Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Manam (Papua New Guinea) Few ash plumes during November-December 2022

Krakatau (Indonesia) Strombolian activity and ash plumes during November 2022-April 2023

Stromboli (Italy) Strombolian explosions and lava flows continue during January-April 2023

Nishinoshima (Japan) Small ash plumes and fumarolic activity during November 2022 through April 2023

Karangetang (Indonesia) Lava flows, incandescent avalanches, and ash plumes during January-June 2023

Ahyi (United States) Intermittent hydroacoustic signals and discolored plumes during November 2022-June 2023

Kadovar (Papua New Guinea) An ash plume and weak thermal anomaly during May 2023

San Miguel (El Salvador) Small gas-and-ash explosions during March and May 2023

Semisopochnoi (United States) Occasional explosions, ash deposits, and gas-and-steam plumes during December 2022-May 2023

Ebeko (Russia) Continued explosions, ash plumes, and ashfall during October 2022-May 2023

Home Reef (Tonga) Discolored plumes continued during November 2022-April 2023

Ambae (Vanuatu) New lava flow, ash plumes, and sulfur dioxide plumes during February-May 2023



Manam (Papua New Guinea) — July 2023 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Few ash plumes during November-December 2022

Manam is a 10-km-wide island that consists of two active summit craters: the Main summit crater and the South summit crater and is located 13 km off the northern coast of mainland Papua New Guinea. Frequent mild-to-moderate eruptions have been recorded since 1616. The current eruption period began during June 2014 and has more recently been characterized by intermittent ash plumes and thermal activity (BGVN 47:11). This report updates activity that occurred from November 2022 through May 2023 based on information from the Darwin Volcanic Ash Advisory Center (VAAC) and various satellite data.

Ash plumes were reported during November and December 2022 by the Darwin VAAC. On 7 November an ash plume rose to 2.1 km altitude and drifted NE based on satellite images and weather models. On 14 November an ash plume rose to 2.1 km altitude and drifted W based on RVO webcam images. On 20 November ash plumes rose to 1.8 km altitude and drifted NW. On 26 December an ash plume rose to 3 km altitude and drifted S and SSE.

Intermittent sulfur dioxide plumes were detected using the TROPOMI instrument on the Sentinel-5P satellite, some of which exceeded at least two Dobson Units (DU) and drifted in different directions (figure 93). Occasional low-to-moderate power thermal anomalies were recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system; less than five anomalies were recorded each month during November 2022 through May 2023 (figure 94). Two thermal hotspots were detected by the MODVOLC thermal alerts system on 10 December 2022. On clear weather days, thermal activity was also captured in infrared satellite imagery in both the Main and South summit craters, accompanied by gas-and-steam emissions (figure 95).

Figure (see Caption) Figure 93. Distinct sulfur dioxide plumes were captured, rising from Manam based on data from the TROPOMI instrument on the Sentinel-5P satellite on 16 November 2022 (top left), 6 December 2022 (top right), 14 January 2023 (bottom left), and 23 March 2023 (bottom right). Plumes generally drifted in different directions. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 94. Occasional low-to-moderate power thermal anomalies were detected at Manam during November 2022 through May 2023, as shown in this MIROVA graph (Log Radiative Power). Only three anomalies were detected during late November, one in early December, two during January 2023, one in late March, four during April, and one during late May. Courtesy of MIROVA.
Figure (see Caption) Figure 95. Infrared (bands B12, B11, B4) satellite images show a consistent thermal anomaly (bright yellow-orange) in both the Main (the northern crater) and South summit craters on 10 November 2022 (top left), 15 December 2022 (top right), 3 February 2023 (bottom left), and 24 April 2023 (bottom right). Gas-and-steam emissions occasionally accompanied the thermal activity. Courtesy of Copernicus Browser.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Krakatau (Indonesia) — July 2023 Citation iconCite this Report

Krakatau

Indonesia

6.1009°S, 105.4233°E; summit elev. 285 m

All times are local (unless otherwise noted)


Strombolian activity and ash plumes during November 2022-April 2023

Krakatau is located in the Sunda Strait between Java and Sumatra, Indonesia. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan cones and left only a remnant of Rakata. The post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones; it has been the site of frequent eruptions since 1927. The current eruption period began in May 2021 and has recently consisted of explosions, ash plumes, and thermal activity (BGVN 47:11). This report covers activity during November 2022 through April 2023 based on information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, referred to as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), MAGMA Indonesia, the Darwin Volcanic Ash Advisory Center (VAAC), and several sources of satellite data.

Activity was relatively low during November and December 2022. Daily white gas-and-steam plumes rose 25-100 m above the summit and drifted in different directions. Gray ash plumes rose 200 m above the summit and drifted NE at 1047 and at 2343 on 11 November. On 14 November at 0933 ash plumes rose 300 m above the summit and drifted E. An ash plume was reported at 0935 on 15 December that rose 100 m above the summit and drifted NE. An eruptive event at 1031 later that day generated an ash plume that rose 700 m above the summit and drifted NE. A gray ash plume at 1910 rose 100 m above the summit and drifted E. Incandescent material was ejected above the vent based on an image taken at 1936.

During January 2023 daily white gas-and-steam plumes rose 25-300 m above the summit and drifted in multiple directions. Gray-to-brown ash plumes were reported at 1638 on 3 January, at 1410 and 1509 on 4 January, and at 0013 on 5 January that rose 100-750 m above the summit and drifted NE and E; the gray-to-black ash plume at 1509 on 4 January rose as high as 3 km above the summit and drifted E. Gray ash plumes were recorded at 1754, 2241, and 2325 on 11 January and at 0046 on 12 January and rose 200-300 m above the summit and drifted NE. Toward the end of January, PVMBG reported that activity had intensified; Strombolian activity was visible in webcam images taken at 0041, 0043, and 0450 on 23 January. Multiple gray ash plumes throughout the day rose 200-500 m above the summit and drifted E and SE (figure 135). Webcam images showed progressively intensifying Strombolian activity at 1919, 1958, and 2113 on 24 January; a gray ash plume at 1957 rose 300 m above the summit and drifted E (figure 135). Eruptive events at 0231 and 2256 on 25 January and at 0003 on 26 January ejected incandescent material from the vent, based on webcam images. Gray ash plumes observed during 26-27 January rose 300-500 m above the summit and drifted NE, E, and SE.

Figure (see Caption) Figure 135. Webcam images of a strong, gray ash plume (left) and Strombolian activity (right) captured at Krakatau at 0802 on 23 January 2023 (left) and at 2116 on 24 January 2023 (right). Courtesy of PVMBG and MAGMA Indonesia.

Low levels of activity were reported during February and March. Daily white gas-and-steam plumes rose 25-300 m above the summit and drifted in different directions. The Darwin VAAC reported that continuous ash emissions rose to 1.5-1.8 km altitude and drifted W and NW during 1240-1300 on 10 March, based on satellite images, weather models, and PVMBG webcams. White-and-gray ash plumes rose 500 m and 300 m above the summit and drifted SW at 1446 and 1846 on 18 March, respectively. An eruptive event was recorded at 2143, though it was not visible due to darkness. Multiple ash plumes were reported during 27-29 March that rose as high as 2.5 km above the summit and drifted NE, W, and SW (figure 136). Webcam images captured incandescent ejecta above the vent at 0415 and around the summit area at 2003 on 28 March and at 0047 above the vent on 29 March.

Figure (see Caption) Figure 136. Webcam image of a strong ash plume rising above Krakatau at 1522 on 28 March 2023. Courtesy of PVMBG and MAGMA Indonesia.

Daily white gas-and-steam plumes rose 25-300 m above the summit and drifted in multiple directions during April and May. White-and-gray and black plumes rose 50-300 m above the summit on 2 and 9 April. On 11 May at 1241 a gray ash plume rose 1-3 km above the summit and drifted SW. On 12 May at 0920 a gray ash plume rose 2.5 km above the summit and drifted SW and at 2320 an ash plume rose 1.5 km above the summit and drifted SW. An accompanying webcam image showed incandescent ejecta. On 13 May at 0710 a gray ash plume rose 2 km above the summit and drifted SW (figure 137).

Figure (see Caption) Figure 137. Webcam image of an ash plume rising 2 km above the summit of Krakatau at 0715 on 13 May 2023. Courtesy of PVMBG and MAGMA Indonesia.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data showed intermittent low-to-moderate power thermal anomalies during November 2022 through April 2023 (figure 138). Some of this thermal activity was also visible in infrared satellite imagery at the crater, accompanied by gas-and-steam and ash plumes that drifted in different directions (figure 139).

Figure (see Caption) Figure 138. Intermittent low-to-moderate power thermal anomalies were detected at Krakatau during November 2022 through April 2023, based on this MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 139. A thermal anomaly (bright yellow-orange) was visible at Krakatau in infrared (bands B12, B11, B4) satellite images on clear weather days during November 2022 through May 2023. Occasional gas-and-steam and ash plumes accompanied the thermal activity, which drifted in different directions. Images were captured on 25 November 2022 (top left), 15 December 2022 (top right), 27 January 2023 (bottom left), and 12 May 2023 (bottom right). Courtesy of Copernicus Browser.

Geologic Background. The renowned Krakatau (frequently mis-named as Krakatoa) volcano lies in the Sunda Strait between Java and Sumatra. Collapse of an older edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of that volcano are preserved in Verlaten and Lang Islands; subsequently the Rakata, Danan, and Perbuwatan cones were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption caused more than 36,000 fatalities, most as a result of tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Stromboli (Italy) — July 2023 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Strombolian explosions and lava flows continue during January-April 2023

Stromboli, located in Italy, has exhibited nearly constant lava fountains for the past 2,000 years; recorded eruptions date back to 350 BCE. Eruptive activity occurs at the summit from multiple vents, which include a north crater area (N area) and a central-southern crater (CS area) on a terrace known as the ‘terrazza craterica’ at the head of the Sciara del Fuoco, a large scarp that runs from the summit down the NW side of the volcano-island. Activity typically consists of Strombolian explosions, incandescent ejecta, lava flows, and pyroclastic flows. Thermal and visual monitoring cameras are located on the nearby Pizzo Sopra La Fossa, above the terrazza craterica, and at multiple flank locations. The current eruption period has been ongoing since 1934 and recent activity has consisted of frequent Strombolian explosions and lava flows (BGVN 48:02). This report updates activity during January through April 2023 primarily characterized by Strombolian explosions and lava flows based on reports from Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) and various satellite data.

Frequent explosive activity continued throughout the reporting period, generally in the low-to-medium range, based on the number of hourly explosions in the summit crater (figure 253, table 16). Intermittent thermal activity was recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data (figure 254). According to data collected by the MODVOLC thermal algorithm, a total of 9 thermal alerts were detected: one on 2 January 2023, one on 1 February, five on 24 March, and two on 26 March. The stronger pulses of thermal activity likely reflected lava flow events. Infrared satellite imagery captured relatively strong thermal hotspots at the two active summit craters on clear weather days, showing an especially strong event on 8 March (figure 255).

Figure (see Caption) Figure 253. Explosive activity persisted at Stromboli during January through April 2023, with low to medium numbers of daily explosions at the summit crater. The average number of daily explosions (y-axis) during January through April (x-axis) are broken out by area and as a total, with red for the N area, blue for the CS area, and black for the combined total. The data are smoothed as daily (thin lines) and weekly (thick lines) averages. The black squares along the top represent days with no observations due to poor visibility (Visib. Scarsa). The right axis indicates the qualitative activity levels from low (basso) to highest (altissimo) with the green highlighted band indicating the most common level. Courtesy of INGV (Report 17/2023, Stromboli, Bollettino Settimanale, 18/04/2023 - 24/04/2023).

Table 16. Summary of type, frequency, and intensity of explosive activity at Stromboli by month during January-April 2023; information from webcam observations. Courtesy of INGV weekly reports.

Month Explosive Activity
Jan 2023 Typical Strombolian activity with spattering and lava overflows in the N crater area. Explosions were reported from 4 vents in the N area and 1-2 vents in the CS area. The average hourly frequency of explosions was low-to-medium (1-12 events/hour). The intensity of the explosions varied from low (less than 80 m high) to medium (less than 150 m high) in the N crater area and up to high (greater than 150 m high) in the CS crater area.
Feb 2023 Typical Strombolian activity with spattering in the N crater area. Explosions were reported from 2-3 vents in the N area and 1-4 vents in the CS area. The average hourly frequency of explosions was low-to-medium (1-14 events/hour). The intensity of the explosions varied from low (less than 80 m high) to medium (less than 150 m high) in the N crater area and up to high (greater than 150 m high) in the CS crater area.
Mar 2023 Typical Strombolian activity with spattering and lava overflows in the N crater area. Explosions were reported from 2-3 vents in the N area and 2-4 vents in the CS area. The average hourly frequency of explosions was low-to-medium (1-18 events/hour). The intensity of the explosions varied from low (less than 80 m high) to medium (less than 150 m high) in the N crater area and up to high (greater than 150 m high) in the CS crater area.
Apr 2023 Typical Strombolian activity. Explosions were reported from 2 vents in the N area and 2-3 vents in the CS area. The average hourly frequency of explosions was low-to-high (1-16 events/hour). The intensity of the explosions varied from low (less than 80 m high) to medium (less than 150 m high) in both the N and CS crater areas.
Figure (see Caption) Figure 254. Intermittent thermal activity at Stromboli was detected during January through April 2023 and varied in strength, as shown in this MIROVA graph (Log Radiative Power). A pulse of activity was captured during late March. Courtesy of MIROVA.
Figure (see Caption) Figure 255. Infrared (bands B12, B11, B4) satellite images showing persistent thermal anomalies at both summit crater on 1 February 2023 (top left), 23 March 2023 (top right), 8 March 2023 (bottom left), and 27 April 2023. A particularly strong thermal anomaly was visible on 8 March. Courtesy of Copernicus Browser.

Activity during January-February 2023. Strombolian explosions were reported in the N crater area, as well as lava effusion. Explosive activity in the N crater area ejected coarse material (bombs and lapilli). Intense spattering was observed in both the N1 and N2 craters. In the CS crater area, explosions generally ejected fine material (ash), sometimes to heights greater than 250 m. The intensity of the explosions was characterized as low-to-medium in the N crater and medium-to-high in the CS crater. After intense spattering activity from the N crater area, a lava overflow began at 2136 on 2 January that flowed part way down the Sciara del Fuoco, possibly moving down the drainage that formed in October, out of view from webcams. The flow remained active for a couple of hours before stopping and beginning to cool. A second lava flow was reported at 0224 on 4 January that similarly remained active for a few hours before stopping and cooling. Intense spattering was observed on 11 and 13 January from the N1 crater. After intense spattering activity at the N2 crater at 1052 on 17 January another lava flow started to flow into the upper part of the Sciara del Fuoco (figure 256), dividing into two: one that traveled in the direction of the drainage formed in October, and the other one moving parallel to the point of emission. By the afternoon, the rate of the flow began to decrease, and at 1900 it started to cool. A lava flow was reported at 1519 on 24 January following intense spattering in the N2 area, which began to flow into the upper part of the Sciara del Fuoco. By the morning of 25 January, the lava flow had begun to cool. During 27 January the frequency of eruption in the CS crater area increased to 6-7 events/hour compared to the typical 1-7 events/hour; the following two days showed a decrease in frequency to less than 1 event/hour. Starting at 1007 on 30 January a high-energy explosive sequence was produced by vents in the CS crater area. The sequence began with an initial energetic pulse that lasted 45 seconds, ejecting predominantly coarse products 300 m above the crater that fell in an ESE direction. Subsequent and less intense explosions ejected material 100 m above the crater. The total duration of this event lasted approximately two minutes. During 31 January through 6, 13, and 24 February spattering activity was particularly intense for short periods in the N2 crater.

Figure (see Caption) Figure 256. Webcam images of the lava flow development at Stromboli during 17 January 2023 taken by the SCT infrared camera. The lava flow appears light yellow-green in the infrared images. Courtesy of INGV (Report 04/2023, Stromboli, Bollettino Settimanale, 16/01/2023 - 22/01/2023).

An explosive sequence was reported on 16 February that was characterized by a major explosion in the CS crater area (figure 257). The sequence began at 1817 near the S2 crater that ejected material radially. A few seconds later, lava fountains were observed in the central part of the crater. Three explosions of medium intensity (material was ejected less than 150 m high) were recorded at the S2 crater. The first part of this sequence lasted approximately one minute, according to INGV, and material rose 300 m above the crater and then was deposited along the Sciara del Fuoco. The second phase began at 1818 at the S1 crater; it lasted seven seconds and material was ejected 150 m above the crater. Another event 20 seconds later lasted 12 seconds, also ejecting material 150 m above the crater. The sequence ended with at least three explosions of mostly fine material from the S1 crater. The total duration of this sequence was about two minutes.

