Logo link to homepage

Report on Arenal (Costa Rica) — April 1995


Arenal

Bulletin of the Global Volcanism Network, vol. 20, no. 4 (April 1995)
Managing Editor: Richard Wunderman.

Arenal (Costa Rica) Gas analysis; high tremor and a large explosion

Please cite this report as:

Global Volcanism Program, 1995. Report on Arenal (Costa Rica) (Wunderman, R., ed.). Bulletin of the Global Volcanism Network, 20:4. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN199504-345033



Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


During April, Crater C continued its ongoing emission of gas, lava flows, and small Strombolian eruptions. The lava flow that started in October 1994, reached 1,100 m elevation along the W arm and at 850 m elevation along the NW arm. On Arenal's NW, W, and SW flanks the tips and borders of tree leaves showed signs of scalding by acidic rain; some species were merely discolored, others were dying.

During April, a total of 484 low-frequency seismic events took place (figure 72); the majority of these events correlated with Strombolian eruptions; some events were registered as far away as 30 km SW of the active crater (station JTS). In terms of total (broad-band) seismicity, the most seismically active single day was 30 April, with 53 events registered.

Figure (see Caption) Figure 72. Arenal low-frequency seismicity for 1994 and January-April 1995. Data courtesy of OVSICORI-UNA.

According to OVSICORI-UNA, tremor prevailed during April for a total of 326 hours, 160% larger than any month (with data) in 1994 and thus far in 1995 (figure 72). At station JTS the tremor's dominant frequency fell between 2.0 and 3.2 Hz, its amplitude was as large as 101 mm.

ICE reported that average daily ashfall near the vent fluctuated significantly in the past few collection intervals (table 10). In three of the four collection intervals, the percentage of material above and below a quarter of a millimeter (250 µm) typically broke down in a roughly 40:60 ratio (coarse to fine).

Table 10. Ash collected 1.8 km W of Arenal's active vent, 19 October 1994 through 21 April 1995. Courtesy of ICE.

Collection Interval Avg daily ashfall (grams/m2) Ash % 300+µ Ash % less than 300µ
19 Oct-23 Jan 1995 7.6 38.0 62.0
23 Jan-03 Mar 1995 8.2 54.7 45.3
03 Mar-30 Mar 1995 22.7 42.2 57.8
30 Mar-21 Apr 1995 16.3 39.5 60.5

On 9 May at 2003, one of the biggest explosions in the last year and a half took place--sufficiently large to capture the attention of local newspapers. The amplitude of the accompanying seismic signal recorded 23 km W of Arenal reached ~20x larger than a "normal explosion"; the signal took ~0.3 seconds to grow to maximum amplitude. The elevated signal from the 9 May seismic event lasted >1.2 minutes; in contrast, at this same station the elevated signal from a normal explosion lasts perhaps 0.1 minute.

Robust, monochromatic, 2.5 Hz tremor took place at least 40 minutes prior to the 9 May event. After the event, the tremor became spasmodic, and although the bulk of the energy remained at 2.5 Hz, there was also some centered around 2.0 and 3.2 Hz.

Glyn Williams-Jones and John Stix sent the following. "During the period from 20 February to 20 April 1995, CO2 and Rn soil gas samples and correlation spectrometer SO2 fluxes were measured on Arenal. Four lines of 19 soil gas stations consisting of meter-long, 7.6-cm-diameter PVC tubes and 1-cm-diameter metal tubes, buried to approximately 75 cm in the ground, were installed on the N, S, W, and E flanks of the volcano.

"Radon values are extremely low, ranging from 2values show a similar pattern, with proximal stations starting at 0.01% to a maximum of ~8% for the more distal stations. The more developed organic-rich soils appear to show higher values of CO2 and Rn, implying a possible organic or soil influence.

"The SO2 flux in the volcanic plume was measured using a Plume Tracker instrument, similar to a COSPEC correlation spectrometer. The instrument was mounted 'looking up' on a moving motor vehicle passing under the plume. Eleven days of SO2 data were collected, resulting in more than 100 measurements. The flux appears to be small but highly variable, with the highest measured value at 370 metric tons/day (t/d). The highest values were associated with explosive eruptions. Following eruptions, SO2 flux dropped to background levels of about 60 +- 10 t/d. Less apparent from the data is a possible gradual increase in SO2 output prior to an eruption.

"The values that we measured are comparable to those measured by Casadevall and others (1984) in 1 February 1982 (210 +- 30 t/d) and by Stoiber and others (SEAN 07:11) in November 1982 (~50 t/d). It is likely that these variations are related to changes in the volcano's activity."

Arenal's first chronicled eruption, in 1968, began an unbroken sequence of Strombolian explosions, and basaltic andesite discharges from multiple vents (see map in BGVN 18:08). The volcano lies adjacent to Lake Arenal, a dammed reservoir for generating hydroelectric power.

References. Casadevall, T.J., Rose, W.I., Fuller, W.H., Hunt, W.H., Hart, M.A., Moyers, J.L., Woods, D.C., Chuan, R.L., and Friend, J.P., 1984, Sulfur dioxide and particles in quiescent volcanic plumes from Póas, Arenal, and Colima volcanoes, Costa Rica and Mexico: J. Geophys. Res., v. 89, p. 9633-9641.

Geological Summary. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: Erick Fernandez, Vilma Barboza, and Jorge Barquero, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; G.E. Alvarado, Waldo Taylor, and Gerardo J. Soto, Oficina de Sismologia y Vulcanologia del Arenal y Miravalles: OSIVAM; Instituto Costarricense de Electricidad (ICE), Apartado 10032-1000, San José, Costa Rica; Glyn Williams-Jones and John Stix, Departement de Geologie, Universite de Montreal, Quebec, Canada, H3C 3J7.