Logo link to homepage

Report on Cleveland (United States) — July 1987

Scientific Event Alert Network Bulletin, vol. 12, no. 7 (July 1987)
Managing Editor: Lindsay McClelland.

Cleveland (United States) Incandescent fountains from summit vent

Please cite this report as:

Global Volcanism Program, 1987. Report on Cleveland (United States). In: McClelland, L. (ed.), Scientific Event Alert Network Bulletin, 12:7. Smithsonian Institution. https://doi.org/10.5479/si.GVP.SEAN198707-311240.

Volcano Profile |  Complete Bulletin


Cleveland

United States

52.825°N, 169.944°W; summit elev. 1730 m

All times are local (unless otherwise noted)


On 22 July, H. Wilson (Peninsula Airways) observed an active lava fountain at 1700 and again at close range at 2100 (during daylight). He photographed an incandescent fountain, 20-30 m high and ~2.5 m wide, emerging from the summit-crater vent that had been active in June. A lava flow from this vent reached the base of the volcano in June but Wilson did not recognize an active summit lava flow during his 22 July overflights. A mound that had formed at the head of the June lava flow appeared to have grown slightly. Some steam and very minor ash was being emitted from the vent.

Geologic Background. The beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Joined to the rest of Chuginadak Island by a low isthmus, Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Information Contacts: J. Reeder, ADGGS.