Figure (see Caption) Figure 257. Webcam images of the explosive sequence at Stromboli on 16 February 2023 taken by the SCT and SCV infrared and visible cameras. The lava appears light yellow-green in the infrared images. Courtesy of INGV (Report 08/2023, Stromboli, Bollettino Settimanale, 13/02/2023 - 19/02/2023).

Short, intense spattering activity was noted above the N1 crater on 27 and 28 February. A lava overflow was first reported at 0657 from the N2 crater on 27 February that flowed into the October 2022 drainage. By 1900 the flow had stopped. A second lava overflow also in the N crater area occurred at 2149, which overlapped the first flow and then stopped by 0150 on 28 February. Material detached from both the lava overflows rolled down the Sciara del Fuoco, some of which was visible in webcam images.

Activity during March-April 2023. Strombolian activity continued with spattering activity and lava overflows in the N crater area during March. Explosive activity at the N crater area varied from low (less than 80 m high) to medium (less than 150 m high) and ejected coarse material, such as bombs and lapilli. Spattering was observed above the N1 crater, while explosive activity at the CS crater area varied from medium to high (greater than 150 m high) and ejected coarse material. Intense spattering activity was observed for short periods on 6 March above the N1 crater. At approximately 0610 a lava overflow was reported around the N2 crater on 8 March, which then flowed into the October 2022 drainage. By 1700 the flow started to cool. A second overflow began at 1712 on 9 March and overlapped the previous flow. It had stopped by 2100. Material from both flows was deposited along the Sciara del Fuoco, though much of the activity was not visible in webcam images. On 11 March a lava overflow was observed at 0215 that overlapped the two previous flows in the October 2022 drainage. By late afternoon on 12 March, it had stopped.

During a field excursion on 16 March, scientists noted that a vent in the central crater area was degassing. Another vent showed occasional Strombolian activity that emitted ash and lapilli. During 1200-1430 low-to-medium intense activity was reported; the N1 crater emitted ash emissions and the N2 crater emitted both ash and coarse material. Some explosions also occurred in the CS crater area that ejected coarse material. The C crater in the CS crater area occasionally showed gas jetting and low intensity explosions on 17 and 22 March; no activity was observed at the S1 crater. Intense, longer periods of spattering were reported in the N1 crater on 19, 24, and 25 March. Around 2242 on 23 March a lava overflow began from the N1 crater that, after about an hour, began moving down the October 2022 drainage and flow along the Sciara del Fuoco (figure 258). Between 0200 and 0400 on 26 March the flow rate increased, which generated avalanches of material from collapses at the advancing flow front. By early afternoon, the flow began to cool. On 25 March at 1548 an explosive sequence began from one of the vents at S2 in the CS crater area (figure 258). Fine ash mixed with coarse material was ejected 300 m above the crater rim and drifted SSE. Some modest explosions around Vent C were detected at 1549 on 25 March, which included an explosion at 1551 that ejected coarse material. The entire explosive sequence lasted approximately three minutes.

Figure (see Caption) Figure 258. Webcam images of the lava overflow in the N1 crater area of Stromboli on 23 March 2023 taken by the SCT infrared camera. The lava appears light yellow-green in the infrared images. The start of the explosive sequence was also captured on 25 March 2023 accompanied by an eruption plume (e) captured by the SCT and SPT infrared webcams. Courtesy of INGV (Report 13/2023, Stromboli, Bollettino Settimanale, 20/03/2023 - 26/03/2023).

During April explosions persisted in both the N and CS crater areas. Fine material was ejected less than 80 m above the N crater rim until 6 April, followed by ejection of coarser material. Fine material was also ejected less than 80 m above the CS crater rim. The C and S2 crater did not show significant eruptive activity. On 7 April an explosive sequence was detected in the CS crater area at 1203 (figure 259). The first explosion lasted approximately 18 seconds and ejected material 400 m above the crater rim, depositing pyroclastic material in the upper part of the Sciara del Fuoco. At 1204 a second, less intense explosion lasted approximately four seconds and deposited pyroclastic products outside the crater area and near Pizzo Sopra La Fossa. A third explosion at 1205 was mainly composed of ash that rose about 150 m above the crater and lasted roughly 20 seconds. A fourth explosion occurred at 1205 about 28 seconds after the third explosion and ejected a mixture of coarse and fine material about 200 m above the crater; the explosion lasted roughly seven seconds. Overall, the entire explosive sequence lasted about two minutes and 20 seconds. After the explosive sequence on 7 April, explosions in both the N and CS crater areas ejected material as high as 150 m above the crater.

Figure (see Caption) Figure 259. Webcam images of the explosive sequence at Stromboli during 1203-1205 (local time) on 7 April 2023 taken by the SCT infrared camera. Strong eruption plumes are visible, accompanied by deposits on the nearby flanks. Courtesy of INGV (Report 15/2023, Stromboli, Bollettino Settimanale, 03/04/2023 - 09/04/2023).

On 21 April research scientists from INGV made field observations in the summit area of Stromboli, and some lapilli samples were collected. In the N crater area near the N1 crater, a small cone was observed with at least two active vents, one of which was characterized by Strombolian explosions. The other vent produced explosions that ejected ash and chunks of cooled lava. At the N2 crater at least one vent was active and frequently emitted ash. In the CS crater area, a small cone contained 2-3 degassing vents and a smaller, possible fissure area also showed signs of degassing close to the Pizzo Sopra La Fossa. In the S part of the crater, three vents were active: a small hornito was characterized by modest and rare explosions, a vent that intermittently produced weak Strombolian explosions, and a vent at the end of the terrace that produced frequent ash emissions. Near the S1 crater there was a hornito that generally emitted weak gas-and-steam emissions, sometimes associated with “gas rings”. On 22 April another field inspection was carried out that reported two large sliding surfaces on the Sciara del Fuoco that showed where blocks frequently descended toward the sea. A thermal anomaly was detected at 0150 on 29 April.

Geologic Background. Spectacular incandescent nighttime explosions at Stromboli have long attracted visitors to the "Lighthouse of the Mediterranean" in the NE Aeolian Islands. This volcano has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent scarp that formed about 5,000 years ago due to a series of slope failures which extends to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy, (URL: http://www.ct.ingv.it/en/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Nishinoshima (Japan) — July 2023 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 100 m

All times are local (unless otherwise noted)


Small ash plumes and fumarolic activity during November 2022 through April 2023

Nishinoshima is a small island located about 1,000 km S of Tokyo in the Ogasawara Arc in Japan. The island is the summit of a massive submarine volcano that has prominent peaks to the S, W, and NE. Eruptions date back to 1973; the most recent eruption period began in October 2022 and was characterized by ash plumes and fumarolic activity (BGVN 47:12). This report describes ash plumes and fumarolic activity during November 2022 through April 2023 based on monthly reports from the Japan Meteorological Agency (JMA) monthly reports and satellite data.

The most recent eruptive activity prior to the reporting internal occurred on 12 October 2022, when an ash plume rose 3.5 km above the crater rim. An aerial observation conducted by the Japan Coast Guard (JCG) on 25 November reported that white fumaroles rose approximately 200 m above the central crater of a pyroclastic cone (figure 119), and multiple plumes were observed on the ESE flank of the cone. Discolored water ranging from reddish-brown to brown and yellowish-green were visible around the perimeter of the island (figure 119). No significant activity was reported in December.

Figure (see Caption) Figure 119. Aerial photo of gas-and-steam plumes rising 200 m above Nishinoshima on 25 November 2022. Reddish brown to brown and yellowish-green discolored water was visible around the perimeter of the island. Courtesy of JCG via JMA (monthly reports of activity at Nishinoshima, November 2022).

During an overflight conducted by JCG on 25 January 2023 intermittent activity and small, blackish-gray plumes rose 900 m above the central part of the crater were observed (figure 120). The fumarolic zone of the E flank and base of the cone had expanded and emissions had intensified. Dark brown discolored water was visible around the perimeter of the island.

Figure (see Caption) Figure 120. Aerial photo of a black-gray ash plume rising approximately 900 m above the crater rim of Nishinoshima on 25 January 2023. White fumaroles were visible on the E slope of the pyroclastic cone. Dense brown to brown discolored water was observed surrounding the island. Photo has been color corrected. Courtesy of JCG via JMA (monthly reports of activity at Nishinoshima, January, 2023).

No significant activity was reported during February through March. Ash plumes at 1050 and 1420 on 11 April rose 1.9 km above the crater rim and drifted NW and N. These were the first ash plumes observed since 12 October 2022. On 14 April JCG carried out an overflight and reported that no further eruptive activity was visible, although white gas-and-steam plumes were visible from the central crater and rose 900 m high (figure 121). Brownish and yellow-green discolored water surrounded the island.

Figure (see Caption) Figure 121. Aerial photo of white gas-and-steam plumes rising 900 m above Nishinoshima on 14 April 2023. Brown and yellow-green discolored water is visible around the perimeter of the island. Photo has been color corrected. Courtesy of JCG via JMA (monthly reports of activity at Nishinoshima, April, 2023).

Intermittent low-to-moderate power thermal anomalies were recorded in the MIROVA graph (Middle InfraRed Observation of Volcanic Activity) during November 2022 through April 2023 (figure 123). A cluster of six to eight anomalies were detected during November while a smaller number were detected during the following months: two to three during December, one during mid-January 2023, one during February, five during March, and two during April. Thermal activity was also reflected in infrared satellite data at the summit crater, accompanied by occasional gas-and-steam plumes (figure 124).

Figure (see Caption) Figure 123. Intermittent low-to-moderate thermal anomalies were detected at Nishinoshima during November 2022 through April 2023, according to this MIROVA graph (Log Radiative Power). A cluster of anomalies occurred throughout November, while fewer anomalies were detected during the following months. Courtesy of MIROVA.
Figure (see Caption) Figure 124. Infrared (bands B12, B11, B4) satellite images show a small thermal anomaly at the summit crater of Nishinoshima on 9 January 2023 (left) and 8 February 2023 (right). Gas-and-steam plumes accompanied this activity and extended S and SE, respectively. Courtesy of Copernicus Browser.

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Multiple eruptions that began in 2013 completely covered the previous exposed surface and continued to enlarge the island. The island is the summit of a massive submarine volcano that has prominent peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the ocean surface 9 km SSE.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Karangetang (Indonesia) — July 2023 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Lava flows, incandescent avalanches, and ash plumes during January-June 2023

Karangetang (also known as Api Siau), at the northern end of the island of Siau, Indonesia, contains five summit craters along a N-S line. More than 40 eruptions have been recorded since 1675; recent eruptions have included frequent explosive activity, sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters and collapses of lava flow fronts have produced pyroclastic flows. The two active summit craters are Kawah Dua (the N crater) and Kawah Utama (the S crater, also referred to as the “Main Crater”). The most recent eruption began in late November 2018 and has more recently consisted of weak thermal activity and gas-and-steam emissions (BGVN 48:01). This report updates activity characterized by lava flows, incandescent avalanches, and ash plumes during January through June 2023 using reports from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), MAGMA Indonesia, the Darwin VAAC (Volcano Ash Advisory Center), and satellite data.

Activity during January was relatively low and mainly consisted of white gas-and-steam emissions that rose 25-150 m above Main Crater (S crater) and drifted in different directions. Incandescence was visible from the lava dome in Kawah Dua (the N crater). Weather conditions often prevented clear views of the summit. On 18 January the number of seismic signals that indicated avalanches of material began to increase. In addition, there were a total of 71 earthquakes detected during the month.

Activity continued to increase during the first week of February. Material from Main Crater traveled as far as 800 m down the Batuawang (S) and Batang (W) drainages and as far as 1 km W down the Beha (W) drainage on 4 February. On 6 February 43 earthquake events were recorded, and on 7 February, 62 events were recorded. White gas-and-steam emissions rose 25-250 m above both summit craters throughout the month. PVMBG reported an eruption began during the evening of 8 February around 1700. Photos showed incandescent material at Main Crater. Incandescent material had also descended the flank in at least two unconfirmed directions as far as 2 km from Main Crater, accompanied by ash plumes (figure 60). As a result, PVMBG increased the Volcano Alert Level (VAL) to 3 (the second highest level on a 1-4 scale).

Figure (see Caption) Figure 60. Photos of the eruption at Karangetang on 8 February 2023 that consisted of incandescent material descending the flanks (top left), ash plumes (top right and bottom left), and summit crater incandescence (bottom right). Courtesy of IDN Times.

Occasional nighttime webcam images showed three main incandescent lava flows of differing lengths traveling down the S, SW, and W flanks (figure 61). Incandescent rocks were visible on the upper flanks, possibly from ejected or collapsed material from the crater, and incandescence was the most intense at the summit. Based on analyses of satellite imagery and weather models, the Darwin VAAC reported that daily ash plumes during 16-20 February rose to 2.1-3 km altitude and drifted NNE, E, and SE. BNPB reported on 16 February that as many as 77 people were evacuated and relocated to the East Siau Museum. A webcam image taken at 2156 on 17 February possibly showed incandescent material descending the SE flank. Ash plumes rose to 2.1 km altitude and drifted SE during 22-23 February, according to the Darwin VAAC.

Figure (see Caption) Figure 61. Webcam image of summit incandescence and lava flows descending the S, SW, and W flanks of Karangetang on 13 February 2023. Courtesy of MAGMA Indonesia.

Incandescent avalanches of material and summit incandescence at Main Crater continued during March. White gas-and-steam emissions during March generally rose 25-150 m above the summit crater; on 31 March gas-and-steam emissions rose 200-400 m high. An ash plume rose to 2.4 km altitude and drifted S at 1710 on 9 March and a large thermal anomaly was visible in images taken at 0550 and 0930 on 10 March. Incandescent material was visible at the summit and on the flanks based on webcam images taken at 0007 and 2345 on 16 March, at 1828 on 17 March, at 1940 on 18 March, at 2311 on 19 March, and at 2351 on 20 March. Incandescence was most intense on 18 and 20 March and webcam images showed possible Strombolian explosions (figure 62). An ash plume rose to 2.4 km altitude and drifted SW on 18 March, accompanied by a thermal anomaly.

Figure (see Caption) Figure 62. Webcam image of intense summit incandescence and incandescent avalanches descending the flanks of Karangetang on 18 March 2023. Photo has been color corrected. Courtesy of MAGMA Indonesia.

Summit crater incandescence at Main Crater and on the flanks persisted during April. Incandescent material at the S crater and on the flanks was reported at 0016 on 1 April. The lava flows had stopped by 1 April according to PVMBG, although incandescence was still visible up to 10 m high. Seismic signals indicating effusion decreased and by 6 April they were no longer detected. Incandescence was visible from both summit craters. On 26 April the VAL was lowered to 2 (the second lowest level on a 1-4 scale). White gas-and-steam emissions rose 25-200 m above the summit crater.

During May white gas-and-steam emissions generally rose 50-250 m above the summit, though it was often cloudy, which prevented clear views; on 21 May gas-and-steam emissions rose 50-400 m high. Nighttime N summit crater incandescence rose 10-25 m above the lava dome, and less intense incandescence was noted above Main Crater, which reached about 10 m above the dome. Sounds of falling rocks at Main Crater were heard on 15 May and the seismic network recorded 32 rockfall events in the crater on 17 May. Avalanches traveled as far as 1.5 km down the SW and S flanks, accompanied by rumbling sounds on 18 May. Incandescent material descending the flanks was captured in a webcam image at 2025 on 19 May (figure 63) and on 29 May; summit crater incandescence was observed in webcam images at 2332 on 26 May and at 2304 on 29 May. On 19 May the VAL was again raised to 3.

Figure (see Caption) Figure 63. Webcam image showing incandescent material descending the flanks of Karangetang on 19 May 2023. Courtesy of MAGMA Indonesia.

Occasional Main Crater incandescence was reported during June, as well as incandescent material on the flanks. White gas-and-steam emissions rose 10-200 m above the summit crater. Ash plumes rose to 2.1 km altitude and drifted SE and E during 2-4 June, according to the Darwin VAAC. Material on the flanks of Main Crater were observed at 2225 on 7 June, at 2051 on 9 June, at 0007 on 17 June, and at 0440 on 18 June. Webcam images taken on 21, 25, and 27 June showed incandescence at Main Crater and from material on the flanks.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed strong thermal activity during mid-February through March and mid-May through June, which represented incandescent avalanches and lava flows (figure 64). During April through mid-May the power of the anomalies decreased but frequent anomalies were still detected. Brief gaps in activity occurred during late March through early April and during mid-June. Infrared satellite images showed strong lava flows mainly affecting the SW and S flanks, accompanied by gas-and-steam emissions (figure 65). According to data recorded by the MODVOLC thermal algorithm, there were a total of 79 thermal hotspots detected: 28 during February, 24 during March, one during April, five during May, and 21 during June.

