Logo link to homepage

Report on Santa Maria (Guatemala) — 31 January-6 February 2007


Santa Maria

Smithsonian Institution / US Geological Survey
Weekly Volcanic Activity Report, 31 January-6 February 2007
Managing Editor: Sally Sennert.

Please cite this report as:

Global Volcanism Program, 2007. Report on Santa Maria (Guatemala) (Sennert, S, ed.). Weekly Volcanic Activity Report, 31 January-6 February 2007. Smithsonian Institution and US Geological Survey.

Weekly Report (31 January-6 February 2007)

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


INSIVUMEH reported that explosions from Santa María's Santiaguito lava dome complex on 31 January and 5 February produced ash plumes that rose to altitudes of 4.8 km (15,700 ft) a.s.l. On 5 February, plumes drifted SW and S causing ashfall downwind. Block-and-ash avalanches descended the SW and S flanks of Caliente Dome. Fumarolic plumes drifted SW. Based on satellite imagery, the Washington VAAC reported that ash plumes drifted SW on 31 January and W on 2 February.

Geological Summary. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing E towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Sources: Washington Volcanic Ash Advisory Center (VAAC), Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH)