Logo link to homepage

Report on Etna (Italy) — October 2017

Bulletin of the Global Volcanism Network, vol. 42, no. 10 (October 2017)
Managing Editor: Edward Venzke. Edited by A. Elizabeth Crafford.

Etna (Italy) Extensive lava flows during February-May 2017; new summit crater emerges

Please cite this report as:

Global Volcanism Program, 2017. Report on Etna (Italy) (Crafford, A.E., and Venzke, E., eds.). Bulletin of the Global Volcanism Network, 42:10. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN201710-211060.

Volcano Profile |  Complete Bulletin


Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Italy's Mount Etna on the island of Sicily has had historically recorded eruptions for the past 3,500 years. Lava flows, explosive eruptions with ash plumes, and lava fountains commonly occur from its major summit crater areas, the North East Crater (NEC), the Voragine-Bocca Nuova (or Central) complex (VOR-BN), the South East Crater (SEC) (formed in 1978), and the New South East Crater (NSEC) (formed in 2011). A new crater, the SEC3 or "saddle cone" emerged during early 2017 from the saddle between SEC and NSEC.

After a major explosive event in December 2015 (BGVN 42:05), activity subsided for a few months before renewed Strombolian eruptions and lava flows affected all of the summit craters during late May 2016 (BGVN 42:09). These events were followed by a lengthy period of subsidence and intense fumarolic activity across the summit that lasted until a new eruptive episode began at the end of January 2017. The Osservatorio Etneo (OE), which provides weekly reports and special updates on activity, is run by the Catania Branch of Italy's Istituo Nazionale di Geofisica e Vulcanologica (INGV). This report uses information from INGV to provide a detailed summary of events between January and August 2017.

Summary of January-August 2017 Activity. Minor ash emissions began from a new vent in the saddle between NSEC and SEC on 20 January 2017, followed by Strombolian activity a few days later. Activity intensified at the end of February when the first of several lava flows emerged from this vent, and then from several other vents on the S flank of the new, rapidly growing cone during March and April. By mid-March 2017, Strombolian activity, ash emissions, and lava flows had created a cone higher than the adjacent NSEC and SEC cones. The last effusive episode at the end of April 2017 sent flows down both the N and S flanks of the new cone from multiple vents. Intermittent weak Strombolian activity at the new summit area was associated with abrupt tremor amplitude increases during May, but no additional flows were reported. During June-August, fumarolic activity persisted at several crater areas, and minor ash emissions were observed a few times, but no major eruptive activity took place. The sharp increase in heat flow resulting from the lava flows of March and April 2017 are clearly visible in the MIROVA thermal anomaly plot of log radiative power for the year ending on 12 October 2017 (figure 186).

Figure (see Caption) Figure 186. Thermal anomalies at Etna (log radiative power) identified by the MIROVA system for the year ending on 12 October 2017. Major effusive eruptive events with lava flows and Strombolian activity occurred from late February through April 2017. Courtesy of MIROVA.

Activity during January-February 2017. Sporadic incandescence continued from the 7 August 2016 vent on the E side of VOR during January 2017, and minor ash plumes rose from the NSEC "saddle" vent on 20 January. Modest Strombolian activity began at the saddle vent that on 23 January and continued into February (figure 187). Small bombs were ejected onto the flank of NSEC and minor ash plumes quickly dissipated in the high winds near the summit. Also during February, steady subsidence continued at BN, especially in the BN-1 area (see figure 185, BGVN 42:09), where active degassing with minor amounts of ash was observed on 1 February (figure 187). Debris deposits from Strombolian activity at the saddle vent covered the S side of the pyroclastic cone and travelled to its base during the end of February.

Figure (see Caption) Figure 187. Activity at Etna during the first week of February 2017. Left: Strombolian activity at the NSEC saddle vent; photo by B. Behncke. Right: degassing with minor ash emissions from the vent at the bottom of BN-1; photo by M. Ponte. Courtesy of INGV (Bollettino settimanale sul monitoraggio vulcanico, geochimico e sismico del vulcano Etna, 30/01/2017-05/02/2017, No. 6/2017).

During the late afternoon of 27 February, the Strombolian activity that began on 20 January from the saddle vent between SEC and NSEC rapidly intensified, and lava emerged from the vent and flowed down the S flank of SEC (figure 188). It slowed after reaching the flat ground at the base of the cone, and expanded slowly SE toward the older cones of Monte Frumento Supino. Intense activity that evening sent shards and bombs 200 m above the vent while the flow continued. Ash from the Strombolian activity dispersed NE, with minor ashfall reported in Linguaglossa and Zafferana. A new cone of pyroclastic material that formed around the saddle vent quickly grew to about the same elevation as the NSEC and SEC crater rims, approximately 3,290 m (figure 189). The lava continued to flow until 2 March 2017, when it stopped at about 2,750 m elevation with an overall length of 2,180 m, covering an area of 306 x 103 m2, for a total volume of slightly less than 1 x 106 m3.

Figure (see Caption) Figure 188. An outline of the new lava flow at Etna that emerged from the saddle vent located between NSEC and SEC on 27 February 2017. It rapidly advanced down the steep S flank of SEC. Base map is a DEM image created by the INGV Cartography Laboratory. Courtesy of INGV (Bollettino settimanale sul monitoraggio vulcanico, geochimico e sismico del vulcano Etna, 27/02/2017-05/03/2017, No. 10/2017).
Figure (see Caption) Figure 189. Strombolian activity, the 27 February lava flow, and ash and vapor emissions from the new NSEC/SEC saddle vent at Etna on 28 February 2017 around 1730 local time. Photo by F. Ciancitto; courtesy of INGV (Bollettino settimanale sul monitoraggio vulcanico, geochimico e sismico del vulcano Etna, 27/02/2017-05/03/2017, No. 10/2017).

Activity during March 2017. Sporadic ash emissions continued from the new saddle vent during early March 2017, accompanied by weak Strombolian activity during the night of 12-13 March. Intense degassing continued from VOR during March as well, with incandescent bursts visible on many clear nights. On the morning of 15 March the Montagnola webcam recorded a lava overflow from the saddle vent down the S flank of NSEC, and an intensification of explosive activity that caused the flow to reach the base of the complex at about 3,000 m elevation. During the day, it advanced towards Monte Frumento Supino; it had reached elevation 2,800 m by the late evening, overlapping significantly with the earlier flow from 27 February. Strombolian eruptions were nearly constant until late afternoon, and continued intermittently, along with ash emissions, for several days.

Shortly before 2300 UTC on 15 March (0100 on 16 March local time), a second new flow emerged from a vent near the base of the S flank of the new NSEC/SEC cone (at about 3,200 m elevation) and travelled SE (figure 190), splitting into two lobes. INGV personnel in the summit area reported a series of phreato-magmatic explosions at 0043 (just after midnight) along the lava front at an elevation of approximately 2,700 m along the W edge of the Valle del Bove. The contact of the active flow with the underlying snow caused several explosions. An INGV volcanologist suffered minor injuries during one of the explosions. Increased emissions also caused minor ashfall in Adrano and Santa Maria di Licodia (both about 17 km SW).

Figure (see Caption) Figure 190. Explosions at Etna from a vent at the base of the new NSEC/SEC cone complex during the early morning of 16 March 2017 viewed from the Torre del Filosofo, 1 km S. Courtesy of INGV (Bollettino settimanale sul monitoraggio vulcanico, geochimico e sismico del vulcano Etna, 13/03/2017-19/03/2017, No. 12/2017).

By the afternoon of 17 March 2017, the second flow had reached an elevation of about 2,600 m, near the base of the W slope of the Valle del Bove. INGV personnel at Monte Zoccolaro (1.5 km S) spotted a third flow on 18 March, located S of the other two (figure 191). The front had reached about 2,200 m elevation, and was responsible for some phreato-magmatic explosions during 18 and 19 March. Several avalanches of incandescent material reached the base of the slope at the edge of Valle del Bove as the flow fronts collapsed during 18 March. Two Landsat 8 Operational Land Imager images on 18 and 19 March captured evidence of the lava flows, an ash plume, and Strombolian activity during this episode (figure 192). By 19 March, the advance had slowed as the flows began to spread out over the valley floor. The flows into the Valle del Bove ceased on 20 March.

Figure (see Caption) Figure 191. Thermal image of the W wall of the Valle del Bove at Etna on 18 March 2017, viewed from Monte Zoccolaro showing the activity of the three lava flows. Courtesy of INGV (Bollettino settimanale sul monitoraggio vulcanico, geochimico e sismico del vulcano Etna, 13/03/2017-19/03/2017, No. 12/2017).
Figure (see Caption) Figure 192. The eruption from Etna's NSEC/SEC cone on 18 and 19 March 2017 as captured from space. The upper image was taken on 18 March by the Operational Land Imager (OLI) on Landsat 8 as a natural-color image, and shows an ash plume and two columns of gas and steam drifting SE. The more northerly steam and gas plume and the ash plume are rising from the summit vent of the new NSEC/SEC cone, and the more southerly steam and gas plume is rising from the effusive vent at the base of the S flank of the NSEC/SEC cone. The lower image shows the thermal glow of active lava flows on the SE flank on 19 March 2017, and the Strombolian activity at the summit of the new cone (the yellow spot directly below the Mt. Etna label) surrounded by the city lights of Catania and the surrounding communities. An astronaut aboard the International Space Station took this image. Courtesy of NASA Earth Observatory.

Strombolian activity and ash emissions ceased at the summit vent of the NSEC/SEC cone between 20 and 22 March 2017 leaving a new pyroclastic cone that rose above the adjacent NSEC and SEC cones (figure 193). Once the Strombolian activity had ended, yet another lava flow emerged from the base of the cone at an elevation of about 3,010-3,030 m, and spread into several segments, one of which flowed W around Monti Barbagallo (near the former Torre del Filosofo) and then turned SW following the valley between Monti Barbagallo and Monte Frumento Supino. By 26 March the front of this flow segment had reached an elevation of 2,300 m and travelled about 2.5 km from the vent. A second segment of the flow travelled E of Monti Barbagallo, following the earlier flows that had been active along the W slope of the Valle del Bove; it slowed and broke into several additional segments, reaching 1.3 km from the vent on 26 March, and advancing through the first week of April.

Figure (see Caption) Figure 193. The new pyroclastic cone 'cono di scorie' between the SEC and NSEC rises above and between both older craters at Etna shortly after 22 March 2017. It first emerged during the eruption of 27 February to 1 March 2017, and then continued to increase in size until 22 March 2017 from extensive Strombolian activity. The dotted white line separates the South East Crater (SEC) from the New South East Crater (NSEC). "Bocca effusive" is the effusive vent that fed the lava flows beginning on 22 March, and the new lava is the dark material with fumarolic emissions in the foreground. Courtesy of INGV (Bollettino settimanale sul monitoraggio vulcanico, geochimico e sismico del vulcano Etna, 20/03/2017-26/03/2017, No. 13/2017).

Activity during April 2017. The active lava flow continued WSW towards the cones of the 2002-2003 eruption from the vent at the base of the NSEC/SEC cone until it stopped advancing sometime during the night between 8 and 9 April (figure 194). Another new flow then emerged from the same vent on 10 April and was active for just over 24 hours. This flow travelled SE to the W edge of the Valle del Bove and moved a few hundred meters along the edge before stopping during the day of 12 April.

Figure (see Caption) Figure 194. The lava flow at Etna that emerged from the base of the NSEC/SEC cone complex on 22 March 2017 flows WSW towards the cones of the 2002-2003 eruption during the first week of April 2017. Courtesy of INGV (Bollettino settimanale sul monitoraggio vulcanico, geochimico e sismico del vulcano Etna, 27/03/2017-02/04/2017, No. 14/2017).

During the evening of 13 April 2017, Strombolian activity at the summit crater of the NSEC/SEC cone accompanied the emergence of flows from three vents along the S flank at elevations of approximately 3,200 m, 3,150 m, and 3,010 m which headed S and SE. The upper flows were active for only a few hours, but the lower flow continued SE towards the Valle del Bove and had overlapped the 10-11 April flow by the next day. The active front of the flow was at an elevation of 2,400 m on the western slope of the Valle del Bove, just north of the Serra Giannicola Grande. A flyover on 14 April revealed the extent of the fracture system on the flank of the NSEC/SEC complex from which the numerous flows emerged (figure 195). The flow rate diminished during the day of 15 April, and the flow stopped sometime during the next night.

Figure (see Caption) Figure 195. Thermal images of the fracture system affecting the S flank of the NSEC/SEC cone at Etna on 14 April 2017 showing the pyroclastic cone 'Cono di scorie', a collapsed portion of the cone 'Porzione collassata', and the three eruptive vents 'Frattura eruttiva' that opened on 13 April (at 3,200 m, 3,150 m and 3,010 m elevation). Courtesy of INGV (Bollettino settimanale sul monitoraggio vulcanico, geochimico e sismico del vulcano Etna, 10/04/2017-16/04/2017, No 16/2017).

A thermal anomaly appeared at the S edge of the NSEC/SEC summit vent, which INGV began calling SEC3, on the morning of 19 April. Weak Strombolian activity from the vent was followed by the emergence of a lava flow from the S side of the crater rim that flowed down the S flank of the cone. Dense, brown ash emissions about an hour later accompanied the re-opening of three vents on the S flank from which new lava flows emerged (figure 196). Lava jets rose tens of meters above the crater rim for about an hour in the afternoon. The lava flows from the three vents formed into two branches moving down the S flank (figure 197), then turned E and spread over the W slope of the Valle del Bove; by 20 April they had reached an elevation of 1,950 m. Explosive activity ceased at SEC3 that afternoon, and the flows stopped advancing sometime during the night of 20-21 April. Observations of the summit of SEC3 on 22 April revealed a N-S trending graben formed in the S rim of the summit crater about 100 m long, 10 m wide, and several tens of meters deep.

Figure (see Caption) Figure 196. The new SEC3 cone at Etna lies in the former saddle between SEC and NSEC. The red circles indicate the positions of the three eruptive vents (V1, V2, and V3) that opened on 19 April 2017 on the S flank of the cone. Lava from the vents is flowing E toward the Valle del Bove in this N-looking photo taken by Mauro Coltelli on 20 April 2017. Courtesy of INGV (Bollettino settimanale sul monitoraggio vulcanico, geochimico e sismico del vulcano Etna, 17/04/2017-23/04/2017, No. 17/2017).
Figure (see Caption) Figure 197. Lava flows from the summit crater of the new cone (SEC3) at Etna on 20 April 2017. Photo by Salvatore Allegra/Anadolu Agency/Getty Images/CFP, published in Globaltimes, 20 April 2017.

The next eruptive episode began late in the day on 26 April 2017, with a slow-moving lava flow that emerged from the summit vent of SEC3. The flow made it part way down the S flank before another flow from the same vent covered it and reached the base of the flank. Strombolian activity began at the summit vent during the late evening while the flow continued to spread SE toward the Valle del Bove (figure 198). Strombolian activity intensified during the early hours of 27 April and a new vent opened at the summit immediately N of the first one. At around 0220, two new eruptive fractures opened on the N flank of SEC3, from which lava flowed N toward the Valle del Leone (figure 199). At daybreak, an ash plume was visible about 1.5 km above the summit drifting E. Phreato-magmatic explosions were observed in the Valle del Leone when the northern lava flow encountered snow on the ground. Strombolian activity ceased around noon and the flows on both the N and S flanks had ceased by the following morning.

Figure (see Caption) Figure 198. Lava flows down the S flank of SEC3 at Etna during the early morning of 27 April 2017, heading SE towards the Valle del Bove. Strombolian activity occurred from both of the summit vents, and an ash plume rose from the summit. Photo taken from the roof of the INGV-Osservatorio Etneo located 27 km S of the volcano. Courtesy of INGV (Attivita' dell'Etna, 20 Aprile-14 Giugno 2017).
Figure (see Caption) Figure 199. Lava flows from both the N and S flanks of SEC3 at Etna on 27 April 2017. a) the two lava flows are clearly visible from the Monte Cagliato thermal camera (EMCT) in this view looking W. b) a phreato-magmatic explosion in the Valle del Leone from the lava flow encountering snow on the N side of SEC3. Courtesy of INGV (Bollettino settimanale sul monitoraggio vulcanico, geochimico e sismico del vulcano Etna, 24/04/2017 - 30/04/2017, No. 18/2017).

Activity during May-August 2017. Intense degassing with incandescence at night continued from the vent at VOR throughout April and into May 2017. At NEC, degassing continued from the large fumarole field at the bottom of the summit crater. No further lava flows erupted during May 2017, however, there were several short, high-energy tremor episodes in the area around SEC3. During May, more than 35 episodes of transient increases in tremor amplitude were recorded by INGV seismic instruments (figure 200). During 15-18 May, there were 11 episodes of Strombolian activity from the northern SEC3 summit vent, repeated at regular intervals of about every 8-9 hours. Lava fragments were ejected outside the crater rim and rolled down the flanks (figure 201). Each episode was accompanied by a sharp increase in volcanic tremor amplitude. Eight additional episodes of weak and discontinuous Strombolian activity occurred between 25 and 28 May at intervals ranging from 3 to 14 hours, each lasting about an hour, and accompanied by increased tremor amplitude. A short sequence of dense ash emissions from BN-1 on the morning of 31 May was the only ash plume reported during May.

Figure (see Caption) Figure 200. During the month of May 2017, more than 35 episodes of transient increases in the amplitude of tremor were recorded by the seismic instruments at Etna. Some, but not all, of these episodes were accompanied by Strombolian activity at the N vent at the SEC3 summit. Courtesy of INGV (Attivita' dell'Etna, 20 Aprile-14 Giugno 2017).
Figure (see Caption) Figure 201. The summit of the new NSEC/SEC complex at Etna on 16 May 2017 as viewed from the NW. The blue arrow indicates the eruptive vent that produced discontinuous Strombolian activity during May. Photo by M. Cantarero; courtesy of INGV (Bollettino settimanale sul monitoraggio vulcanico, geochimico e sismico del vulcano Etna, 15/05/2017-21/05/2017, No. 21/2017).

Weak and discontinuous Strombolian activity resumed at NSEC on 6 June 2017, along with a sudden increase in tremor. The activity lasted until 9 June and included four episodes of roughly one hour each. Very little material fell outside the crater rim during these events. Vigorous degassing and nighttime incandescence continued at the VOR vent during June. INGV-OE personnel inspected the summit on 23 and 29 June, and 2 July 2017. High temperatures (around 600°C) were recorded at the VOR vent on 23 June. The other fumarolic areas, especially in the fracture field between NEC and VOR, were around 250°C, cooler than when last measured on 31 August 2016. Occasional weak ash emissions began on 24 June from SEC3; they lasted for a few days and quickly dissipated near the top of the cone. They ceased late in the evening of 28 June.

In a survey by drone on 4 July 2017, INGV-OE personnel noted widespread degassing along the rim and E side of the SEC3 crater. The vent that had formed during 27 February-26 April appeared to be blocked (figure 202). During the late morning of 9 July, the vent that had formed during 26-27 April emitted a small amount of red-gray ash. The next day a small amount of ash emerged from the base of BN-1. Incandescence was frequently observed at night from the VOR vent and from the NSEC. Degassing was observed regularly throughout the month at the VOR vent, the bottom of BN-1, and NEC (figure 203).

Figure (see Caption) Figure 202. Detailed view of the summit of the new SEC3 cone at Etna on 4 July 2017 taken by an INGV-OE drone. 1) eruptive vent active during 27 February-26 April; 2) eruptive vents active during 26-27 April; a) closeup of the bottom of one of the 26-27 April vents, from which a small amount of reddish-gray ash emerged on 9 July. Courtesy of INGV (Bollettino settimanale sul monitoraggio vulcanico, geochimico e sismico del vulcano Etna, 3/07/2017-9/07/2017, No. 28/2017).
Figure (see Caption) Figure 203. Panoramic photos of the summit craters of Etna on 27 July 2017. VOR, seen from the northwestern edge, continued with strong degassing from the 7 August 2016 vent on the E rim; the NEC, seen from the fracture that cuts the southern rim, had modest, diffuse degassing from the fracture zone within the crater; and BN, seen from the eastern edge, had moderate degassing occurring from the vent at the base of BN-1 throughout the month. Courtesy of INGV-OE (Bollettino settimanale sul monitoraggio vulcanico, geochimico e sismico del vulcano Etna, 24/07/2017-30/07/2017, No. 31/2017).

Occasional weak, diffuse ash emissions continued during August 2017 from the bottom of BN-1. INGV-OE scientists attributed this to collapse at the base of the crater. Limited degassing was noted at NEC, but persistent degassing continued from the 7 August 2016 vent at VOR, and from a vent on the E side of NSEC in addition to a vent at the SEC3 summit (figures 204 and 205).

Figure (see Caption) Figure 204. Areas of persistent degassing and fumarolic activity at Etna during August 2017. The black hatch lines outline the crater rims: BN = Bocca Nuova, which contains the NW vent (BN-1) and the SE vent (BN-2); VOR = Voragine; NEC = North East Crater; SEC = South East Crater; NSEC = New South East Crater. Yellow circles indicate the locations of the degassing mouths of VOR, BN, and both the "Cono della sella" (saddle cone, or SEC3) and the E vent at NSEC. The base map is from a 2014 DEM of the summit from INGV Aerogeophysics Laboratory - Section 2. Courtesy of INGV (Bollettino settimanale sul monitoraggio vulcanico, geochimico e sismico del vulcano Etna, 31/07/2017-06/08/2017, No. 32/2017).
Figure (see Caption) Figure 205. Aerial photographs of the summit crater area of Etna taken on 16 August 2017. a) view from ENE; b) view from the SE. Weak fumarolic activity is visible from the E vent of the New South East Crater (NSEC). More intense and continuous degassing emerges from the Central Crater (VOR and BN). See figure 204 for additional label explanations. Photos by Piero Berti; courtesy of Butterfly Helicopter Services and INGV-OE (Bollettino settimanale sul monitoraggio vulcanico, geochimico e sismico del vulcano Etna, 14/08/2017-20/08/2017, No. 34/2017).

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sezione di Catania - Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV-OE), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/it/); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: http://earthobservatory.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Times, http://www.globaltimes.cn/galleries/774.html.