Report on Krafla (Iceland) — March 1979
Scientific Event Alert Network Bulletin, vol. 4, no. 3 (March 1979)
Managing Editor: David Squires.
Krafla (Iceland) New deflation event believed imminent
Please cite this report as:
Global Volcanism Program, 1979. Report on Krafla (Iceland) (Squires, D., ed.). Scientific Event Alert Network Bulletin, 4:3. Smithsonian Institution. https://doi.org/10.5479/si.GVP.SEAN197903-373080
Krafla
Iceland
65.715°N, 16.728°W; summit elev. 800 m
All times are local (unless otherwise noted)
"The behavior of ground movement in the Krafla area is similar to that shortly before earlier deflation events. In early March, ground level reached the same height as before previous events, then inflation slowed markedly. Earthquake activity remains low, but the number recorded has increased significantly. A new deflation event with associated magma movement is now expected at any time."
Geological Summary. The Krafla volcanic system in the Northern Volcanic Zone (NVZ) of Iceland is about 100 km long, consisting of a fissure swarm and a central volcano with a 7 x 9 km caldera formed about 110,000 years ago that deposited a rhyolitic welded tuff. It has been moderately active in the Holocene, over three distinct eruptive periods; the current one has lasted about 2,800 years with six volcano-tectonic episodes, each with one or more basaltic fissure eruptions. Lava volumes (DRE) have been in the 0.1-1 km3 range. The Hverfjall and Ludent tuff rings east of Myvatn were erupted along the fissure system. Myvatn lake formed during the eruption of the older Laxarhraun lava flow from the Ketildyngja shield volcano of the Fremrinamur volcanic system about 3,800 years before present (BP); The present Myvatn lake is constrained by the roughly 2,000 years BP younger Laxarhraun lava flow from the Krafla volcanic system. The abundant pseudocraters that form a prominent part of the Myvatn landscape were created when the younger Laxarhraun lava flow entered the lake. The last eruption took place in 1975-1984 CE when nine small basaltic fissure eruptions produced 0.25 km3 of lava.
Information Contacts: K. Grönvold, NVI.