure 83). MODVOLC thermal alerts ceased after 8 April, and the MIROVA thermal data also confirmed a decrease in the strength of the thermal signal during April 2019 (figure 84).

Figure (see Caption) Figure 83. Sentinel-2 satellite data (bands 12, 4, 2) confirmed ongoing thermal activity at Nyamuragira into May 2019. The thermal anomalies on 18 April (left) and 3 May (right) 2019 were smaller than those recorded during previous months. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 84. The MIROVA graph of thermal activity (log radiative power) at Nyamuragira from 16 July 2018 through April 2019 showed near-constant levels of high activity through April 2019 when it declined. This corresponded well with satellite and ground-based observations. Courtesy of MIROVA.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; Katcho Karume, Director; Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MONUSCO, United Nations Organization Stabilization Mission in the DR Congo (URL: https://monusco.unmissions.org/en/, Twitter: @MONUSCO); Cultur Volcan, Journal d'un volcanophile (URL: https://laculturevolcan.blogspot.com), Twitter: @CultureVolcan).


Tengger Caldera (Indonesia) — May 2019 Citation iconCite this Report

Tengger Caldera

Indonesia

7.942°S, 112.95°E; summit elev. 2329 m

All times are local (unless otherwise noted)


New explosions with ash plumes from Bromo Cone mid-February-April 2019

The 16-km-wide Tengger Caldera in East Java, Indonesia is a massive volcanic complex with numerous overlapping stratovolcanos (figure 11). Mount Bromo is a pyroclastic cone that lies within the large Sandsea Caldera at the northern end of the complex (figure 12) and has erupted more than 20 times during each of the last two centuries. It is part of the Bromo Tengger Semeru National Park (also a UNESCO Biosphere Reserve) and is frequently visited by tourists. The last eruption from November 2015 to November 2016 produced hundreds of ash plumes that rose as high as 4 km altitude; some of them drifted for hundreds of kilometers before dissipating and briefly disrupted air traffic. Only steam and gas plumes were observed at Mount Bromo from December 2016 to February 2018 when a new series of explosions with ash plumes began; they are covered in this report with information provided by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) and the Darwin Volcanic Ash Advisory Centre (VAAC). Copyrighted ground and drone-based images from Øystein Lund Andersen have been used with permission of the photographer.

Figure (see Caption) Figure 11. The Tengger Caldera viewed from the north Mount Bromo issuing steam in the foreground and Semeru volcano in the background on 30 September 2018. Courtesy of Øystein Lund Andersen, used with permission.
Figure (see Caption) Figure 12. Aerial view of the Bromo Cone in Tengger Caldera seen from the west on 30 September 2018. Courtesy of Øystein Lund Andersen, used with permission.

PVMBG lowered the Alert Level at Bromo on 21 October 2016 from III to II near the end of an eruptive episode lasting nearly a year. The last VAAC report was issued on 12 November 2016 (BGVN 41:12) noting that the last ash emission had been observed the previous day drifting NW at 3 km altitude. Throughout 2017 and 2018 Bromo remained at Alert Level II, with no unusual activity described by PVMBG. During 1-2 September 2018, a wildfire in the Bromo Tengger Semeru National Park burned 65 hectares of savannah (figure 13); the fire produced 12 MODVOLC thermal alerts around the Tengger Caldera rim. No reports of increased volcanic activity were issued by PVMBG during the period.

Figure (see Caption) Figure 13. A wall of fire in the Bromo Tengger Semeru National Park savanna during 1-2 September 2018 produced thermal alerts that were not related to volcanic activity at the Bromo Cone in Tengger Caldera. Image courtesy of the park authority, reported by Mongabay. MODVOLC thermal alerts courtesy of Hawai'i Institute of Geophysics and Planetology (HIGP).

After slightly more than two years of little activity other than gas and steam plumes, ash emissions resumed from the Bromo Cone on 18 February 2019. After a brief pause, a new explosion on 10 March marked the beginning of a series of near-daily ash emissions that lasted for the rest of March, producing ash plumes that rose to altitudes ranging from 3.0 to 5.2 km and drifted in many different directions. A new series of ash emissions began on 6 April, rising to 3 km and also drifting in multiple directions. Ash emission density decreased during the month; plumes were only rising a few hundred meters above the summit by the end of April and consisted of mostly steam and moderate amounts of ash.

Activity during February-April 2019. PVMBG reported that at 0600 on 18 February 2019 an eruption at Tengger Caldera's Bromo Cone generated a dense white-and-brown ash plume that rose 600 m and drifted WSW. The plume was not visible in satellite imagery, according to the Darwin VAAC. The Alert Level remained at 2 (on a scale of 1-4). After a few weeks of quiet a new explosion on 10 March (local time) produced a white, brown, and gray ash plume that rose 600 m above the summit; the plume was visible in satellite imagery extending SW. Increased tremor amplitude was also reported on 10 March. A new emission the next morning produced similar ash plumes that drifted S, SW, and W at 3 km altitude. On the morning of 12 March (local time) a continuous ash plume was observed in satellite imagery at 3.4 km altitude drifting SW. The plume drifted counterclockwise towards the S, E, and NE throughout the day and continued to drift NE and SE on 13 March. The altitude of the plume was reported at 4.3 km later that day based on a pilot report.

Continuous brown, gray, and black ash emissions were reported by PVMBG during 14-19 March at altitudes ranging from 3 to 3.9 km; they drifted generally NE to NW. Ashfall was noted around the crater and downwind a short distance. The Darwin VAAC reported continuous ash emissions to 5.2 km altitude drifting SE on 20 March. It was initially reported by a pilot and partially discernable in satellite imagery before dissipating. Ongoing ash emissions of variable densities and colors ranging from white to black were intermittently visible in satellite imagery and confirmed in webcam and ground reports at around 3.0 km altitude during 21-25 March (figures 14-17). Ashfall impacted the closest villages to Bromo, including Cemara Lawang (30 km NW), which was covered by a thin layer of ash. A few trees in the area were toppled over by the weight of the ash. The plume altitude increased slightly on 26 March to 3.7-3.9 km, drifting N and NE. The higher altitude plume dissipated early on 28 March, but ash emissions continued at 3.0 km for the rest of the day.

Figure (see Caption) Figure 14. Ash drifted NNE from the Bromo Cone in Tengger Caldera on 23 March 2019. Courtesy of Øystein Lund Andersen (drone image), used with permission.
Figure (see Caption) Figure 15. Ash drifted N from the Bromo Cone in Tengger Caldera on 23 March 2019. The Batok Cone is on the right, Segera Wedi is behind Bromo, and Semeru is in the far background. Courtesy of Øystein Lund Andersen, used with permission.
Figure (see Caption) Figure 16. A few trees toppled from ashfall in the vicinity of the Bromo Cone in Tengger Caldera on 24 March 2019. Courtesy of Øystein Lund Andersen, used with permission.
Figure (see Caption) Figure 17. Ash plumes from the Bromo Cone in Tengger Caldera on 24 March 2019 caused ashfall in communities as far as 30 km away. View is from the floor of the Sandsea Caldera. Courtesy of Øystein Lund Andersen, used with permission.

After just a few days of quiet, new ash emissions rising to 3.0 km altitude and drifting SE were reported by both PVMBG (from the webcam) and the Darwin VAAC on 6 April 2019. By the next day the continuous ash emissions were drifting N, then E during 8-10 April, and S during 11 and 12 April. A new emission seen in the webcam was reported by the Darwin VAAC on 15 April (UTC) that rose to 3.0 km and drifted W. Ash plumes were intermittently visible in either webcam or satellite imagery until 17 April rising 500-1,000 m above the crater; from 19-25 April only steam plumes were reported rising 300-500 m above the summit. A minor ash emission was reported from the webcam on 26 April that rose to 3.0 km altitude and drifted NE for a few hours before dissipating. PVMBG reported medium density white to gray ash plumes that rose 400-600 m above the crater for the remainder of the month.

Geologic Background. The 16-km-wide Tengger caldera is located at the northern end of a volcanic massif extending from Semeru volcano. The massive volcanic complex dates back to about 820,000 years ago and consists of five overlapping stratovolcanoes, each truncated by a caldera. Lava domes, pyroclastic cones, and a maar occupy the flanks of the massif. The Ngadisari caldera at the NE end of the complex formed about 150,000 years ago and is now drained through the Sapikerep valley. The most recent of the calderas is the 9 x 10 km wide Sandsea caldera at the SW end of the complex, which formed incrementally during the late Pleistocene and early Holocene. An overlapping cluster of post-caldera cones was constructed on the floor of the Sandsea caldera within the past several thousand years. The youngest of these is Bromo, one of Java's most active and most frequently visited volcanoes.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com); Mongabay, URL: https://news.mongabay.com/2018/09/fires-tear-through-east-java-park-threatening-leopard-habitat/.

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 16, Number 04 (April 1991)

Managing Editor: Lindsay McClelland

Aira (Japan)

Continued vigorous explosions

Alcedo (Ecuador)

Sonic activity and felt earthquakes decline; minor changes to hydrothermal system

Arenal (Costa Rica)

Strombolian activity; explosions; lava extrusion

Asamayama (Japan)

Continued steam emission; seismicity increases after 2 months of quiet

Colima (Mexico)

Lava advances down SW flank after partial collapse of summit dome; rock avalanches from flow margins

Fernandina (Ecuador)

Large SO2-rich plumes deposit ash; lava fountains and flows from 1988 vent area

Fukutoku-Oka-no-Ba (Japan)

Water discoloration during one of five overflights

Galeras (Colombia)

Frequent ash emission and seismicity

Gede-Pangrango (Indonesia)

Earthquake swarm

Hakoneyama (Japan)

Brief earthquake swarm in center of caldera

Ijen (Indonesia)

Crater lake changes from gray and bubbling to light green

Kavachi (Solomon Islands)

Submarine eruption builds new island

Kilauea (United States)

Lava breakout from tube system feeds new ocean entry

Klyuchevskoy (Russia)

Small summit plume; ash on SE flank

Kozushima (Japan)

Earthquake swarm but no surface activity

Kusatsu-Shiranesan (Japan)

Continued seismicity

Langila (Papua New Guinea)

Ash emission and glow

Lewotobi (Indonesia)

Brief increase in seismicity

Manam (Papua New Guinea)

Tephra emission from two craters

Merapi (Indonesia)

High-temperature fumaroles; no changes evident to summit dome

Ontakesan (Japan)

Earthquake swarms and tremor; no change in steam emission

Pacaya (Guatemala)

Strombolian activity declines to ash emission as seismicity decreases

Pinatubo (Philippines)

Phreatic explosion devastates 1 km2 forested area; seismicity and gas emission continue; 2,000 evacuated

Poas (Costa Rica)

Increased gas emission; continued seismicity

Rabaul (Papua New Guinea)

Low-level seismicity; minor deflation

Rincon de la Vieja (Costa Rica)

Ash ejection and lahars

Ruiz, Nevado del (Colombia)

Tremor precedes several days of ash emission

Santa Maria (Guatemala)

Strong explosion and pyroclastic flow; continued lava extrusion feeds rock avalanches

Semeru (Indonesia)

Continued explosions and seismicity

Sheveluch (Russia)

Possible new tephra deposit on E flank

Stromboli (Italy)

Explosive activity from a single crater; strong seismicity

Submarine Volcano NNE of Iriomotejima (Japan)

Strong felt seismicity but no surface changes

Taal (Philippines)

Continued seismicity and changes to crater lake

Turrialba (Costa Rica)

New fractures found after major 22 April earthquake

Unzendake (Japan)

Ash emission from two vents; frequent seismicity; lava dome extruded into summit crater

Vulcano (Italy)

Fumarole temperatures increase

White Island (New Zealand)

Renewed ash emission; new collapse pit



Aira (Japan) — April 1991 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Continued vigorous explosions

Explosive activity has remained at high levels since mid-January, totaling . . . 42 [explosions] in April (the highest monthly total since April 1986), and 15 through 16 May . . . . The explosions caused no damage. The highest April ash cloud rose 3,000 m on the 30th. April ashfall was 187 g/m2 [at KLMO]. Earthquake swarms were recorded on four days, a normal monthly total for the volcano.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: JMA.


