Logo link to homepage

Report on Fuego (Guatemala) — 3 May-9 May 2023


Fuego

Smithsonian Institution / US Geological Survey
Weekly Volcanic Activity Report, 3 May-9 May 2023
Managing Editor: Sally Sennert.

Please cite this report as:

Global Volcanism Program, 2023. Report on Fuego (Guatemala) (Sennert, S, ed.). Weekly Volcanic Activity Report, 3 May-9 May 2023. Smithsonian Institution and US Geological Survey.

Weekly Report (3 May-9 May 2023)

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


INSIVUMEH reported that activity at Fuego during 2-9 May included intense explosions, dense ash emissions, lava effusion, pyroclastic flows, and lahars. During 1-3 May there were 5-8 weak explosions per hour generating dense ash plumes that rose more than 1 km above the summit and drifted to 10-15 km W, SW, and S. Explosions were accompanied by rumbling sounds and shockwaves that vibrated nearby houses. During the morning and night incandescent material was visible 100-200 m above the crater. Avalanches descended the Ceniza (SSW) and Las Lajas (SE) drainages, sometimes reaching vegetated areas. Ashfall was reported in areas downwind including Panimache I and II (8 km SW), Morelia (9 km SW), Santa Sofía (12 km SW), El Porvenir (8 km ENE), Finca Palo Verde, Sangre de Cristo (8 km WSW), and Yepocapa (8 km N). In the early afternoon (around 1500) on 2 May lahars descended the Las Lajas and El Jute (ESE) drainages, carrying branches, tree trunks, and blocks 30 cm to 1.5 m in diameter; about 30 minutes later similar lahars descended the Ceniza drainage. At 1618 a weak-to-moderate pyroclastic flow traveled down the Ceniza and an associated ash plume drifted W and SW. Within 30 minutes after the pyroclastic flow a lahar descended the Seca (W), carrying tree trunks and branches, and blocks up to 1.5 m in diameter.

Activity intensified at around 0200 on 4 May with a new effusive phase; by 0510 a lava flow was traveling down the Ceniza drainage, incandescent material rose above the summit, avalanches were continuous, and ash-and-gas plumes drifted SW. At around 0700 weak-to-moderate pyroclastic flows descended the Ceniza and within 1.5 hours pyroclastic flows also descended the Las Lajas. Ashfall was reported on W-flank farms and communities including Finca La Asunción, La Rochela, Panimaché I and II, Morelia, Santa Sofía, as well as others at a greater distance such as San Rafael Sumatán (19 km WSW) and San Pedro Yepocapa. By 1000 moderate-to-strong pyroclastic flows were descending the W-flank Seca and Santa Teresa ravines. Loud rumbling sounds and shock waves were reported by local residents. Ashfall continued in communities near the Ceniza and Las Lajas ravines. Ash plumes rose 2.2 km above summit and drifted more than 50 km W and SW.

Activity continued at a high level and as of a special report posted at 1235 ash plumes were still rising more than 2.2 m above the summit. Pyroclastic flows were continuing and had traveled 5-7 km down the Ceniza, Las Lajas, Seca and Santa Teresa (W) drainages; the most intense pyroclastic flow had descended the Ceniza drainage minutes earlier. The ash plumes were identified in satellite images drifting more than 100 km W and SW. Significant ashfall continued in communities downwind and minor ashfall was reported in several municipalities of the department of Suchitepéquez.

The last pyroclastic flow descended the Ceniza at 1530. Avalanches continued to be seen and heard descending multiple flanks. Ash deposits up to 2 mm thick were noted on crops, houses, and streets. Activity began to wane at about 1800, though explosions continued to produce ash plumes that rose 1.2 km above the summit. The leading edge of the ash plume was 200 km W and SW of the volcano. According to CONRED, about 1,200 residents were preemptively evacuated from their homes in San Pedro Yepocapa, Chimaltenango (21 km NNE), Panimaché I and II, El Porvenir, and Morelia. According to news articles, a section of the RN-14 highway was closed from kilometer 84 of San Juan Alotenango, Sacatepequez (9 km ENE) to kilometer 95 in Escuintla due to the pyroclastic flows. An estimated 130,000 people lived within areas exposed to ashfall.

Activity during the morning of 5 May was characterized by some weak-to-moderate explosions, ash plumes that rose 850 m above the summit, crater incandescence, and ash in the air in communities around the Ceniza, Seca, and Las Lajas drainages. Ashfall continued to impact agriculture and infrastructure in Panimaché I, Morelia, Santa Sofía, La Rochela, Los Yucales, El Porvenir, Ceylon, Finca Asunción (12 km SW), Yepocapa, Santa Lucía Cotzumalguapa (22 km SW), Siquinalá (21 km SSW), and other nearby communities. By 1230 data from seismic and infrasound monitoring networks, webcam images, satellite data, and reports from observers in the field all indicated that activity had returned to normal levels. Weak explosions at a rate of 5-6 per hour produced minor ash plumes that rose as high as 850 m and drifted 30 km W. On 6 May weak explosion generated ash plumes that rose 750 m and drifted 10 km W and SW. The lava flow was no longer incandescent. According to a news report, residents returned to their communities that same day. During 7-9 May weak explosions continued to produce ash plumes that rose as high as 750 m above the summit and drifted W and SW. Minor avalanches descended the Ceniza and crater incandescence was occasionally observed.

Geological Summary. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Sources: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH), Coordinadora Nacional para la Reducción de Desastres (CONRED), Prensa Libre, Prensa Libre