Logo link to homepage

Report on Nevado del Huila (Colombia) — July 1994

Bulletin of the Global Volcanism Network, vol. 19, no. 7 (July 1994)
Managing Editor: Richard Wunderman.

Nevado del Huila (Colombia) Description of the Paez earthquake's mass wasting

Please cite this report as:

Global Volcanism Program, 1994. Report on Nevado del Huila (Colombia) (Wunderman, R., ed.). Bulletin of the Global Volcanism Network, 19:7. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN199407-351050.

Volcano Profile |  Complete Bulletin

Nevado del Huila


2.93°N, 76.03°W; summit elev. 5364 m

All times are local (unless otherwise noted)

The destructive earthquake-triggered mudflows of 6 June (19:5) were the subject of a preliminary report (Casadevall and others, 1994) following an investigation by a team from INGEOMINAS and the USGS during 30 June-9 July. What follows is a summary of that report, which includes first-hand observations on slope-failure and transport of loosened material.

The M 6.4 earthquake that struck on 6 June 1994 is now termed the Paez earthquake. Although the preliminary epicenter determination was W of the volcano's summit, a more recent estimate places it on Nevado del Huila's SSW flank, several kilometers N of the village of Irlanda (figure 1; BGVN 19:5). Prior to the earthquake, normal background seismicity prevailed; a series of aftershocks also took place beneath the volcano.

Earthquake damage was attributed to shaking, mass movement of loosened material, and flooding. The volcano's topography and volcanic deposits contributed to the disaster, but the primary area of landslides lay S of the main volcanic edifice and reached a maximum elevation of ~3,000 m. Aerial observers on 7 July saw no changes in either the vigor of fumaroles present near the summit or in the distribution and surface appearance of glaciers. Though dislodged ice was noted in news reports, none was found during fieldwork. The latest estimates on direct human impact from the earthquake are >150 fatalities, 500 people listed as missing, and 20,000 people displaced. Six bridges and >100 km of roads were destroyed.

All mass movement due to slope failure was previously called "mudflows" (19:5). The new report uses more precise terminology (Varnes, 1978), and provides an English-Spanish glossary that includes these and other terms: (a) rock, soil, and earth falls, (b) various kinds of slides including earth slides and debris slides, (c) rock avalanches, (d) debris avalanches, and (e) earth flows. According to this scheme, the bulk of the observed slides were earth slides derived from weathered residual soils that have developed on the bedrock. Lack of bedrock involvement and the limited amount of translations that involved bouncing, rolling, or falling resulted in few mass movements categorized as rock avalanches.

Nearly all of the 6 June earthquake-triggered landslides originated on slopes of >=30°. In this steep terrain they mainly began as shallow slips in residual soils. The soils had been saturated a few weeks prior to the earthquake by heavy rains. Reduced shear strength because of the saturated soils was a major factor in the observed slope failures and the velocity of the downslope movements. Typically these water-charged slides were ~ 1-2 m thick, and immediately liquified, transforming into either debris avalanches or earth flows moving rapidly downslope. In total, these processes stripped >50% of the vegetation from the steep hillsides. The slides themselves caused little direct damage since the steep slopes were generally uninhabited.

Adjacent to the volcano, in up-river villages such as Irlanda and Wila, damage took place as the mobile earth flows ran across relatively flat terrace surfaces. Earth flows in Irlanda were only 2 m thick, but they destroyed the houses and structures in their path. Some of the damage at Irlanda may have been caused by a high-velocity earth flow that began on the opposite side (the E side) of Rio Paez and crossed over.

The 1994 debris flows in the Rio Paez were cohesive (>3% of sediment with <0.004 mm size), which means that they remain intact and travel long distances. On the other hand, large previous debris flows preserved in lateral terraces along the river are of the noncohesive type that transformed into hyperconcentrated flows as they moved downstream. The noncohesive debris flows are thought to have been more closely related to past explosive volcanism and provide one means of analyzing past behavior at Huila. This point is noteworthy because the headwaters of the Rio Paez provide the drainage for almost the entire volcano. Because the bulk of debris flows must travel down the Rio Paez, study of the deposits along it should provide a thorough record of the volcano's seismically and magmatically generated deposits.

The report noted several analogous cases of "widespread stripping of saturated materials and vegetative cover from steep slopes" during seismic loading. One case involved the M 6.1 and 6.9 earthquakes of March 1987 in NE Ecuador. Those earthquakes triggered an estimated 75-110 million m3 of mass wasting, killed an estimated 1,000 people, destroyed a major oil pipeline, and caused US $1 billion in damages. These events are also of interest because Mount Rainier (Washington State, USA) contains a gravitationally unstable zone of altered rock high on its edifice. The zone could detach during seismic loading and move downslope, eventually reaching heavily populated areas.

Researchers continue to watch the volcano to see if the recent seismicity causes any changes to its normally passive hydrothermal system. Monitoring is done from an observatory in Popayan, 83 km SW.

References. Casadevall, T.J., Schuster, R.L., and Scott, K.M., 29 July 1994, Preliminary report on the effects of the June 6, 1994 Sismo de Paez (Paez earthquake), Southern Colombia: U.S. Geological Survey Response Team, 15 p.

Varnes, D.J., 1978, Classification of mass movements, in Schuster, R.L., and Krizek, R.J. (eds.), Landslides: Analysis and Control: U.S. National Academy of Sciences, Transportation Research Board Special Report 176, p. 11-33.

Geologic Background. Nevado del Huila, the highest peak in the Colombian Andes, is an elongated N-S-trending volcanic chain mantled by a glacier icecap. The andesitic-dacitic volcano was constructed within a 10-km-wide caldera. Volcanism at Nevado del Huila has produced six volcanic cones whose ages in general migrated from south to north. The high point of the complex is Pico Central. Two glacier-free lava domes lie at the southern end of the volcanic complex. The first historical activity was an explosive eruption in the mid-16th century. Long-term, persistent steam columns had risen from Pico Central prior to the next eruption in 2007, when explosive activity was accompanied by damaging mudflows.

Information Contacts: INGEOMINAS, Popayan; T. Casadevall, USGS.