Logo link to homepage

Report on Langila (Papua New Guinea) — December 1995


Bulletin of the Global Volcanism Network, vol. 20, no. 11 (December 1995)
Managing Editor: Richard Wunderman.

Langila (Papua New Guinea) Ongoing eruptions lead to detectable ashfalls 10-15 km away

Please cite this report as:

Global Volcanism Program, 1995. Report on Langila (Papua New Guinea) (Wunderman, R., ed.). Bulletin of the Global Volcanism Network, 20:11. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN199512-252010


Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)

Throughout November-December, Crater 2 continued to emit white-to-gray ash and vapor, with plumes rising up to several hundred meters above the crater. During November, ashfalls reached 10-15 km on the N-NW flank; these eruptions were accompanied by audible explosions and rumbling. The eruptions threw incandescent projectiles during the first half of both November and December, and steady crater glow took place on most November nights and on 9-11 December. Crater 3 remained quiet. The greatest December activity, during the 23rd through the 26th, had emissions similar to those in November, but plumes rose somewhat higher (up to 1 km above the crater) and ash fell 10-15 km SE and SW.

Geological Summary. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: Ben Talai, H. Patia, D. Lolok, and C. McKee, RVO.