Alcedo (Ecuador) — April 1991 Citation iconCite this Report

Alcedo

Ecuador

0.43°S, 91.12°W; summit elev. 1130 m

All times are local (unless otherwise noted)


Sonic activity and felt earthquakes decline; minor changes to hydrothermal system

Late-April fieldwork revealed continued but diminished sonic activity, no evidence of an eruption, and only minor changes to the volcano's hydrothermal system.

Biologist Milton Friere, working on the island since February, reported that he felt a strong shock, apparently on 9 March at about 1900. Hunters on Santiago Island, 35 km NE of Alcedo, also felt a large earthquake around that time but there is uncertainty about the date and the WWSSN recorded only the 3 March event (16:3). Immediately after the felt earthquake, explosion sounds began to be heard daily at Friere's camp on the caldera's N rim. The initial sounds were the most intense and frequent, then they declined gradually, and by late April were heard only once every few days from the N rim camp. Fewer than 5 earthquakes were felt at the camp until 5 April. Others were documented on 5 April at 1740, 7 April at 1700, and 17 April at 1725. Events of similar intensity may have gone unnoticed during active fieldwork.

While camped on the caldera's S rim during a 23-28 April field survey, Dennis Geist heard eight explosion sounds in 3 days, compared to 2-13 heard daily by Tui DeRoy and Mark Jones in late March (16:3). All were heard in camp, with none noticed during fieldwork. The sounds, consisting of deep rumbling lasting about a second, were likened to thunder generated ~ 10 km away. Although the sounds were clearly directional, each seemed to come from a different direction. None were accompanied by discernible changes in fumarole output, but two were followed 10-15 seconds later by a felt earthquake. The stronger earthquake lasted 5-10 seconds, whereas the weaker one continued for more than 30 seconds after a strong initial jolt.

The seismicity and sonic activity were preceded by the first heavy rains in the Galápagos for several years. Between 26 February and 4 March, 5-10 cm of rain fell daily on Alcedo. Heavy rains also fell on 6, 8, 10, 19, and 30 March, and 10 and 15 April.

Geist noted only subtle changes to the hydrothermal system. Before the 1991 activity, hundreds of fumaroles were distributed around both the southern ring faults and a vent that erupted voluminous rhyolitic pumice and obsidian flows about 90,000 years ago. Fewer than 10 small new fumaroles (identified by remains of recently killed plants) were observed, and no significant increase in total gas output was evident. A large fumarole (called "the Geyser" because it formerly ejected water) may have been somewhat more vigorous than during Geist's previous visits in 1989 and 1983. The vapor plume from this fumarole varied dramatically over periods of hours, and at times there was no visible cloud. No recently formed fissures or fault scarps were observed.

Geologic Background. Alcedo is one of the lowest and smallest of six shield volcanoes on Isabela Island. Much of the flanks and summit caldera are vegetated, but young lava flows are prominent on the N flank near the saddle with Darwin volcano. It is the only Galapagos volcano known to have erupted rhyolite as well as basalt, producing about 1 km3 of late-Pleistocene rhyolitic tephra and lava flows from several vents late in its history. Recent faulting has produced a moat around part of the 7-8 km caldera floor, which is elongated N-S and appears to be migrating to the south. Fewer circumferential fissures occur on Alcedo than on other western Galápagos volcanoes. An eruption attributed to Alcedo in 1954 (Richards, 1957) is more likely to have been from neighboring Sierra Negra (Simkin 1980, pers. comm.). Photo-geologic mapping by K.A. Howard (pers. comm.) revealed only one flow on 30 October 1960 photographs that does not appear on 30 May 1946 photos. That is near Cartago Bay, low on the SE flank, rather than the 610-m, NE-flank elevation listed for the 1954 eruption. An active hydrothermal system is located within the caldera.

Information Contacts: D. Geist, Univ of Idaho.


Arenal (Costa Rica) — April 1991 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Strombolian activity; explosions; lava extrusion

Strombolian activity, with sporadic small explosions, lava extrusion, and voluminous gas emission, continued during April. Tremor, associated with lava extrusion, dominated seismicity during the first half of the month. Following 15 April, the number of explosions increased and tremor diminished.

The following is a report by W. Melson. "From 7 to 17 April, continuous 24 hour/day seismic, sound, and visual observations from the Arenal Observatory . . . revealed that; 1) blocky lava flows are moving down and have covered the S slope to about 900 m elevation. None are now active in the previous long-term channel on the N slopes into the Río Tabacón drainage; one small 200-m-long flow was active on the WNW slope. 2) The level of pyroclastic activity ranged from 3 events/day (10 April) to 46/day (14-15 April) (figure 37). 3) Episodic periods of intense harmonic tremor are common. Compared to 11 other periods of close monitoring, beginning in 1987, the pyroclastic activity is low (figure 38)."

Figure (see Caption) Figure 37. Daily number of pyroclastic events at Arenal, 7-17 April 1991. Event types are characterized by sound; 'Whooshes' are intense gas, block, and bomb fountains;'Chugs' are rhythmic, less intense gas emissions, commonly accompanied by blocks and bombs. Observations were made from Arenal Observatory Lodge, 2.7 km S of the summit. Courtesy of W. Melson.
Figure (see Caption) Figure 38. Average daily number of pyroclastic events at Arenal, during 12 approximately 10-day periods, 1987-91. Observations were made from Arenal Observatory Lodge (2.7 km S of the summit) by Earthwatch and Smithsonian Volunteer Expeditions personnel. Courtesy of W. Melson.

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: W. Melson, SI; V. Barboza, E. Fernández, J. Barquero, and R. Sáenz, OVSICORI.


Asamayama (Japan) — April 1991 Citation iconCite this Report

Asamayama

Japan

36.406°N, 138.523°E; summit elev. 2568 m

All times are local (unless otherwise noted)


Continued steam emission; seismicity increases after 2 months of quiet

Strong seismicity . . . declined during February and March 1991. Only 19 earthquakes and no tremor episodes were recorded in March. Seismicity increased again 8-18 April and a monthly total of 250 earthquakes and 17 tremor episodes were recorded (figure 13). Steam emission remained unchanged with a plume height of a few hundred meters.

Figure (see Caption) Figure 13. Daily number of recorded earthquakes (top) and tremor episodes (bottom) at Asama, January 1989-early May 1991. Arrow marks small ash eruptions on 20 July 1990. Courtesy of JMA.

Geologic Background. Asamayama, Honshu's most active volcano, overlooks the resort town of Karuizawa, 140 km NW of Tokyo. The volcano is located at the junction of the Izu-Marianas and NE Japan volcanic arcs. The modern Maekake cone forms the summit and is situated east of the horseshoe-shaped remnant of an older andesitic volcano, Kurofuyama, which was destroyed by a late-Pleistocene landslide about 20,000 years before present (BP). Growth of a dacitic shield volcano was accompanied by pumiceous pyroclastic flows, the largest of which occurred about 14,000-11,000 BP, and by growth of the Ko-Asama-yama lava dome on the east flank. Maekake, capped by the Kamayama pyroclastic cone that forms the present summit, is probably only a few thousand years old and has an historical record dating back at least to the 11th century CE. Maekake has had several major plinian eruptions, the last two of which occurred in 1108 (Asamayama's largest Holocene eruption) and 1783 CE.

Information Contacts: JMA.


Colima (Mexico) — April 1991 Citation iconCite this Report

Colima

Mexico

19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)


Lava advances down SW flank after partial collapse of summit dome; rock avalanches from flow margins

The following is from Ana Lillian Martín del Pozzo and colleagues.

The new summit-dome lobe grew from about 6 m high and 20 m in diameter on 2 March to 36 m high and 109 m across on 14 April, but geodetic measurements on 15 April showed a reduction in its diameter due to the beginning of its emplacement down the SW flank. Seismicity recorded by four portable seismographs increased dramatically beginning on 12 April, saturating records; avalanche signals and both A-and B-type events were detected. Most seismicity after 15 April was related to avalanching (see also seismic data from RESCO instruments reported in 16:03). During the morning of 16 April, avalanching from the dome occurred every 3-5 minutes, increasing to constant landsliding about noon. Large Merapi-type avalanches began around 1515, with maximum intensity between 1700 and 1800. During that time, three distinct plumes were visible: a white gas column, fine gray ash being carried E, and fine-grained material produced by the avalanches. Colima airport was closed because of ashfall, although <5 mm of ash were measured there. Data from four dry-tilt stations N and S of the summit showed <10 µrad of deformation for the period 14-23 April. Weekly spring-water monitoring showed no pH or temperature changes, although sulfate and boron contents varied, having increased before 16 April. Declines in the levels of nearby lakes appear to have been caused by normal withdrawal of irrigation water.

The following is from a Centro Internacional de Ciencias de la Tierra (CICT) team, including geologists and geophysicists from the Universidad de Colima, UNAM, Univ de Guadalajara, Arizona State, and Louisiana State Universities.

Avalanches generated voluminous dilute dust clouds, mainly produced by the crumbling of blocks falling from the dome and the receding crater rim, and by reactivation of previously deposited dust. The component of hot new magma apparently contributed to the seemingly fluidized character of the avalanches [and the resulting Merapi-type block-and-ash flows].

After the partial collapse of the summit-dome lobe, a block lava flow emerged from the SW part of the dome and began to move down the SW flank. The flow, 70 m long and 40 m wide on 18 April, was about 100 m wide and at least 1,150 m long by the morning of 26 April, with its 25-m-thick front at 2,680 m altitude. Dimensions were similar on 18 May, and the flow was widening at its top. Small avalanches occurred from the flow front, from the crater rim adjacent to the flow levees, and from the levees themselves, especially the E levee. Blocks reached about 2,300 m elevation (~4,000 m outward from the summit) during the largest avalanche associated with the 16 April collapse. Dust clouds extended beyond the range of the avalanche blocks, and three canyons of the volcano's main drainage system on the SW and S flanks were filled with avalanche-derived clastic material, mostly very fine powder. This material has not been compacted and has a volume on the order of 106 m3. A lahar warning has been issued for the coming rainy season, which usually begins in early June. Lava extruded from the SW part of the dome was pushing older dome material toward the W and NW. Unstable material was accumulating, and geologists noted that additional avalanches could be expected in those areas.

