Logo link to homepage

Report on St. Helens (United States) — May 1984

St. Helens

Scientific Event Alert Network Bulletin, vol. 9, no. 5 (May 1984)
Managing Editor: Lindsay McClelland.

St. Helens (United States) Explosions from dome; plumes & snow/water flows

Please cite this report as:

Global Volcanism Program, 1984. Report on St. Helens (United States) (McClelland, L., ed.). Scientific Event Alert Network Bulletin, 9:5. Smithsonian Institution. https://doi.org/10.5479/si.GVP.SEAN198405-321050

St. Helens

United States

46.2°N, 122.18°W; summit elev. 2549 m

All times are local (unless otherwise noted)

Occasional ejections of gas and tephra from the upper W flank of the dome produced plumes and snow/water flows in late May and early June, but were much smaller than the 14 May episode.

Seismicity that was similar in duration and character but less vigorous than that associated with the 14 May episode began on 26 May at 0814 and lasted for about 20 minutes. A plume that contained little ash rose to about 6.5 km altitude. A snow/water flow moved down a channel 20-25 m wide that had been carved by the 14 May episode, and a small amount of material reached Spirit Lake (5.5 km from the crater). The outer portion of the flow was similar to a snow avalanche and the inner zone was more fluid. Although ejecta from the 26 May explosion did not strike the crater wall, the explosion was partly directed and apparently picked up snow as it moved across a deposit left on the crater floor by a large snow and rockfall from the crater wall that occurred on 22 May at 1516. An additional source of snow may have been the 1.5 m that had drifted into the area near the breach in the N side of the crater since 14 May. Warm rock from the interior of the dome was found in the 14 May flow deposit, but all of the rock in the 26 May flow deposit was cold and appeared to be from the exterior of the dome or the 22 May rockfall debris.

The source of the 14 and 26 May episodes was . . . a notch roughly 10-20 m deep and up to 50 m wide that extended roughly 200 m down the W flank from near the dome's summit. Most of the notch cut through the August 1982 lobe, but its head was in the W side of the March 1984 lobe. During an overflight in the evening of 1 June, a prominent long straight chain of glowing spots was visible extending from the head of the notch E across the summit of the dome and the March 1984 lobe. This feature was not observed during the previous night overflight on 17 May.

A 20-minute seismic signal weaker than that of 26 May began on the 27th at 1320. A small white plume rose roughly 600-900 m above the crater rim but was not detected by radar at Portland Airport. No mudflow was reported. An 18-minute seismic signal intermediate in strength between those of 26 and 27 May started at 0351 on 6 June. At 0415, radar at Portland airport detected a plume to about 6 km altitude. Light ashfall occurred on the NE side of the volcano and ash with ballistic fragments struck about 1/3 of the way up the crater wall. Minor snowmelt occurred, and relatively clear water flowed down the 14/26 May channel, causing a small increase in the normal flow into Spirit Lake. The source of the explosion was again the W side of the dome, where a crater had developed since the explosions of 26-27 May.

Outward movement of the dome remained minor but increased slightly, from 2 mm/day in early May to 4 mm/day in early June on the N side (most noticeably at the base of the dome), and also doubled in the same period on the dome's SE side, reaching 10 mm/day in early June. SO2 emission measured 1-1.5 hours after the 14 May episode was 260 t/d. Two weeks later, rates of SO2 emission were about 55-60 t/d.

Geological Summary. Prior to 1980, Mount St. Helens formed a conical, youthful volcano sometimes known as the Fujisan of America. During the 1980 eruption the upper 400 m of the summit was removed by slope failure, leaving a 2 x 3.5 km horseshoe-shaped crater now partially filled by a lava dome. Mount St. Helens was formed during nine eruptive periods beginning about 40-50,000 years ago and has been the most active volcano in the Cascade Range during the Holocene. Prior to 2,200 years ago, tephra, lava domes, and pyroclastic flows were erupted, forming the older edifice, but few lava flows extended beyond the base of the volcano. The modern edifice consists of basaltic as well as andesitic and dacitic products from summit and flank vents. Historical eruptions in the 19th century originated from the Goat Rocks area on the north flank, and were witnessed by early settlers.

Information Contacts: R. Holcomb, C. Mullins, P. Otway, R. Waitt, USGS CVO, Vancouver, WA; R. Norris, University of Washington.