Logo link to homepage

Report on Reventador (Ecuador) — November 2018


Bulletin of the Global Volcanism Network, vol. 43, no. 11 (November 2018)
Managing Editor: Edward Venzke. Edited by Janine B. Krippner.

Reventador (Ecuador) Ash plumes and explosions with ballistic ejecta continue during April-September 2018 with several lava flows and pyroclastic flows; five new vents after partial flank collapse

Please cite this report as:

Global Volcanism Program, 2018. Report on Reventador (Ecuador) (Krippner, J.B., and Venzke, E., eds.). Bulletin of the Global Volcanism Network, 43:11. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN201811-352010



0.077°S, 77.656°W; summit elev. 3562 m

All times are local (unless otherwise noted)

Reventador is one of the most active volcanoes in Ecuador. The active cone is situated in a horseshoe-shaped collapse crater that opens to the E. Typical activity consists of explosions that eject blocks onto the slopes and ash plumes, as well as occasional lava flows and pyroclastic flows. Activity has been elevated since 2002, with several breaks between eruptions during this time. Since 2002 there have been 637 volcanic ash activity reports indicating ash plumes, and 36 ash plumes have exceeded 3.1 km above the crater. This report summarizes eruptive activity for April through September 2018 and is based on Instituto Geofisico (IG-EPN) reports, Washington Volcano Ash Advisory Center (VAAC) reports, and various satellite data.

The activity at Reventador has had several broad levels of activity during this time: 'very explosive' during January to 21 April with up to 45 explosions per day; a period of reduced explosive activity from 22 April to 16 August with fewer than five explosive events per day; and 'very explosive' activity continued after 17 August. The activity produced frequent plumes, several lava flows out to 3 km from the vent, and pyroclastic flows. Incandescence was frequently observed at the crater throughout this period. A partial flank collapse occurred in April, resulting in five new vents within the new scarp on the W side. Incandescent blocks were frequently observed on the flanks, reaching down to 1 km from the crater and ash plumes were frequently observed with maximum heights of 1-3 km (table 10). The area was often concealed by cloud cover but incandescence was frequently noted when the summit was visible. Near-continuous activity was reported when the volcano was visible (figure 89).

Table 10. High levels of activity at Reventador during April-September 2018 were evident from the numbers of MODVOLC thermal alerts, days with reported ash emissions, and block avalanches. Clouds covering the volcano impacted observations of activity during most months. Compiled from IG-EPN daily reports, VAAC reports, and MODVOLC data.

Date MODVOLC alerts Cloudy days Days with ash emissions Plume heights above summit (m) Days with block avalanches Block avalanche runout distances (m)
Apr 2018 0 14 18 Less than 200 - over 1,000 10 200 - 800
May 2018 4 21 22 300 - 3,100 1 800
Jun 2018 0 21 22 300 - over 1,000 5 300 - 800
Jul 2018 0 30 20 200 - 2,500 7 100 - 1,000
Aug 2018 2 28 14 100 - over 1,000 4 600 - 1,000
Sep 2018 1 26 27 400 - over 1,000 4 300 - 600
Figure (see Caption) Figure 89. Chart summarizing monthly activity at Reventador during January 2017-September 2018 showing MODVOLC alerts (red), ash emissions (gray), and block avalanches (blue). The number of cloudy days (yellow) reduced the number of observed events during most months. Data courtesy of IG-EPN, compiled from daily reports and MODVOLC.

Near-continuous activity continued through April, with ash or gas-and-steam plumes observed on most days when weather permitted (figure 90). On 6 April a 600-m-high ash plume was accompanied by pyroclastic flows that traveled down multiple flanks (figure 91). Light ashfall was reported to the NE of Reventador on the night of 9 April after a 600-m-high ash plume and incandescent blocks were ejected. An overflight on 12 April observed short ash plumes up to 1.5 km above the crater accompanied by "cannon-shot" booms (figure 92), a pyroclastic flow, and hot avalanche deposits radiating from the crater out to 1.6 km (figures 93 and 94). Temperatures in the vent reached 355°C and the maximum detected pyroclastic flow deposit temperature was 150°C.