Winds in the area have dominantly blown toward the SE to NE recently, and some light ashfall has been reported from towns in that sector up to 30 km away. Seismic records showed events with small wave packages that at times seemed to correlate with explosive summit degassing activity, but their number and amplitude were decreasing as of late April.

Observations of the summit area revealed that the 2 July 1987 crater on the E side of the dome (Flores and others, 1987, and 12:07, 13:09, and 15:12) had a ring-like pattern of fumaroles around its rim. A pair of whitish plumes persistently issued from the N part of the zone of lava extrusion, where some incandescence has been observed. Plume heights during similar wind conditions ranged from a few tens of meters to 1,500 m. As of 18 May, the summit-dome lobe was growing toward the edge of the pre-existing W dome. Geologists noted that if activity continues at the same rate, a new block lava flow will begin to develop, probably on the W or NW side of the volcano, in the next 2-3 weeks.

Airborne COSPEC measurements that began 25 April showed SO2 emission rates on the order of 300 t/d, similar to those observed in 1982 by Casadevall and others (1984) and in 1985 by geologists from Dartmouth College. Geologists noted that these stable low levels were consistent with the absence of significant deep seismicity or harmonic tremor and support an interpretation that the present cycle of activity does not include the ascent of significant new magma or magmatic gases from depth.

Alert warnings have been issued and transportation made available for possible evacuation of towns in the risk area, which extends to 12 km on the SW flank. However, geologists noted that no evacuations have occurred, since the volume of rock avalanches was limited to a few hundred thousand m3 and seismicity has remained at relatively low levels, without harmonic tremor or low-frequency earthquakes.

The following, from J.B. Murray, describes ground deformation work 1-7 March.

"Ten kilometers of levelling lines, established in 1982, were measured 1-4 March, as were five of six dry-tilt stations. The 6th, on the W side of the cone, could not be measured, because repeated rock avalanches from the dome made it extremely hazardous to approach this side of the mountain.

"The levelling traverse was last occupied in March 1990, and results show that there have been no large changes since then. There was a slight subsidence of the stations nearest to the summit (just over 1 km from the dome), which have dropped 2.5 cm relative to the farthest stations, 3 km from the summit and outside the caldera. Within the precision of the method, the subsidence appears to be radial to the summit, or perhaps between the summit and the parasitic vent Volcancito (on the upper NE flank).

"The three dry-tilt stations within the caldera all showed tilts to the S over the past year. Those on the Playon (the caldera floor at the NW foot of the active cone) had small tilts of 9 and 15 µrad. The station on Volcancito has tilted 39 µrad, although this value is less reliable because the combination of benchmarks used was different than in 1990. The other two stations (at Nevado de Colima and Barranca La Arena), 6 km N and 9 km S of the summit, were vandalized or otherwise disturbed.

"At first sight these results appear reassuring, as one would expect more pronounced deformation if there were any major increase in magma supply that might be associated with a cataclysmic event. However, caution must be exercised, since (a) ground deformation prior to a major eruption has not been measured at Colima before, and is poorly known on this type of volcano, and (b) the levelling traverse and two of the three dry-tilt stations are N of the volcano where the ground rises toward Nevado de Colima, whereas most of the deformation could be occurring on the unbutressed S flank.

"Many large rock avalanches were seen on 1 March, but from 2 March, the rate declined somewhat. During the levelling 2-4 March, avalanches were noted at the overall rate of 3.2/hour down the N and W sides. From the same area, avalanches were noted at the hourly rate of 1.4 on 29 March-1 April 1990; 0.4 on 4-5 February 1986; and 1.5 on 3-7 December 1982. These figures underplay the 1991 activity, because the avalanches were much larger this year and continued for much longer."

References. Casadevall, T.J., Rose, W.I., Fuller, W., Hunt, W., Hart, M., Moyers, J., Woods, D., Chuan, R., and Friend, J., 1984, Sulfur dioxide and particles in quiescent volcanic plumes from Poás, Arenal, and Colima Volcanoes, Costa Rica and México: JGR, v. 89, no. D6, p. 9633-9641.

Flores, J., and others, 1987, Informes de las recientes observaciones practicadas en el Volcán Colima: Revista del Instituto de Geografía y Estadística, Universidad de Guadalajara, México, v. 3, no. 2.

Further Reference. Rodríguez-Elizarrías, S., Siebe, C., Komorowski, J.-C., Espindola, J., and Saucedo, R., 1991, Field observations of pristine block- and-ash-flow deposits emplaced April 16-17, 1991 at Volcán de Colima, Mexico: JVGR, v. 48, p. 399-412.

Geologic Background. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4320 m high point of the complex) on the north and the 3850-m-high historically active Volcán de Colima at the south. A group of cinder cones of late-Pleistocene age is located on the floor of the Colima graben west and east of the Colima complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: Francisco Núñez-Cornú, F.A. Nava, Gilberto Ornelas-Arciniega, Ariel Ramírez-Vázquez, R. Saucedo, G.A. Reyes-Dávila, R. García, Guillermo Castellanos, and Hector Tamez, CICT, Universidad de Colima; S. de la Cruz-Reyna, Z. Jiménez, J.M. Espindola, and Sergio Rodríguez, UNAM; Julián Flores, Instituto de Geografía y Estadística, Univ de Guadalajara; Claus Siebe and J-C. Komorowski, Arizona State Univ, USA; S. Williams, Louisiana State Univ, USA.Ana Lillian Martín del Pozzo, J. Panohaya, F. Sánchez, R. Maciel, and A. Aguayo, Instituto de Geofísica, UNAM; D. Barrera, Centro de Ciencias de la Tierra, Univ de Guadalajara; G. González, Univ Autónoma de Puebla; J.B. Murray, Open Univ, UK.


Fernandina (Ecuador) — April 1991 Citation iconCite this Report

Fernandina

Ecuador

0.37°S, 91.55°W; summit elev. 1476 m

All times are local (unless otherwise noted)


Large SO2-rich plumes deposit ash; lava fountains and flows from 1988 vent area

The eruption . . . began on 19 April and ended in the early morning hours of 24 April. It was observed by several groups both on and near Fernandina, providing documentation that is unusually detailed for this uninhabited island volcano.

The start of the eruption was witnessed at about 1300 by Kirstin and Feo Pitcairn while sailing towards Fernandina ~30 km to its N. A "towering column" developed within only a few minutes, and one hour later a second plume, from a source N of the first, was recognized. David Day. . . reported that the main vent was near the base of the ESE caldera wall at the 1988 eruption site, with another vent ~3 km to the NW, also on the main caldera boundary fault and near the easternmost 1978 eruption vent. At 1500, Day, then sailing near Isla Santiago, noted that the leading edge of the cloud had already reached that island's high point, ~ 90 km ENE of its source.

Shortly after 1500, cloud development accelerated. Kirstin Pitcairn described a "big white mushroom cloud above the N plume" and estimated the height of the rapidly rising S plume at 4-6 km. Day described the distant cloud as building slowly after 1510, and both observers remarked on the increased density of the ash cloud. At 1535 a new plume joined the other two, nearer the S plume, and rose very rapidly, but the S plume remained dominant and Pitcairn saw pink coloration to its top in daytime. Starting about 1600, ash fell at Cabo Hammond, on Fernandina's SW corner, where Markus Horning and assistants were studying fur seals. Ashfall was continuous for 3 hours and intermittent until about 2230, with an estimated accumulation of 5-10 mm for the full eruption. At 2015 Horning first heard noise from the eruption, a strong continuous rumbling without booms or explosions, that continued until well after midnight. A single explosion was heard by Milton Friere, 50 km E on Volcán Alcedo, at 1630 ( ± 15 minutes).

At 1830 David Day, then 110 km ESE, saw "the first of 3 large dark clouds punch up quickly above the low cloud covering Isabela . . . over a 10-minute period," and estimated the cloud height at 3-4 km.

That night the Pitcairns watched and videotaped the eruption from Punta Espinoza on Fernandina's NE coast. They described a varying spectacle including "flame-shaped jets shooting high into the billowing column," alternation of brightness between the two main plumes, and cessation of the central plume at 2043. At Cabo Hammond, Horning routinely measured incident light intensity at sea level every night, and his readings indicated maximum light emission/reflection that night from about 2000 to 2200. He noted that this was the only night in which glow from two vents was visible (only the S vent being active in later nights). Although it was a dark night (new moon 14 April), the peak glow corresponded to roughly 2/3 the light measured on clear full-moon nights.

The eruption was quieter on the early morning of 20 April, but zoologists N.P. and M.J. Ashmole, also at Espinoza, described renewed activity around 0845, including audible explosions, ash, and reappearance of the central column. On the opposite corner of the island, Horning experienced a heavy, dense fog that obscured the summit, but he heard strong explosions at 0857 and 1116. The Pitcairns described a huge dark cloud forming at 0910, and in late morning they sailed W to circle the island, but encountered heavy ashfall off the WNW coast. At 1152 the Nimbus-7 . . . TOMS instrument measured a strong SO2 plume to the SW, with the greatest concentration 500-600 km SSW and trace values to the W. A preliminary estimate of the total mass of SO2 was 1.7 x 105 metric tons. The combination of ash and aerosol that stung the eyes caused the Pitcairn group to turn back about 1500. Ashfall increased to the N in late afternoon, and they experienced (decreasing) ashfall all the way back to Punta Espinoza. Very little ash fell at Cabo Hammond.

Activity had declined by the morning of 21 April, with only the S plume continuing and at decreased height. By mid-morning the summit was obscured by low cloud cover, but at 1120 Pitcairn saw all three plumes active (although the N one was small). From the summit of Sierra Negra, 65 km SE of Fernandina, David Day photographed "a medium-size eruption cloud" at noon. At the same time, however, the TOMS instrument detected virtually no SO2 over Galápagos but a low concentration 600 km W, on the equator. That night, Day sailed around Isabela and briefly saw faint glow over Fernandina as he approached it from the S.

On the morning of 22 April, . . . Day landed at NW Fernandina and noted 1 mm of fresh ash. At about 1040, while still low on the NW flank, he heard roaring from the vent, then roughly 12 km distant. This apparently marked a renewal of activity, for the TOMS instrument measured a strong concentration of SO2 immediately over Fernandina at 1046. Day reached the rim at 1730 and described 50-100-m fountains from the 1988 vent area, low on the opposite caldera wall. Fresh aa flows covered an estimated 80% of the low caldera floor, with only the higher lobes of the 1988 debris avalanches still visible. Most flows were to the NW, but a smaller flow went W below the SE bench. The aforementioned northerly vent, on the E side of the NW bench, had fed "a small flow" to join the others on the NW floor, and fumarolic activity was vigorous at the vent.

