Logo link to homepage

Report on Galunggung (Indonesia) — October 1982


Scientific Event Alert Network Bulletin, vol. 7, no. 10 (October 1982)
Managing Editor: Lindsay McClelland.

Galunggung (Indonesia) Explosions continue

Please cite this report as:

Global Volcanism Program, 1982. Report on Galunggung (Indonesia) (McClelland, L., ed.). Scientific Event Alert Network Bulletin, 7:10. Smithsonian Institution. https://doi.org/10.5479/si.GVP.SEAN198210-263140



7.25°S, 108.058°E; summit elev. 2168 m

All times are local (unless otherwise noted)

Occasional explosions continued through early November. On 14 October, emission of thick grayish clouds was accompanied by intermittent thunderous rumbling sounds. An explosion at 1145 ejected ash that fell on the area around the volcano. At 1300, a GMS image showed a small plume moving SE. By the next image, three hours later, the plume was dispersing. After roughly two weeks of quiet, strong earthquakes were felt and several flashes of light preceded an explosion during the night of 3-4 November that ejected a thick cloud. Ash again fell near the volcano. GMS images showed a moderate to small plume from activity that probably began about 1700 on 4 November. The plume, which drifted SSE, was visible on the 1900 image but had dissipated four hours later. Inspection of satellite data revealed no other explosions, but the rainy season has begun in Indonesia and weather clouds are making eruption plumes considerably more difficult to detect by satellite.

Local authorities and villagers were building small dams near the volcano to prevent lahars from causing damage in river valleys during the rainy season.

Geological Summary. The forested slopes Galunggung in western Java are cut by a large horseshoe-shaped caldera breached to the SE that has served to channel the products of recent eruptions in that direction. The "Ten Thousand Hills of Tasikmalaya" dotting the plain below the volcano are debris-avalanche hummocks from the collapse that formed the breached caldera about 4,200 years ago. Historical eruptions have been infrequent and restricted to the central vent near the caldera headwall, but have caused much devastation. The first historical eruption in 1822 produced pyroclastic flows and lahars that killed over 4,000 people. A strong explosive eruption during 1982-1983 caused severe economic disruption to nearby populated areas.

Information Contacts: D. Haller, E. Hooper, and A. Smith, NOAA; AFP; Kantor Berita Antara, Jakarta.