Figure (see Caption) Figure 90. Examples of plumes at Reventador with various concentrations of ash, and explosions ejecting incandescent blocks onto the flanks during April 2018. Webcam images courtesy of IG-EPN (April 2018 daily reports).
Figure (see Caption) Figure 91. Pyroclastic flows traveling down multiple flanks during an explosive event at Reventador on 6 April 2018. Courtesy of IG-EPN (6 April 2018 daily report).
Figure (see Caption) Figure 92. An ash plume at Reventador on 12 April 2018. Multiple Vulcanian ash plumes were observed during the monitoring overflight on this day. Courtesy of F. Naranjo, IG-EPN (10 May 2018 report).
Figure (see Caption) Figure 93. An aerial photograph of Reventador on 12 April 2018 showing fresh lighter-gray pyroclastic flow and ballistic-projectile deposits on most sides of the volcano. The deposits extended down to 800 m from the crater. Courtesy of F. Naranjo, IG-EPN (10 May 2018 report).
Figure (see Caption) Figure 94. Photographs and thermal images of hot pyroclastic flow deposits on Reventador. When these images were taken on 26 April 2018, temperatures of the deposits were up to 150°C. Beyond the pyroclastic flow deposits hot ballistic blocks are visible in the thermal images, and the 2017 lava flow is visible in the top photograph. Courtesy of S Vallejo, P Ramón, IR Image: M Almeida, IG-EPN (10 May 2018 report).

Continuous explosive activity in the second and third weeks of April caused a partial collapse of the western flank, including part of the summit (figure 95). The length and width of the resulting scarp was 400 x 200 m, and the maximum depth was 200 m. Within this collapse scarp, five vents had formed that were producing both effusive and explosive activity. A lava flow and pyroclastic flow deposits were observed below the collapse area. On 26 April an active lava flow was observed descending the W flank that was redirected towards the E once it reached the older collapse scarp wall (figure 96). The lava flow was active for around one month and had ceased by the time the flow was observed again during an overflight on 20 June. A thermal survey on 20 June detected temperatures within the vents ranging from 60-155°C. At the time of the survey, three out of five vents were active with either effusive or explosive activity.

Figure (see Caption) Figure 95. Photograph and thermal images of the western flank of the Reventador cone on 12 April 2018 (left images) and 20 June 2018 (right images). These images show the cone before and after the sector collapse that occurred mid-April as a result of continuous explosive activity. Five vents formed within this scarp, indicated in the 20 June images, which went on to produce explosive and effusive activity. Pyroclastic flow deposits and a lava flow are visible below the scarp in the 20 June images. Courtesy of M.F. Naranjo, S. Vallejo; thermal images: M. Almeida, S. Vallejo, IG-EPN (2018 Reventador annual report).
Figure (see Caption) Figure 96. Digital Elevation Model (DEM) of Reventador showing the distribution of the lava flows generated during April and May 2018. The northern flow (purple) has three dates showing the progress of the flow that correspond to the colored thermal images below. The NE-directed flow (orange) was generated in June 2017. Translated captions for the thermal images are as follows. 2018 04 26: The lava flow descended to the NW then it was directed towards the E by the crater wall. The maximum recorded temperature was 470°; thermal image by M. Almedia, IG-EPN. 2018 05 21: The lava flow front was advancing with four lobes; thermal image by S. Vallejo, IG-EPN. 2018 06 20: An aerial view of the NE flank with the flow inactive at the time of observation. The flow had bifurcated into two flow fronts; image by S. Vallejo Vargas, IG-EPN. Image courtesy of IG-EPN (2018 Reventador annual report).

Ash and gas-and-steam plumes continued through May with plumes reaching 3.1 km above the crater, accompanied by ballistic projectiles and hot avalanches that reached 800 m away from the crater on the flanks of the volcano. There were 12 reports of ashfall on 27 May in the provinces of Imbabura, Napo and Pichincha. On 27 May there were 12 reports of ashfall in the provinces of Imbabura (Antonio Ante, Otavalo), Napo (Quijos), and Pichincha (Cayambe, Pedro Moncayo, Quito), originating from a 3.1-km-high ash plume (figure 97).

Figure (see Caption) Figure 97. Volcanic ash samples from the 27 May 2018 Reventador ashfall event in Cayambe and Pomasqui. Top: Binocular microscope images of the ash samples showing finer ash in the Cayambe sample. The scales for these two images are 0.2 mm. Bottom: Scanning Electron Microscope (SEM) images of ash particles from the Pomasqui sample above. The images show crystals (cristal), vesicular scoria clasts (escoria), dense lava clasts (lava densa), glass (vidrio), and aggregates of fine ash that clumped together because of the humidity in the atmosphere (agregado). The scales for these four images are 50 microns. Courtesy of E. Gaunt, IG-EPN.

Detected thermal anomalies were less frequent from June through September (figure 98). Ash and gas-and-steam plumes continued through June, reaching over 1 km above the crater (figure 99). Light ashfall was reported in Azcásubi on 28 June. Five avalanches of incandescent blocks were recorded, extending 800 m from the crater. Through July, ash and gas-and-steam plumes reached a maximum height above the crater of 2.5 km. Four incandescent block avalanches were observed down to 1 km below the crater. Ashfall was reported on 2 July in the Cayambe sector and in the town of Juan Montalvo (figure 100). Light ashfall was also reported in Tababela and Puembo on 19 July.

Figure (see Caption) Figure 98. Log radiative power MIROVA plot of MODIS infrared data for the year ending 1 October 2018 showing a decrease in energy and frequency of anomalies detected at Reventador after June 2018. Courtesy of MIROVA.
Figure (see Caption) Figure 99. Examples of ash plumes and explosions ejecting incandescent blocks on to the flanks of Reventador during June 2018. Courtesy of IG-EPN (June 2018 daily activity reports).
Figure (see Caption) Figure 100. An ash plume at Reventador reached 3 km above the crater at 1130 local time on 2 July 2018. Ashfall from this plume was reported in the Cayambe sector and in the town of Juan Montalvo. Courtesy of ECU 911 Nueva Loja via IG-EPN (2 July 2018 report).

Similar activity continued through August and September, with ash and gas-and-steam plumes reaching over 1 km from the crater (figures 101 and 102). Four avalanches were noted in both August and September, with material reaching 1 km and 600 m, respectively. A Sentinel-2 thermal satellite image acquired on 25 August showed the new morphology of the crater after the April collapse, with two active vents at that time (figure 103).

Figure (see Caption) Figure 101. Examples of ash plumes and incandescent ballistic blocks on the flanks at Reventador during August 2018. Courtesy of IG-EPN (August 2018 daily activity reports).
Figure (see Caption) Figure 102. Examples of ash plumes with varying ash content and incandescent ballistic blocks on the flanks at Reventador during September 2018. Courtesy of IG-EPN (September 2018 daily activity reports).
Figure (see Caption) Figure 103. Sentinel-2 thermal satellite images of Reventador comparing the thermal signatures before and after the formation of the collapse scarp in April. These images show the central summit crater in April and August 2018 with two of the recently-formed vents. Courtesy of Sentinel-Hub Playground.

Geological Summary. Volcán El Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic stratovolcano has 4-km-wide avalanche scarp open to the E formed by edifice collapse. A young, unvegetated, cone rises from the amphitheater floor to a height comparable to the rim. It has been the source of numerous lava flows as well as explosive eruptions visible from Quito, about 90 km ESE. Frequent lahars in this region of heavy rainfall have left extensive deposits on the scarp slope. The largest recorded eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Information Contacts: Instituto Geofísico (IG-EPN), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec ); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).