Day reported that the eruption continued with the same intensity all night, and the next day he explored to the S, finding that the maximum thickness of new tephra on the W rim was 1 cm at a point WNW of the main vent. Pele's hair was "fairly abundant." On this day (23 April), the GOES satellite detected a 105-km plume at 0900 that grew to 320 km SSW at 1300 and had dissipated by 1600 (16:3). At 1103 the TOMS instrument detected a strong SO2 concentration ~ 90 km SW and lower values to ~ 225 km SW; a preliminary estimate of the total mass was ~4 x 104 metric tons. Day was on the S rim of the caldera at 1205, when he saw "a mass of landslides round and above the main vent" that was immediately followed by increased activity at the vent. Fountain height increased by almost 50% and his group (~ 3 km SW of the vent) experienced light scoria fall 10 minutes later that lasted for 15 minutes. Noise and fountaining, after almost ceasing, resumed at 2006 that evening and Day saw additional flareups at 2019, 2037, and 2100. Day observed a small flow NW from the main vent from 2100 to 2122, with no noise, but reported no further observations or sounds overnight.

Horning had reached the SW rim at 1700 and watched the S vent continue producing lava until at least 0100 on 24 April, but it had ceased by 0530. Day also noted no activity between dawn and his leaving the rim at 0630 that morning. Horning's SW-rim camp received 1 mm or less of ash overnight, but when they returned to their coastal camp that evening ~ 1-2 mm had accumulated in their absence. No glow was observed during the nights of 24 and 25 April.

Geologist Dennis Geist was on the summit of Alcedo from 24 April and reported that the only sign of a Fernandina eruption was a small (~ 3 km diameter) white cloud above the caldera. No glow was observed that night, either from Alcedo or N of the volcano (where Day was sailing around N Isabela). The small white cloud persisted over Fernandina at least until 27 April when Geist left Alcedo.

Geologic Background. Fernandina, the most active of Galápagos volcanoes and the one closest to the Galápagos mantle plume, is a basaltic shield volcano with a deep 5 x 6.5 km summit caldera. The volcano displays the classic "overturned soup bowl" profile of Galápagos shield volcanoes. Its caldera is elongated in a NW-SE direction and formed during several episodes of collapse. Circumferential fissures surround the caldera and were instrumental in growth of the volcano. Reporting has been poor in this uninhabited western end of the archipelago, and even a 1981 eruption was not witnessed at the time. In 1968 the caldera floor dropped 350 m following a major explosive eruption. Subsequent eruptions, mostly from vents located on or near the caldera boundary faults, have produced lava flows inside the caldera as well as those in 1995 that reached the coast from a SW-flank vent. Collapse of a nearly 1 km3 section of the east caldera wall during an eruption in 1988 produced a debris-avalanche deposit that covered much of the caldera floor and absorbed the caldera lake.

Information Contacts: D. Day, Isla Santa Cruz; F. Pitcairn and K. Pitcairn, Bryn Athyn, PA, USA; M. Horning, Seeweisen, Germany; S. Doiron, GSFC; N. Ashmole and M. Ashmole, Univ of Edinburgh, Scotland; D. Geist, Univ of Idaho, USA.


Fukutoku-Oka-no-Ba (Japan) — April 1991 Citation iconCite this Report

Fukutoku-Oka-no-Ba

Japan

24.285°N, 141.481°E; summit elev. -29 m

All times are local (unless otherwise noted)


Water discoloration during one of five overflights

A blue water discoloration, extending 2 km E-W, was observed during a 6 February overflight by the JMSA. Overflights on 18 January, 12 March, 15 April, and 10 May revealed no abnormal water.

Geologic Background. Fukutoku-Oka-no-ba is a submarine volcano located 5 km NE of the pyramidal island of Minami-Ioto. Water discoloration is frequently observed from the volcano, and several ephemeral islands have formed in the 20th century. The first of these formed Shin-Ioto ("New Sulfur Island") in 1904, and the most recent island was formed in 1986. The volcano is part of an elongated edifice with two major topographic highs trending NNW-SSE, and is a trachyandesitic volcano geochemically similar to Ioto.

Information Contacts: JMA.


Galeras (Colombia) — April 1991 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Frequent ash emission and seismicity

Following the pattern begun in March, activity continued to increase during April, when ash emissions from the main crater and associated seismicity were very frequent (table 5). Fieldwork revealed new fissures and vents on the crater's W wall, increases in the area of incandescence, and slumping of loose material. Analyses of gas samples from Deformes and Besolima fissure fumaroles suggest an increasingly magmatic composition. At Calvache fumarole, the ratio of CO2/SO2 has increased steadily (figure 36), while H2S and HCl have shown no significant variations. Besolima fissure fumarole temperatures continued to decline, from 514°C in March to 468°C on 2 April.

Table 5. Eruptive activity and associated seismicity at Galeras, 1-19 April 1991. Atmospheric conditions prevented direct observations 20-30 April. "Inc" means increased, column heights are in meters, and durations are in seconds.

Date Time Activity Column height Signal Type Signal Duration
01 Apr 1991 0640 Ash emission -- Long-period 34 s
01 Apr 1991 0905 Inc sulfur odor -- Tremor 1800 s
02 Apr 1991 0620 Inc column size 300 m Tremor 159 s
02 Apr 1991 0711 Ash emission 900 m Tremor 275 s
02 Apr 1991 1014 Ash emission -- Tremor 116 s
02 Apr 1991 1029 Ash emission -- Long-period 42 s
03 Apr 1991 0741 Ash emission -- Tremor 89 s
05 Apr 1991 0500 Inc noise -- Tremor 475 s
06 Apr 1991 0002 Inc incandescence -- Tremor 182 s
07 Apr 1991 1757 Ash emission 700 m Long-period 52 s
07 Apr 1991 1823 Ash emission 500 m Tremor 140 s
08 Apr 1991 1717 Ash emission -- Tremor 135 s
09 Apr 1991 1827 Ash emission 400 m Tremor 130 s
10 Apr 1991 0608 Ash emission 1100 m Tremor 89 s
10 Apr 1991 0644 Ash emission 200 m Tremor 71 s
10 Apr 1991 1010 Ash emission 700 m Tremor 230 s
10 Apr 1991 1643 Inc noise -- Tremor 110 s
10 Apr 1991 1820 Ash emission -- Long-period 50 s
10 Apr 1991 1820 Inc noise -- Long-period 61 s
10 Apr 1991 1820 Inc incandescence -- Tremor 165 s
10 Apr 1991 1916 Ash emission -- Long-period 30 s
11 Apr 1991 0320 Ash emission, inc incandescence -- Tremor 170 s
11 Apr 1991 0324 Ash emission -- Long-period 17 s
11 Apr 1991 0324 Inc incandescence -- Long-period 29 s
11 Apr 1991 0605 Ash emission 200 m Long-period 44 s
11 Apr 1991 0611 Ash emission 400 m Long-period 58 s
11 Apr 1991 1508 Ash emission -- Tremor 131 s
11 Apr 1991 1758 Ash emission 1700 m Tremor 120 s
11 Apr 1991 1836 Ash emission 200 m Long-period 26 s
11 Apr 1991 1841 Ash emission 800 m Tremor 115 s
12 Apr 1991 0806 Ash emission -- Tremor 295 s
12 Apr 1991 0826 Ash emission -- Tremor 250 s
12 Apr 1991 0854 Ash emission -- Long-period 46 s
13 Apr 1991 0359 Ash emission -- Tremor 625 s
13 Apr 1991 0555 Inc column size 500 m Tremor 260 s
13 Apr 1991 0622 Inc column size 400 m Long-period 20 s
13 Apr 1991 0658 Ash emission 400 m Long-period 50 s
13 Apr 1991 0958 Ash emission, inc noise -- Tremor 91 s
14 Apr 1991 0632 Ash emission 800 m Tremor 83 s
14 Apr 1991 0735 Ash emission 1100 m Tremor 130 s
14 Apr 1991 0808 Ash emission 700 m Long-period 56 s
14 Apr 1991 0845 Ash emission, explosions, inc sulfur odor 1500 m Tremor 179 s
15 Apr 1991 0757 Ash emission 1500 m Tremor 137 s
15 Apr 1991 1355 Ash emission, explosions -- Long-period; tremor 380 s
15 Apr 1991 1509 Ash emission, explosions -- Tremor 82 s
15 Apr 1991 1921 Ash emission, inc incandescence -- Tremor 130 s
16 Apr 1991 0559 Ash emission -- Tremor 111 s
16 Apr 1991 0711 Ash emission -- Long-period 40 s
16 Apr 1991 0815 Ash emission 800 m Long-period 34 s
16 Apr 1991 0835 Ash emission 1500 m Tremor 600 s
16 Apr 1991 1004 Ash emission 1500 m Tremor 171 s
16 Apr 1991 1107 Ash emission -- Tremor 145 s
17 Apr 1991 0711 Ash emission -- Long-period 47 s
17 Apr 1991 0740 Ash emission -- Long-period 57 s
17 Apr 1991 0752 Ash emission -- Tremor 122 s
17 Apr 1991 1742 Ash emission -- Tremor 205 s
17 Apr 1991 1802 Ash emission -- Tremor 370 s
17 Apr 1991 1948 Ash emission -- Tremor 1500 s
18 Apr 1991 0706 Ash emission -- Tremor 190 s
18 Apr 1991 0918 Ash emission -- Long-period 70 s
19 Apr 1991 0627 Ash emission -- Long-period 21 s
19 Apr 1991 0728 Ash emission -- Tremor 76 s
19 Apr 1991 0855 Ash emission -- Tremor 180 s
Figure (see Caption) Figure 36. Concentration of CO2 (squares) and SO2 (circles) in Calvache fumarole gas at Galeras, April 1988-early April 1991. Courtesy of INGEOMINAS.

A significant increase in high-frequency seismicity was recorded during the second half of April, including swarms of events on the 18th and 29th. The earthquakes (M

Figure (see Caption) Figure 37. Epicenter map of 36 high-frequency earthquakes at Galeras, April 1991. Courtesy of INGEOMINAS.
Figure (see Caption) Figure 38. Daily reduced displacement of long-period earthquakes at Galeras, April 1991. Courtesy of INGEOMINAS.

The electronic tiltmeter 0.9 km E of the crater (at "Crater" station) showed continued inflation, with 85 and 48 µrad of accumulated tangential and radial inflation, respectively, since September 1990 (figure 39). Three km E of the crater, dry tilt (El Pintado station) showed very low, but consistent inflation. Geologists interpreted the inflation as volcanic deformation or neotectonic tilt along the Buesaco fault.

Figure (see Caption) Figure 39. Tangential (top curve) and radial (bottom curve) deformation 0.9 km E of the crater ("Crater" electronic tiltmeter) at Galeras, May 1990-April 1991. Courtesy of INGEOMINAS.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: INGEOMINAS-OVP.


