Report on Fuego (Guatemala) — 13 November-19 November 2013
Smithsonian Institution / US Geological Survey
Weekly Volcanic Activity Report, 13 November-19 November 2013
Managing Editor: Sally Sennert.
Please cite this report as:
Global Volcanism Program, 2013. Report on Fuego (Guatemala) (Sennert, S, ed.). Weekly Volcanic Activity Report, 13 November-19 November 2013. Smithsonian Institution and US Geological Survey.
Fuego
Guatemala
14.473°N, 90.88°W; summit elev. 3763 m
All times are local (unless otherwise noted)
On 18 November INSIVUMEH reported that during the previous week explosions from Fuego produced ash plumes that rose 450-750 m and drifted W and SW. Some of the explosions generated rumbling noises, shock waves detected within 15 km, and rattled structures in Panimaché (8 km SW), Panimaché II (8 km SW), Morelia (9 km SW), Santa Sofía (12 km SW), and Sangre de Cristo (8 km WSW). A 600-m-long lava flow was active on the SE flank, and block avalanches that descended the Ceniza drainage (SSW) reached vegetated areas. Ashfall was reported in Panimaché, Morelia, and Sangre de Cristo.
Geological Summary. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.
Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH)