Logo link to homepage

Report on Atmospheric Effects (1980-1989) — September 1986

Scientific Event Alert Network Bulletin, vol. 11, no. 9 (September 1986)
Managing Editor: Lindsay McClelland.

Atmospheric Effects (1980-1989) New aerosol layers seen over Alaska

Please cite this report as:

Global Volcanism Program, 1986. Report on Atmospheric Effects (1980-1989) (McClelland, L., ed.). Scientific Event Alert Network Bulletin, 11:9. Smithsonian Institution.

Atmospheric Effects (1980-1989)

All times are local (unless otherwise noted)

From Fairbanks, Alaska (64.83°N, 147.83°W) Glenn Shaw observed optical phenomena that may have been produced by volcanic aerosols. On 6 October at about 1600 local time, a thin striated filamentous layer with considerable wave structure, similar to subvisible cirrus, could be seen in the SW sky. The sun, at 6° altitude, turned blood red when it passed behind the layer. Altitude of the layer could not be precisely determined, but the summits of 5000-m mountains S of Fairbanks were clearly visible beneath it. At twilight, cloudiness partially obscured illumination of the layer, but strong colors did not appear, suggesting that the material was not stratospheric. Similar aerosols were visible on 8 October. Optical effects of layers of dust from Asian deserts (usually in the spring), and probable industrial air pollution from Siberia ("Arctic haze"; usually in the winter) are distinctly different from those observed on 6 and 8 October. No eruption clouds were evident in an initial inspection of 4-6 October Japanese GMS imagery, and no large explosive eruptions have been reported at high northern latitudes.

About a month earlier (on 9 September), Fred Schaaf observed ultra-cirris clouds from Millville, New Jersey (39.4°N, 74.9°W) for the first time since December. They were brightly illuminated at a solar depression angle of 4-5°, and oriented parallel to the western horizon. At 1942, striations were still visible up to 6°, although purple illumination was almost gone, indicating an altitude of roughly 16 km for their tops.

Lidar from Hawaii, Japan, Virginia, and Germany continued to detect stratospheric aerosols from the November 1985 eruption of Ruiz, but showed no evidence of new aerosol layers. Data from Mauna Loa, Hawaii were similar in August and September. However, in mid to late Septemver, the broad stratospheric layer typically had a pair of peaks instead of the single maximum backscattering value that had characterized previous months (figure 31). At Fukuoka, Japan, peak backscattering increased slightly from early August through late September, but the height of the peak values remained similar. The altitude of the strongest layer over Garmisch-Partenkirchen, Germany dropped from about 20 km in July and August to 16-17 km on 5 and 22 September, but returned to about 20 km on 30 September; scattering ratios remained approximately stable. The 16 September measurement at Hampton, VA yielded data very similar to August values.

Figure with caption Figure 31. Lidar data from various locations, showing altitudes of aerosol layers. Note that some layers have multiple peaks. Backscattering ratios from Fukouka, Japan, are for the Nd-YAG wavelength of 1.06 µm; all others are for the ruby wavelength of 0.69 µm. Integrated values show total backscatter, expressed in steradians-1, integrated over 300-m intervals from the tropopause to 30 km at Hampton. Altitudes of maximum backscattering ratios and coefficients are shown for each layer at Mauna Loa.

Information Contacts: Glenn Shaw and Juergen Kienle, Geophysical Institute, University of Alaska, Fairbanks, AK 99775 USA; Will Gould, NOAA/NESDIS, Room 100, World Weather Bldg,, Washington, DC 20233 USA; Thomas DeFoor, Mauna Loa Observatory, P.O. Box 275, Hilo, HI 96720 USA; Motowo Fujiwara, Physics Department, Kyushu University, Fukuoka 812, Japan; H. Jäger, Fraunhofer-Institut für Atmosphärische Umweltforschung, Kreuzeckbahnstrasse 19, D-8100 Garmisch-Partenkirchen, West Germany; William Fuller, NASA Langley Research Center, Hampton, VA 23665 USA; Fred Schaaf, 706 E St., Millville, New Jersey 08332 USA.