Figure (see Caption) Figure 64. Strong thermal activity was detected during mid-February 2023 through March and mid-May through June at Karangetang during January through June 2023, as recorded by this MIROVA graph (Log Radiative Power). During April through mid-May the power of the anomalies decreased, but the frequency at which they occurred was still relatively high. A brief gap in activity was shown during mid-June. Courtesy of MIROVA.
Figure (see Caption) Figure 65. Incandescent avalanches of material and summit crater incandescence was visible in infrared satellite images (bands 12, 11, 8A) at both the N and S summit crater of Karangetang on 17 February 2023 (top left), 13 April 2023 (top right), 28 May 2023 (bottom left), and 7 June 2023 (bottom right), as shown in these infrared (bands 12, 11, 8A) satellite images. The incandescent avalanches mainly affected the SW and S flanks. Sometimes gas-and-steam plumes accompanied the thermal activity. Courtesy of Copernicus Browser.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented (Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); IDN Times, Jl. Jend. Gatot Subroto Kav. 27 3rd Floor Kuningan, Jakarta, Indonesia 12950, Status of Karangetang Volcano in Sitaro Islands Increases (URL: https://sulsel.idntimes.com/news/indonesia/savi/status-gunung-api-karangetang-di-kepulauan-sitaro-meningkat?page=all).


Ahyi (United States) — July 2023 Citation iconCite this Report

Ahyi

United States

20.42°N, 145.03°E; summit elev. -75 m

All times are local (unless otherwise noted)


Intermittent hydroacoustic signals and discolored plumes during November 2022-June 2023

Ahyi seamount is a large, conical submarine volcano that rises to within 75 m of the ocean surface about 18 km SE of the island of Farallon de Pajaros in the Northern Marianas. The remote location of the seamount has made eruptions difficult to document, but seismic stations installed in the region confirmed an eruption in the vicinity in 2001. No new activity was detected until April-May 2014 when an eruption was detected by NOAA (National Oceanic and Atmospheric Administration) divers, hydroacoustic sensors, and seismic stations (BGVN 42:04). New activity was first detected on 15 November by hydroacoustic sensors that were consistent with submarine volcanic activity. This report covers activity during November 2022 through June 2023 based on daily and weekly reports from the US Geological Survey.

Starting in mid-October, hydroacoustic sensors at Wake Island (2.2 km E) recorded signals consistent with submarine volcanic activity, according to a report from the USGS issued on 15 November 2022. A combined analysis of the hydroacoustic signals and seismic stations located at Guam and Chichijima Island, Japan, suggested that the source of this activity was at or near the Ahyi seamount. After a re-analysis of a satellite image of the area that was captured on 6 November, USGS confirmed that there was no evidence of discoloration at the ocean surface. Few hydroacoustic and seismic signals continued through November, including on 18 November, which USGS suggested signified a decline or pause in unrest. A VONA (Volcano Observatory Notice for Aviation) reported that a discolored water plume was persistently visible in satellite data starting on 18 November (figure 6). Though clouds often obscured clear views of the volcano, another discolored water plume was captured in a satellite image on 26 November. The Aviation Color Code (ACC) was raised to Yellow (the second lowest level on a four-color scale) and the Volcano Alert Level (VAL) was raised to Advisory (the second lowest level on a four-level scale) on 29 November.

Figure (see Caption) Figure 6. A clear, true color satellite image showed a yellow-green discolored water plume extending NW from the Ahyi seamount (white arrow) on 21 November 2022. Courtesy of Copernicus Browser.

During December, occasional detections were recorded on the Wake Island hydrophone sensors and discolored water over the seamount remained visible. During 2-7, 10-12, and 16-31 December possible explosion signals were detected. A small area of discolored water was observed in high-resolution Sentinel-2 satellite images during 1-6 December (figure 7). High-resolution satellite images recorded discolored water plumes on 13 December that originated from the summit region; no observations indicated that activity breached the ocean surface. A possible underwater plume was visible in satellite images on 18 December, and during 19-20 December a definite but diffuse underwater plume located SSE from the main vent was reported. An underwater plume was visible in a satellite image taken on 26 December (figure 7).

Figure (see Caption) Figure 7. Clear, true color satellite images showed yellow-green discolored water plumes extending NE and W from Ahyi (white arrows) on 1 (left) and 26 (right) December 2022, respectively. Courtesy of Copernicus Browser.

Hydrophone sensors continued to detect signals consistent with possible explosions during 1-8 January 2023. USGS reported that the number of detections decreased during 4-5 January. The hydrophone sensors experienced a data outage that started at 0118 on 8 January and continued through 10 January, though according to USGS, possible explosions were recorded prior to the data outage and likely continued during the outage. A discolored water plume originating from the summit region was detected in a partly cloudy satellite image on 8 January. On 11-12 and 15-17 January possible explosion signals were recorded again. One small signal was detected during 22-23 January and several signals were recorded on 25 and 31 January. During 27-31 January a plume of discolored water was observed above the seamount in satellite imagery (figure 8).

Figure (see Caption) Figure 8. True color satellite images showed intermittent yellow-green discolored water plumes of various sizes extending N on 5 January 2023 (top left), SE on 30 January 2023 (top right), W on 4 February 2023 (bottom left), and SW on 1 March 2023 (bottom right) from Ahyi (white arrows). Courtesy of Copernicus Browser.

Low levels of activity continued during February and March, based on data from pressure sensors on Wake Island. During 1 and 4-6 February activity was reported, and a submarine plume was observed on 4 February (figure 8). Possible explosion signals were detected during 7-8, 10, 13-14, and 24 February. During 1-2 and 3-5 March a plume of discolored water was observed in satellite imagery (figure 8). Almost continuous hydroacoustic signals were detected in remote pressure sensor data on Wake Island 2,270 km E from the volcano during 7-13 March. During 12-13 March water discoloration around the seamount was observed in satellite imagery, despite cloudy weather. By 14 March discolored water extended about 35 km, but no direction was noted. USGS reported that the continuous hydroacoustic signals detected during 13-14 March stopped abruptly on 14 March and no new detections were observed. Three 30 second hydroacoustic detections were reported during 17-19 March, but no activity was visible due to cloudy weather. A data outage was reported during 21-22 March, making pressure sensor data unavailable; a discolored water plume was, however, visible in satellite data. A possible underwater explosion signal was detected by pressure sensors at Wake Island on 26, 29, and 31 March, though the cause and origin of these events were unclear.

Similar low activity continued during April, May, and June. Several signals were detected during 1-3 April in pressure sensors at Wake Island. USGS suggested that these may be related to underwater explosions or earthquakes at the volcano, but no underwater plumes were visible in clear satellite images. The pressure sensors had data outages during 12-13 April and no data were recorded; no underwater plumes were visible in satellite images, although cloudy weather obscured most clear views. Eruptive activity was reported starting at 2210 on 21 May. On 22 May a discolored water plume that extended 4 km was visible in satellite images, though no direction was recorded. During 23-24 May some signals were detected by the underwater pressure sensors. Possible hydroacoustic signals were detected during 2-3 and 6-8 June. Multiple hydroacoustic signals were detected during 9-11 and 16-17 June, although no activity was visible in satellite images. One hydroacoustic signal was detected during 23-24 June, but there was some uncertainty about its association with volcanic activity. A single possible hydroacoustic signal was detected during 30 June to 1 July.

Geologic Background. Ahyi seamount is a large conical submarine volcano that rises to within 75 m of the ocean surface ~18 km SE of the island of Farallon de Pajaros in the northern Marianas. Water discoloration has been observed there, and in 1979 the crew of a fishing boat felt shocks over the summit area, followed by upwelling of sulfur-bearing water. On 24-25 April 2001 an explosive eruption was detected seismically by a station on Rangiroa Atoll, Tuamotu Archipelago. The event was well constrained (+/- 15 km) at a location near the southern base of Ahyi. An eruption in April-May 2014 was detected by NOAA divers, hydroacoustic sensors, and seismic stations.

Information Contacts: US Geological Survey, Volcano Hazards Program (USGS-VHP), 12201 Sunrise Valley Drive, Reston, VA, USA, https://volcanoes.usgs.gov/index.html; Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Kadovar (Papua New Guinea) — June 2023 Citation iconCite this Report

Kadovar

Papua New Guinea

3.608°S, 144.588°E; summit elev. 365 m

All times are local (unless otherwise noted)


An ash plume and weak thermal anomaly during May 2023

Kadovar is a 2-km-wide island that is the emergent summit of a Bismarck Sea stratovolcano. It lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the volcano, filling an arcuate landslide scarp open to the S. Submarine debris-avalanche deposits occur to the S of the island. The current eruption began in January 2018 and has comprised lava effusion from vents at the summit and at the E coast; more recent activity has consisted of ash plumes, weak thermal activity, and gas-and-steam plumes (BGVN 48:02). This report covers activity during February through May 2023 using information from the Darwin Volcanic Ash Advisory Center (VAAC) and satellite data.

Activity during the reporting period was relatively low and mainly consisted of white gas-and-steam plumes that were visible in natural color satellite images on clear weather days (figure 67). According to a Darwin VAAC report, at 2040 on 6 May an ash plume rose to 4.6 km altitude and drifted W; by 2300 the plume had dissipated. MODIS satellite instruments using the MODVOLC thermal algorithm detected a single thermal hotspot on the SE side of the island on 7 May. Weak thermal activity was also detected in a satellite image on the E side of the island on 14 May, accompanied by a white gas-and-steam plume that drifted SE (figure 68).

Figure (see Caption) Figure 67. True color satellite images showing a white gas-and-steam plume rising from Kadovar on 28 February 2023 (left) and 30 March 2023 (right) and drifting SE and S, respectively. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 68. Infrared (bands B12, B11, B4) image showing weak thermal activity on the E side of the island, accompanied by a gas-and-steam plume that drifted SE from Kadovar on 14 May 2023. Courtesy of Copernicus Browser.

Geologic Background. The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the andesitic volcano, filling an arcuate landslide scarp open to the south; submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. A period of heightened thermal phenomena took place in 1976. An eruption began in January 2018 that included lava effusion from vents at the summit and at the E coast.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


San Miguel (El Salvador) — June 2023 Citation iconCite this Report

San Miguel

El Salvador

13.434°N, 88.269°W; summit elev. 2130 m

All times are local (unless otherwise noted)


Small gas-and-ash explosions during March and May 2023

San Miguel in El Salvador is a broad, deep crater complex that has been frequently modified by eruptions recorded since the early 16th century and consists of the summit known locally as Chaparrastique. Flank eruptions have produced lava flows that extended to the N, NE, and SE during the 17-19th centuries. The most recent activity has consisted of minor ash eruptions from the summit crater. The current eruption period began in November 2022 and has been characterized by frequent phreatic explosions, gas-and-ash emissions, and sulfur dioxide plumes (BGVN 47:12). This report describes small gas-and-ash explosions during December 2022 through May 2023 based on special reports from the Ministero de Medio Ambiente y Recursos Naturales (MARN).

Activity has been relatively low since the last recorded explosions on 29 November 2022. Seismicity recorded by the San Miguel Volcano Station (VSM) located on the N flank at 1.7 km elevation had decreased by 7 December. Sulfur dioxide gas measurements taken with DOAS (Differential Optical Absorption Spectroscopy) mobile equipment were below typical previously recorded values: 300 tons per day (t/d). During December, small explosions were recorded by the seismic network and manifested as gas-and-steam emissions.

Gas-and-ash explosions in the crater occurred during January 2023, which were recorded by the seismic network. Sulfur dioxide values remained low, between 300-400 t/d through 10 March. At 0817 on 14 January a gas-and-ash emission was visible in webcam images, rising just above the crater rim. Some mornings during February, small gas-and-steam plumes were visible in the crater. On 7 March at 2252 MARN noted an increase in degassing from the central crater; gas emissions were constantly observed through the early morning hours on 8 March. During the early morning of 8 March through the afternoon on 9 March, 12 emissions were registered, some accompanied by ash. The last gas-and-ash emission was recorded at 1210 on 9 March; very fine ashfall was reported in El Tránsito (10 km S), La Morita (6 km W), and La Piedrita (3 km W). The smell of sulfur was reported in Piedra Azul (5 km SW). On 16 March MARN reported that gas-and-steam emissions decreased.

Low degassing and very low seismicity were reported during April; no explosions have been detected between 9 March and 27 May. The sulfur dioxide emissions remained between 350-400 t/d; during 13-20 April sulfur dioxide values fluctuated between 30-300 t/d. Activity remained low through most of May; on 23 May seismicity increased. An explosion was detected at 1647 on 27 May generated a gas-and-ash plume that rose 700 m high (figure 32); a decrease in seismicity and gas emissions followed. The DOAS station installed on the W flank recorded sulfur dioxide values that reached 400 t/d on 27 May; subsequent measurements showed a decrease to 268 t/d on 28 May and 100 t/d on 29 May.

Figure (see Caption) Figure 32. Webcam image of a gas-and-ash plume rising 700 m above San Miguel at 1652 on 27 May 2023. Courtesy of MARN.

Geologic Background. The symmetrical cone of San Miguel, one of the most active volcanoes in El Salvador, rises from near sea level to form one of the country's most prominent landmarks. A broad, deep, crater complex that has been frequently modified by eruptions recorded since the early 16th century caps the truncated unvegetated summit, also known locally as Chaparrastique. Flanks eruptions of the basaltic-andesitic volcano have produced many lava flows, including several during the 17th-19th centuries that extended to the N, NE, and SE. The SE-flank flows are the largest and form broad, sparsely vegetated lava fields crossed by highways and a railroad skirting the base of the volcano. Flank vent locations have migrated higher on the edifice during historical time, and the most recent activity has consisted of minor ash eruptions from the summit crater.

Information Contacts: Ministero de Medio Ambiente y Recursos Naturales (MARN), Km. 5½ Carretera a Nueva San Salvador, Avenida las Mercedes, San Salvador, El Salvador (URL: http://www.snet.gob.sv/ver/vulcanologia).


Semisopochnoi (United States) — June 2023 Citation iconCite this Report

Semisopochnoi

United States

51.93°N, 179.58°E; summit elev. 1221 m

All times are local (unless otherwise noted)


Occasional explosions, ash deposits, and gas-and-steam plumes during December 2022-May 2023

Semisopochnoi is located in the western Aleutians, is 20-km-wide at sea level, and contains an 8-km-wide caldera. The three-peaked Mount Young (formerly Cerberus) was constructed within the caldera during the Holocene. Each of these peaks contains a summit crater; the lava flows on the N flank appear younger than those on the S side. The current eruption period began in early February 2021 and has more recently consisted of intermittent explosions and ash emissions (BGVN 47:12). This report updates activity during December 2022 through May 2023 using daily, weekly, and special reports from the Alaska Volcano Observatory (AVO). AVO monitors the volcano using local seismic and infrasound sensors, satellite data, web cameras, and remote infrasound and lightning networks.

Activity during most of December 2022 was relatively quiet; according to AVO no eruptive or explosive activity was observed since 7 November 2022. Intermittent tremor and occasional small earthquakes were observed in geophysical data. Continuous gas-and-steam emissions were observed from the N crater of Mount Young in webcam images on clear weather days (figure 25). On 24 December, there was a slight increase in earthquake activity and several small possible explosion signals were detected in infrasound data. Eruptive activity resumed on 27 December at the N crater of Mount Young; AVO issued a Volcano Activity Notice (VAN) that reported minor ash deposits on the flanks of Mount Young that extended as far as 1 km from the vent, according to webcam images taken during 27-28 December (figure 26). No ash plumes were observed in webcam or satellite imagery, but a persistent gas-and-steam plume that might have contained some ash rose to 1.5 km altitude. As a result, AVO raised the Aviation Color Code (ACC) to Orange (the second highest level on a four-color scale) and the Volcano Alert Level (VAL) to Watch (the second highest level on a four-level scale). Possible explosions were detected during 21 December 2022 through 1 January 2023 and seismic tremor was recorded during 30-31 December.

Figure (see Caption) Figure 25. Webcam image of a gas-and-steam plume rising above Semisopochnoi from Mount Young on 21 December 2022. Courtesy of AVO.
Figure (see Caption) Figure 26. Webcam image showing fresh ash deposits (black color) at the summit and on the flanks of Mount Young at Semisopochnoi, extending up to 1 km from the N crater. Image was taken on 27 December 2022. Image has been color corrected. Courtesy of AVO.

During January 2023 eruptive activity continued at the active N crater of Mount Young. Minor ash deposits were observed on the flanks, extending about 2 km SSW, based on webcam images from 1 and 3 January. A possible explosion occurred during 1-2 January based on elevated seismicity recorded on local seismometers and an infrasound signal recorded minutes later by an array at Adak. Though no ash plumes were observed in webcam or satellite imagery, a persistent gas-and-steam plume rose to 1.5 km altitude that might have carried minor traces of ash. Ash deposits were accompanied by periods of elevated seismicity and infrasound signals from the local geophysical network, which AVO reported were likely due to weak explosive activity. Low-level explosive activity was also detected during 2-3 January, with minor gas-and-steam emissions and a new ash deposit that was visible in webcam images. Low-level explosive activity was detected in geophysical data during 4-5 January, with elevated seismicity and infrasound signals observed on local stations. Volcanic tremor was detected during 7-9 January and very weak explosive activity was detected in seismic and infrasound data on 9 January. Weak seismic and infrasound signals were recorded on 17 January, which indicated minor explosive activity, but no ash emissions were observed in clear webcam images; a gas-and-steam plume continued to rise to 1.5 km altitude. During 29-30 January, ash deposits near the summit were observed on fresh snow, according to webcam images.

The active N cone at Mount Young continued to produce a gas-and-steam plume during February, but no ash emissions or explosive events were detected. Seismicity remained elevated with faint tremor during early February. Gas-and-steam emissions from the N crater were observed in clear webcam images on 11-13 and 16 February; no explosive activity was detected in seismic, infrasound, or satellite data. Seismicity has also decreased, with no significant seismic tremor observed since 25 January. Therefore, the ACC was lowered to Yellow (the second lowest level on a four-color scale) and the VAL was lowered to Advisory (the second lowest level on a four-color scale) on 22 February.

Gas-and-steam emissions persisted during March from the N cone of Mount Young, based on clear webcam images. A few brief episodes of weak tremor were detected in seismic data, although seismicity decreased over the month. A gas-and-steam plume detected in satellite data extended 150 km on 18 March. Low-level ash emissions from the N cone at Mount Young were observed in several webcam images during 18-19 March, in addition to small explosions and volcanic tremor. The ACC was raised to Orange and the VAL increased to Watch on 19 March. A small explosion was detected in seismic and infrasound data on 21 March.

Low-level unrest continued during April, although cloudy weather often obscured views of the summit; periods of seismic tremor and local earthquakes were recorded. During 3-4 April a gas-and-steam plume was visible traveling more than 200 km overnight; no ash was evident in the plume, according to AVO. A gas-and-steam plume was observed during 4-6 April that extended 400 km but did not seem to contain ash. Small explosions were detected in seismic and infrasound data on 5 April. Occasional clear webcam images showed continuing gas-and-steam emissions rose from Mount Young, but no ash deposits were observed on the snow. On 19 April small explosions and tremor were detected in seismic and infrasound data. A period of seismic tremor was detected during 22-25 April, with possible weak explosions on 25 April. Ash deposits were visible near the crater rim, but it was unclear if these deposits were recent or due to older deposits.

Occasional small earthquakes were recorded during May, but there were no signs of explosive activity seen in geophysical data. Gas-and-steam emissions continued from the N crater of Mount Young, based on webcam images, and seismicity remained slightly elevated. A new, light ash deposit was visible during the morning of 5 May on fresh snow on the NW flank of Mount Young. During 10 May periods of volcanic tremor were observed. The ACC was lowered to Yellow and the VAL to Advisory on 17 May due to no additional evidence of activity.

Geologic Background. Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked Mount Cerberus (renamed Mount Young in 2023) was constructed within the caldera during the Holocene. Each of the peaks contains a summit crater; lava flows on the N flank appear younger than those on the south side. Other post-caldera volcanoes include the symmetrical Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented eruptions have originated from Young, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone could have been recently active.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).


Ebeko (Russia) — June 2023 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Continued explosions, ash plumes, and ashfall during October 2022-May 2023

Ebeko, located on the N end of Paramushir Island in the Kuril Islands, consists of three summit craters along a SSW-NNE line at the northern end of a complex of five volcanic cones. Eruptions date back to the late 18th century and have been characterized as small-to-moderate explosions from the summit crater, accompanied by intense fumarolic activity. The current eruption period began in June 2022 and has recently consisted of frequent explosions, ash plumes, and thermal activity (BGVN 47:10). This report covers similar activity during October 2022 through May 2023, based on information from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.

Activity during October consisted of explosive activity, ash plumes, and occasional thermal anomalies. Visual data by volcanologists from Severo-Kurilsk showed explosions producing ash clouds up to 2.1-3 km altitude which drifted E, N, NE, and SE during 1-8, 10, 16, and 18 October. KVERT issued several Volcano Observatory Notices for Aviation (VONA) on 7, 13-15, and 27 October 2022, stating that explosions generated ash plumes that rose to 2.3-4 km altitude and drifted 5 km E, NE, and SE. Ashfall was reported in Severo-Kurilsk (Paramushir Island, about 7 km E) on 7 and 13 October. Satellite data showed a thermal anomaly over the volcano on 15-16 October. Visual data showed ash plumes rising to 2.5-3.6 km altitude on 22, 25-29, and 31 October and moving NE due to constant explosions.

Similar activity continued during November, with explosions, ash plumes, and ashfall occurring. KVERT issued VONAs on 1-2, 4, 6-7, 9, 13, and 16 November that reported explosions and resulting ash plumes that rose to 1.7-3.6 km altitude and drifted 3-5 km SE, ESE, E, and NE. On 1 November ash plumes extended as far as 110 km SE. On 5, 8, 12, and 24-25 November explosions and ash plumes rose to 2-3.1 km altitude and drifted N and E. Ashfall was observed in Severo-Kurilsk on 7 and 16 November. A thermal anomaly was visible during 1-4, 16, and 20 November. Explosions during 26 November rose as high as 2.7 km altitude and drifted NE (figure 45).

Figure (see Caption) Figure 45. Photo of an ash plume rising to 2.7 km altitude above Ebeko on 26 November 2022. Photo has been color corrected. Photo by L. Kotenko, IVS FEB RAS.

Explosions and ash plumes continued to occur in December. During 1-2 and 4 December volcanologists from Severo-Kurilsk observed explosions that sent ash to 1.9-2.5 km altitude and drifted NE and SE (figure 46). VONAs were issued on 5, 9, and 16 December reporting that explosions generated ash plumes rising to 1.9 km, 2.6 km, and 2.4 km altitude and drifted 5 km SE, E, and NE, respectively. A thermal anomaly was visible in satellite imagery on 16 December. On 18 and 27-28 December explosions produced ash plumes that rose to 2.5 km altitude and drifted NE and SE. On 31 December an ash plume rose to 2 km altitude and drifted NE.

Figure (see Caption) Figure 46. Photo of an explosive event at Ebeko at 1109 on 2 December 2022. Photo has been color corrected. Photo by S. Lakomov, IVS FEB RAS.

Explosions continued during January 2023, based on visual observations by volcanologists from Severo-Kurilsk. During 1-7 January explosions generated ash plumes that rose to 4 km altitude and drifted NE, E, W, and SE. According to VONAs issued by KVERT on 2, 4, 10, and 23 January, explosions produced ash plumes that rose to 2-4 km altitude and drifted 5 km N, NE, E, and ENE; the ash plume that rose to 4 km altitude occurred on 10 January (figure 47). Satellite data showed a thermal anomaly during 3-4, 10, 13, 16, 21, 22, and 31 January. KVERT reported that an ash cloud on 4 January moved 12 km NE. On 6 and 9-11 January explosions sent ash plumes to 4.5 km altitude and drifted W and ESE. On 13 January an ash plume rose to 3 km altitude and drifted SE. During 20-24 January ash plumes from explosions rose to 3.7 km altitude and drifted SE, N, and NE. On 21 January the ash plume drifted as far as 40 km NE. During 28-29 and 31 January and 1 February ash plumes rose to 4 km altitude and drifted NE.

Figure (see Caption) Figure 47. Photo of a strong ash plume rising to 4 km altitude from an explosive event on 10 January 2023 (local time). Photo by L. Kotenko, IVS FEB RAS.

During February, explosions, ash plumes, and ashfall were reported. During 1, 4-5 and 7-8 February explosions generated ash plumes that rose to 4.5 km altitude and drifted E and NE; ashfall was observed on 5 and 8 February. On 6 February an explosion produced an ash plume that rose to 3 km altitude and drifted 7 km E, causing ashfall in Severo-Kurilsk. A thermal anomaly was visible in satellite data on 8, 9, 13, and 21 February. Explosions on 9 and 12-13 February produced ash plumes that rose to 4 km altitude and drifted E and NE; the ash cloud on 12 February extended as far as 45 km E. On 22 February explosions sent ash to 3 km altitude that drifted E. During 24 and 26-27 February ash plumes rose to 4 km altitude and drifted E. On 28 February an explosion sent ash to 2.5-3 km altitude and drifted 5 km E; ashfall was observed in Severo-Kurilsk.

Activity continued during March; visual observations showed that explosions generated ash plumes that rose to 3.6 km altitude on 3, 5-7, and 9-12 March and drifted E, NE, and NW. Thermal anomalies were visible on 10, 13, and 29-30 March in satellite imagery. On 18, 21-23, 26, and 29-30 March explosions produced ash plumes that rose to 2.8 km altitude and drifted NE and E; the ash plumes during 22-23 March extended up to 76 km E. A VONA issued on 21 March reported an explosion that produced an ash plume that rose to 2.8 km altitude and drifted 5 km E. Another VONA issued on 23 March reported that satellite data showed an ash plume rising to 3 km altitude and drifted 14 km E.

Explosions during April continued to generate ash plumes. On 1 and 4 April an ash plume rose to 2.8-3.5 km altitude and drifted SE and NE. A thermal anomaly was visible in satellite imagery during 1-6 April. Satellite data showed ash plumes and clouds rising to 2-3 km altitude and drifting up to 12 km SW and E on 3 and 6 April (figure 48). KVERT issued VONAs on 3, 5, 14, 16 April describing explosions that produced ash plumes rising to 3 km, 3.5 km, 3.5 km, and 3 km altitude and drifting 5 km S, 5 km NE and SE, 72 km NNE, and 5 km NE, respectively. According to satellite data, the resulting ash cloud from the explosion on 14 April was 25 x 7 km in size and drifted 72-104 km NNE during 14-15 April. According to visual data by volcanologists from Severo-Kurilsk explosions sent ash up to 3.5 km altitude that drifted NE and E during 15-16, 22, 25-26, and 29 April.

Figure (see Caption) Figure 48. Photo of an ash cloud rising to 3.5 km altitude at Ebeko on 6 April 2023. The cloud extended up to 12 km SW and E. Photo has been color corrected. Photo by L. Kotenko, IVS FEB RAS.

The explosive eruption continued during May. Explosions during 3-4, 6-7, and 9-10 May generated ash plumes that rose to 4 km altitude and drifted SW and E. Satellite data showed a thermal anomaly on 3, 9, 13-14, and 24 May. During 12-16, 23-25, and 27-28 May ash plumes rose to 3.5 km altitude and drifted in different directions due to explosions. Two VONA notices were issued on 16 and 25 May, describing explosions that generated ash plumes rising to 3 km and 3.5 km altitude, respectively and extending 5 km E. The ash cloud on 25 May drifted 75 km SE.

Thermal activity in the summit crater, occasionally accompanied by ash plumes and ash deposits on the SE and E flanks due to frequent explosions, were visible in infrared and true color satellite images (figure 49).

Figure (see Caption) Figure 49. Infrared (bands B12, B11, B4) and true color satellite images of Ebeko showing occasional small thermal anomalies at the summit crater on 4 October 2022 (top left), 30 April 2023 (bottom left), and 27 May 2023 (bottom right). On 1 November (top right) ash deposits (light-to-dark gray) were visible on the SE flank. An ash plume drifted NE on 30 April, and ash deposits were also visible to the E on both 30 April and 27 May. Courtesy of Copernicus Browser.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Home Reef (Tonga) — June 2023 Citation iconCite this Report

Home Reef

Tonga

18.992°S, 174.775°W; summit elev. -10 m

All times are local (unless otherwise noted)


Discolored plumes continued during November 2022-April 2023

Home Reef is a submarine volcano located in the central Tonga islands between Lateiki (Metis Shoal) and Late Island. The first recorded eruption occurred in the mid-19th century, when an ephemeral island formed. An eruption in 1984 produced a 12-km-high eruption plume, a large volume of floating pumice, and an ephemeral island 500 x 1,500 m wide, with cliffs 30-50 m high that enclosed a water-filled crater. Another island-forming eruption in 2006 produced widespread pumice rafts that drifted as far as Australia; by 2008 the island had eroded below sea level. The previous eruption occurred during October 2022 and was characterized by a new island-forming eruption, lava effusion, ash plumes, discolored water, and gas-and-steam plumes (BGVN 47:11). This report covers discolored water plumes during November 2022 through April 2023 using satellite data.

Discolored plumes continued during the reporting period and were observed in true color satellite images on clear weather days. Satellite images show light green-yellow discolored water extending W on 8 and 28 November 2022 (figure 31), and SW on 18 November. Light green-yellow plumes extended W on 3 December, S on 13 December, SW on 18 December, and W and S on 23 December (figure 31). On 12 January 2023 discolored green-yellow plumes extended to the NE, E, SE, and N. The plume moved SE on 17 January and NW on 22 January. Faint discolored water in February was visible moving NE on 1 February. A discolored plume extended NW on 8 and 28 March and NW on 13 March (figure 31). During April, clear weather showed green-blue discolored plumes moving S on 2 April, W on 7 April, and NE and S on 12 April. A strong green-yellow discolored plume extended E and NE on 22 April for several kilometers (figure 31).

Figure (see Caption) Figure 31. Visual (true color) satellite images showing continued green-yellow discolored plumes at Home Reef (black circle) that extended W on 28 November 2022 (top left), W and S on 23 December 2022 (top right), NW on 13 March 2023 (bottom left), and E and NE on 22 April 2023 (bottom right). Courtesy of Copernicus Browser.

Geologic Background. Home Reef, a submarine volcano midway between Metis Shoal and Late Island in the central Tonga islands, was first reported active in the mid-19th century, when an ephemeral island formed. An eruption in 1984 produced a 12-km-high eruption plume, large amounts of floating pumice, and an ephemeral 500 x 1,500 m island, with cliffs 30-50 m high that enclosed a water-filled crater. In 2006 an island-forming eruption produced widespread dacitic pumice rafts that drifted as far as Australia. Another island was built during a September-October 2022 eruption.

Information Contacts: Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Ambae (Vanuatu) — June 2023 Citation iconCite this Report

Ambae

Vanuatu

15.389°S, 167.835°E; summit elev. 1496 m

All times are local (unless otherwise noted)


New lava flow, ash plumes, and sulfur dioxide plumes during February-May 2023

Ambae, also known as Aoba, is a large basaltic shield volcano in Vanuatu. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas. Periodic phreatic and pyroclastic explosions have been reported since the 16th century. A large eruption more than 400 years ago resulted in a volcanic cone within the summit crater that is now filled by Lake Voui; the similarly sized Lake Manaro fills the western third of the caldera. The previous eruption ended in August 2022 that was characterized by gas-and-steam and ash emissions and explosions of wet tephra (BGVN 47:10). This report covers a new eruption during February through May 2023 that consisted of a new lava flow, ash plumes, and sulfur dioxide emissions, using information from the Vanuatu Meteorology and Geo-Hazards Department (VMGD) and satellite data.

During the reporting period, the Alert Level remained at a 2 (on a scale of 0-5), which has been in place since December 2021. Activity during October 2022 through March 2023 remained relatively low and mostly consisted of gas-and-steam emissions in Lake Voui. VMGD reported that at 1300 on 15 November a satellite image captured a strong amount of sulfur dioxide rising above the volcano (figure 99), and that seismicity slightly increased. The southern and northern part of the island reported a strong sulfur dioxide smell and heard explosions. On 20 February 2023 a gas-and-ash plume rose 1.3 km above the summit and drifted SSW, according to a webcam image (figure 100). Gas-and-steam and possibly ash emissions continued on 23 February and volcanic earthquakes were recorded by the seismic network.

Figure (see Caption) Figure 99. Satellite image of the strong sulfur dioxide plume above Ambae taken on 15 November 2022. The Dobson Units (DU) exceeded 12. Courtesy of VMGD.
Figure (see Caption) Figure 100. Webcam image of a gas-and-ash plume rising above Ambae at 1745 on 20 February 2023. The plume drifted SSW. Courtesy of VMGD.

During April, volcanic earthquakes and gas-and-steam and ash emissions were reported from the cone in Lake Voui. VMGD reported that activity increased during 5-7 April; high gas-and-steam and ash plumes were visible, accompanied by nighttime incandescence. According to a Wellington VAAC report, a low-level ash plume rose as high as 2.5 km above the summit and drifted W and SW on 5 April, based on satellite imagery. Reports in Saratamata stated that a dark ash plume drifted to the WSW, but no loud explosion was heard. Webcam images from 2100 showed incandescence above the crater and reflected in the clouds. According to an aerial survey, field observations, and satellite data, water was no longer present in the lake. A lava flow was reported effusing from the vent and traveling N into the dry Lake Voui, which lasted three days. The next morning at 0745 on 6 April a gas-and-steam and ash plume rose 5.4 km above the summit and drifted ESE, based on information from VMGD (figure 101). The Wellington VAAC also reported that light ashfall was observed on the island. Intermittent gas-and-steam and ash emissions were visible on 7 April, some of which rose to an estimated 3 km above the summit and drifted E. Webcam images during 0107-0730 on 7 April showed continuing ash emissions. A gas-and-steam and ash plume rose 695 m above the summit crater at 0730 on 19 April and drifted ESE, based on a webcam image (figure 102).

