Logo link to homepage

Report on Santa Maria (Guatemala) — 11 March-17 March 2009


Santa Maria

Smithsonian Institution / US Geological Survey
Weekly Volcanic Activity Report, 11 March-17 March 2009
Managing Editor: Sally Sennert.

Please cite this report as:

Global Volcanism Program, 2009. Report on Santa Maria (Guatemala) (Sennert, S, ed.). Weekly Volcanic Activity Report, 11 March-17 March 2009. Smithsonian Institution and US Geological Survey.

Weekly Report (11 March-17 March 2009)

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


On 12, 16, and 17 March, INSIVUMEH reported that explosions from Santa María's Santiaguito lava dome complex produced ash plumes that rose to altitudes of 2.7-3.5 km (8,900-11,500 ft) a.s.l. and drifted E and SW. A few avalanches originated from an active lava flow and traveled down the SW flank. White plumes rose 100 m and drifted W. Based on analysis of satellite imagery, the Washington VAAC reported that on 12 March an ash plume drifted S. On 15 March, an ash plume rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted SW and WSW.

Geological Summary. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing E towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Sources: Washington Volcanic Ash Advisory Center (VAAC), Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH)