Logo link to homepage

Report on Unzendake (Japan) — November 1991


Bulletin of the Global Volcanism Network, vol. 16, no. 11 (November 1991)
Managing Editor: Lindsay McClelland.

Unzendake (Japan) Continued lava extrusion; fewer pyroclastic flows

Please cite this report as:

Global Volcanism Program, 1991. Report on Unzendake (Japan) (McClelland, L., ed.). Bulletin of the Global Volcanism Network, 16:11. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN199111-282100



32.761°N, 130.299°E; summit elev. 1483 m

All times are local (unless otherwise noted)

Lava extrusion has continued . . . with rockfalls from domes frequently causing pyroclastic flows. Extrusion of the 4th in a series of lava domes began after the 15 September collapse of dome 3, which spawned a major pyroclastic flow. A seismic swarm began beneath the crater on 24 October and inflation of the upper part of dome 4 was first noted the next day. Inflation continued through November and seismicity increased gradually until 1 December, then declined. On 3 December, a new lobe emerged on the S side of dome 4, and it was continuing to grow a week later. The number of seismically counted pyroclastic flows was relatively low until late November, when frequent flows resumed. The flows, generated mainly from dome 4 and its early-December lobe, moved down the same valleys (Oshiga and Mizunashi) as in previous months. Ash clouds elutriated from the larger flows reached about 2 km height.

The following information, from Setsuya Nakada, describes November-early December surface activity.

Growth of lava dome 4 has continued in the depression left by the collapse of dome 3 on 15 September. By the end of October, dome 4 was 500 m long, with two lobes forming a crudely petal-shaped structure. Rough pressure ridges, convex downslope and of long wavelength, formed on the surface of dome 4, and thick lava layers piled atop each other were observed on its southern cliffs. New magma reached the surface along the narrow space between domes 2 and 4 and between the head of dome 4 and the remnants of dome 3, where it built new irregularly shaped lobes. Significant intrusion was indicated by swelling of the dome and uplift of the talus between domes 3 and 4. As the uplifted area expanded southward and northward, reddish blocky lava replaced the talus. Older domes were pushed S-SW, causing radial cracking in dome 3, where deformation was continuing in early December. Talus in front of the domes rested at angles as high as 33°, and parts of the dome 4 surface were even steeper.

Dome 4 has advanced little since early November, as frequent rockfalls from the dome front compensated for the additional magma supply. Rockfalls eroded and buried dome 2, but did not develop into pyroclastic flows as often in October and November as in previous months. Pyroclastic flows that traveled >2 km occurred at both the beginning and end of November. The early-November flow started from the head of dome 4, advanced across the dome, then entered the Oshiga valley. The latter flow, videotaped by Ground Self-Defense Force personnel, was generated by failure of ~ 105 m3 of dome-4 lava blocks, which broke into small pieces upon landing on dome 2, crossed a region of talus, then entered a narrow gorge that had not previously been filled by debris. Its average speed was calculated at 14.7 m/s (53 km/hour).

Geological Summary. The massive Unzendake volcanic complex comprises much of the Shimabara Peninsula east of the city of Nagasaki. An E-W graben, 30-40 km long, extends across the peninsula. Three large stratovolcanoes with complex structures, Kinugasa on the north, Fugen-dake at the east-center, and Kusenbu on the south, form topographic highs on the broad peninsula. Fugendake and Mayuyama volcanoes in the east-central portion of the andesitic-to-dacitic volcanic complex have been active during the Holocene. The Mayuyama lava dome complex, located along the eastern coast west of Shimabara City, formed about 4000 years ago and was the source of a devastating 1792 CE debris avalanche and tsunami. Historical eruptive activity has been restricted to the summit and flanks of Fugendake. The latest activity during 1990-95 formed a lava dome at the summit, accompanied by pyroclastic flows that caused fatalities and damaged populated areas near Shimabara City.

Information Contacts: S. Nakada, Kyushu Univ; JMA.