Figure (see Caption) Figure 101. Webcam image showing a gas-and-ash plume rising 5.4 km above the summit of Ambae at 0745 on 6 April 2023. Courtesy of VMGD.
Figure (see Caption) Figure 102. Webcam image showing a gas-and-ash plume rising 695 m above the summit of Ambae at 0730 on 19 April 2023. Courtesy of VMGD.

According to visual and infrared satellite data, water was visible in Lake Voui as late as 24 March 2023 (figure 103). The vent in the caldera showed a gas-and-steam plume drifted SE. On 3 April thermal activity was first detected, accompanied by a gas-and-ash plume that drifted W (figure 103). The lava flow moved N within the dry lake and was shown cooling by 8 April. By 23 April much of the water in the lake had returned. Occasional sulfur dioxide plumes were detected by the TROPOMI instrument on the Sentinel-5P satellite that exceeded 2 Dobson Units (DU) and drifted in different directions (figure 104).

Figure (see Caption) Figure 103. Satellite images showing both visual (true color) and infrared (bands B12, B11, B4) views on 24 March 2023 (top left), 3 April 2023 (top left), 8 April 2023 (bottom left), and 23 April 2023 (bottom right). In the image on 24 March, water filled Lake Voui around the small northern lake. A gas-and-steam plume drifted SE. Thermal activity (bright yellow-orange) was first detected in infrared data on 3 April 2023, accompanied by a gas-and-ash plume that drifted W. The lava flow slowly filled the northern part of the then-dry lake and remained hot on 8 April. By 23 April, the water in Lake Voui had returned. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 104. Images showing sulfur dioxide plumes rising from Ambae on 26 December 2022 (top left), 25 February 2023 (top right), 23 March 2023 (bottom left), and 5 April 2023 (bottom right), as detected by the TROPOMI instrument on the Sentinel-5P satellite. These plumes exceeded at least 2 Dobson Units (DU) and drifted in different directions. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. The island of Ambae, also known as Aoba, is a massive 2,500 km3 basaltic shield that is the most voluminous volcano of the New Hebrides archipelago. A pronounced NE-SW-trending rift zone with numerous scoria cones gives the 16 x 38 km island an elongated form. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas, the largest of which is 6 km in diameter. That large central edifice is also called Manaro Voui or Lombenben volcano. Post-caldera explosive eruptions formed the summit craters about 360 years ago. A tuff cone was constructed within Lake Voui (or Vui) about 60 years later. The latest known flank eruption, about 300 years ago, destroyed the population of the Nduindui area near the western coast.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); Wellington Volcanic Ash Advisory Centre (VAAC), Meteorological Service of New Zealand Ltd (MetService), PO Box 722, Wellington, New Zealand (URL: http://www.metservice.com/vaac/, http://www.ssd.noaa.gov/VAAC/OTH/NZ/messages.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 22, Number 07 (July 1997)

Managing Editor: Richard Wunderman

Concepcion (Nicaragua)

Four small fumaroles active on 30 May

Don Joao de Castro Bank (Portugal)

Magnitude 5.5 earthquake and associated seismic swarm

Etna (Italy)

Continued activity from three craters through mid-July; crater descriptions

Karangetang (Indonesia)

Three people killed by a pyroclastic flow in June

Kilauea (United States)

Fountaining from Pu`u `O`o vents; lava flows reach ocean again

Krakatau (Indonesia)

Activity increases in May

Langila (Papua New Guinea)

Anomalous tilt precedes relatively forceful ash emissions

Manam (Papua New Guinea)

Ash clouds rise 5 km during July

Masaya (Nicaragua)

Minor morphologic changes and fluctuating incandescence in May

Momotombo (Nicaragua)

June fumarole temperatures

Popocatepetl (Mexico)

Largest ash emission of the 1994-97 eruption on 30 June

Rabaul (Papua New Guinea)

Increased Strombolian eruptions on 11-12 July

Sabancaya (Peru)

Quiet on 19 July; ash-bearing plumes on 1-2 May

Soufriere Hills (United Kingdom)

Activity increased to high levels on 31 July

Vulcano (Italy)

Fumarolic emissions during April from Fossa Grande

Whakaari/White Island (New Zealand)

Surveys on 11 March and 6 May confirm that the deflation trend continues



Concepcion (Nicaragua) — July 1997 Citation iconCite this Report

Concepcion

Nicaragua

11.538°N, 85.622°W; summit elev. 1700 m

All times are local (unless otherwise noted)


Four small fumaroles active on 30 May

Open University researchers reported that "On 30 May, four small fumaroles 50 m N of the crater rim were active."

Geologic Background. Volcán Concepción is one of Nicaragua's highest and most active volcanoes. The symmetrical basaltic-to-dacitic stratovolcano forms the NW half of the dumbbell-shaped island of Ometepe in Lake Nicaragua and is connected to neighboring Madera volcano by a narrow isthmus. A steep-walled summit crater is 250 m deep and has a higher western rim. N-S-trending fractures on the flanks have produced chains of spatter cones, cinder cones, lava domes, and maars located on the NW, NE, SE, and southern sides extending in some cases down to Lake Nicaragua. Concepción was constructed above a basement of lake sediments, and the modern cone grew above a largely buried caldera, a small remnant of which forms a break in slope about halfway up the N flank. Frequent explosive eruptions during the past half century have increased the height of the summit significantly above that shown on current topographic maps and have kept the upper part of the volcano unvegetated.

Information Contacts: Benjamin van Wyk de Vries, Department of Earth Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom (URL: http://www.open.ac.uk/science/environment-earth-ecosystems/).


Don Joao de Castro Bank (Portugal) — July 1997 Citation iconCite this Report

Don Joao de Castro Bank

Portugal

38.23°N, 26.63°W; summit elev. -13 m

All times are local (unless otherwise noted)


Magnitude 5.5 earthquake and associated seismic swarm

On 27 June 1997 at 0439 a strong earthquake struck the Azores Archipelago. This main shock reached M 5.5 and was felt with maximum intensity of V on the Modified Mercalli Scale at Terceira and São Miguel islands; in the islands of São Jorge, Pico, and Faial, the respective maximum intensities were III/IV, III/IV, and II/III.

The epicenter was in the vicinity of Don João de Castro bank (figure 2), a submarine volcanic structure. An earthquake swarm began the same day. During one month about 2,000 such events were registered at a reference seismic station on São Miguel island. Approximately 45 earthquakes with M > 4 were registered at Terceira island. By 12 September about 2,100 earthquakes had occurred but by then the swarm had declined to 1 or 2 small events a day.

Figure (see Caption) Figure 2. Epicenters during part of the seismic swarm at the Don João de Castro bank (Azores Archipelago), 27 June to 2 August 1997. Provided by SIVISA; courtesy of J.L. Gaspar.

In 1720 AD the Don João de Castro Bank produced an eruption with a Volcanic Explosivity Index (VEI) of 3. After four days an ephemeral, 1-km-long island was created. The area was charted in 1941. Seismic swarms in this general region were also noted in 1988 and 1989 (SEAN 13:10 and 14:03).

Geologic Background. Don Joao de Castro Bank is a large submarine volcano that rises to within 13 m of the ocean surface roughly halfway between Terceira and San Miguel Islands. Pillow lavas form the base of the volcano, which is capped by basaltic hyaloclastites. A submarine eruption during December 1720 produced an ephemeral island that attained a length of 1.5 km and a height of about 250 m before it was eroded beneath the surface two years later. The volcano (also spelled Dom Joao de Castro) was named after the Portuguese hydrographic survey vessel that surveyed the bank in 1941. Two youthful craters, one tephra covered and the other sediment free, are located on the NW flank. The submarine volcano has a shallow fumarole field and remains seismically active.

Information Contacts: Azores Seismological Surveillance System (SIVISA), coordinated by a)J.L. Gaspar, Azores University Centre of Volcanology, 9500 - Ponta Delgada, Azores, Portugal and b)Luísa Senos, Meteorological Institute, 9500 Ponta Delgada, Azores, Portugal.


Etna (Italy) — July 1997 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3357 m

All times are local (unless otherwise noted)


Continued activity from three craters through mid-July; crater descriptions

The following summarizes observations, organized by crater (figure 67), made by Boris Behncke of the activity and morphology of Etna's summit craters during visits on 14 June, 11 July, and 16 July 1997. Additional observations of activity through 18 July are reported.

Figure (see Caption) Figure 67. Sketch map of Etna's summit craters as of July 1997. Locations of eruptive vents and recent lava flows are indicated. Courtesy of Boris Behncke.

Voragine. This crater was degassing from a central pit during visits in October 1995 and September 1996. Lava effusion from nearby Northeast Crater into Voragine in July-August 1996 did not fill the pit. However, during 14 June the pit was obstructed, with only wisps of steam escaping from its E rim. The 1996 lava flows from Northeast Crater had been almost completely removed by collapse. On 13 July the crater reopened. Mountain guides reported ejections of ash and possibly fresh scoria.

Northeast Crater. After the activity of late 1995 to late 1996, Northeast Crater became Etna's highest summit, surpassing the remains of a 1964 cone on the SE rim of Bocca Nuova. The 1995-96 activity and subsequent collapse completely altered the crater, which had a deep pit with vertical walls in early October 1995. The SW part of the crater contained a cluster of small cones and partially overlapping craters; none were active on 14 June. The N part of the crater was occupied by a lava platform which filled the crater in June-July 1996. The W edge of this platform was made of large tilted slabs. A lower platform covered by a lava flow from the cone cluster partially encircled a deep ~100-m-wide pit that was the site of Strombolian activity. Loud roaring from the pit on 14 June preceded emissions of dense yellowish ash-bearing gas plumes at intervals of 1-2 minutes. Activity on 11 July (when viewed from Bocca Nuova) appeared similar; there were no incandescent ejections after sunset.

Bocca Nuova. Since the resumption of magmatic activity in July 1995, two principal eruptive centers have been active in the ~150-m-deep pit: one vent at the base of the SE crater wall, and a group of vents in the NW sector of the crater. The former only emitted gas during the past two years; the latter exhibited periodic Strombolian activity and lava effusion. On 14 June the SE vent had Strombolian explosions every 10-15 minutes, with fragments rising 50-70 m; on 11 July explosions reached the crater rim (>100 m above the vent) and fresh bombs were found to the SE outside of the crater. The NW vent cluster consisted of three boccas aligned NW-SE on 14 June that generated nearly continuous small Strombolian bursts and lava emission from an area to their E. At times the northern vent filled with bubbling lava. On 11 July three vents were aligned E-W; lava effusion occurred from vents to their E or SE.

During a visit on 16 July, a large spatter cone with a crater 20-30 m wide had formed in the NW area of activity, where there had been three small vents only five days earlier. The crater of this new cone was filled with vigorously boiling and spattering lava. Explosions from the SE eruptive vent occurred about every 3-5 minutes, at times ejecting bombs high above the SE rim (~150 m above the vent). Similar activity continued through 18 July.

Southeast Crater (SEC). On 14 June noises characteristic of Strombolian activity were heard ~2 km S of the crater, but no ejections rose above the crater rim. Daily observations from Catania (~30 km S of the summit) began on 7 July, coinciding with a slight intensification of activity from SEC. At night, nearly continuous Strombolian bursts were visible. During the following evenings activity appeared more discontinuous, with periods of activity up to 20 minutes separated by up to several hours. A visit to the crater on the evening of 11 July found that a cinder cone in the N part of SEC had almost risen as high as the crater rim. Strombolian activity, in cycles lasting ~15-20 minutes separated by intervals up to 20 minutes, sent bursts as high as 150 m above the vent. An incandescent lava flow from a vent ~20 m below the cone's summit moved down the S flank of the cone, extending ~200 m to the S base of the inner wall of SEC. Slightly older flows around the active lobe still had incandescent spots. Despite the episodic explosive activity, effusive activity appeared reasonably constant. Night observations from Catania during the following days disclosed continuing explosive activity from SEC.

The floor of Southeast Crater, gradually being filled by a growing cone and lava flows, had risen to within <10 m of a low point on the SE crater rim by 16 July. As of 18 July the cone in SEC's N half was as high as the crater rim (~50-70 m above the lowest part of the crater floor). Lava flows issued more or less continuously from boccas on the upper S and SE flanks of the cone, forming a complex lava field to the S, SE, and E. At night, explosive activity from the cone's summit is visible from Catania.

Geologic Background. Mount Etna, towering above Catania on the island of Sicily, has one of the world's longest documented records of volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Boris Behncke, Istituto di Geologia e Geofisica, Palazzo delle Scienze, Corso Italia 55, 95129 Catania, Italy.


Karangetang (Indonesia) — July 1997 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Three people killed by a pyroclastic flow in June

On 17 April the Bureau of Meteorology in Darwin received a report from the Volcanological Survey of Indonesia of an ongoing eruption at Karangetang; however, the plume height could not be observed because of cloud cover, and no plume was seen in later satellite imagery. The Societe de Volcanologie de Geneve (SVG) reported that explosions and pyroclastic flows in June required the evacuation of 400 people from a village. They further reported that this eruptive episode claimed the lives of three people. The last reported activity consisted of daily ash explosions during October 1996.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented (Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Bureau of Meteorology, Northern Territory Regional Office, P.O. Box 735, Darwin NT, Australia; Societe de Volcanologie Geneve (SVG), B.P. 298, CH-1225, Chenebourg, Switzerland.


Kilauea (United States) — July 1997 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Fountaining from Pu`u `O`o vents; lava flows reach ocean again

Eruptive activity continued at the Pu`u `O`o Crater from mid-May through mid-August 1997. The 55th episode of Kīlauea's 14.5-year-long East rift zone eruption began on 24 February 1997 after a 24-day hiatus in activity. This hiatus followed a brief fissure eruption at Napau Crater in late January 1997. The last long hiatus was in mid-1986, when volcanism switched from episodic 300- to 500-m-high fire fountains to continuous effusion. Episode 55 has seen shifting vent locations on the flanks of the Pu`u `O`o cone and a build-up of the lava shield. The lava pond within the Pu`u `O`o crater has intermittently risen to produce flows on its E and W margins. Surface activity was limited in the early days of Episode 55, occurring only deep within the Pu`u `O`o crater. On 28 March the lava level in the Pu`u `O`o crater rose and moved through lava tubes that fed small cones just S of the cone (BGVN 22:04). Eruptive activity in recent months has been focused at a spatter cone in Pu`u `O`o and vents on the S exterior flank of the crater.

Eruptive pauses during May. From mid-April through 9 May most of the lava erupted on the S and SW flanks of the Pu`u `O`o cone ponded near its base. These ponded flows were responsible for most of the glow seen at night and frequently fed channeled aa flows S and SE. The longer flows advanced as far as 2.6 km. Lava issued from two areas on the SW flank of the cone, both of which were topped by spatter cones 10-12 m high. A pit crater below one of these spatter cones intermittently filled with lava and overflowed.

Beginning on 10 May and continuing through the 15th there were eruptive pauses for periods of up to 10 hours. A small new vent became active on 12 May (figure 110) midway between the "55 Spatter Cone" (a vent that became active on 28 March; BGVN 22:03) and the "Uplift" vent (a vent that became active on 17 April; BGVN 22:04). Following a 15-hour pause on 23 May, activity resumed with fountaining from the 55 Spatter Cone, followed by brief periods of quiescence. Multiple flows from two active vents on the S flank of the Pu`u `O`o cone fed aa flows that traveled 1.5 km (figure 111). Occasional fountains up to 15 m high were observed from the flank vents. Activity within Pu`u `O`o raised the floor of the crater to within 10 m of the lowest section of the rim.

Figure (see Caption) Figure 110. Sketch map showing four new vents in the Pu`u `O`o crater area of Kīlauea, 28 March-12 May 1997. Courtesy of the USGS Hawaiian Volcano Observatory.
Figure (see Caption) Figure 111. Map of recent lava flows from Kīlauea's east rift zone, 23 May 1997. Contours are in meters and the contour interval is approximately 150 m. Courtesy of the USGS Hawaiian Volcano Observatory.