Gede-Pangrango (Indonesia) — April 1991 Citation iconCite this Report

Gede-Pangrango

Indonesia

6.77°S, 106.965°E; summit elev. 3008 m

All times are local (unless otherwise noted)


Earthquake swarm

A swarm of 100 volcanic earthquakes (40 deep and 60 shallow) was recorded on 29 April, an increase from the previous daily average of 10-15 events. Tectonic earthquakes averaged 1-2/day. Seismicity had been increasing since February. No surface activity was observed.

Geologic Background. Gede volcano is one of the most prominent in western Java, forming a twin volcano with Pangrango volcano to the NW. The major cities of Cianjur, Sukabumi, and Bogor are situated below the volcanic complex to the E, S, and NW, respectively. Gunung Pangrango, constructed over the NE rim of a 3 x 5 km caldera, forms the high point of the complex at just over 3000 m elevation. Many lava flows are visible on the flanks of the younger Gunung Gede, including some that may have been erupted in historical time. The steep-walled summit crater has migrated about 1 km NNW over time. Two large debris-avalanche deposits on its flanks, one of which underlies the city of Cianjur, record previous large-scale collapses. Historical activity, recorded since the 16th century, typically consists of small explosive eruptions of short duration.

Information Contacts: W. Modjo, VSI.


Hakoneyama (Japan) — April 1991 Citation iconCite this Report

Hakoneyama

Japan

35.233°N, 139.021°E; summit elev. 1438 m

All times are local (unless otherwise noted)


Brief earthquake swarm in center of caldera

A swarm of ~300 earthquakes (M <= 2.5) was recorded between 1000 and 1300 on 22 April. Several of the earthquakes, located at 5 km depth in the central part of the caldera, were felt by area residents. Seismicity gradually declined, and had returned to normal by 24 April. No changes in surface activity were observed. Earthquake swarms have been recorded about once a year, including one in August 1990 (M <= 5.1), at the volcano's E foot. Hakone erupted phreatically about 3,000 years ago, and many fumaroles and hot springs remain active.

Geologic Background. Hakoneyama volcano is truncated by two overlapping calderas, the largest of which is 10 x 11 km wide. The calderas were formed as a result of two major explosive eruptions about 180,000 and 49,000-60,000 years ago. Scenic Lake Ashi lies between the SW caldera wall and a half dozen post-caldera lava domes that were constructed along a NW-SE trend cutting through the center of the calderas. Dome growth occurred progressively to the NW, and the largest and youngest of these, Kamiyama, forms the high point. The calderas are breached to the east by the Hayakawa canyon. A phreatic explosion about 3000 years ago was followed by collapse of the NW side of Kamiyama, damming the Hayakawa valley and creating Lake Ashi. The latest magmatic eruptive activity about 2900 years ago produced a pyroclastic flow and a lava dome in the explosion crater, although phreatic eruptions took place as recently as the 12-13th centuries CE. Seismic swarms have occurred during the 20th century. Lake Ashi, along with the thermal areas in the caldera, is a popular resort destination SW of Tokyo.

Information Contacts: JMA.


Ijen (Indonesia) — April 1991 Citation iconCite this Report

Ijen

Indonesia

8.058°S, 114.242°E; summit elev. 2769 m

All times are local (unless otherwise noted)


Crater lake changes from gray and bubbling to light green

The crater lake (45°C) was light green in March and April, a change from its previous gray color, when large bubbles were visible on the surface. A total of one deep and two shallow volcanic earthquakes and one tectonic event were recorded. Tremor was recorded on 25, 26, and 28 March.

Geologic Background. The Ijen volcano complex at the eastern end of Java consists of a group of small stratovolcanoes constructed within the large 20-km-wide Ijen (Kendeng) caldera. The north caldera wall forms a prominent arcuate ridge, but elsewhere the caldera rim is buried by post-caldera volcanoes, including Gunung Merapi, which forms the high point of the complex. Immediately west of the Gunung Merapi stratovolcano is the historically active Kawah Ijen crater, which contains a nearly 1-km-wide, turquoise-colored, acid lake. Picturesque Kawah Ijen is the world's largest highly acidic lake and is the site of a labor-intensive sulfur mining operation in which sulfur-laden baskets are hand-carried from the crater floor. Many other post-caldera cones and craters are located within the caldera or along its rim. The largest concentration of cones forms an E-W zone across the southern side of the caldera. Coffee plantations cover much of the caldera floor, and tourists are drawn to its waterfalls, hot springs, and volcanic scenery.

Information Contacts: W. Modjo, VSI.


Kavachi (Solomon Islands) — April 1991 Citation iconCite this Report

Kavachi

Solomon Islands

8.991°S, 157.979°E; summit elev. -20 m

All times are local (unless otherwise noted)


Submarine eruption builds new island

A newly emergent volcanic island near previously active Kavachi was observed ejecting lava and ash during a helicopter overflight on 4 May. John Starcy (Australian High Commissioner, Honiara, Solomon Islands) reported that "the volcanic action had already formed a thick rim of black material above sea level, inside which a large body of molten lava was churning and spewing out rocks." At the time, the island was estimated to be ~300x150 m in diameter and ~30 m high, with a lava pond ~50 m in diameter. Red Marsden (a Rabaul-based pilot) flew over the volcano on 12 May. The island had a regular conical shape that he estimated was ~15-20 m high. The volcano continued to eject incandescent lava fragments and some dark material to ~50 m height. White vapor emission occurred between ejections, and considerable steam rose from along the water line. Activity continued as of 13 May and the size of the cone continued to increase.

The location of the new island remains uncertain (figure 5) [but more precise navigation linked it to Kavachi; see 16:7]. It was reported at 8.88°S, 157.88°E, 20 km NW of Kavachi, by Starcy, and ~38 km SW of Kavachi (at 9.23°S, 157.70°E; within the Woodlark Basin) by Ted Tame (Rabaul representative of the Papua New Guinea National Disaster and Emergency Services). A submarine volcano was shown on Admiralty Chart 3995 at ~25 km W of Kavachi (at 9.0°S, 157.8°E), between the two reported positions, but the Machias 1981 bathymetry survey failed to find this feature (Exon and Johnson, 1986). Instead, the survey located a bathymetric high 10 km to the WNW that is probably a southward-trending ridge originating on Tetepare Island.

Figure (see Caption) Figure 5. Map of the western Solomon Islands. Crosses represent reported new island locations, triangles mark the New Georgia Group volcanoes (Pliocene to Recent), and the filled circle represents the unnamed submarine volcano on Admiralty Chart 3995. Modified from Exon and Johnson (1986).

Reference. Exon, N.E., and Johnson, R.W., 1986, The elusive Cook volcano and other submarine forearc volcanoes in the Solomon Islands: BMR Journal of Australian Geology & Geophysics, v. 10, p. 77-83.

Geologic Background. Named for a sea-god of the Gatokae and Vangunu peoples, Kavachi is one of the most active submarine volcanoes in the SW Pacific, located in the Solomon Islands south of Vangunu Island about 30 km N of the site of subduction of the Indo-Australian plate beneath the Pacific plate. Sometimes referred to as Rejo te Kvachi ("Kavachi's Oven"), this shallow submarine basaltic-to-andesitic volcano has produced ephemeral islands up to 1 km long many times since its first recorded eruption during 1939. Residents of the nearby islands of Vanguna and Nggatokae (Gatokae) reported "fire on the water" prior to 1939, a possible reference to earlier eruptions. The roughly conical edifice rises from water depths of 1.1-1.2 km on the north and greater depths to the SE. Frequent shallow submarine and occasional subaerial eruptions produce phreatomagmatic explosions that eject steam, ash, and incandescent bombs. On a number of occasions lava flows were observed on the ephemeral islands.

Information Contacts: G. Wheller, CSIRO, Australia; C. McKee, RVO.


Kilauea (United States) — April 1991 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Lava breakout from tube system feeds new ocean entry

Lava . . . continued to enter the ocean . . . on the W side of the flow field through April (figure 77). The tube supplying lava to the coast divided just above the sea cliff. Its W branch fed a single entry site, where repeated collapse of the fragile lower lava bench caused nearly continuous explosive activity in early April. Bench collapse episodes left the lava tube perched in the sea cliff, and lava poured into the ocean in an arching stream. The explosive activity built a littoral cone >3 m high that was >90% covered by spatter. The two entry sites fed by the tube's E branch have built a large bench below the (pre-autumn 1990) sea cliff.

In mid-April, lava broke out of the tube system near 150 m (500 ft) elevation, generating a large pahoehoe flow that was diverted E by 1990 and 1991 flows and reached the ocean ~1.5 km E of the W entry sites. By 22 April, it had built a new bench below the sea cliff, and had an active front ~300 m wide that extended no more than 20 m offshore. Lava continued to pour into the sea until the beginning of May, when only three sluggish streams of lava were observed at the ocean front. Behind the active entry, small viscous surface flows broke out from the main flow. Despite the apparently diminished supply of lava to the E entry, large volumes of lava continued to flow into the sea at the W entry sites in early May. Surface flows, noted during April along the tube system between ~430 and 340 m (1,400-1,100 ft) elevation, covered a previously lava-free area (kipuka) on the W side of the flow field.

Skylights in the tube system at the base of Kupaianaha shield revealed lava velocities of ~1.5 m/s in late April. The uppermost skylight, at ~620 m (2,050 ft) elevation, was fuming heavily, but very little degassing was occurring from the vicinity of Kupaianaha and its former lava pond, which remained sealed through the month. Three kilometers uprift, the lava pond in the base of Pu`u `O`o crater, ~60 m below the rim, remained active through April. The pond covered less than half of the crater floor, but sometimes overflowed onto more. The walls of Pu`u `O`o remained unstable and collapse continued.

Since the intrusive swarm seismicity in late March seismic activity has returned to lower levels. Low-amplitude volcanic tremor continued along the East rift zone, with some variability at stations near Kupaianaha and Pu`u `O`o. Increases in summit-area microearthquakes were recorded 9-10, 14, and 26-27 April, but events were very small and did not appear to be associated with changes in eruptive activity.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: T. Moulds and P. Okubo, HVO.


Klyuchevskoy (Russia) — April 1991 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Small summit plume; ash on SE flank

A Space Shuttle photograph on 29 April at 1248 shows a plume, apparently containing ash, rising about 1 km above the summit and extending about 15 km downwind. Snow on the SE flank appeared to be ash-covered. A small summit eruption occurred on 8 April, but no additional eruptive activity has been reported.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: C. Evans, Lockheed, Houston.


Kozushima (Japan) — April 1991 Citation iconCite this Report

Kozushima

Japan

34.219°N, 139.153°E; summit elev. 572 m

All times are local (unless otherwise noted)


Earthquake swarm but no surface activity

An earthquake swarm (M <= 4.0) occurred from 2100 to 2400 on 23 April, with seismicity gradually returning to normal levels by the following day. Many of the earthquakes were felt by residents (to JMA intensity IV). Swarm events were centered from the W coast to 20 km SW of the island (figure 1), at 0-10 km depth. No surface activity was reported.

Figure (see Caption) Figure 1. Epicenter map (top) and space/time diagram (bottom) showing seismicity around Kozu-shima and Nii-jima volcanoes, January 1991-June 1992. Courtesy of JMA.

