Logo link to homepage

Report on El Misti (Peru) — December 1985

El Misti

Scientific Event Alert Network Bulletin, vol. 10, no. 12 (December 1985)
Managing Editor: Lindsay McClelland.

El Misti (Peru) New summit crater fumaroles

Please cite this report as:

Global Volcanism Program, 1985. Report on El Misti (Peru) (McClelland, L., ed.). Scientific Event Alert Network Bulletin, 10:12. Smithsonian Institution. https://doi.org/10.5479/si.GVP.SEAN198512-354010

El Misti


16.294°S, 71.409°W; summit elev. 5822 m

All times are local (unless otherwise noted)

Inside the SE rim of El Misti's [690 x 935]-m summit crater is a younger cinder cone, about [545] m wide at the top and having an inner crater [198] m deep, with a flat floor [158] m across. On 7 and 8 August geologists observed vigorous fumaroles, which had not been active a few months earlier, on the N side of the cinder cone floor. High-pressure degassing, as "noisy as a reaction motor," emitted white-gray vapor from 6 vents. There were red sulfur deposits inside the vents, yellow sulfur outside them. Fumaroles were still visible on the N rim of the crater.

The last strong eruption of El Misti occurred between 1438 and 1471 (the reign of the Inca Pachacutec); several weeks of vigorous tephra emission forced residents of the region to flee. Several smaller explosive eruptions have been reported since then, but some were probably only periods of increased fumarolic activity [such as reports from 1878, 1901, 1906, 1929, 1949, and 1971].

Geological Summary. El Misti is a symmetrical andesitic stratovolcano with nested summit craters that towers above the city of Arequipa, Peru. The modern symmetrical cone, constructed within a small 1.5 x 2 km wide summit caldera that formed between about 13,700 and 11,300 years ago, caps older Pleistocene volcanoes that underwent caldera collapse about 50,000 years ago. A large scoria cone has grown with the 830-m-wide outer summit crater. At least 20 tephra-fall deposits and numerous pyroclastic-flow deposits have been documented during the past 50,000 years, including a pyroclastic flow that traveled 12 km to the south about 2000 years ago. The most recent activity has been dominantly pyroclastic, and strong winds have formed a parabolic dune field of volcanic ash extending up to 20 km downwind. An eruption in the 15th century affected nearby Inca inhabitants. Some reports of historical eruptions may represent increased fumarolic activity.

Information Contacts: M. Decobecq Dominique, Univ. Paris Sud, Orsay, France.