Logo link to homepage

Martin

Photo of this volcano
  • Country
  • Volcanic Region
  • Landform | Volc Type
  • Last Known Eruption
  • 58.172°N
  • 155.361°W

  • 1,863 m
    6,112 ft

  • 312140
  • Latitude
  • Longitude

  • Summit
    Elevation

  • Volcano
    Number

Most Recent Weekly Report: 11 January-17 January 2006 Citation IconCite this Report

Increased seismicity occurred at Martin during 8 January until at least 15 January. About 300 earthquakes were recorded during 2 days, in contrast to the background rate of ~25 earthquakes per month since the seismic network was installed in 1996. AVO increased the Concern Color Code to Yellow. AVO reported that swarms of earthquakes of this nature are common at volcanoes such as Martin, and do not suggest that eruptive activity is imminent. Satellite data showed nothing unusual, although steaming is frequently observed at the volcano.

Source: US Geological Survey Alaska Volcano Observatory (AVO)


Most Recent Bulletin Report: January 2012 (BGVN 37:01) Citation IconCite this Report

Seismic swarm in January 2006

Activity at Mount Martin volcano since our last report (March 1995, BGVN 20:03) was marked by typical activity (summit fumarolic activity, often generating thick steam plumes reaching up to 1 km above the summit; Neal and others, 2009), occasionally interrupted by increased seismicity. The most notable event was a seismic swarm in January 2006.

Outstanding activity. An increase in seismicity during October 1996 was attributed to an actively degassing intrusion at the neighboring Mount Mageik volcano, ~7 km ENE of Martin (Jolly and McNutt, 1999). Other increases in seismicity occurred in December 1998, May-July 1999, January 2006 (the largest swarm at Martin since it has been monitored, discussed below), and May-June 2007 (figure 1).

Figure (see Caption) Figure 1. Number of earthquakes recorded per month at Mount Martin since 1996. Five episodes of increased seismicity are shown, the most notable of which was the January 2006 seismic swarm at Martin. Note the break in scale on the y-axis, denoted by the horizontal dashed line. Modified from Dixon and Power (2009).

January 2006 seismic swarm. The January 2006 Mount Martin seismic swarm included 860 locatable earthquakes (figures 1 and 2), more than four times the number of earthquakes seen during other periods of increased seismicity or seismic swarms since the region has been monitored. No recorded earthquakes during the swarm were much greater than M 2 (figure 2d), and a significant number of earthquakes were of magnitudes below the magnitude of completeness, Mc (figure 2a-c). Mc is the minimum magnitude needed to reliably locate an earthquake, reported by Dixon and Power (2009) to be Mc = 0.2 for Mount Martin.

Figure (see Caption) Figure 2. Plots highlighting the January 2006 Mount Martin seismic swarm. (A) Number of earthquakes per day; (B) cumulative number of earthquakes; (C) cumulative seismic moment; (D) magnitude of each recorded earthquake. In plots A-C, black symbols indicate all recorded earthquakes, and gray symbols indicate locatable earthquakes (earthquakes with magnitudes equal to or above the magnitude of completeness, M ≥ Mc = 0.2 (explained in text).

Dixon and Power (2009) concluded that the pattern of the seismicity of the January 2006 swarm was characteristic of a volcanic earthquake sequence (as opposed to a tectonic earthquake sequence, which begins with a large mainshock) since the located hypocenters of the swarm occurred in the same space as those during previous background periods (figure 3). However, citing the short duration of the swarm, similar focal mechanisms compared to background periods, and the lack of long-period earthquakes, Dixon and Power (2009) stated that the data was not suggestive of a large intrusion of magma beneath Martin.

Figure (see Caption) Figure 3.Located earthquake hypocenters at Mount Martin during March 2002-December 2005 (map view shown in A, cross section in B) and during the January 2006 seismic swarm (map view shown in C, cross section in D). The graphs indicate that the hypocenters of the seismic swarm earthquakes occurred within the same volume as those that occurred during previous background period, suggesting that the earthquakes were characteristic of a volcanic earthquake sequence. Modified from Dixon and Power (2009).

