Logo link to homepage

Report on Unzendake (Japan) — June 1994

Bulletin of the Global Volcanism Network, vol. 19, no. 6 (June 1994)
Managing Editor: Richard Wunderman.

Unzendake (Japan) New lava lobe appears; number of pyroclastic flows increases

Please cite this report as:

Global Volcanism Program, 1994. Report on Unzendake (Japan) (Wunderman, R., ed.). Bulletin of the Global Volcanism Network, 19:6. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN199406-282100.

Volcano Profile |  Complete Bulletin



32.761°N, 130.299°E; summit elev. 1483 m

All times are local (unless otherwise noted)

Endogenous dome growth towards the SW... continued through the end of June at a decreased rate, and then changed direction towards the N. EDM measurements by the GSJ showed that the N flank shortened rapidly in late June at a rate of several tens of centimeters/day, and that shortening continued through mid-July. When deformation of the N flank was observed during January-March, a few sets of measurement lines were shortened. During recent measurements, however, only one set of lines shortened, suggesting movement of a small block on which a set of EDM mirrors is installed.

The growth of a new lava lobe (no. 13) on the morning of 12 July was observed from the air by geologists from SEVO. It is likely that the new lobe, on the SE shoulder of the endogenous dome, began growing on 10 July. The site of lobe 13 was at ~1,380 m elev; the endogenous dome itself reached 1,480 m in early July. Lobe 13 appeared at almost the same position as the previous lobe. It consisted of fresh gray-colored lava blocks up to several meters long, and had a diameter of ~70 m with a thickness of 30 m on 14 July; the volume was ~5 x 104 m3. The eruption rate during 10-14 July, taking into account lava blocks removed as rockfalls and lava intruded into the endogenous dome, was roughly estimated as several tens of thousand cubic meters/day. The rate has remained consistently low in recent months, in contrast to the large new lobes that exhibited high effusion rates during 1991-93.

This event resembled the mid-January appearance of lobe 12 in a depression behind the endogenous dome. Lobe 13 appeared on the backside of the endogenous dome, although not in a depression. The emergence points of both lobes were below 1,400 m elevation. These facts indicate that extrusion of lobes during the endogenous stage may be controlled by the height and condition of the dome carapace (thinning or breaking), and not by an abrupt change of eruption rate.

The number of pyroclastic flows caused by collapse of the lava dome increased in mid-June. In total, 105 pyroclastic flows were detected seismically at the station ~1 km WSW of the dome. Pyroclastic flows mainly descended in the direction of lava dome growth; most traveled SW, but since 24 June the dominant direction was NNW. The longest pyroclastic flow of the month traveled ~2 km NNW on 24 June. Rockfalls began to move SE at the end of June. Pyroclastic flows that moved SE (Akamatsu Valley) traveled ~1.5 km from the source in early July. Lava blocks continuously collapsed from the toe of the lobe and descended as pyroclastic flows to the SE. Breccias of gray-colored fresh lava covered the slope down to several hundred meters below lobe 13. Pyroclastic flows descending N continued after the appearance of lobe 13, and a peak of the endogenous dome was moving N at a rate of 1.6 m/day; implying that endogenous growth continued during growth of the new lobe. On the N slope, a 1663 andesite lava flow has been buried by recent talus and pyroclastic-flow deposits; a 1792 lava flow on the NE slope has been partially covered.

According to a hotel owner in the Unzen spa area, water temperature rose suddenly at a 4-m-deep hot spring beneath the hotel, having increased by ~10°C since early May. Information was also received about another hot spring that had increased in temperature by a few degrees. Although the relationship between hot spring temperatures and volcanism is not clear or confirmed, continuous temperature measurement of the hot spring by JMA began on 15 June. Microearthquakes beneath the dome, which totalled 3,279 in June (table 14), were registered at a rate of >150/day through the first half of the month, and then decreased to

Table 14. Monthly number of seismic events at Unzen, January 1993-June 1994. Monthly totals for 1991-92 can be found in 17:12. Courtesy of JMA.

Year/Month Earthquakes Pyroclastic Flows
1990 4,018 --
1991 19,101 2,756
1992 53,400 3,918
Jan 1993 3,147 37
Feb 1993 542 44
Mar 1993 2,985 171
Apr 1993 656 352
May 1993 3,037 281
Jun 1993 506 295
Jul 1993 1,034 353
Aug 1993 12,946 134
Sep 1993 1,032 138
Oct 1993 1,101 80
Nov 1993 2,662 32
Dec 1993 25,340 34
Jan 1994 1,863 75
Feb 1994 1,725 80
Mar 1994 5,110 10
Apr 1994 4,606 16
May 1994 3,171 33
Jun 1994 3,279 105

Steve O'Meara observed Unzen for ~13 hours on the night of 28 May and morning of 29 May from 4 km SE of the summit near Highway 57. The tallest feature that could be observed was a double-peaked spine. At least three strongly active regions on the dome released long plumes of steam; no reddish glow could be seen. Just after midnight, a large red flame-shaped incandescent gas plume was emitted from the W side of the dome's summit. The plume rose about 100 m and flickered, keeping its flame-like shape for ~15 seconds before fading and shrinking back to the dome. This emission was accompanied by a glowing red cloud that moved NW down the dome. Similar events occurred 10 more times before noon. Most of them were small reddish-brown ash releases either from the vent on the W side of the dome, or perhaps from collapses of the spine.

Geologic Background. The massive Unzendake volcanic complex comprises much of the Shimabara Peninsula east of the city of Nagasaki. An E-W graben, 30-40 km long, extends across the peninsula. Three large stratovolcanoes with complex structures, Kinugasa on the north, Fugen-dake at the east-center, and Kusenbu on the south, form topographic highs on the broad peninsula. Fugendake and Mayuyama volcanoes in the east-central portion of the andesitic-to-dacitic volcanic complex have been active during the Holocene. The Mayuyama lava dome complex, located along the eastern coast west of Shimabara City, formed about 4000 years ago and was the source of a devastating 1792 CE debris avalanche and tsunami. Historical eruptive activity has been restricted to the summit and flanks of Fugendake. The latest activity during 1990-95 formed a lava dome at the summit, accompanied by pyroclastic flows that caused fatalities and damaged populated areas near Shimabara City.

Information Contacts: S. Nakada, Kyushu Univ; JMA; Stephen O'Meara, Sky & Telescope.