Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Agung (Indonesia) Three eruptive events reported in April, May, and December 2022

Tengger Caldera (Indonesia) Minor ash emission in December 2023; persistent weak thermal anomaly in the Bromo crater

Saunders (United Kingdom) Persistent thermal anomalies from the summit crater lava lake during February 2023-January 2024

Shishaldin (United States) New eruption with significant Strombolian explosions, ash plumes, and ashfall

Ioto (Japan) New eruption with discolored water, ejecta, and floating pumice during October-December 2023

Purace (Colombia) Gas-and-ash emission on 16 November 2023

Aira (Japan) Explosions, ash plumes, ash fall, and crater incandescence during July-October 2023

Etna (Italy) Strombolian explosions, lava fountains, and lava flows during July-August 2023

Suwanosejima (Japan) Eruption plumes, crater incandescence, and occasional explosions during July-October 2023

Nishinoshima (Japan) Gray emissions during October 2023

Kilauea (United States) Strong lava fountains, lava flows, and spatter at Halema’uma’u during January-September 2023

Tinakula (Solomon Islands) Continued lava flows and thermal activity during June through November 2023



Agung (Indonesia) — January 2024 Citation iconCite this Report

Agung

Indonesia

8.343°S, 115.508°E; summit elev. 2997 m

All times are local (unless otherwise noted)


Three eruptive events reported in April, May, and December 2022

Mount Agung, located on the E end of the island of Bali, Indonesia, rises above the SE rim of the Batur caldera. The summit area extends 1.5 km E-W, with the highest point on the W and a steep-walled 800-m-wide crater on the E. Recorded eruptions date back to the early 19th century. A large and deadly explosive and effusive eruption occurred during 1963-64, which was characterized by voluminous ashfall, pyroclastic flows, and lahars that caused extensive damage and many fatalities. More recent activity was documented during November 2017-June 2019 that consisted of multiple explosions, significant ash plumes, lava flows at the summit crater, and incandescent ejecta. This report covers activity reported during April-May 2022 and December 2022 based on data from the Darwin Volcanic Ash Advisory Center (VAAC).

Activity during 2022 was relatively low and mainly consisted of a few ash plumes during April-May and December. An ash plume on 3 April rising to 3.7 km altitude (700 m above the summit) and drifting N was reported in a Darwin VAAC notice based on a ground report, with ash seen in HIMAWARI-8 visible imagery. Another ash plume was reported at 1120 on 27 May that rose to 5.5 km altitude (2.5 m above the summit); the plume was not visible in satellite or webcam images due to weather clouds. An eruption was reported based on seismic data at 0840 on 13 December, with an estimated plume altitude of 3.7 km; however, no ash was seen using satellite imagery in clear conditions before weather clouds obscured the summit.

Geologic Background. Symmetrical Agung stratovolcano, Bali's highest and most sacred mountain, towers over the eastern end of the island. The volcano, whose name means "Paramount," rises above the SE rim of the Batur caldera, and the northern and southern flanks extend to the coast. The summit area extends 1.5 km E-W, with the high point on the W and a steep-walled 800-m-wide crater on the E. The Pawon cone is located low on the SE flank. Only a few eruptions dating back to the early 19th century have been recorded in historical time. The 1963-64 eruption, one of the largest in the 20th century, produced voluminous ashfall along with devastating pyroclastic flows and lahars that caused extensive damage and many fatalities.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/).


Tengger Caldera (Indonesia) — February 2024 Citation iconCite this Report

Tengger Caldera

Indonesia

7.942°S, 112.95°E; summit elev. 2329 m

All times are local (unless otherwise noted)


Minor ash emission in December 2023; persistent weak thermal anomaly in the Bromo crater

Tengger Caldera, located at the N end of a volcanic massif in Indonesia’s East Java, consists of five overlapping stratovolcanoes. The youngest and only active cone in the 16-km-wide caldera is Bromo, which typically produces gas-and-steam plumes, occasional ash plumes and explosions, and weak thermal signals (BGVN 44:05, 47:01). This report covers activity during January 2022-December 2023, consisting of mostly white gas-and-steam emissions and persistent weak thermal anomalies. Information was provided by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) and satellite imagery. The Alert Level remained at 2 (on a scale of 1-4), and visitors were warned to stay at least 1 km from the crater.