References. Dixon, J.P., and Power, J.A., 2009, The January 2006 Volcanic-tectonic earthquake swarm at Mount Martin, Alaska, in Haeussler, P.J., and Galloway, J.P., eds, Studies by the U.S. Geological Survey in Alaska, 2007: U.S. Geological Survey Professional Paper 1760-D, 17 p.

Jolly, A.D., McNutt, S.R., 1999, Seismicity at the volcanoes of Katmai National Park, Alaska; July 1995-December 1997, Journal of Volcanology and Geothermal Research, vol. 93, issues 3-4, pg. 173-190 (DOI: 10.1016/S0377-0273(99)00115-8).

Neal, C.A., McGimsey, R.G., Dixon, J.P., Manevich, A., and Rybin, A., 2009, 2006 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory, U.S. Geological Survey Scientific Investigations Report 2008-5214, 102 p.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey (USGS), 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys (ADGGS), 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://www.dggs.alaska.gov/).

Weekly Reports - Index


2006: January


11 January-17 January 2006 Citation IconCite this Report

Increased seismicity occurred at Martin during 8 January until at least 15 January. About 300 earthquakes were recorded during 2 days, in contrast to the background rate of ~25 earthquakes per month since the seismic network was installed in 1996. AVO increased the Concern Color Code to Yellow. AVO reported that swarms of earthquakes of this nature are common at volcanoes such as Martin, and do not suggest that eruptive activity is imminent. Satellite data showed nothing unusual, although steaming is frequently observed at the volcano.

Source: US Geological Survey Alaska Volcano Observatory (AVO)


Bulletin Reports - Index

Reports are organized chronologically and indexed below by Month/Year (Publication Volume:Number), and include a one-line summary. Click on the index link or scroll down to read the reports.

03/1995 (BGVN 20:03) Large steam plumes, but no eruptive activity

01/2012 (BGVN 37:01) Seismic swarm in January 2006




Information is preliminary and subject to change. All times are local (unless otherwise noted)


March 1995 (BGVN 20:03) Citation IconCite this Report

Large steam plumes, but no eruptive activity

On 15 March, the U.S. National Weather Service received a report from the town of King Salmon of steam plumes rising 600-900 m over the general vicinity of Mount Martin volcano in Katmai National Park. No eruptive activity was detected during analysis of satellite imagery. The mostly ice-covered Mount Martin stratovolcano has a poorly documented record of minor historical eruptive activity. However, vigorous steam plumes from its summit crater are common.

Information Contacts: Alaska Volcano Observatory.


January 2012 (BGVN 37:01) Citation IconCite this Report

Seismic swarm in January 2006

Activity at Mount Martin volcano since our last report (March 1995, BGVN 20:03) was marked by typical activity (summit fumarolic activity, often generating thick steam plumes reaching up to 1 km above the summit; Neal and others, 2009), occasionally interrupted by increased seismicity. The most notable event was a seismic swarm in January 2006.

Outstanding activity. An increase in seismicity during October 1996 was attributed to an actively degassing intrusion at the neighboring Mount Mageik volcano, ~7 km ENE of Martin (Jolly and McNutt, 1999). Other increases in seismicity occurred in December 1998, May-July 1999, January 2006 (the largest swarm at Martin since it has been monitored, discussed below), and May-June 2007 (figure 1).

Figure (see Caption) Figure 1. Number of earthquakes recorded per month at Mount Martin since 1996. Five episodes of increased seismicity are shown, the most notable of which was the January 2006 seismic swarm at Martin. Note the break in scale on the y-axis, denoted by the horizontal dashed line. Modified from Dixon and Power (2009).

January 2006 seismic swarm. The January 2006 Mount Martin seismic swarm included 860 locatable earthquakes (figures 1 and 2), more than four times the number of earthquakes seen during other periods of increased seismicity or seismic swarms since the region has been monitored. No recorded earthquakes during the swarm were much greater than M 2 (figure 2d), and a significant number of earthquakes were of magnitudes below the magnitude of completeness, Mc (figure 2a-c). Mc is the minimum magnitude needed to reliably locate an earthquake, reported by Dixon and Power (2009) to be Mc = 0.2 for Mount Martin.

Figure (see Caption) Figure 2. Plots highlighting the January 2006 Mount Martin seismic swarm. (A) Number of earthquakes per day; (B) cumulative number of earthquakes; (C) cumulative seismic moment; (D) magnitude of each recorded earthquake. In plots A-C, black symbols indicate all recorded earthquakes, and gray symbols indicate locatable earthquakes (earthquakes with magnitudes equal to or above the magnitude of completeness, M ≥ Mc = 0.2 (explained in text).

Dixon and Power (2009) concluded that the pattern of the seismicity of the January 2006 swarm was characteristic of a volcanic earthquake sequence (as opposed to a tectonic earthquake sequence, which begins with a large mainshock) since the located hypocenters of the swarm occurred in the same space as those during previous background periods (figure 3). However, citing the short duration of the swarm, similar focal mechanisms compared to background periods, and the lack of long-period earthquakes, Dixon and Power (2009) stated that the data was not suggestive of a large intrusion of magma beneath Martin.

Figure (see Caption) Figure 3.Located earthquake hypocenters at Mount Martin during March 2002-December 2005 (map view shown in A, cross section in B) and during the January 2006 seismic swarm (map view shown in C, cross section in D). The graphs indicate that the hypocenters of the seismic swarm earthquakes occurred within the same volume as those that occurred during previous background period, suggesting that the earthquakes were characteristic of a volcanic earthquake sequence. Modified from Dixon and Power (2009).

References. Dixon, J.P., and Power, J.A., 2009, The January 2006 Volcanic-tectonic earthquake swarm at Mount Martin, Alaska, in Haeussler, P.J., and Galloway, J.P., eds, Studies by the U.S. Geological Survey in Alaska, 2007: U.S. Geological Survey Professional Paper 1760-D, 17 p.

Jolly, A.D., McNutt, S.R., 1999, Seismicity at the volcanoes of Katmai National Park, Alaska; July 1995-December 1997, Journal of Volcanology and Geothermal Research, vol. 93, issues 3-4, pg. 173-190 (DOI: 10.1016/S0377-0273(99)00115-8).

Neal, C.A., McGimsey, R.G., Dixon, J.P., Manevich, A., and Rybin, A., 2009, 2006 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory, U.S. Geological Survey Scientific Investigations Report 2008-5214, 102 p.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey (USGS), 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys (ADGGS), 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://www.dggs.alaska.gov/).

This compilation of synonyms and subsidiary features may not be comprehensive. Features are organized into four major categories: Cones, Craters, Domes, and Thermal Features. Synonyms of features appear indented below the primary name. In some cases additional feature type, elevation, or location details are provided.

Eruptive History

There is data available for 4 confirmed Holocene eruptive periods.

1953 Feb 17 Confirmed Eruption  

Episode 1 | Eruption Volcano Uncertain: SW of Trident; probably Martin
1953 Feb 17 - Unknown Evidence from Unknown

List of 1 Events for Episode 1 at Volcano Uncertain: SW of Trident; probably Martin

Start Date End Date Event Type Event Remarks
   - - - -    - - - - Explosion

1951 Jul 22 Confirmed Eruption  

Episode 1 | Eruption Volcano Uncertain: Kukak Bay ashfall; probably Martin
1951 Jul 22 - Unknown Evidence from Unknown

List of 1 Events for Episode 1 at Volcano Uncertain: Kukak Bay ashfall; probably Martin

Start Date End Date Event Type Event Remarks
   - - - -    - - - - Ash

0800 BCE ± 50 years Confirmed Eruption  

Episode 1 | Eruption
0800 BCE ± 50 years - Unknown Evidence from Isotopic: 14C (uncalibrated)

List of 2 Events for Episode 1

Start Date End Date Event Type Event Remarks
   - - - -    - - - - Explosion
   - - - -    - - - - Ash

1750 BCE (?) Confirmed Eruption  

Episode 1 | Eruption
1750 BCE (?) - Unknown Evidence from Isotopic: 14C (uncalibrated)

List of 3 Events for Episode 1

Start Date End Date Event Type Event Remarks
   - - - -    - - - - Explosion
   - - - -    - - - - Lava flow
   - - - -    - - - - Ash
Deformation History

There is data available for 1 deformation periods. Expand each entry for additional details.


Deformation during 1995 - 2010 [Uplift; Observed by InSAR]

Start Date: 1995 Stop Date: 2010 Direction: Uplift Method: InSAR
Magnitude: Unknown Spatial Extent: 20.00 km Latitude: 58.000 Longitude: -155.000

Remarks: A deformation signal near Martin, Mageik, and Trident volcanoes has been observed with InSAR. There is a gap in InSAR data coverage between 2000 and 2004, but the uplift is likely continuous.

Figure (see Caption)

Averaged deformation images of the Mount Martin?Mount Mageik area produced by stacking high- quality ERS-1 and ERS-2 interferograms for 1995?2000 from two ascending tracks, 021 and 250. Ellipse outlines an area of subsidence near Novarupta dome. A full cycle of colors (i.e., one interferometric fringe) represents 28 mm/year of LOS surface displacement. Areas of loss of InSAR coherence are not colored. See Fig. 6.197 for meanings of labels

From: Lu and Dzurisin 2014.


Reference List: Lu and Dzurisin 2014.

Full References:

Lu Z, Dzurisin D, 2014. InSAR imaging of Aleutian volcanoes: monitoring a volcanic arc from space. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-00348-6

Emission History

There is no Emissions History data available for Martin.

Photo Gallery

A steam plume is a nearly constant feature at the summit of Mount Martin, seen here from the NE in the Valley of Ten Thousand Smokes. Martin volcano is extensively covered by glaciers, but is only moderately dissected. Its youngest and largest lava flow traveled from the summit 12 km down the upper Angle Creek valley, behind the ridge at the right. The slopes at the left are the northern flank of Mount Mageik.

Copyrighted photo by Katia and Maurice Krafft, 1978.
Mount Martin is a large glacier-mantled stratovolcano that anchors the SW end of NE-SW-trending chain of volcanoes cutting across Katmai National Park. A large postglacial lava flow extends 12 km to the NW. A 500-m-wide summit crater is largely ice-free because of strong fumarolic activity. This 1978 view looks down the long axis of elongated Mount Martin from the NE.

Copyrighted photo by Katia and Maurice Krafft, 1978.
An almost-constant steam plume rises from the 500-m-wide summit crater of Mount Martin. High heat flux at the summit keeps the crater largely free of snow and ice despite the extensive glacial cover on the rest of the volcano. A small lake sometimes forms on the crater floor.

Copyrighted photo by Katia and Maurice Krafft, 1978.
Mount Mageik is in the center of this aerial view from the east, south of Katmai Pass. Martin forms the skyline left of Mageik, and lava flows on the flanks of Trident volcano are visible to the middle right. The three volcanoes are part of a NE-SW chain across Katmai National Park. Much of the surface of Mageik is composed of Holocene lava flows.

Photo by Christina Neal, 1990 (U.S. Geological Survey, Alaska Volcano Observatory).
Mount Mageik (left) and Mount Martin (distant right) tower above the flat floor of the Valley of Ten Thousand Smokes. The deposits in the valley are pyroclastic flows that formed during the 1912 eruption of Novarupta, the largest eruption of the 20th century. Glacier-covered Mageik has a broad summit containing multiple cones and vents.

Photo by Game McGimsey (U.S. Geological Survey, Alaska Volcano Observatory).
Mount Martin is located at the southern end of the group of volcanoes in the Katmai area. Gases rise from the summit crater and sulfur has accumulated on the snow and ice in this 1990 view. The crater, which opens to the east, is the site of intense fumarolic activity and sometimes contains a small crater lake.

Photo by Christina Neal, 1990 (U.S. Geological Survey, Alaska Volcano Observatory).
GVP Map Holdings

Maps are not currently available due to technical issues.

The maps shown below have been scanned from the GVP map archives and include the volcano on this page. Clicking on the small images will load the full 300 dpi map. Very small-scale maps (such as world maps) are not included.

Smithsonian Sample Collections Database

There are no samples for Martin in the Smithsonian's NMNH Department of Mineral Sciences Rock and Ore collection.

External Sites