Logo link to homepage

Report on Ruapehu (New Zealand) — July 1990


Bulletin of the Global Volcanism Network, vol. 15, no. 7 (July 1990)
Managing Editor: Lindsay McClelland.

Ruapehu (New Zealand) Tremor declines after buoyant block eruption; Crater Lake temperature drops

Please cite this report as:

Global Volcanism Program, 1990. Report on Ruapehu (New Zealand) (McClelland, L., ed.). Bulletin of the Global Volcanism Network, 15:7. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN199007-241100


New Zealand

39.28°S, 175.57°E; summit elev. 2797 m

All times are local (unless otherwise noted)

Crater Lake temperature (measured by a continuously recording Temtrac data logger) rose 3° to 27.5°C during the seven days that followed the ejection of hot buoyant blocks on 17 June, then fell steadily, reaching 21° on 20 July. Tremor amplitude decreased after 17 June, and tremor had disappeared from seismic records by 1 July.

During fieldwork on 20 July, Crater Lake was steam-free but turbid (battleship gray), with upwelling at the N vent and some slight upwelling at the lake's center. The lake's Mg/Cl ratio showed a slight increase (to 0.054), perhaps associated with the increased late June heat flow. However, the Mg/Cl data did not suggest significant lava extrusion onto the lake floor around the time of the 17 June activity. EDM data indicated reversal of deformation trends noted 17 June, and cumulative changes 10 May-20 July were generally small.

In BGVN 15:06 we cited a 1970 bathymetric survey that gave depths of 60-80 m to vents in Crater Lake. However, 1982 soundings yielded depths exceeding 180 m in a cone-shaped central eruptive area (Nairn and others, 1982). Nairn notes that the pressure change from lake bottom to surface would exceed 40 bars, requiring slow rise rates if blocks such as those that rose to the lake surface on 17 June are to survive without fragmenting from internal gas pressure. Such floating blocks would therefore be diagnostic of very low-energy, low-velocity phreatic events that only just reach the lake surface.

Reference. Nairn, I.A., Scott, B.J., Otway, P.M., and Cody, A.D., 1982, Depth measurements in Ruapehu Crater Lake: Volcano News, no. 12, p. 3.

Geological Summary. Ruapehu, one of New Zealand's most active volcanoes, is a complex stratovolcano constructed during at least four cone-building episodes dating back to about 200,000 years ago. The dominantly andesitic 110 km3 volcanic massif is elongated in a NNE-SSW direction and surrounded by another 100 km3 ring plain of volcaniclastic debris, including the NW-flank Murimoto debris-avalanche deposit. A series of subplinian eruptions took place between about 22,600 and 10,000 years ago, but pyroclastic flows have been infrequent. The broad summait area and flank contain at least six vents active during the Holocene. Frequent mild-to-moderate explosive eruptions have been recorded from the Te Wai a-Moe (Crater Lake) vent, and tephra characteristics suggest that the crater lake may have formed as recently as 3,000 years ago. Lahars resulting from phreatic eruptions at the summit crater lake are a hazard to a ski area on the upper flanks and lower river valleys.

Information Contacts: I. Nairn, NZGS Rotorua.