Geologic Background. A cluster of rhyolitic lava domes and associated pyroclastic deposits form the small 4 x 6 km island of Kozushima in the northern Izu Islands. Kozushima lies along the Zenisu Ridge, one of several en-echelon ridges oriented NE-SW, transverse to the trend of the northern Izu arc. The youngest and largest of the 18 lava domes, 574-m-high Tenjoyama, occupies the central portion of the island. Most of the older domes, some of which are Holocene in age, flank Tenjoyama to the north, although late-Pleistocene domes are also found at the southern end of the island. Only two possible historical eruptions, from the 9th century, are known. A lava flow may have reached the sea during an eruption in 832 CE. Tenjosan lava dome was formed during a major eruption in 838 CE that also produced pyroclastic flows and surges. Earthquake swarms took place during the 20th century.

Information Contacts: JMA.


Kusatsu-Shiranesan (Japan) — April 1991 Citation iconCite this Report

Kusatsu-Shiranesan

Japan

36.618°N, 138.528°E; summit elev. 2165 m

All times are local (unless otherwise noted)


Continued seismicity

In April, seismicity remained similar to previous months, with a total of 110 earthquakes and one tremor episode recorded... (figure 5). No surface activity was observed.

Figure (see Caption) Figure 5. Daily number of recorded earthquakes (top) and tremor episodes (bottom) at Kusatsu-Shirane, January 1989-April 1991. Courtesy of JMA.

Geologic Background. The Kusatsu-Shiranesan complex, located immediately north of Asama volcano, consists of a series of overlapping pyroclastic cones and three crater lakes. The andesitic-to-dacitic volcano was formed in three eruptive stages beginning in the early to mid-Pleistocene. The Pleistocene Oshi pyroclastic flow produced extensive welded tuffs and non-welded pumice that covers much of the E, S, and SW flanks. The latest eruptive stage began about 14,000 years ago. Historical eruptions have consisted of phreatic explosions from the acidic crater lakes or their margins. Fumaroles and hot springs that dot the flanks have strongly acidified many rivers draining from the volcano. The crater was the site of active sulfur mining for many years during the 19th and 20th centuries.

Information Contacts: JMA.


Langila (Papua New Guinea) — April 1991 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Ash emission and glow

"Activity declined in early April . . . . Emissions from Crater 2 consisted of moderate to weak white-grey ash and vapour. An explosion on 3 April produced a dark ash column that rose ~500 m above the crater and resulted in ashfall on the NW side of the volcano. Steady weak red glow from the crater was observed on most nights. Following the first few days of stronger seismicity, when up to four explosion earthquakes/day were recorded, the seismicity declined and on most days no explosion events were recorded."

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: C. McKee, RVO.


Lewotobi (Indonesia) — April 1991 Citation iconCite this Report

Lewotobi

Indonesia

8.542°S, 122.775°E; summit elev. 1703 m

All times are local (unless otherwise noted)


Brief increase in seismicity

A sudden increase in seismicity, from 7 to 60 earthquakes/day, was recorded at the end of March. Activity peaked on 26 March, then gradually decreased. No changes in surface activity were observed.

Geologic Background. The Lewotobi "husband and wife" twin volcano (also known as Lewetobi) in eastern Flores Island is composed of the Lewotobi Lakilaki and Lewotobi Perempuan stratovolcanoes. Their summits are less than 2 km apart along a NW-SE line. The conical Lakilaki has been frequently active during the 19th and 20th centuries, while the taller and broader Perempuan has erupted only twice in historical time. Small lava domes have grown during the 20th century in both of the crescentic summit craters, which are open to the north. A prominent flank cone, Iliwokar, occurs on the E flank of Perampuan.

Information Contacts: W. Modjo, VSI.


Manam (Papua New Guinea) — April 1991 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Tephra emission from two craters

"The increased activity at Main Crater in late March continued until mid-April, then declined. However, Southern Crater then became more active.

"Main Crater emissions consisted of weak to moderate white-grey ash and vapour with occasional thin blue vapour from 1 to 14 April. Emission clouds reached heights of 180-1,000 m above the crater rim. Light ashfall was noted 5 km downwind on 4 April. Deep roaring noises were heard on most days during this period. Weak red glow was seen above the crater 1-11 April, with some incandescent lava ejections on the 4th.

"Southern Crater activity increased for the first time since August 1990. From about mid-April, emissions consisted of weak to moderate white-grey vapour and ash. Light ashfalls were reported 23 and 25 April on the E side of the volcano, ~5 km from the summit. Low rumbling noises associated with the vapour and ash emissions were heard on 16 and 23-25 April.

"The seismograph at Manam became inoperable from 8 April. Before this time, seismic amplitudes remained at about the same level as at the end of March (~3x normal levels), although the daily totals of recorded volcanic shocks dropped from ~550 to 100. Tiltmeter measurements showed a slight radial deflation of ~1.5 µrad."

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: C. McKee, RVO.


Merapi (Indonesia) — April 1991 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


High-temperature fumaroles; no changes evident to summit dome

No changes were visible at the summit dome, whose volume remained at ~6.8 x 106 m3. Diffuse to dense gas plumes rose to 450 m above the summit. Temperatures of 832 and 543°C were measured at the dome's Gendol and Woro solfataras, respectively. The temperature measured through cracks in the 1956 lava was 86°C on 20 April. There was no significant change in seismicity, although the weekly number of volcanic earthquakes briefly rose to 17 during the second week in April from the long-term average of 1-4. One multiphase event and 3-10 tectonic earthquakes were recorded/week.

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: W. Modjo, VSI.


Ontakesan (Japan) — April 1991 Citation iconCite this Report

Ontakesan

Japan

35.893°N, 137.48°E; summit elev. 3067 m

All times are local (unless otherwise noted)


Earthquake swarms and tremor; no change in steam emission

Three earthquake swarms (20, 23, and 27 April) and four tremor episodes (27-28 April and 2 May) were recorded during late April-early May. The strongest swarm, on 20 April, lasted a few hours and included a M 1.6 event. None of the shocks were felt, and it was not possible to locate them accurately, but they were believed to be in the summit area. The 27 April tremor episode was the largest (table 1), and accompanying seismicity was the strongest registered (figure 5), since installation of the current seismometer, in July 1988.

Table 1. Tremor episodes recorded at On-take, 15 July 1988-11 May 1991.

Date Time Amplitude (N) Duration (min)
02 Oct 1988 0132 0.1 1
06 Oct 1988 1035 0.1 1
12 Jan 1989 1725 0.6 1
19 Aug 1989 1313 0.4 2
11 Apr 1990 1808 0.2 2
27 Apr 1991 0716 2.3 4
27 Apr 1991 1201 0.1 2
28 Apr 1991 1309 1.4 3
02 May 1991 0938 0.3 3
Figure (see Caption) Figure 5. Daily number of recorded earthquakes at On-take, 15 July 1988-5 May 1991. Courtesy of JMA.

White steam emissions, unchanged from previous months (figure 6), rose 200 m from summit vents formed during a small phreatic eruption in October 1979. That eruption emitted ash for 1 day; steam emission declined, but has remained steady since then.

Figure (see Caption) Figure 6. Plume heights at On-take, 20 July 1988-13 May 1991. Courtesy of JMA.

A M 6.8 earthquake, 12 km SE of the summit on 14 September 1984, triggered a landslide on the S slope of the volcano that killed 29 people. Aftershocks were distributed on the volcano's S flank in an elliptical zone that may mark a 20-km-long WSW-ENE fault (figure 7). Steam emission and surface activity were unchanged by the 1984 earthquake.

Figure (see Caption) Figure 7. Epicenter map of 138 earthquakes at On-take, January 1990-May 1991. Locations of the three swarms are not shown, but are considered to be in the summit area (triangle). The largest shock, M 1.8, was centered just W of the summit. The group of events in an E-W line 15 km S of the summit are aftershocks from a M 6.8 earthquake in 1984. Courtesy of JMA.

Geologic Background. The massive Ontakesan stratovolcano, the second highest volcano in Japan, lies at the southern end of the Northern Japan Alps. Ascending this volcano is one of the major objects of religious pilgrimage in central Japan. It is constructed within a largely buried 4 x 5 km caldera and occupies the southern end of the Norikura volcanic zone, which extends northward to Yakedake volcano. The older volcanic complex consisted of at least four major stratovolcanoes constructed from about 680,000 to about 420,000 years ago, after which Ontakesan was inactive for more than 300,000 years. The broad, elongated summit of the younger edifice is cut by a series of small explosion craters along a NNE-trending line. Several phreatic eruptions post-date the roughly 7300-year-old Akahoya tephra from Kikai caldera. The first historical eruption took place in 1979 from fissures near the summit. A non-eruptive landslide in 1984 produced a debris avalanche and lahar that swept down valleys south and east of the volcano. Very minor phreatic activity caused a dusting of ash near the summit in 1991 and 2007. A significant phreatic explosion in September 2014, when a large number of hikers were at or near the summit, resulted in many fatalities.

Information Contacts: JMA.


Pacaya (Guatemala) — April 1991 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Strombolian activity declines to ash emission as seismicity decreases

In comparison with observations made in early February (16:02), visits to the volcano in mid-March-early April revealed a decrease in eruptive activity. A small vent with night glow on the W flank (50 m below the summit), periodically the source of incandescent lava fragments that rolled down the upper flank, had disappeared by 21 March. Strombolian activity from a cinder cone in the W quarter of MacKenney Cone's 1987 crater ejected material to 100-150 m height. The number of explosions declined from about 20 to 1-2/hour over the mid March-early April observation period, and during the first week of April, the primary ejecta changed from lava spatter to ash. Some collapse occurred on the cone's interior walls. Two explosions, observed during a 3-hour period on 10 April, emitted ash clouds hundreds of meters high. Lava flow activity, prominent from mid-November through February (15:11-12 and 16:02), declined, and ceased entirely by 10 April. A decrease in seismicity, coincident with the decrease of eruptive activity, began about 1 April and continued as of 19 April.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Otoniel Matías and Rodolfo Morales, Sección de Vulcanología, INSIVUMEH; Michael Conway, Michigan Technological Univ, Houghton, USA; P. Vetsch, SVG, Switzerland; Thierry Basset, Univ de Genève, Switzerland; Alan Deino, Berkeley Geochronology Laboratory, Institute of Human Origins, USA.


Pinatubo (Philippines) — April 1991 Citation iconCite this Report

Pinatubo

Philippines

15.13°N, 120.35°E; summit elev. 1486 m

All times are local (unless otherwise noted)


Phreatic explosion devastates 1 km2 forested area; seismicity and gas emission continue; 2,000 evacuated

The following includes a more detailed account of events reported in 16:3.

On 2 April, an explosion at the E end of Pinatubo's geothermal area (about 1.5 km NW of the summit and 2/3 of the way down the flank) ejected clouds of steam and minor quantities of ash to 500-800 m height. Ash fell 2 km away, primarily to the NW and SW, and covered an area of about 10,000 m2, including part of one village, from which about 2,000 people were evacuated. No injuries or deaths were reported. The ash was composed of sub-angular material, none of which was freshly vesiculated, with a mineralogy of plagioclase, hornblende, small amounts of biotite, and possible quartz. About 1 km2 of forested land was devastated by the explosion, extending about 500 m from the explosion site, and leaves and vegetation were stripped over several square kilometers. Downed trees were preferentially oriented N.

