Logo link to homepage

Report on Ruapehu (New Zealand) — April 1988

Scientific Event Alert Network Bulletin, vol. 13, no. 4 (April 1988)
Managing Editor: Lindsay McClelland.

Ruapehu (New Zealand) Minor phreatic activity from crater lake; tremor

Please cite this report as:

Global Volcanism Program, 1988. Report on Ruapehu (New Zealand) (McClelland, L., ed.). Scientific Event Alert Network Bulletin, 13:4. Smithsonian Institution. https://doi.org/10.5479/si.GVP.SEAN198804-241100.

Volcano Profile |  Complete Bulletin


New Zealand

39.28°S, 175.57°E; summit elev. 2797 m

All times are local (unless otherwise noted)

Minor phreatic activity . . . continued through mid-April. During a 5-hour visit by geologists on 12 April, one small eruption was observed, generating 1-2 m of updoming and a 100-m steam plume. Lake temperature was 38.5°C, 7° higher than three weeks earlier. No significant deformation was detected. Data from one seismic station starting 30 March showed low-amplitude 2-Hz tremor through 3 April. None was detected 4-5 April, but similar tremor resumed late 6 April. Tremor stopped for 2.5 hours early 7 April, then resumed and gradually built to a large 4.5-minute volcanic earthquake that saturated the instrument. Low-amplitude tremor continued for ~8 hours. Little tremor was recorded the next two days, but low-amplitude tremor was again recorded 9-11 April.

Geologic Background. Ruapehu, one of New Zealand's most active volcanoes, is a complex stratovolcano constructed during at least four cone-building episodes dating back to about 200,000 years ago. The dominantly andesitic 110 km3 volcanic massif is elongated in a NNE-SSW direction and surrounded by another 100 km3 ring plain of volcaniclastic debris, including the Murimoto debris-avalanche deposit on the NW flank. A series of subplinian eruptions took place between about 22,600 and 10,000 years ago, but pyroclastic flows have been infrequent. A single historically active vent, Crater Lake (Te Wai a-moe), is located in the broad summit region, but at least five other vents on the summit and flank have been active during the Holocene. Frequent mild-to-moderate explosive eruptions have occurred in historical time from the Crater Lake vent, and tephra characteristics suggest that the crater lake may have formed as early as 3,000 years ago. Lahars produced by phreatic eruptions from the summit crater lake are a hazard to a ski area on the upper flanks and to lower river valleys.

Information Contacts: P. Otway, NZGS Wairakei.