Logo link to homepage

Report on Reventador (Ecuador) — 13 April-19 April 2022


Reventador

Smithsonian / US Geological Survey Weekly Volcanic Activity Report,
13 April-19 April 2022
Managing Editor: Sally Kuhn Sennert

Please cite this report as:

Global Volcanism Program, 2022. Report on Reventador (Ecuador). In: Sennert, S K (ed.), Weekly Volcanic Activity Report, 13 April-19 April 2022. Smithsonian Institution and US Geological Survey.

Weekly Report (13 April-19 April 2022)

Reventador

Ecuador

0.077°S, 77.656°W; summit elev. 3562 m

All times are local (unless otherwise noted)


IG staff observed high levels of activity at Reventador during a field visit from 4 to 7 April, and noted sporadic emissions with moderate ash content. They viewed the volcano with a thermal camera and saw an active lava flow on the upper NNE flank, producing rock avalanches as it advanced. The flow was 1.7-2 km long and effused from a vent about 200 m below the summit on the NNE flank. Two inactive and cooling flows were located adjacent to the active flow. Activity continued to be high during 12-19 April, though cloudy weather conditions frequently prevented visual observations. Steam, gas, and ash plumes, often observed multiple times a day with the webcam or reported by the Washington VAAC, rose as high as 1 km above the summit crater and drifted W and NW. Crater incandescence was visible most nights and early mornings; incandescent material was visible descending the flanks during 13-14 April.

Geological Summary. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Source: Instituto Geofísico-Escuela Politécnica Nacional (IG)