Logo link to homepage

Report on Popocatepetl (Mexico) — February 1998


Popocatepetl

Bulletin of the Global Volcanism Network, vol. 23, no. 2 (February 1998)
Managing Editor: Richard Wunderman.

Popocatepetl (Mexico) Cyclical dome extrusions that by late 1997 filled one-third of crater capacity

Please cite this report as:

Global Volcanism Program, 1998. Report on Popocatepetl (Mexico) (Wunderman, R., ed.). Bulletin of the Global Volcanism Network, 23:2. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN199802-341090



Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


The following report on Popocatépetl incorporates both background descriptive information, some of which had previously remained unreported, and a more detailed discussion of ongoing dome growth based on aerial photographs and flight observations. The volcano was last discussed in BGVN 23:01. By late 1997 the growing dome occupied 30-38% of the crater's capacity.

During 1996-98, Popocatépetl extruded six named domes in the summit crater (A through F, table 10 and figure 24). Elliptical in shape, the summit crater measures 820 x 650 m, with the longer axis trending approximately E-W. The lowest point of the crater rim occurs along the NE side and lies at 5,180 m elevation; the average elevation of the irregular floor was estimated at 5,030 m (De la Cruz-Reyna et al., in review). The crater's deepest point, at 4,963 m elevation, lay at the bottom of the ~160-m-diameter craterlet formed during the 1922 eruption (BGVN 21:03). Based on the observed shapes and dimensions, the crater could potentially contain a volume of ~35 x 106 m3 before additional material would spill out the low point on the crater rim.

Table 10. Approximate dates when the first extruded material was seen for Popocatépetl's domes A through F. Courtesy of CENAPRED.

Dome Extrusion date Comment
A late Mar 1996 --
B 21 May 1996 --
C 21 Jan 1997 Higher viscosity lavas than domes A or B.
D 04 Jul 1997 Followed the unusually large 30 June 1997 explosion that left a large crater in dome C.
E 19 Aug 1997 --
F 07 Dec 1997 --
Figure (see Caption) Figure 24. Schematic plan views showing the main crater at the summit of Popocatépetl and the sequence of named domes (A-F) found during 26 May 1996 through 7 December 1997. Courtesy of CENAPRED.

In late March 1996, observers saw dome A growing at the bottom of Popocatépetl crater and slowly covering the 1922 craterlet (BGVN 21:03). By 21 May 1996, two elliptical lava bodies were observed in the main crater of Popocat'petl, completely covering the older dome and craterlet (BGVN 21:04). As shown on figure 24, domes A and B grew along the SE and NW sectors of the principal crater's floor (BGVN 22:10). By 26 May 1996 the highest point on dome B reached 5,109 m elevation. Then, after July 1996 dome B's moderate growth slowly declined and subsequent circular fractures on the central dome indicated subsidence. By September 1996 the growth rate could not be measured and ash emissions became smaller. After September 1996, explosive emissions became less frequent, but more intense (e.g. those on 28 and 31 October 1996, BGVN 22:10).

By 21 November 1996, dome B had covered most of dome A and it crept radially out towards the crater's walls. Apparently, explosive activity around that time caused enhanced central subsidence as concentric fractures returned to the dome's surface and the elevation of its central part fell to 5,090 m. More explosions were recorded on 27, 28, and 29 November, on 2, 5, 7, and 29 December, and on 5, 12, 17, and 19 January, 1997. The January explosions were noted as large. By 21 January observers reported that dome B's previously irregular surface appeared smooth due to a cover of fresh tephra. More surprisingly, the central depression within dome B increased in depth, creating what looked like a new crater.

More explosions soon followed (on 23 and 29 January, and on 4, 5, 8, and 25 February; BGVN 22:03). Next, new lava extruded at the center of the depression constructing a new, smaller dome (C). The lavas comprising dome C appeared to have a greater viscosity than those of either A or B.

Explosions on 19 and 20 March 1997 (BGVN 22:04) failed to remove significant proportions of dome C; by 23 April dome C's central part reached 5,060 m elevation (figure 24). As previously reported (BGVN 22:04 and 22:07), subsequent explosions (24 and 29 April, 11, 14, 15, 24, and 27 May, and 3 and 11 June 1997) partially destroyed dome C leaving it covered by explosive clasts of very different sizes. Moreover, the central part of dome C had subsided, leaving its lowest point at 5,049 m elevation. More explosions on 14, 19, 21, and 30 June and on 2 July thwarted observations of the crater's interior. The 30 June 1997 explosion, the largest since the eruption began in 1994, quickly dispatched an ash column to 13 km altitude (BGVN 22:07). When observers looked into the crater on 4 July 1997, dome C had been partially destroyed and contained a large crater.

Within that crater there lay a dish-shaped zone of fresh ropy-lava given the name dome D. In addition, tongues of material radiated from the crater over the volcano's S and SE flanks; these were interpreted as granular flows deposited by the 30 June eruption (BGVN 22:07). Although not previously reported, on 10 August subsidence and radial fracturing became more evident on dome D. Later, by 19 August, dome D sprouted additional lava thus forming what was termed dome E (BGVN 22:10).

Dome E, initially an elliptical lobe that was 50-m long, 36-m wide, and 6-m high, had a very rough surface texture. Dome E later attained a circular shape, and by 10 September it had almost filled the hosting craterlet within the surrounding dome's body. Apart from some radial fractures, the surface appearance was rather regular with a slight inner depression and a region emitting gases in the center. This circular center had a height of 5,105 m elevation. From then on, E extruded in a piston-like manner and when seen on 22 October, E retained an almost cylindrical shape: Its height had grown about 15 m without significant change in its horizontal extent. When viewed on 29 November E's surface appeared smoother except for the presence of some minor explosion craterlets.

Starting on 25 November, significant seismic changes indicated subcrater magmatism and on 2 December observers noted both mild ash emissions and night-time incandescence. On 7 December observers recognized yet another new, large lava body in the crater (BGVN 22:11).

Dome F was composed of a lower-viscosity, black, ropy lava; it subsequently grew to a maximum diameter of 380 m and exceeded by 20 m the height of dome E as measured on 22 October. Relative quiet during 7-24 December ended on the latter day with a 30-minute-long series of explosions and moderate ash emissions. Volcano-tectonic seismicity took place during the final days of 1997, leading up to a large 1 January explosion. Aerial observers on 6 January saw that dome F had been partially destroyed and covered by volcanic debris (BGVN 22:12). The negative values on table 11 correspond to the 1 January 1998 explosion, which left a crater at dome F's center. This crater was 250 m in diameter and 60 m in depth with a shape similar to the 1922 dome and craterlet. Dense, degassed lava blocks with diameters of 0.6-0.8 m were thrown 2 km from the crater; they produced impact craters about 3 m in diameter.

Table 11. Estimates of Popocatépetl dome volumes for the stated dates. Volumes are "actual" and not adjusted as dense rock equivalents. The maximum crater capacity is estimated at ~ 35 x 106 m3. The negative emitted volume shown for 1 January 1998 appears because explosions removed material from the dome, although some uncertain amount of these broken dome fragments remained within the crater (see text). Courtesy of CENAPRED.

Date Emitted volume (m3) Cumulative volume (m3) Percent of crater capacity
Mar 1996-Oct 1997 9,500,000 9,500,000 27%
Nov 1997 1,500,000 11,000,000 31%
Dec 1997 2,500,000 13,500,000 38%
01 Jan 1998 -1,000,000 12,500,000 35%

Afterwards, until early February 1998, the volcano remained relatively quiet. On 14 March 1998, new precursory seismicity was detected. In behavior reminiscent of December 1997 and January 1998, two explosions occurred on 21 March at 0511 and 1559. The first, a moderately explosive exhalation, produced light ashfalls on towns in the state of Puebla. The second, a more intense explosion, produced a 3-km-tall plume and threw blocks 2-4 km about the crater. A 23 March exhalation appeared very similar to the one at 0511 on 21 March, resulting in a low-altitude plume that the wind dispersed NW. No damage or casualties were reported.

Reference. De la Cruz-Reyna, S., Macias, J.L., and Castillo-Alanis, F., (manuscript submitted late February 1998), Dome growth and associated activity during the current eruptive episode of Popocatepetl volcano, central Mexico: Earth and Planetary Sciences Letters.

Geological Summary. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Servando de la Cruz-Reyna1,2, Roberto Meli1, Jose Luis Macias1,2, Francisco Castillo Alanis1, and Bulamaro Cabrera3; 1Instituto de Geofisica, UNAM, Coyoac n 04510, México D.F., México; 2CENAPRED, Delfin Madrigal 665, Col. Pedregal de Santo Domingo, Coyoacan, 04360, México D.F., México; 3SCT, Aldadena 23, 6o piso, Col. N poles, 03810, México D.F., México.