Following the explosion, an ENE-WSW-trending line (roughly 1 km long at 1,100-1,350 m elevation - summit elevation is 1,745 m) of new fumaroles with six main vents had developed. The most intense activity was located at the W end of the line, while the blast site, at the E end of the line, had ceased activity (figure 2). Vent emissions, voluminous and at extremely high pressure, consisted mainly of steam, with an H2S odor and an associated gray haze. Plumes (~200-500 m high in mid- to late-April, 100-300 m high in early May) were carried W by the prevailing wind, onto a zone of dead and dying vegetation. Respiratory and eye irritation forced about 5,000 W-flank residents to leave the area. Increased discharge from springs near the fumaroles caused rapid downward erosion in stream beds, and muddy water was reported in the N drainages.

Figure (see Caption) Figure 2. Sketch looking SSE at Pinatubo on 27 April 1991, from about 1 km distance (at geothermal well site PN-3, drilled in 1989 by PNOC). Fumaroles are labeled A-E, and the explosion site is labeled Z. Courtesy of David Sussman.

A seismometer installed on 5 April recorded 223 high-frequency volcano-tectonic earthquakes over a 24-hour period (figure 3). Seismicity rapidly decreased, with 50-90 events recorded/day 8 April-10 May (the seismometer did not function 6-8 April). Earthquake location became possible on 6 May with the completion of a seismic network at the volcano. During the first few days of operation, earthquakes were centered [~4-8 km NW] of the summit at 3-6 km depth, and had magnitudes of 0.1-1.5 (averaging about M 1.0). The events all had the same first motions, suggesting that they had the same focal mechanisms. Seismicity increased on 10 May (167 recorded earthquakes/day) and remained high as of 12 May (120-150/day). No long-period events have been recorded.

Figure (see Caption) Figure 3. Daily number of recorded earthquakes at Pinatubo, 5 April-12 May 1991. Courtesy of PHIVOLCS.

Deformation measurements on the NW slope have not shown evidence of inflation.

The center of the Pinatubo geothermal area, previously the site of several low-discharge acid-sulfate springs and three steaming sulfur-depositing fumaroles (>90°C), was located within a crater-like structure largely related to collapse. Geologists believe that some of the breccias in the structure's wall are probably of hydrothermally explosive origin. "Numerous alleged eruptive activities have been reported in the area."

Geologic Background. Prior to 1991 Pinatubo volcano was a relatively unknown, heavily forested lava dome complex located 100 km NW of Manila with no records of historical eruptions. The 1991 eruption, one of the world's largest of the 20th century, ejected massive amounts of tephra and produced voluminous pyroclastic flows, forming a small, 2.5-km-wide summit caldera whose floor is now covered by a lake. Caldera formation lowered the height of the summit by more than 300 m. Although the eruption caused hundreds of fatalities and major damage with severe social and economic impact, successful monitoring efforts greatly reduced the number of fatalities. Widespread lahars that redistributed products of the 1991 eruption have continued to cause severe disruption. Previous major eruptive periods, interrupted by lengthy quiescent periods, have produced pyroclastic flows and lahars that were even more extensive than in 1991.

Information Contacts: R. Punongbayan, PHIVOLCS; Chris Newhall, USGS Reston; John Ewert, CVO; David Sussman and Areberto Arevalo, Philippine Geothermal Inc., Manila.


Poas (Costa Rica) — April 1991 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Increased gas emission; continued seismicity

Gas emission increased in April. Fumaroles burned sulfur, produced loud jet-engine noises, and ejected small amounts of gray sediment that covered the W base of the crater. Acid rain continued to be a problem on the W flank of the volcano; rainwater pH was 3.4 at Cerro Pelón (2.5 km SW).

Seismicity levels in April were similar to March, with an average of 266 low-frequency earthquakes recorded/day (average frequency 2.2 Hz) and a monthly total of 26 high-frequency events (figure 37). Low-frequency tremor was recorded up to 22 hours/day on 20-21 April.

Figure (see Caption) Figure 37. Daily number of recorded earthquakes at Poás, April 1991. Courtesy of OVSICORI.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: E. Fernández, V. Barboza, and J. Barquero, OVSICORI.


Rabaul (Papua New Guinea) — April 1991 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Low-level seismicity; minor deflation

"Seismicity remained at a low level in April. The month's total number of earthquakes was 126 . . . with daily totals ranging from 0 to 19. Thirteen earthquakes were locatable and were distributed on the NW and W sides of the caldera seismic zone. Levelling measurements carried out between 8 March and 23 April showed 4 mm of subsidence at the SE end of Matupit Island."

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: C. McKee, RVO.


Rincon de la Vieja (Costa Rica) — April 1991 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Ash ejection and lahars

A [phreatomagmatic] eruption at 1015-1025 on 8 May ejected small quantities of [ash, bombs, blocks, and mud, and produced small lahars]. Gray lahars with a sulfur odor traveled N down the Río Pénjamo and Azul systems, destroying the forest along the rivers and two small bridges, and cutting off access to the towns of Buenos Aires (12 km NE) and Gavilán. At the distal end of the lahars, 15 km from the summit, the deposits reached 2 m in thickness, and covered the surface for several hundred meters on both sides of the Pénjamo river channels. Following passage of the lahars, the rivers were milky and had high acidity. The eruption followed two smaller explosive events on 6 and 7 May, but no other seismic precursors were recorded.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: R. Barquero, ICE; J. Barquero and R. Sáenz, OVSICORI.


Nevado del Ruiz (Colombia) — April 1991 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Tremor precedes several days of ash emission

An increase in the number of tremor pulses preceded several days of ash emission at the end of April. Lithic and crystalline ash (<2 mm in diameter) was reported W of the volcano in Pereira (40 km from the summit), Santa Rosa de Cabal (35 km), Chinchiná (35 km), and Manizales (25 km), and NE of the volcano in Mariquita (55 km). High- and low-frequency seismicity was generally at low levels in April, with a slight increase in released energy from low-frequency events. The monthly average SO2 flux, measured by COSPEC, was ~2,740 t/d, up from 2,233 t/d in March.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: C. Carvajal, INGEOMINAS, Manizales.


Santa Maria (Guatemala) — April 1991 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Strong explosion and pyroclastic flow; continued lava extrusion feeds rock avalanches

Quoted material is a report from the Santiaguito Volcano Observatory.

"At 0903 on 10 April, a powerful pyroclastic eruption shook El Caliente vent. The eruption produced a vertical plume that rose 3.5 km above the vent, and a pyroclastic flow that moved a few kilometers down the Río Nimá II. Ash blanketed the area immediately SW to a maximum thickness of 1-2 mm, and noticeable ashfall was observed at Retalhuleu [25 km SSW]. The ash consisted of comminuted dacite, gray to black volcanic glass, plagioclase, and quartz. This eruption marked the first major pyroclastic event at Santiaguito since 23 November 1990 and could signal an increase in hazardous pyroclastic activity similar to the period April-November 1990. Seismic activity increased significantly during the final week of March, following a period of relative quiescence from January through mid-March (figure 20)."

Figure (see Caption) Figure 20. Daily explosions and avalanches at Santiaguito, January-March 1991. Dotted lines indicate no data. Courtesy of Otoniel Matías.

Smaller pyroclastic events, observed during fieldwork 24-27 March and 11-13 April, lasted about 4-7 minutes and were separated by tens of minutes to >1 hour. Eruptive plumes ranged from black to white and rose 500-1,500 m. On 11 April, observers measured a 20° initial eastward inclination of the explosion clouds, and plume heights of 3,000 m. The source of the explosions had migrated about 150-200 m NNE from the summit, which continued to degas quietly.

Numerous avalanches, with 150-400 recorded daily by seismometers (figure 20), occurred on the E flank of the volcano, sometimes accompanied by loud summit explosions. The block lava flow erupting from the E summit of Caliente continued to flow slowly (<100 m/month), with frequent collapses of the flow front sending block-and-ash debris avalanching [into] the Río Nimá II [drainage].

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Otoniel Matías and Rodolfo Morales, INSIVUMEH; Michael Conway, Michigan Technological Univ; P. Vetsch, SVG, Switzerland; Thierry Basset, Univ de Genève, Switzerland.


Semeru (Indonesia) — April 1991 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Continued explosions and seismicity

Explosions continued during April, with column heights averaging 300-400 m, and explosion earthquakes recorded an average of 112 times/day . . . . Seismographs also recorded 2-3 daily avalanches of material off the lava flow erupted 17 February. A total of one deep volcanic earthquake and 18 tectonic events were recorded.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: W. Modjo, VSI.


Sheveluch (Russia) — April 1991 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Possible new tephra deposit on E flank

After the 8 April explosive eruption, satellite images showed an apparent narrow zone of tephra deposited SE from the summit to the coast. The NOAA 10 polar orbiter showed a second, similar deposit on 9 May at 1000, extending E from the summit then turning SE to parallel the 8 April material. . . .

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: W. Gould, NOAA/NESDIS.


Stromboli (Italy) — April 1991 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Explosive activity from a single crater; strong seismicity

Explosive activity was at low levels from January through March, seldom exceeding the long-term average of six recorded explosions/hour (figure 11). Visits to the summit on 30 March and 9 April revealed that activity was restricted to Crater 1, and that the small cone 1 in Crater 3 had collapsed, forming a glowing red vent. The number of earthquakes exceeding instrument saturation level was quite high from the end of January to the beginning of February (~30/day), and 11-17 March (~19/day; figure 12). Average tremor amplitude returned to normal following a low in December.

Figure (see Caption) Figure 11. Daily average number of seismically recorded explosion events/hour at Stromboli, January-March 1991. The mean value for the period is shown. Courtesy of M. Riuscetti.
Figure (see Caption) Figure 12. Number of seismometer-saturating events/day (upper curve); and average tremor amplitude (lower curve) at Stromboli, January-March 1991. Courtesy of M. Riuscetti.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: M. Riuscetti, Univ di Udine.


Submarine Volcano NNE of Iriomotejima (Japan) — April 1991 Citation iconCite this Report

Submarine Volcano NNE of Iriomotejima

Japan

24.57°N, 123.93°E; summit elev. -200 m

All times are local (unless otherwise noted)


Strong felt seismicity but no surface changes

High levels of seismicity . . . suddenly declined in late April (figure 1). A total of 670 high-frequency earthquakes were felt by the end of April, including nine of JMA intensity IV, and a M 4.3 event on 31 March. The swarm was centered on the NW coast of the island (figure 2) at 0-10 km depth (the majority at ~5 km). No surface phenomena (steaming, bubbling, or water discoloration) were found despite frequent patrolling over the island and adjacent sea area by JMSA aircraft.

