Logo link to homepage

Report on Soufriere Hills (United Kingdom) — April 2003


Soufriere Hills

Bulletin of the Global Volcanism Network, vol. 28, no. 4 (April 2003)
Managing Editor: Edward Venzke.

Soufriere Hills (United Kingdom) Continued dome growth, rockfalls, and pyroclastic flows

Please cite this report as:

Global Volcanism Program, 2003. Report on Soufriere Hills (United Kingdom) (Venzke, E., ed.). Bulletin of the Global Volcanism Network, 28:4. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN200304-360050



Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


During 1 March through 2 May 2003, the dome continued to grow, producing numerous rockfalls and moderate pyroclastic flows. Most activity was concentrated on the northern flanks, producing numerous pyroclastic flows in White's Ghaut, the Tar River Valley, and Tuitt's Ghaut. Pyroclastic flows and rockfalls traveled down all flanks of the dome at some time during the period. On 20 March, the greatest dome height recorded to date was measured, 1,098 m. A prominent extrusive lobe was established on the E and SE sides of the summit at the beginning of April. On 22 April, a large spine, inclined to the E, was observed on the summit, the top of which was at an elevation of 1,163 m.

The Washington VAAC issued notices daily to the aviation community regarding ash clouds emanating from the summit. Seismicity during the report period was dominated by rockfalls (table 44). Average daily SO2 emission rates varied throughout the report period (table 45) with a low of 31 tons/day on 25 March to a maximum of 1,550 tons/day on 1 May.

Table 44. Summary of weekly seismicity at Soufrière Hills during 28 February 2003-2 May 2003. Courtesy MVO.

Date Rockfall Hybrid Long-period Long-period / Rockfall Volcano-tectonic
28 Feb-07 Mar 2003 997 0 79 71 4
07 Mar-14 Mar 2003 1050 5 87 108 0
14 Mar-21 Mar 2003 1050 2 93 152 2
21 Mar-28 Mar 2003 1097 16 99 138 7
28 Mar-04 Apr 2003 754 7 74 101 2
04 Apr-11 Apr 2003 332 1 66 77 --
11 Apr-18 Apr 2003 393 7 72 56 --
18 Apr-25 Apr 2003 966 4 83 88 1
26 Apr-02 May 2003 813 4 168 121 1

Table 45. Average daily SO2 emission rates at Soufrière Hills during 28 February 2003-2 May 2003. Courtesy MVO.

Date SO2 emissions (tons/day)
28 Feb 2003 1020
28 Feb-07 Mar 2003 500-1020
07 Mar-14 Mar 2003 220-355
14 Mar-21 Mar 2003 285-380
21 Mar-28 Mar 2003 31-497
25 Mar 2003 31
28 Mar-04 Apr 2003 230-770
04 Apr-11 Apr 2003 151-780
06 Apr 2003 151
11 Apr-18 Apr 2003 220-550
18 Apr-25 Apr 2003 450-550
25 Apr-02 May 2003 390-1550
01 May 2003 1550

Throughout the period, access to all areas S of the Belham Valley, to Waterworks, Happy Hill, Lower Friths and Old Towne, and to Bramble airport and beyond was prohibited and a maritime exclusion zone around the S part of the island extended 3.7 km beyond the coastline from Trant's Bay in the E to Lime Kiln Bay on the W coast.

Activity during March 2003. Activity remained at levels similar to that of the previous few weeks (BGVN 28:02), with continued dome growth and moderate pyroclastic-flow activity. Lava extrusion was accompanied by rockfall activity and pyroclastic flows that were focused, during 1-7 March, on the NE and N slopes and valleys. Pyroclastic flows occurred most frequently in Tuitt's Ghaut with a few on Farrell's Plain with run-out distances up to 1 km.

During 8-14 March, rockfalls and pyroclastic flows occurred down all flanks. Dome growth continued and lava extruding into the center of the summit dome complex continued to increase the dome height. Dome glow at night was spectacular in the Tar River Valley and on the NW in Tuitt's Ghaut and the N talus slopes. Small rockfalls and pyroclastic flows occurred infrequently on the W flank and at the top of Gage's Valley. Ash venting was continuous in the summit area.

Lava extrusion during 15-21 March formed a series of spines and ridges. Theodolite measurements on 20 March indicated a dome height of 1,098 m, the highest recorded to date. Activity was dominated by rockfalls and pyroclastic flows mainly in the Tar River Valley, with several small pyroclastic flows in White's and Tuitt's Ghaut and one observed in the upper part of Tyre's Ghaut on 20 March. Ash venting continued.

Dome growth continued through the end of the month. Rockfalls and pyroclastic flows spilled off the active summit in a broad arc extending from the S around the E flanks to the NW. Most activity was towards the NE, with pyroclastic flows in the Tar River Valley and small flows on the N flanks of the dome in White's Ghaut, Tuitt's Ghaut, the upper reaches of Tyre's Ghaut and on Farrell's Plain. Most volcano-tectonic earthquakes (see table 44) occurred in a small swarm late in the evening of 25 March. On the same day, following a brief, intense rainstorm, a 4-5 hour period of increased pyroclastic-flow and rockfall activity occurred on the N and NW flanks of the dome. Observation flights on 27-28 March indicated that rockfalls and small pyroclastic flows were spilling onto the S flanks of the dome.

Activity during April 2003. A prominent extrusive lobe was established on the E and SE sides of the summit at the beginning of April and a large vertical spine, extruded at the back of this lobe on the night of 1-2 April, was the highest point on the dome. During 1-12 April, rockfalls and pyroclastic flows occurred mainly on the E side of the dome in the Tar River Valley. Rockfall activity also continued on the S side of the dome and some pyroclastic flows occurred on the NE flanks in White's Ghaut and Tuitt's Ghaut, and on the NW flank; several of the latter flowed into the upper reaches of Tyre's Ghaut. On 10 April torrential rainfall produced mudflows in the Belham River and triggered pyroclastic flows on the E, N, and NW flanks of the dome.

Helicopter observations during 15 April indicated that the lobe extrusion continued on the ESE side of the dome summit above the Tar River Valley. Vigorous gas venting also was observed on the S side of the summit during this flight. Rockfall and pyroclastic-flow activity occurred throughout the week of 12-18 April on the E and SE sides of the dome with some rockfall activity on the N flanks. On 15 April a small pyroclastic flow occurred in the upper part of Tyre's Ghaut.

On 22 April a large spine was observed on the dome summit, positioned slightly S of the center and inclined at a high angle towards the E. The top of the spine was at an elevation of 1,163 m as compared to the ~1,090 m height of the general summit region of the dome. During 19-25 April, most of the rockfall and pyroclastic-flow activity occurred on the E and SE flank of the dome in the Tar River Valley. A few flows occurred to the NE in White's Ghaut and Tuitt's Ghaut, and to the N and NW onto Farrell's Plain and into the top of Tyre's Ghaut. Observations on 22 April indicated that rockfall debris was starting to spill S into the White River area. On 23 April several large rockfalls were observed on the W side of the dome in the Gages area.

During the last week of April, the prominent spine seen on the summit of the dome the previous week had partly disintegrated. Most of the rockfalls and pyroclastic flows into the Tar River Valley began along the face of the well-developed extrusion lobe present on the ESE side of the summit region. Rockfall debris spilled off the S side of the lobe into the upper reaches of White River, and some flows occurred towards the NE in White's Ghaut and Tuitt's Ghaut, and towards the N and NW on the top of Farrell's Plain and in the top of Tyre's Ghaut. Vigorous pulses of ash-venting occurred on the summit throughout this week.

Geological Summary. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), Mongo Hill, Montserrat, West Indies (URL: http://www.mvo.ms/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ssd.noaa.gov/).