Logo link to homepage

Report on Cotopaxi (Ecuador) — November 2003


Cotopaxi

Bulletin of the Global Volcanism Network, vol. 28, no. 11 (November 2003)
Managing Editor: Edward Venzke.

Cotopaxi (Ecuador) Low seismicity and emission signals January-May 2003; March earthquake clusters

Please cite this report as:

Global Volcanism Program, 2003. Report on Cotopaxi (Ecuador) (Venzke, E., ed.). Bulletin of the Global Volcanism Network, 28:11. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN200311-352050



Cotopaxi

Ecuador

0.677°S, 78.436°W; summit elev. 5911 m

All times are local (unless otherwise noted)


This report contains details of seismicity at Cotopaxi during January through 2 May 2003. The seismicity was generally low (averaging ~20 earthquakes per day), as it has been since 24 November 2001. Despite the low seismicity, during January seismic signals suggestive of emissions registered, although these lacked visual confirmations at the volcano. Moreover, a cluster composed of a variety of kinds of shallow earthquakes took place in mid-March. This was the first such cluster since 19 July 2002.

Activity during January-February 2003. Seismicity was generally low in January 2003 and located earthquakes commonly had focal depths down to 5 km below the summit. During the first week of January one volcano-tectonic (VT) event occurred N of the volcano. Around this time the rate of energy release was very low and no unusual observations were reported. Seismicity decreased after the first week of January, although some long-period (LP) events occurred, including one of high frequency (10 Hz) on 9 January that was followed immediately by another with a slowly decaying coda or tail (a so-called "tornillo" event, with a dominant frequency of 2.7 Hz). Two LP events were located at depths of 1 km. The rate of energy release remained very low, with some peaks on 8 January. Seismicity stayed low through the next week; some hybrid and LP events did occur. Some signals characteristic of emissions were received, although these were not visually confirmed.

During 20-26 January the number of hybrid events increased slightly, to above average. Emission signals were again received, similar to the previous week. No LP earthquakes were recorded this week, but a small group of earthquakes were located at the headwaters of the Pita river. Events such as these were also noted in November 2001. During the last week of January, seismicity remained low, on a par with activity seen since 24 November 2001. However, the low number of events registered or located was partly because arrivals were not clear at many stations.

Seismicity remained low in February, particularly for the first week. During 10-16 February it rose slightly due to larger numbers of hybrid events. No other changes in the volcano were noted. Although the third week of February brought no important variations in seismicity, beginning in late February LP events dominated the record. Still, the number of LP event stayed below the 2002 average.

Activity during March-April 2003. Although low seismicity generally prevailed throughout this interval, there was some variations in the abundance of earthquake types and a mid-March cluster of earthquakes occurred. During early March hybrid earthquakes increased to slightly higher than the 2002 average; in addition another LP-type tornillo was recorded on 6 March. On 7 March LP earthquakes were common.

On 16 March a cluster of hybrid, VT, and LP earthquakes was located 1-3 km below the volcano. Following eight months of low seismicity (averaging ~20 events per day), this was the first seismic swarm registered at Cotopaxi since 19 July 2002. However, the energy released per number of events was similar to earlier activity.

Seismicity increased after 16 March. Clusters similar to that of the 16th continued, but with lower magnitudes. By the beginning of April seismicity decreased to within the base level, although on 4, 7, and 8 April VT events were recorded to the S and SE, approximately 3 km below the summit. No significant changes were noted at the volcano, although the usual smell of sulfur was noted on a visit to the summit. During 14-20 April, the number of LP events decreased from the previous week, but VT events of M 2.5-M 3.4 continued to the N. VT events persisted through the rest of April, particularly in late April, which on 23 April included an M 3.6 event. VT events occurred on the N, NE, and S sides of the volcano up to 15 km from the summit at depths between 3 and 15 km. The VT events were interpreted as related to rock fracturing.

On the morning of 2 May a VT event registered on the S flank, located ~3 km deep. It was M 3.2, moderate for Cotopaxi. Later that day an event registered at the seismic stations at Cotopaxi, Antisana, and Guagua Pichincha. This event had a duration of 180 seconds and was made up of an LP earthquake followed by a tremor-like signal with a duration of 150 seconds that was of low frequency (1.6 Hz).

Geological Summary. The symmetrical, glacier-covered, Cotopaxi stratovolcano is Ecuador's most well-known volcano and one of its most active. The steep-sided cone is capped by nested summit craters, the largest of which is about 550 x 800 m in diameter. Deep valleys scoured by lahars radiate from the summit of the andesitic volcano, and large andesitic lava flows extend to its base. The modern edifice has been constructed since a major collapse sometime prior to about 5,000 years ago. Pyroclastic flows (often confused in historical accounts with lava flows) have accompanied many explosive eruptions, and lahars have frequently devastated adjacent valleys. Strong eruptions took place in 1744, 1768, and 1877. Pyroclastic flows descended all sides of the volcano in 1877, and lahars traveled more than 100 km into the Pacific Ocean and western Amazon basin. Smaller eruptions have been frequent since that time.

Information Contacts: Geophysical Institute (IG), Escuela Politécnica Nacional, Apartado 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/).