Figure (see Caption) Figure 1. Daily number of recorded earthquakes at Iriomote-jima island, 23 January-10 May 1991. Solid columns represent felt events. Courtesy of JMA.
Figure (see Caption) Figure 2. Epicenter map of earthquakes at Iriomote-jima island, 23 January-10 May 1991. A solid square marks the JMA weather station. Courtesy of JMA.

Geologic Background. The southernmost Ryukyu Islands volcano is a shallow submarine volcano NNE of Iriomote-jima island. It is located 20 km NNE of Iriomotejima and 35 km WSW of the northern tip of the island of Ishigakishima in an area with an estimated depth of 200-300 m. A major submarine eruption took place on 31 October 1924. It produced rhyolitic pumice rafts with an estimated volume of about 1 km3 that were carried by currents along both coasts of Japan as far north as Hokkaido. The largest pumice blocks exceeded 1 x 2 m in size, and the volume of ejecta places this poorly known eruption among the largest in historical time in Japan.

Information Contacts: JMA.


Taal (Philippines) — April 1991 Citation iconCite this Report

Taal

Philippines

14.002°N, 120.993°E; summit elev. 311 m

All times are local (unless otherwise noted)


Continued seismicity and changes to crater lake

High seismicity continued as of early May, with the daily number of earthquakes varying from 15 to 30 (figure 4). Felt earthquakes reached intensity IV. Acidity and chloride content of the volcano's crater lake continued to fluctuate, ranging from 2.4-2.8 and 9,630-11,720 ppm, respectively. Lake temperature increased slightly from 30° to 31°C, and lake level rose by 4 cm.

On 26 April, strong bubbling and increased steaming were observed in the N sector of the crater and at the base of the wall. Geysering, to 1.2 m height, was also noted near the NNE shore of the lake, where water temperatures of 99°C were measured.

Deformation measurements on Taal Volcano Island have found no inflation or swelling of the volcanic edifice.

Volcano Island has been partly evacuated since 23 March, but a small number of residents have remained, particularly near the PHIVOLCS station at the N end of the island.

Geologic Background. Taal is one of the most active volcanoes in the Philippines and has produced some of its most powerful historical eruptions. Though not topographically prominent, its prehistorical eruptions have greatly changed the landscape of SW Luzon. The 15 x 20 km Talisay (Taal) caldera is largely filled by Lake Taal, whose 267 km2 surface lies only 3 m above sea level. The maximum depth of the lake is 160 m, and several eruptive centers lie submerged beneath the lake. The 5-km-wide Volcano Island in north-central Lake Taal is the location of all historical eruptions. The island is composed of coalescing small stratovolcanoes, tuff rings, and scoria cones that have grown about 25% in area during historical time. Powerful pyroclastic flows and surges from historical eruptions have caused many fatalities.

Information Contacts: R. Punongbayan, PHIVOLCS.


Turrialba (Costa Rica) — April 1991 Citation iconCite this Report

Turrialba

Costa Rica

10.025°N, 83.767°W; summit elev. 3340 m

All times are local (unless otherwise noted)


New fractures found after major 22 April earthquake

Shortly after the [M 7.6] earthquake on 22 April [85 km WSW], numerous small concentric fractures were found along the S and SW rims of the central crater and the W rim of the main crater. Small landslides continued on the S, SW, and N walls of the main crater, and fumarole temperatures remained at 89°C.

Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Information Contacts: E. Fernández, V. Barboza, and J. Barquero, OVSICORI.


Unzendake (Japan) — April 1991 Citation iconCite this Report

Unzendake

Japan

32.761°N, 130.299°E; summit elev. 1483 m

All times are local (unless otherwise noted)


Ash emission from two vents; frequent seismicity; lava dome extruded into summit crater

Frequent, almost continuous, ash emissions (500 m high) continued in April from two vents. In mid-April, the most intense activity switched from Byobu-iwa vent . . . to Jigoku-ato vent . . . . No earthquake swarms were recorded in April, but seismicity remained high. A total of 733 earthquakes was recorded and 27 felt . . . compared to 734 recorded and 21 felt in March. Most of the events were located a few kilometers W of Fugen-dake peak . . . . The number of tremor episodes increased in April (181, compared to 99 in March), as did amplitudes and durations (figure 16).

Figure (see Caption) Figure 16. Daily number (top), amplitude (middle), and duration (bottom) of tremor episodes at Unzen, July 1990-early May 1991. Arrows at top mark eruptions on 17 November 1990 and 12 February 1991. Courtesy of JMA.

A swarm of microearthquakes, the first since July 1990, began 13 May and continued as of 17 May. Ash emissions were at low levels during this period. Heavy rains on recently fallen tephra caused lahars in at least one flank valley. The press reported that more than 1,200 people were evacuated on 19 May. A lava dome was extruded into the summit crater before dawn on 21 May. Small ash emissions occurred from the dome and fissures exposed its interior.

Geologic Background. The massive Unzendake volcanic complex comprises much of the Shimabara Peninsula east of the city of Nagasaki. An E-W graben, 30-40 km long, extends across the peninsula. Three large stratovolcanoes with complex structures, Kinugasa on the north, Fugen-dake at the east-center, and Kusenbu on the south, form topographic highs on the broad peninsula. Fugendake and Mayuyama volcanoes in the east-central portion of the andesitic-to-dacitic volcanic complex have been active during the Holocene. The Mayuyama lava dome complex, located along the eastern coast west of Shimabara City, formed about 4000 years ago and was the source of a devastating 1792 CE debris avalanche and tsunami. Historical eruptive activity has been restricted to the summit and flanks of Fugendake. The latest activity during 1990-95 formed a lava dome at the summit, accompanied by pyroclastic flows that caused fatalities and damaged populated areas near Shimabara City.

Information Contacts: JMA; H. Glicken, Tokyo Metropolitan Univ; AP.


Vulcano (Italy) — April 1991 Citation iconCite this Report

Vulcano

Italy

38.404°N, 14.962°E; summit elev. 500 m

All times are local (unless otherwise noted)


Fumarole temperatures increase

Observations at "La Fossa" crater in recent years have included changes in fumarole temperatures and chemical compositions, ground deformation, and opening of new fractures. Data collected since a systematic surveillance program began in 1977 have allowed geologists to identify different stages during which changing contributions of magmatic gases and water caused fluctuating fumarole outputs. The interaction of heat rising from depth with shallow aquifers has produced changes in water vaporization and pressure as the heat/water ratio varied.

Only minor crater activity occurred until 1987, probably because of the constraints imposed by a limited fracture system on the thermal input. Since then, a sharp change has been observed, with ground inflation and significant increases in the maximum temperature and water concentration of emitted fluids.

In 1990, a further increase in the maximum temperature (to 620°C) and decrease in water contents of fumarole fluids were interpreted as a consequence of increased heat flow, causing significant aquifer depletion (15:08).

The most recent (April 1991) observations indicate that fumarole temperatures are again increasing, and significant vaporization as well as new inflation can be expected. Geologists noted that the long-lasting instability of La Fossa's NW sector could result in some form of collapse that could create problems for the local community.

Further References. Falsaperla, S., Frazzetta, G., Neri, G., Nunnari, G., Velardita, R., and Villari, L., 1989, Volcano monitoring in the Aeolian Islands (southern Tyrrhenian Sea): the Lipari-Vulcano eruptive complex, in Latter, J.H., ed., Volcanic Hazards: Assessment and Monitoring: Springer-Verlag, p. 339-356.

Martini, M., 1989, The forecasting significance of chemical indicators in areas of quiescent volcanism: examples from Vulcano and Phlegrean Fields (Italy), in Latter, J.H., ed., Volcanic Hazards: Assessment and Monitoring: Springer-Verlag, p. 372-383.

Martini, M., Giannini, L., Buccianti, A., Prati, F., Legittimo, P.C., Iozelli, P., and Capaccioni, B., 1991, 1980-1990: Ten years of geochemical investigation at Phlegrean Fields (Italy): Journal of Volcanology and Geothermal Research, v. 48, p. 161-171.

Martini, M., Giannini, L., and Capaccioni, B., 1991, Geochemical and seismic precursors of volcanic activity: Acta Vulcanologia, v. 1, p. 7-11.

Martini, M., Giannini, L., and Capaccioni, B., 1991, The influence of water on chemical changes of fumarolic gases: different characters and their implications in forecasting volcanic activity: Acta Vulcanologia, v. 1, p. 13-16.

Geologic Background. The word volcano is derived from Vulcano stratovolcano in Italy's Aeolian Islands. Vulcano was constructed during six stages during the past 136,000 years. Two overlapping calderas, the 2.5-km-wide Caldera del Piano on the SE and the 4-km-wide Caldera della Fossa on the NW, were formed at about 100,000 and 24,000-15,000 years ago, respectively, and volcanism has migrated to the north over time. La Fossa cone, active throughout the Holocene and the location of most of the historical eruptions, occupies the 3-km-wide Caldera della Fossa at the NW end of the elongated 3 x 7 km island. The Vulcanello lava platform forms a low, roughly circular peninsula on the northern tip of Vulcano that was formed as an island beginning in 183 BCE and was connected to Vulcano in about 1550 CE. Vulcanello is capped by three pyroclastic cones and was active intermittently until the 16th century. The latest eruption from Vulcano consisted of explosive activity from the Fossa cone from 1898 to 1900.

Information Contacts: M. Martini, Univ di Firenze.


White Island (New Zealand) — April 1991 Citation iconCite this Report

White Island

New Zealand

37.52°S, 177.18°E; summit elev. 321 m

All times are local (unless otherwise noted)


Renewed ash emission; new collapse pit

There was no evidence, during fieldwork 21 April, of eruptive activity since the 20-22 March eruption that formed Orca vent and was probably responsible for up to 10 mm of ash deposited on the 1978/91 Crater rim since 13 February. An increase in gas emission (compared to visits during February and March) was noted at Orca vent and TV1 Crater. . . . Intense gas emission also occurred from an area of hot ground NW of TV1.

Several morphologic changes were observed in the crater area. A second, smaller vent (~5 m in diameter) was found on the slope NW of Orca vent. A new collapse pit, ~20 m in diameter and 50 m deep, was located above the conduit that had previously fed Donald Duck Crater. The new pit, a few meters NW of the crater, looked fresh, suggesting that it had formed shortly before the 21 April visit.

Ash-laden steam emission reportedly began 23 April and was continuing as of 3 May. No significant volcanic tremor or other seismicity was recorded during this period.

Geologic Background. Uninhabited 2 x 2.4 km White Island, one of New Zealand's most active volcanoes, is the emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes; the summit crater appears to be breached to the SE, because the shoreline corresponds to the level of several notches in the SE crater wall. Volckner Rocks, four sea stacks that are remnants of a lava dome, lie 5 km NNE. Intermittent moderate phreatomagmatic and strombolian eruptions have occurred throughout the short historical period beginning in 1826, but its activity also forms a prominent part of Maori legends. Formation of many new vents during the 19th and 20th centuries has produced rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project.

Information Contacts: I. Nairn and B. Scott, DSIR Geology & Geophysics, Rotorua.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).