Activity during June and early July. On 2 June several earthquakes (up to M 3.5) were felt in the Namakani Paio campground area of the National Park. In the first four hours of the swarm 60 earthquakes were located. Early in the first week of June vents on the SW flank of Pu`u `O`o fed flows that traveled up to 1.5 km SE from the cone. As activity from the SW flank vents waned, a W-flank vent restarted early on 4 June and fed a flow moving NW that burned trees in the national park. Occasional fountains up to 40 m high were observed from the W vent.

During 6-13 June the lava flow field expanded N and E of the shield for the first time since 1992. The Pu`u `O`o crater floor, with no active lava pond, was repeatedly resurfaced by pahoehoe flows from a vent near the collapsed W wall. This vent built a 30-m-high by 40-m-wide spatter cone on the crater floor ("Crater Cone"). The crater floor itself rose to within 4 m of the W rim. Intermittent spatter fountains from the flank vents commonly reached heights up to 50 m. As of 13 June lava flows from the flank vents had spread over the shield, forming perched lava ponds that spilled over to feed channeled aa flows that extended 4 km from the vent.

At 0100 on 16 June spattering intensified within the Pu`u `O`o crater. By 1430, the crater overflowed through the gap in the W wall of the cone formed by the collapse of 30 January 1997, sending a large open-channel pahoehoe flow N. This activity lasted for 1.5 hours, followed by a few hours of repose and a few more hours of eruption. For the first time since July 1986, lava flows spilled out of Pu`u `O`o crater. On 17-18 June the 10th pause of episode 55 occurred. During 18-28 June flows were confined to the general vicinity of the Pu`u `O`o vent, helping to build up the lava shield an additional 35 m. Such a rapid buildup has not been seen since 1992. Spectacular episodic fountaining resumed from a few of the spatter cones ringing the southern outside edge of the Pu`u `O`o cone.

The 55 Spatter Cone was the least active of the three vents during 17-30 June, but on the nights of 18 and 20 June lava fountains over 50-m high played above the cone for several hours. Perched lava ponds on the S side of the Pu`u `O`o cone, assumed to be fed by a tube from the 12 May vent, produced long flows to the S and SW over the episode 50-53 flow field. Near the flow field's W edge, flows descended to 685 and 700 m on 28 and 30 June, respectively.

An earthquake on 30 June shook the entire Island of Hawaii at about 0547. The earthquake had an estimated magnitude of 5.3-5.5 and took place within the S flank of Kīlauea, ~10 km SSE of Pu`u `O`o, at a depth of ~7 km. The earthquake was felt throughout the island, but minor damage was reported only in the SE part of the island. The earthquake was located in the same area as the much larger M 7.1 Kalapana earthquake of 29 November 1975. The earthquake caused no observable change in the eruption.

Eruptive activity continued through the end of June and early July with intermittent action from three areas. Crater Cone continued to produce flows which episodically resurfaced the crater floor. Fountains from the W flank vent intermittently sent flows S, W, and N for distances of <1 km. Other small channeled lava flows from a perched lava pond on the S side of Pu`u `O`o extended <1.5 km S.

During 3-11 July the level of the lava pond in the eastern part of the Pu`u `O`o crater fluctuated with activity from Crater Cone. Lava flowed over the W rim for brief periods on 7 and 11 July. The discontinuous character of these outflows could be traced to both the sporadic output of lava and to draining through unseen conduits in the crater floor. On 3 July, a flow from the South Shield vent (~300 m S of Pu`u `O`o) stopped at 613 m elevation near the top of the Pulama pali escarpment. This was overtaken by an aa flow slightly to its W that quickly advanced down the pali, reaching 183 m elevation by 7 July.

During 17 June-14 July, eruption tremor amplitudes fluctuated between background and up to 5x background. There were moderate numbers of shallow, long-period microearthquakes; however, more than 200 appeared on 25 June. Intermediate long-period earthquakes were moderate to low in number. Earthquake counts along the upper E rift zone were low to high during late June and low during early July. More than 170 events were counted on 25 June.

Lava reaches the coastal plain on 10 July. On 10 July a lava flow was nearing the extreme SW end of Royal Gardens subdivision. This was the first flow over Pulama pali onto the coastal flat since last January. By the morning of 10 July the narrow flow had reached just beyond the National Park. When the flows reached the base of the pali they burned and covered the Akia coastal forest. On 11 July, the flow continued across the flats.

Renewed entry of lava into the ocean began on the night of 12 July for the first time since January 1997. The flow, fed from a perched lava pond on the S side of Pu`u `O`o, followed the eastern margin of the episode-53 flow field and entered the ocean near Kamokuna (figure 112). When lava reached the ocean it was less than 460 m W of Waha`ula Heiau, a 700-year-old rock-walled Hawaiian temple; lava last flowed up to and around this structure in December 1990. The flow front on 12 July was 300-500 m wide with many small lava rivulets entering the sea and contributing to a large steam plume; an unstable delta was constructed 30-40 m beyond the old coastline. The lava bench grew to 300-m long and 50-60 m wide by 14 July. The flow into the sea nearly stopped on 17 July because of blockages in the tube system that caused lava tube breakouts onto the surface. As of 18 July there were numerous surface flows and an active ocean entry.

Figure (see Caption) Figure 112. Map of recent lava flows from Kīlauea's east rift zone, 17 August 1997. Contours are in meters and the contour interval is approximately 150 m. Courtesy of the USGS Hawaiian Volcano Observatory.

Beginning about 18 July another flow from South Shield followed a more easterly course toward the upper edge of the Royal Gardens subdivision. On 28 July the flow was burning into the forest edge 1.6 km above the subdivision. South Shield shut down early on 29 July, allowing the tubes to drain, but it resumed erupting that night. By the morning of the 30th lava had reoccupied the upper reaches of the tube; within two days the tube was reoccupied down to the coastal plain. Breakouts on 30 July formed channeled aa flows on the upper slopes of Pulama pali, sending new flows along the course of the earlier July flows.

Ocean entry of lava continued through 28 July. During 19-28 July surface flow activity on the coastal lava bench was extremely limited, with most flows occurring in lava tubes that broke out at the coast. At Pu`u `O`o the lava shield surrounding the main cone and a few of the spatter cones ringing its S side continued to expand. A fern glen was burned and partially covered by lava from the advancing flows. On 29 July the flow feeding the ocean entry ceased when its lava tube clogged. Soon thereafter, a new flow began moving downslope away from the vent.

South Shield has been the prolific producer of flows, including all large flows in July and early August. From 12-29 July a tube-fed flow from this vent entered the ocean at East Kamokuna and built a 60-m-wide lava bench ~350 m along the shoreline. The ocean entry was marked by a large steam plume and mild explosions that hurled spatter onshore, building two small littoral cones.

Activity continued during the last week of July with cyclic filling and lowering of the Pu`u `O`o lava pond. During the morning of 29 July, lava flowed over the E and W rims of the crater and down the sides of the cone for several hours. A blockage in the tube system caused the supply of lava entering the ocean to diminish. Lava stopped entering the ocean shortly after noon on 29 July. A new aa flow from a breakout above the blockage was several hundred meters W of the old flow, and the terminus of the new flow was 400 m from the ocean.

During the pause at the coast activity at Pu`u `O`o was continuous. Peter Mouginis-Mark and colleagues observed from the air a spectacular lava overflow from the pond occupying the E crater floor on 6 August that sent rapidly moving flows out of the SE side of the cone. The flows formed a lobate sheet that extended ~1.5 km. None of these flows were active for more than three hours. Lava began flowing into the sea again at the East Kamokuna entry on 4 August. A lobe from this flow branched at the foot of Pulama pali and advanced to within 800 m of Waha`ula Heiau, located 450 m E of the East Kamokuna entry. Vigorous activity within Pu`u `O`o lit the skies on the night of 7 August with moderate fountaining.

Lava covers Waha`ula Heiau in mid-August. On 8 August, lava buried a 300-m section of jeep road that provided access to the Royal Gardens subdivision. That lobe progressed seaward, slowly encroaching upon Waha`ula Heiau. On 11 August at 0124, lava began to overrun the heiau; flows were moving across the floor of the temple by 0300. By 0730 lava had covered most of the structures. It had been one of the few remaining major archaeological resources left in the Kalapana coastal section of the Park. The Waha`ula complex contained structures that tradition associated with the 13th-century high priest Pa`ao. A more recent structure in the complex was used by Kamehameha I and remained in use until 1819. Over the past 13 years thousands of significant archaeological features have been covered by lava flows from the Pu`u `O`o eruption.

Another Pu`u `O`o crater overflow event occurred on 12 August. Until at least 17 August lava continued to enter the sea at the Waha`ula entry and also ~900 m farther W, near Kamokuna. The lava built low benches and generated steam plumes. Activity continued at Pu`u `O`o through mid-August with cyclic filling and lowering of the lava pond. Sporadic fountaining was observed from the Crater Cone and the 55 spatter cone vents.

Kīlauea is one of five coalescing volcanoes that comprise the island of Hawaii. Historically its eruptions originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the summit caldera to the sea. This latest Kīlauea eruption began in January 1983 along the E rift zone. The eruption's early phases, or episodes, occurred along a portion of the rift zone that extends from Napau Crater on the uprift (towards the summit) end to ~8 km E on the downrift (towards the sea) end. Activity eventually centered on what was later named Pu`u `O`o. Between January 1983 and December 1996, erupted lava totaled ~1.45 km3.

Geologic Background. Kilauea overlaps the E flank of the massive Mauna Loa shield volcano in the island of Hawaii. Eruptions are prominent in Polynesian legends; written documentation since 1820 records frequent summit and flank lava flow eruptions interspersed with periods of long-term lava lake activity at Halemaumau crater in the summit caldera until 1924. The 3 x 5 km caldera was formed in several stages about 1,500 years ago and during the 18th century; eruptions have also originated from the lengthy East and Southwest rift zones, which extend to the ocean in both directions. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1,100 years old; 70% of the surface is younger than 600 years. The long-term eruption from the East rift zone between 1983 and 2018 produced lava flows covering more than 100 km2, destroyed hundreds of houses, and added new coastline.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawaii Volcanoes National Park, HI 96718, USA (URL: https://volcanoes.usgs.gov/observatories/hvo/); Ken Rubin, Mike Garcia, and Peter Mouginis-Mark, Hawaii Center for Volcanology, University of Hawaii, Dept. of Geology & Geophysics, 2525 Correa Rd., Honolulu, HI 96822 USA (URL: http://www.soest.hawaii.edu/GG/hcv.html); Jim Martin, Superintendent, P.O. Box 52, Hawaii Volcanoes National Park, HI 96718-0052 (URL: http://www.nps.gov/havo/).


Krakatau (Indonesia) — July 1997 Citation iconCite this Report

Krakatau

Indonesia

6.1009°S, 105.4233°E; summit elev. 285 m

All times are local (unless otherwise noted)


Activity increases in May

The following describes the volcanism during March-May based on reports by the NOAA Satellite Analysis Branch (SAB), a team of the Société Volcanologique Européenne (SVE), and Mike Lyvers. Lyvers noted that the Indonesian government's 5-km exclusion zone around the island has not deterred local boat operators from anchoring offshore or even landing tourists on Anak Krakatau.

SAB reported that on 6 March at 0442 an unidentified aviator saw a significant eruption with ash reaching an altitude of ~7 km. This cloud, however, was not seen in GMS satellite imagery.

Members of the SVE visited the island twice in April. They learned that during March at Carita, a beach resort on the W coast of Java 40 km from the volcano, there were ashfalls and explosions from the volcano were heard. During April, emissions became less prominent and more irregular. During their first visit on 9-10 April they did not observe any plumes. After landing they ascended to the first crest line where the group encountered several bread-crust bombs and their substantial impact craters. As they were ascending the cone of the volcano the visitors felt the heated ground through their hiking boots. There were fumaroles on both the flank and the summit. The crater, 150-200 m in diameter, was breached to the W; the crater floor was occupied by large blocks, and it was possible to distinguish two vents aligned on a fissure trending SE-NW.

The group returned on 17-18 April, after another eruptive episode. This time they observed enormous new blocks at the summit. The S vent continuously emitted white steam; the N vent sporadically discharged brown-black ash that rose up to 500 m above the vent. The SVE team watched from a spot in front of the cone, ~400 m from the summit, when at 1820 the S vent exploded generating an ash plume and throwing incandescent projectiles ~200 m above the crater. One projectile landed very close to the observation point. The next morning, ash on the tents suggested that the volcano had another explosion. The group witnessed another eruption as they were leaving the island by boat at 1000.

SVE members learned that after spending 21-22 April on the island, Guy de St. Cyr (a French tourist-guide) saw plumes accompanied by projectiles. He described the ash as an unusual pink color. During the night, incandescent explosions were took place about every 30 minutes; several incandescent blocks fell over the dome's N side. The next morning, during a boat tour around the island, some blue smoke rose from mid-way up the W-SW flanks of the dome, conceivably a sign of minor lava flows.

During the afternoon and evening of 17 May, Mike Lyvers visited the island by boat. The previous few days, when observed from Carita Beach, the volcano had been quiet. In contrast, on 17 May it erupted almost continuously, issuing minor amounts of ash and sometimes a few bombs. Occasionally, larger explosions sent incandescent ash high into the sky, generating a spectacular display of volcanic lightning and covering the cone with glowing bombs. The volcano seemed to show no obvious pattern to its activity, with random fluctuations in the intensity of eruption.

Geologic Background. The renowned Krakatau (frequently mis-named as Krakatoa) volcano lies in the Sunda Strait between Java and Sumatra. Collapse of an older edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of that volcano are preserved in Verlaten and Lang Islands; subsequently the Rakata, Danan, and Perbuwatan cones were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption caused more than 36,000 fatalities, most as a result of tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: NOAA/NESDIS Satellite Analysis Branch (SAB), Room 401, 5200 Auth Road, Camp Spring, MD 20746, USA; Société Volcanologique Européenne, C.P. 1, 1211 Genève 17, Switzerland (URL: http://www.sveurop.org/); Mike Lyvers, School of Humanities and Social Sciences, Bond University Gold Coast, Qld. 4229 Australia.


Langila (Papua New Guinea) — July 1997 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Anomalous tilt precedes relatively forceful ash emissions

Although Crater 3 remained quiet and seismographs remained inoperative during July, moderate Vulcanian explosions continued at Crater 2. Throughout the month, Crater 2 produced gray ash clouds rising ~2 km above the summit. Fine ash fell on the N and NW parts of the volcano. On the night of 2 July observers saw incandescent lava projections; during 4-9 July there were weak explosions and roaring noises. Large explosions on 29 July produced dark gray ash clouds that rose ~5 km before drifting NW. Previously, on 22 March, aviators noted Langila ash clouds to 3-km altitude.

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: B. Talai and H. Patia, RVO.


Manam (Papua New Guinea) — July 1997 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Ash clouds rise 5 km during July

Aviation reports on 22 March reported Manam's ash plumes rising up to altitudes of 1.7 and 3 km. The plumes drifted S-SE and scattered. Another report described an ash cloud to 3 km on 8 August.

A brief episode of relatively forceful ash emissions occurred at Southern Crater in mid-July. During late June through mid-July, Southern Crater occasionally emitted small-to-moderate ash clouds that rose several hundred meters above the summit. These ash clouds blew NW, resulting in light, fine ashfall.

Water-tube tiltmeters at Manam Volcano Observatory (4 km SW of the summit) underwent 2 µrad of inflation after 1 July, a change as strong as seen during the November-December 1996 eruption. On 11-13 July more robust ash clouds were ejected to 600-1,000 m above the summit resulting in light ashfall downwind. Continuous and forceful ash emissions occurred on 14 July, producing ash clouds that rose over 2 km. Around this time rumbling and roaring noises were also heard. Ash again fell on the NW side of the island. On 15-18 July, ash emissions became weak to moderate; during the rest of July, emissions remained gentle, vapor-rich and weak-to- moderate.

Weak discharges of incandescent lava fragments were only seen on the 11th. Weak night time glows were visible on 11-14 July, 17-18 July, and 25-31 July. Weak steady night glow was visible on 16, 18, and 29 July.

Seismic activity was moderate throughout July. Numbers of low frequency events ranged from 1,000-1,400 per day. Seismic amplitudes gradually increased reaching a peak on the 12th (2 days prior to the month's strongest eruptive phase); thereafter, the amplitudes declined through the month's end.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: B. Talai and H. Patia, RVO.


Masaya (Nicaragua) — July 1997 Citation iconCite this Report

Masaya

Nicaragua

11.9844°N, 86.1688°W; summit elev. 594 m

All times are local (unless otherwise noted)


Minor morphologic changes and fluctuating incandescence in May

"On 25 May, observers saw that the small active vent had grown by 30 m and had ceased to be incandescent. Large volumes of gas were still escaping and forming plumes that blew to the W. Masaya park guards reported a resumption of incandescence on 3 June. During the previous day, there was little wind and high humidity, conditions which allowed the gas to produce a sustained vertical column above the crater."

Geologic Background. Masaya volcano in Nicaragua has erupted frequently since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold" until it was found to be basalt rock upon cooling. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of observed eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Recent lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: Benjamin van Wyk de Vries, Department of Earth Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom (URL: http://www.open.ac.uk/science/environment-earth-ecosystems/).


Momotombo (Nicaragua) — July 1997 Citation iconCite this Report

Momotombo

Nicaragua

12.423°N, 86.539°W; summit elev. 1270 m

All times are local (unless otherwise noted)


June fumarole temperatures

Open University researchers provided the following report. "On 3 June we took gas samples from fumarole numbers 14, 9, and 7 (figure 6). There were many areas with fresh bright yellow sulfur flows, suggesting that temperatures had risen over the last few months thus causing the sulfur to melt. Near fumarole number 6 there were small (centimeter-wide) accumulations of clear, golden molten sulfur. After putting a gas condenser over fumarole number 9 the adjacent fumarolic area began to fracture and molten sulfur began to emerge from fissures there."

Figure (see Caption) Figure 6. Sketch of the summit area of Momotombo showing fumarole temperatures on 3 June 1997. Numbers in parenthesis are "fumarole numbers;" areas of fumarolic activity are gray. View is towards the S; the crater is ~150 m wide. Courtesy of Alain Creusot and Benjamin van Wyk de Vries.

Geologic Background. Momotombo is a young stratovolcano that rises prominently above the NW shore of Lake Managua, forming one of Nicaragua's most familiar landmarks. Momotombo began growing about 4500 years ago at the SE end of the Marrabios Range and consists of a somma from an older edifice that is surmounted by a symmetrical younger cone with a 150 x 250 m wide summit crater. Young lava flows extend down the NW flank into the 4-km-wide Monte Galán caldera. The youthful cone of Momotombito forms an island offshore in Lake Managua. Momotombo has a long record of Strombolian eruptions, punctuated by occasional stronger explosive activity. The latest eruption, in 1905, produced a lava flow that traveled from the summit to the lower NE base. A small black plume was seen above the crater after a 10 April 1996 earthquake, but later observations noted no significant changes in the crater. A major geothermal field is located on the south flank.

Information Contacts: Benjamin van Wyk de Vries, Department of Earth Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom (URL: http://www.open.ac.uk/science/environment-earth-ecosystems/).


Popocatepetl (Mexico) — July 1997 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Largest ash emission of the 1994-97 eruption on 30 June

The following includes summaries of reports from a) the Institute of Geophysics at the University of México (UNAM), b) the Centro Nacional de Prevencion de Disastres (CENAPRED), c) the NOAA Satellite Analysis Branch (SAB), and d) the United Nations Department of Human Affairs (DHA). This report covers the period from 2 May to 25 August. The most forceful emission in the 1994-97 episode took place on 30 June; ashfall shut down the Mexico City airport stranding passengers and spurring numerous press reports.

A series of non-technical reports during 2 May to 25 June (table 6) described isolated explosions and occasional A-type seismic events in a pattern that has characterized Popocatépetl's behavior since September 1996. A cross section shows the location of the volcano-tectonic earthquakes that occurred during 29 April-29 July; a table lists their locations during August.

Table 6. Summary of non-technical reports describing activity at Popocatépetl, 2 May-25 June 1997. The alert status remained moderate (yellow) during this interval. Courtesy of Roberto Quaas, CENAPRED-UNAM.

Report Date Comment
02 May 1997 The level of activity remained low, with sporadic low-intensity emissions and white plume.
05 May 1997 At 0839 there was a moderate emission of ash that generated a column ~2 km high drifting to the W. Ashfall was reported in the towns of Tepetlixa and Ozumba.
07 May 1997 On 6 May a major ash emission occurred at 2039 and lasted 20 minutes. The cloud drifted toward E and NE causing ash and coarser tephra to fall in Cholula and some areas in Puebla and Veracruz.
14 May 1997 On 13 May at 2230 a moderate emission included incandescent fragments that fell near the crater. Ashfall started afterwards on the towns of San Pedro Benito Juarez, San Nicholas de los Ranchos, Calpan, and Santiago Xlizintla, where weak earthquakes were also felt.
24 May 1997 After several days of relative quiet a high frequency tremor was recorded at 0927. In the meantime ash was emitted up to 200 m above the crater. The plume drifted to the ENE causing minor ashfall in the towns of Calpan, Xalitzintla, San Nicolas de los Ranchos and Nealtican.
11 Jun 1997 At 1014 a 15-minute-long tremor accompanied a major ash emission that reached an altitude of 4 km (see figure 19). The column blew towards the WSW.
18 Jun 1997 Activity was again at low levels. When inspected by helicopter, the summit glacier appeared normal.
25 Jun 1997 The activity was at stable, low levels, with minor emissions and an almost constant presence of a low steam plume on the summit.

Activity during 2 May to 25 August 1997. Large ash emissions occurred on 11, 14, 15, 24, and 27 May and noteworthy or large emissions occurred on 3, 11, 14, 19, 21, and 30 June. On 28 May satellite imagery showed an ash cloud moving rapidly SE as it approached the Yucatan peninsula.

On 11 June ash streamed S of the volcano at 28 km/h. The cloud measured 50 km long and 33 km across (figure 19). The following day ash was reported at an altitude of 6-8 km; thicker ash closer to the volcano moved S at ~50 km/hour while an area of very diffuse ash headed SW. The 14 June eruption was visible from both Mexico City and Puebla; satellite imagery showed the plume heading WSW at ~40 km/hour. The plume later separated: a thicker L-shaped area fanned NW to W at 30 km/h at an altitude of ~10 km, and a faint area of thinning ash moved W at ~64 km/hour ahead of a thick-ash area at 7-km altitude. Reports of sand-sized ashfall came from Nepantla, Amecameca, and other towns as far as Cuautla. On the Puebla side of the volcano several towns reported mudflows associated with heavy rains and minor melting.

Figure (see Caption) Figure 19. Popocatépetl ash column; photo taken from the NW (above Paso de Cortes) at 1032 on 11 June 1997. See table 6 for a brief description of the ash emission. Courtesy of CENAPRED.

On 12 June Tom Casadevall noted that he had learned from an engine manufacturer that ". . . all three major Mexican airlines (Mexicana, Aeromexico, and TAESA) have reported windshield damage that they attribute to volcanic ash. Also, Aeromexico reported heavier than normal blade erosion on one MD80 engine that it attributes to ingestion of volcanic ash from Popocatépetl. Apparently the local atmosphere now contains an above average concentration of ash."

The 30 June ash emission was the largest recorded since the current eruptive episode initiated in 1994. Beginning at 1656 on 30 June there were seven volcano-tectonic earthquakes (M 2-2.7) in a 13-minute interval. At 1711 a large tremor signal marked the eruption's start. The first pulse lasted 135 minutes. The second one, beginning at 1926, lasted about 90 minutes. The latter eruption sent an ash plume 13 km above sea level within minutes. About 2-3 hours later, ash started falling over many towns around the volcano, including Mexico City.

In spite of the outbursts during this eruptive episode, estimated to a VEI of 2-3, no casualties or damage were reported; the volcanic alert code was raised to red but no evacuation was involved. The airport in Mexico City was closed for about 12 hours, until the ash was washed away from the runways. Pumice fragments as large as 10 cm fell sparsely on the N flank at Paso de Cortes and over a few kilometers along the road to Amecameca.

According to the real-time seismic amplitude measurement recordings (RSAM), the 30 June event alone released an estimated energy equivalent to one-tenth of the seismic energy release during an average year. The highest intensity phase lasted about 35 minutes and then declined.

During the two days following the eruption, some minor mudflows were reported at the town of Santiago Xalitzintla, about 12 km NE of the volcano. The flows coincided with heavy rain inundating a small area in the bottom of a ravine where a small house partially flooded. Inspection of the house, local fruit trees, and a small corn field in the area, showed that the flow was rather slow. After the major ash emission on 30 June, the volcano quieted. Steam emissions continued, at times accompanied by ash; these emissions were small except for a relatively large event on 2 July.

Helicopter observations on 3 and 4 July disclosed new features. There were several 1- to 2-km-long tongues radiating down the volcano's S and SE flanks. These tongues were interpreted as granular flows produced by partial collapse of the eruptive column. Inside the main crater on the 1996 lava dome there was a new crater enclosing a fresh ropy-lava body. As a preliminary interpretation, it seemed that in the first stages of the 30 June event the previous dome was partially destroyed by explosions, forming the initial crater. Then the crater was flooded with fresh magma that apparently underwent significant fragmentation, generating the moderately large ash emission and leaving a new lava body with a conical depression. In response to these events, a UNDP/DHA Resident Representative reported on 4 July that preparedness measures were undertaken. CENAPRED provided ongoing information to the villages on the outskirts of the volcano (total population, 102,000).

On 30 July, Mexico City's international airport reported continuous ash emissions to 8-km altitude. Satellite observations then were hampered by broken clouds.

After 30 July, activity decreased until 12 August, when a moderately large emission discharged ash 5 km above the crater. By another account the ash only rose 2 km. This emission lasted for more than two hours and produced SW-flank ashfall. After this event the color of the volcanic alert light remained yellow. During the afternoon another 3-minute emission sent an ash plume to 2.5 km above the summit.

Activity remained low until 25 August but included frequent low- to moderate-intensity gas-and-steam emissions, some with small amounts of ash. Around this time, the highest number of emissions per day was 41 on 21 August.

Low-frequency tremors of variable duration (between 2 and 40 minutes) occurred sporadically during this period. Figure 20 shows the hypocenters of the volcano-tectonic earthquakes located during March-July; table 7 lists those during August.

Figure (see Caption) Figure 20. Cross section of Popocatépetl made from a perspective of looking towards the N; it shows the hypocenters of the volcano-tectonic earthquakes located during March-July 1997. The numbers key to the day of occurrence (see box), the dot sizes are proportional to the magnitude (no scale given). Vertical exaggeration is 2:1. Courtesy of CENAPRED.

Table 7. Occurrence of local volcano-tectonic earthquakes at Popocatépetl during August 1997. Courtesy of CENAPRED.

Date Magnitude Location
13 Aug 1997 2.3 4.4 km under SE flank
14 Aug 1997 2.2 6.8 km under the summit
14 Aug 1997 2.5 5.3 km under the summit to the SE
17 Aug 1997 2.4 SE region
19 Aug 1997 2.1 7.3 km under the summit to the NE
19 Aug 1997 1.7 4.6 km under the summit to the E
20 Aug 1997 2.6 5.8 km under the summit
20 Aug 1997 2.2 5 km under the summit
20 Aug 1997 2.3 5.7 km under the summit

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Roberto Meli, Roberto Quaas Weppen, Alejandro Mirano, Bertha López Najera, Alicia Martinez Bringas, A. Montalvo, G. Fregoso, and F. Galicia, Centro Nacional de Prevencion de Desastres (CENAPRED), Delfin Madrigal 665, Col. Pedregal de Santo Domingo, Coyoacan, 04360 México D.F., México (URL: https://www.gob.mx/cenapred/); J.L. Macias, Instituto de Geofisica, UNAM, Circuito Cientifico C.U. 04510 México D.F., México; NOAA/NESDIS Satellite Analysis Branch (SAB), Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA; Thomas J. Casadevall, Office of the Regional Director, U.S. Geological Survey, MS 150, 345 Middlefield Rd., Menlo Park, CA 94025 USA; M. Moulin-Acevedo UNDP/DHA, United Nations, Palais des Nations, 1211 Geneva 10, Switzerland.


Rabaul (Papua New Guinea) — July 1997 Citation iconCite this Report

Rabaul

Papua New Guinea

4.2459°S, 152.1937°E; summit elev. 688 m

All times are local (unless otherwise noted)


Increased Strombolian eruptions on 11-12 July

A short eruption of ash and blocks occurred at Tavurvur during July. The build up prior to this eruption was similar to the two previous Strombolian phases (1 June and 12 April); those build ups were characterized by relatively low-pressure, low-ash emissions and occasional moderate-to-large explosions.

The eruption began on at 2318 on 11 July and peaked at about 0700 on 12 July with a corresponding RSAM value of 450 units. Activity then dropped and fluctuated between 90 and 240 RSAM units; later, at about 2230 on 12 July, a peak of 420 RSAM units occurred. After 0200 on 13 July activity declined to a background level of 30 RSAM units.

The more vigorous periods of eruption included explosions with gray ash clouds rising 2-3 km above the summit and ejected blocks thrown ~1 km from the vent. The ash plumes blew N and NE, and fine ash fell downwind. Later, during 14-31 July, Tavurvur issued continuous gentle emissions of thin white and blue vapor. No lava flow was emplaced during the 12 July eruption. As a result, the volume of material erupted was very small, ~0.3 x 106 m3.

Seventy-five low-frequency earthquakes (mostly explosion events) were recorded during the month. Most of these occurred during the eruption on 11-12 July with daily counts of 29 and 43, respectively.

The electronic tiltmeter at Matupit (2 km W of Tavurvur) accumulated 12 µrad of WNW-down tilt from the beginning of July until the eruption on the 12th (i.e. radial to an inflation of the shallow caldera magma reservoir). After the eruption, the tilting pattern changed to WSW (i.e. radial to a possible inflation between Rapindik and the north of Tavurvur). The eruption itself caused virtually no significant tilting. No clear trends were shown by any of the other tiltmeters further away from Tavurvur. These small ground deformations appear in accord with the eruption's short duration, low energy, and small volume.

After technical problems, COSPEC measurements resumed and during the first four days of measurements, 2- 5 July, the SO2 output was 660-1,380 metric tons/day (t/d). The SO2 flux then decreased during 5-10 July (~200 t/d), increasing again on 11 July (420 t/d). It remained high until the eruption on 12 July (~1,000 t/d) and continued so during the next three days. After that it decreased to ~600 t/d where it remained until the end of the month.

In overview, the observations and measured parameters all indicated that the 11-12 July eruption was small compared to the six Strombolian phases since December 1995.

Further Reference. Lauer, S.E., 1995, Pumice and ash: a personal account of the 1994 Rabaul volcanic eruptions, Quality Plus Printers Pty. Ltd., Ballina, Australia, 80 p. (ISBN 0 646 26511 3).

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the asymmetrical shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1,400 years ago. An earlier caldera-forming eruption about 7,100 years ago is thought to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the N and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and W caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: B. Talai and H. Patia, Rabaul Volcano Observatory (RVO), P.O. Box 385, Rabaul, Papua New Guinea; Bureau of Meteorology, Northern Territory Regional Office, P.O. Box 735, Darwin, NT 0801 Australia.


Sabancaya (Peru) — July 1997 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Quiet on 19 July; ash-bearing plumes on 1-2 May

During a mid-[July] visit, Sabancaya displayed only fumarolic activity. Visiting scientists also examined the area well to Sabancaya's N along the Colca river. They determined that previous reports of destructive, seismically triggered mudslides in 1991 (BGVN 16:07) had been incorrect.

On 19 July scientists flew over Sabancaya and the two adjacent volcanoes Ampato and Hualca Hualca (figure 5) while taking slides and Super VHS images. Ice fields and snow cover were observed only on the summit regions of Ampato (6,288 m) and Hualca Hualca (6,025 m). Thus, the ice fields that existed on Sabancaya prior to the most recent eruption (29 May 1991, BGVN 15:05) had not returned.

Figure (see Caption) Figure 5. Map of the region around Sabancaya showing adjacent stratovolcanoes and the Colca river. This segment of the Colca river flows westwards. Courtesy of M. Bulmer, F. Engle, and A. Johnston, CEPS.

As the photo (figure 6) reveals, Sabancaya's cone remains nearly symmetrical with slopes of 30-40 degrees. The cone is roughly 1 km in diameter and contains a central crater with a diameter of approximately 400 m. Slope failure occurred along a ~600-m-long arcuate scarp seen on the cone's NE flank. This could prove to be a zone of weakness in any future eruption. An active fumarole was located at the summit cone in a spot on the wall of the southern crater rim; it vented rapidly. Less active fumaroles were seen on the western crater wall and sulfur deposits occurred on the upper crater walls. When the cone was viewed from a distance of 1 km, observers saw significant atmospheric aberrations that implied gas emissions.

Figure (see Caption) Figure 6. Aerial photo of Sabancaya taken on 19 July 1997 looking W. The crater is approximately 400 m in diameter. The surface of the cone is mantled in young ash deposits (not snow). Courtesy of M. Bulmer, F. Engle, and A. Johnston, CEPS.

In the Colca Valley scientists saw extensive damage from the 23-24 July 1991 earthquake swarm including abandoned, damaged buildings, and slope failures; what they failed to find, however, was evidence that mudslides had ravaged local villages. This was important because BGVN 16:07 briefly described seismic damage from the earthquakes but also stated that they ". . . triggered mudslides that partly buried four villages." Based on this latest visit, this latter statement was clearly incorrect; it may have stemmed from the cited press accounts.

The scientists visited the villages of Maca, Achoma, Yanque, Lari, and Chivay. The earthquake damage was greatest in Maca, which lies in the Colca valley below the NNE flank of Hualca Hualca, a spot 15 km N of Sabancaya. Particularly in Maca, there was abundant evidence of seismically induced damage to structures. It should be noted that most buildings in the region had been constructed with walls made of loose stone without the benefit of concrete mortar or steel reinforcing.

On the NW side of Maca the group found evidence for a series of rotational and translational slides and slumps triggered by 2 m of throw along a normal fault. There was a series of well defined backscarps delineating different slope failures (figure 7) that extended ~1 km from the NW margin of Maca down to the Colca river. No houses were located on the failed surfaces; instead, this area had been terraced for agricultural use, but it was fallow when visited. The failure "complex" remained mobile and its toe was being undercut by the river. The village of Maca was being rebuilt gradually as people returned to the area. Some of the new housing includes concrete structures but most are made of adobe (clay and straw) brick with corrugated sheet-metal roofing.

Figure (see Caption) Figure 7. Aerial photo of Sabancaya taken on 19 June 1997 looking SE; it shows slope failures located NW of the village of Maca. The Rio Colca is visible in the lower part of the image. Note the road running across the upper third of the photo (trending E-W); it had to be realigned near Maca. Maca's market square can be seen in the upper left side of photo. Courtesy of M. Bulmer, F. Engle, and A. Johnston, CEPS.

Prior to the visit, on 1 and 2 May, aviation reports described ash-bearing plumes. The plume on 1 May reportedly reached ~5.5-km altitude; the one on 2 May, ~7.3-km altitude.

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: M.H. Bulmer, F. Engle, and A. Johnston, Center for Earth and Planetary Studies (CEPS), National Air and Space Museum, Smithsonian Institution, Washington, DC 20560 USA; Guido Salas, Universidad de San Agustin, Casilla 1203, Arequipa, Perú; A. Seimon, Department of Geography, University of Colorado, Boulder, CO 80309-0260 USA; NOAA/NESDIS Satellite Analysis Branch (SAB), Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA; Tom Fox, Air Navigation Bureau, International Civil Aviation Organization (ICAO), 999 University St., Montreal H3C 5H7, Canada (URL: https://www.icao.int/safety/airnavigation/).


Soufriere Hills (United Kingdom) — July 1997 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Activity increased to high levels on 31 July

The following condenses reports from the Montserrat Volcano Observatory (MVO) for July 1997. Activity decreased during the month and the dome appeared to be growing at a lower rate than immediately after the energetic and destructive 25 June pyroclastic flow. Starting on 31 July, however, activity increased.

Visual observations. During 1-5 July several pyroclastic flows traveled down Mosquito, Gages, and Fort Ghauts, the largest ones reaching 3 km downstream. Many of these flows started with resounding explosions and ash columns that rose as high as 11 km at measured rates of 9-17 m/s. Plumes were visible from the Space Shuttle (figure 29).

Figure (see Caption) Figure 29. Photograph of Montserrat showing a plume from Soufriere Hills volcano taken from the Space Shuttle, 2 July 1997 at 1955 GMT (photo STS094-714-050). North is towards the top; the island measures about 8 x 13 km. Courtesy of NASA.

The two weeks following 5 July were relatively quiet. During this interval rockfalls traveled as far as 500 m down the W and N faces of the dome. A brief glimpse of the dome on the night of 6 July revealed incandescent rockfalls above Mosquito Ghaut and Gages Valley. A partial view during the morning of 7 July showed a new steep-sided post-25 June dome above Mosquito Ghaut and Gages Valley with a broad, relatively flat summit area.

From 8 to 13 July there were fairly frequent emissions of diluted ash, often coinciding with the peak of the tilt cycle, and at times preceding small pyroclastic flows. The ash columns, reaching heights of ~ 3 km before dissipating, appeared to emanate from the W side of the post-25 June dome above Gages Valley. Theodolite measurements on 13 July gave an altitude of 950 m for the old dome and 941 m for the new growth in the 25 June scar. There was a steep 50-m-high protrusion on the new dome above Gages Valley. On 17 July the high point on the old dome (NE) measured 946 m, and the high point on the post-25 June dome 957 m. The spine above Gages valley observed on 13 July was no longer present.

On 21 July a field party at Trant's probing to a depth of 2 m inside the deposits at the end of the 25 June flow found a temperature of 640°C. A helicopter survey on 24 July showed fresh deposits in all of the ghauts around the volcano except Tuitt's. Another surveillance flight on 26 July indicated that most the rockfall activity was confined to Mosquito Ghaut and Gages Valley on the NE, and to the Galways area to the S. Vigorous steaming was coming from the flank of the dome in the Tar River area.

On 29 July between 0600 and 0830 there was more intense activity with several pulses of pyroclastic flows moving down Gages Valley as far as Gages Lower Soufriere. This activity was not preceded by earthquakes or a perceptible increase in rockfall activity. Other small pyroclastic flows occurred throughout the day.

Despite overcast conditions on 30 July, dilute ash plumes were visible from the Observatory during periods of heightened rockfall activity. A late-evening observation flight revealed that pyroclastic-flow deposits from 29 July extended just below the lower soufriere in Gages Valley. Several small pyroclastic-flow deposits from earlier that day (30 July) were noted on the N flank (top of Tuitts Ghaut) and NE flank (Tar River Valley and Galways area).

After 0300 on 31 July there were several periods of intense volcanic activity. A helicopter inspection showed very few new deposits in Gages valley (as far as Gages village) and some small flow lobes in Tuitt's Ghaut (to ~ 2 km from the dome). Many ash plumes were produced throughout the day and the most vigorously convecting clouds reached altitudes above 5 km. It appeared that most of the ash originated from near the top of Gages wall and was not necessarily associated with pyroclastic flows. The ash clouds drifted to the N and NW in light winds, but later in the day they traveled mostly to the W.

Seismicity. After 25 June swarms of hybrid earthquakes typically changed to tremor before the emission of pyroclastic flows. After 8 July hybrid swarms ceased, leaving seismicity dominated by rockfall signals of steady amplitude. A few long-period and hybrid events were recorded, but such activity remained at a very low level.

The number of rockfalls in the upper parts of Mosquito Ghaut and the Gages valley started increasing after 25 July. However, until 30 July the only other seismic signals recorded were a few long-period events. Starting at about 0300 on 31 July the activity became once again very elevated, peaking between 1230 and 1430, when the new Lees Yard seismometer recorded ~2 hours of nearly maximum amplitude signal. During this interval only one moderate- size pyroclastic flow was observed. Still the seismometers registered a significant increase of long-period earthquakes in addition to high-amplitude tremor that continued for much of the day, associated with ash clouds convecting to 6 km.

During the month several periods of low- to moderate-amplitude tremors appeared on both the St. George's Hill and St. Patrick's seismometer (e.g. 28-30 July); they were caused by heavy rains moving recent deposits. The largest volcano-tectonic events of the month occurred at shallow depths beneath English's crater on 24 July.

Ground deformation and volume measurements. EDM measurements showed that in general the inflation-deflation cycle that began on 22 June continued until 5 July with the same period (8 hours) and amplitude. However, after 25 June the trend showed deflation toward the center of the dome. Prior to 25 June inflation occurred to the N and deflation to the S. A survey of EASTNET stations at Harris, Windy Hill, Whites, and Long Ground on 16 July showed that the line to Whites had shortened by 16 mm since last measured on 24 June and by 31 mm from its long term mean. The line to Long Ground showed continued shortening and the line between Long Ground and Windy Hill showed slight lengthening. All the changes were consistent with their current trends although at slightly higher rates.

During 5-19 July the tilt cycles were characterized by lower amplitudes and longer (30-hour) periods; Chances Peak tiltmeter showed a gradual decrease in the rate of subsidence of the x-axis oriented SW. Superimposed on this trend were periods of cyclical inflation and deflation, often associated with hybrid swarms.

Measurements on the EDM line from Waterworks to Lees Yard on 20 and 27 July showed no major changes, although it had consistently shortened since first measured on 12 July 1997. No significant changes were observed on 26 and 27 July on either the new NW triangle (MVO-Garibaldi Hill-Lees Yard) or on the Waterworks-Lees Yard radial line. Finally, 30 July EDM measurements on the NW triangle confirmed the absence of a consistent trend.

A GPS survey on 5 July allowed an estimate of the total volume of deposits in several areas. The 25- June pyroclastic flow area was estimated at 4.61 x 106 m3 and the volume of the flow that propagated into the Belham Valley was 90 x 103 m3. The combined volume of Mosquito, Paradise, Farms, and Farrell's deposits totalled 9.24 x 106 m3, and the Gages Valley deposit was 3 x 106 m3.

A dome volume of 77 x 106 m3 was calculated based on photographs from 17 July. Cumulative pyroclastic flow deposits were estimated to be 55.05 x 106 m3 (DRE). The previous dome volume estimate on 31 May was 64.6 x 106 m3, and the pyroclastic-flow deposit volume was 43.0 x 106 m3. The average growth rate between 31 May and 17 July was 5.2 m3/s (DRE); visual observations suggested that after 25 June the growth rate was significantly higher.

Environmental monitoring. Rain water and trough water samples were collected from sites around the volcano on 10 and 22 June and 9 July. These values were nearly all within World Health Organization standards for drinking water, but the samples from Upper and Lower Amersham were extremely acidic and had high concentrations of total dissolved solids. All samples collected on 9 July to the N of the volcano had very low pH, probably because of the northerly wind direction on 8 July during heavy rain. Residents in the N of the island reported unusual sulfurous smells and light ashfall at this time.

A miniCOSPEC was used to measure SO2 flux from the volcano (table 23). Fluxes increased before 25 June and remained comparatively high through 24 June. Since 25 June no measurements were possible along the roads of the central corridor or through Plymouth because of the extreme risk in these areas, thus the value for 17 July were measured by static scanning of the plume from Garibaldi Hill an average of 10 scans.

Table 23. Daily average SO2 flux at Soufriere Hills using miniCOSPEC (metric tons/day). Courtesy of MVO.

Date SO2 flux (metric tons/day)
10 Jun 1997 842
11 Jun 1997 839
12 Jun 1997 363
14 Jun 1997 442
15 Jun 1997 634
16 Jun 1997 409
17 Jun 1997 450
19 Jun 1997 618
20 Jun 1997 1171
21 Jun 1997 921
22 Jun 1997 438
23 Jun 1997 1157
24 Jun 1997 1933
17 Jul 1997 200

Workers collecting ash on 9 June found that small accretionary lapilli were common at the Plymouth sites. The same ash fell over a region including Brodericks and Dyers and it was thickest (2.5 mm) at Upper Amersham. On 17-18 June workers found a similar amount of ash had accumulated although in this deposit they recognized a significantly coarse grained component: it reached up to 5 mm in diameter close to the volcano. After a small explosive event on 27 June, coarse lapilli (up to 10 mm in diameter) were collected from Dagenham and Richmond Hill.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), c/o Chief Minister's Office, PO Box 292, Plymouth, Montserrat (URL: http://www.mvo.ms/); NOAA/NESDIS Satellite Analysis Branch (SAB), Room 401, 5200 Auth Road, Camp Spring, MD 20746, USA; Cindy Evans, Space Shuttle Earth Observations Office, Mail Code C102, Lockheed Engineering & Sciences, P.O. Box 58561, Houston, TX 77258 USA.


Vulcano (Italy) — July 1997 Citation iconCite this Report

Vulcano

Italy

38.404°N, 14.962°E; summit elev. 500 m

All times are local (unless otherwise noted)


Fumarolic emissions during April from Fossa Grande

Fumarolic emissions observed by Boris Behncke during 24-30 April from the Fossa Grande crater appeared more voluminous and denser than during 1995-96. The main focus of the fumarolic activity was in the N-central part of the crater, but fumaroles also appeared more vigorous on the N crater rim.

Geologic Background. The word volcano is derived from Vulcano stratovolcano in Italy's Aeolian Islands. Vulcano was constructed during six stages over the past 136,000 years. Two overlapping calderas, the 2.5-km-wide Caldera del Piano on the SE and the 4-km-wide Caldera della Fossa on the NW, were formed at about 100,000 and 24,000-15,000 years ago, respectively, and volcanism has migrated north over time. La Fossa cone, active throughout the Holocene and the location of most historical eruptions, occupies the 3-km-wide Caldera della Fossa at the NW end of the elongated 3 x 7 km island. The Vulcanello lava platform is a low, roughly circular peninsula on the northern tip of Vulcano that was formed as an island beginning more than 2,000 years ago and was connected to the main island in about 1550 CE. Vulcanello is capped by three pyroclastic cones and was active intermittently until the 16th century. Explosive activity took place at the Fossa cone from 1898 to 1900.

Information Contacts: Boris Behncke, Istituto di Geologia e Geofisica, Palazzo delle Scienze, Corso Italia 55, 95129 Catania, Italy.


Whakaari/White Island (New Zealand) — July 1997 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Surveys on 11 March and 6 May confirm that the deflation trend continues

Scientists from the Institute of Geological and Nuclear Sciences (IGNS) visited White Island on 11 March and 6 May. Prior to the visits, the 1993-96 inflationary and heating trend had peaked without eruptive activity, thus suggesting a lower probability of a significant eruption in the short-term. However, inflation remained above 1993 levels.

Crater and fumarole observations. The island was visited on 11 March by S. Sherburn who accompanied a UK-based film company. The lake in the 1978/90 Crater complex was emerald green and its level had change little since January (BGVN 22:02). Although some gray slicks on the lake surface were observed, there was no evidence of convection. A noisy fumarole on the N wall was noted.

On 6 May the lake level was lower than on 11 March, and several small banks or islands were emerging from it. Steam in the crater thwarted efforts to observe convection. The lake temperature was 66°C, three degrees cooler than the last measurement obtained on 31 January. Minor collapse of the crater margin continued, especially around the steeper N and NE margins. Both fumarole 13a and the fumarole centered in Donald Mound registered temperatures slightly lower than those previously reported.

Deformation and magnetic surveys. Visitors completed a full survey of the leveling network on the main Crater floor in good conditions. It indicated continued subsidence at an area subsiding since November 1996 (BGVN 21:11) (figure 26). It also revealed that in the center of Donald Mound there was a semi- elongated subsidence zone dropping at a rate of 9 mm/month; this subsidence was first noticed in January 1997 (BGVN 22:01) (figure 27).

Figure (see Caption) Figure 26. Contour plot showing height changes at White Island between 31 January and 6 May. Height changes are in millimeters. Courtesy of B. J. Scott, IGNS.
Figure (see Caption) Figure 27. Time series plot for White Island showing height of selected pegs. Refer to figure 26 for peg locations. Courtesy of B. J. Scott, IGNS.

In situ magnetism observed between 31 January and 6 May 1997 showed the smallest rates of change recorded in the last few years and no changes >50 nT. Most sites underwent a small field strength decrease. The only significant increases were on the N side of Donald Mound (a maximum recorded change of +46 nT at site S), indicating continuing shallow (~ 50 m deep) cooling. It was noted that at site S the rate of magnetic change had decreased significantly (0.48 nT/day, compared with 1.41 nT/day during 4 November 1996 to 31 January 1997). The widespread, small decreases could be due to an uncorrected diurnal variation or deep heating. The most recent data on the graph of the cumulative magnetic change at sites G and M (figure 28) may indicate that the trend at site G reversed. Such a reversal would imply heating; however, more time is required to confirm a trend reversal. Overall, the low rates of change in magnetism could indicate that temperature had stabilized and that the current level of surface hydrothermal activity will not greatly change in the short term.

Figure (see Caption) Figure 28. Time series plot showing magnetic changes at White Island's pegs G and M. Refer to figure 26 for peg locations. Courtesy of B. J. Scott, IGNS.

Seismicity. Volcanic tremor had dominated the seismic records since July 1996 when it prevailed at a new background level ~4x higher that the average earlier that year. The ground motion for 1997 (figure 29) showed no diagnostic trend or clearly demonstrative pattern.

Figure (see Caption) Figure 29. Time series plot showing White Island's volcanic tremor for 1997 (logarithm of tremor amplitude versus time). Courtesy of B. J. Scott, IGNS.

The uninhabited, 2 x 2.4 km White Island emerges at the summit of a 16 x 18 km submarine volcano. The island consists of two overlapping stratovolcanoes; the summit crater appears to be breached to the SE because the shoreline corresponds to the level of several notches in the SE crater wall. Intermittent steam and tephra eruptions have occurred throughout the short historical period, but its activity is also prominent in Maori legends.

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: B.J. Scott, C. Wilson, B.F. Houghton, and I. Nairn, Institute of Geological & Nuclear Sciences (IGNS), Private Bag 2000, Wairakei, New Zealand.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports