Logo link to homepage

Report on Atmospheric Effects (1980-1989) — March 1986

Scientific Event Alert Network Bulletin, vol. 11, no. 3 (March 1986)
Managing Editor: Lindsay McClelland.

Atmospheric Effects (1980-1989) New stratospheric aerosols

Please cite this report as:

Global Volcanism Program, 1986. Report on Atmospheric Effects (1980-1989) (McClelland, L., ed.). Scientific Event Alert Network Bulletin, 11:3. Smithsonian Institution.



Atmospheric Effects (1980-1989)

All times are local (unless otherwise noted)


On 18-19 January, lidar operated by the University of Bonn at the Andoya Rocket Range, Norway (69.28°N, 16.02°E) detected strong layers to 24.5 km that were not present during their previous observation on 30-31 December. Stratospheric aerosols were less conspicuous the next night and little aerosol material was evident the nights of 20-21 and 21-22 January, and the morning of 1 February. Strong layers to almost 26 km were observed again the night of 2-3 February. Lidar data from Garmisch-Partenkirchen, Germany showed no apparent new aerosols until 4 January, when a layer was detected at 26.4 km. Backscattering ratios were largest 21, 22, and 26 January for layers centered from 17.4-21 km, but enhanced values at similar altitudes continued to be observed through February including a 24-km layer on the 22nd. The source of these high-latitude aerosols was uncertain, but may have included material from both the 13 November 1985 eruption of Ruiz, Colombia and vigorous late-l985 explosive activity from Kliuchevskoi Volcano, Kamchatka. Aerosols had also been detected in January at high northern latitudes by a NASA airborne mission.

At lower latitudes, new stratospheric aerosols have been present since shortly after the Ruiz eruption. At Mauna Loa, Hawaii lidar data showed a series of small sharp peaks between 16.5 and 26 km on 5 March (figure 23). The layer centered at about 20 km altitude strengthened later in the month, dominating the profile 20 and 28 March. A layer at about 23 km, not evident on 12 March, was seen on 20 and 28 March, and a broad zone of enhanced backscattering at 28-35 km was present on 28 March. From Fukuoka, Japan (33.65°N, 130.35°E), lidar continued to detect a layer centered at 18.4 km altitude on several nights in March, as during much of December. A very sharp peak, measured at 22 km on 11 March, was weaker but still present on 24 March, and sharp peaks were found at 21.4 and 25.1 km during the next observation on 31 March.

Figure with caption Figure 23. Lidar data from various locations, showing altitudes of aerosol layers. Note that some layers have multiple peaks. Backscattering ratios from Fukuoka, Japan, are for the Nd-YAG wavelength of 1.06 µm; all others are for the ruby wavelength of 0.69 µm. Integrated values show total backscatter, expressed in steradians-1, integrated over 300-m intervals from 16-33 km at Mauna Loa and from the tropopause to 30 km at Hampton. Altitudes of maximum backscattering ratios and coefficients are shown for each layer at Mauna Loa; maxima were at the same altitudes on 12, 20, and 28 March. The 23 December-26 January data from Garmisch-Partenkirchen and the 5 March data from Hampton replace previously published preliminary values.

Robert Malmström reported that sunsets at La Palma, Canary Is. (28.75°N, 17.88°W) appeared similar to one another 9-21 January, but the sky was distinctly more pink on the 23rd (about 1945 GMT) and 24th. On 30 January there was a very strong pink glow, again at about 1945 GMT, that was reminiscent of sunsets seen after the El Chichón eruption.

Information Contacts: H. Jäger, Fraunhofer-Institut für Atmosphärische Umweltforschung, Kreuzeckbahnstrasse 19, D-8100 Garmisch-Partenkirchen, West Germany; U. von Zahn, Physikalisches Institut, Universität Bonn, Nussallee 12, 5300 Bonn 1, West Germany; Thomas DeFoor, Mauna Loa Observatory, P.O. Box 275, Hilo, HI 96720 USA; William Fuller, NASA Langley Research Center, Hampton, VA 23665 USA; Motowo Fujiwara, Physics Department, Kyushu University Fukuoka 812, Japan; Robert Malmström, Gaildorferstrasse 27, D-7000 Stuttgart 50, West Germany.