Activity was generally low during the reporting period, similar to that in 2021. According to almost daily images from MAGMA Indonesia (a platform developed by PVMBG), white emissions and plumes rose from 50 to 900 m above the main crater during this period (figure 24). During several days in March and June 2022, white plumes reached heights of 1-1.2 km above the crater.

Figure (see Caption) Figure 24. Webcam image showing a gas-and-steam plume from the Bromo cone in the Tengger Caldera on 2 April 2023. Courtesy of MAGMA Indonesia.

After an increase in activity at 2114 on 3 February 2023, a PVMBG team that was sent to observe white emissions rising as high as 300 m during 9-12 February and heard rumbling noises. A sulfur dioxide odor was also strong near the crater and measurements indicated that levels were above the healthy (non-hazardous) threshold of 5 parts per million; differential optical absorption spectroscopy (DOAS) measurements indicated an average flux of 190 metric tons per day on 11 February. Incandescence originating from a large fumarole in the NNW part of the crater was visible at night. The team observed that vegetation on the E caldera wall was yellow and withered. The seismic network recorded continuous tremor and deep and shallow volcanic earthquakes.

According to a PVMBG press release, activity increased on 13 December 2023 with white, gray, and brown emissions rising as high as 900 m above Bromo’s crater rim and drifting in multiple directions (figure 25). The report noted that tremor was continuous and was accompanied in December by three volcanic earthquakes. Deformation data indicated inflation in December. There was no observable difference in the persistent thermal anomaly in the crater between 11 and 16 December 2023.

Figure (see Caption) Figure 25. Webcam image showing a dark plume that rose 900 m above the summit of the Bromo cone in the Tengger Caldera on 13 December 2023. Courtesy of MAGMA Indonesia.

All clear views of the Bromo crater throughout this time, using Sentinel-2 infrared satellite images, showed a weak persistent thermal anomaly; none of the anomalies were strong enough to cause MODVOLC Thermal Alerts. A fire in the SE part of the caldera in early September 2023 resulted in a brief period of strong thermal anomalies.

Geologic Background. The 16-km-wide Tengger caldera is located at the northern end of a volcanic massif extending from Semeru volcano. The massive volcanic complex dates back to about 820,000 years ago and consists of five overlapping stratovolcanoes, each truncated by a caldera. Lava domes, pyroclastic cones, and a maar occupy the flanks of the massif. The Ngadisari caldera at the NE end of the complex formed about 150,000 years ago and is now drained through the Sapikerep valley. The most recent of the calderas is the 9 x 10 km wide Sandsea caldera at the SW end of the complex, which formed incrementally during the late Pleistocene and early Holocene. An overlapping cluster of post-caldera cones was constructed on the floor of the Sandsea caldera within the past several thousand years. The youngest of these is Bromo, one of Java's most active and most frequently visited volcanoes.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Saunders (United Kingdom) — February 2024 Citation iconCite this Report

Saunders

United Kingdom

57.8°S, 26.483°W; summit elev. 843 m

All times are local (unless otherwise noted)


Persistent thermal anomalies from the summit crater lava lake during February 2023-January 2024

Saunders is one of eleven islands that comprise the South Sandwich Islands in the South Atlantic. The active Mount Michael volcano has been in almost continuous eruption since November 2014 (BGVN 48:02). Recent activity has resulted in intermittent thermal anomalies and gas-and-steam emissions (BGVN 47:03, 48:02). Visits are infrequent due to its remote location, and cloud cover often prevents satellite observations. Satellite thermal imagery and visual observation of incandescence during a research expedition in 2019 (BGVN 28:02 and 44:08) and a finding confirmed by a National Geographic Society research team that summited Michael in November 2022 reported the presence of a lava lake.

Although nearly constant cloud cover during February 2023 through January 2024 greatly limited satellite observations, thermal anomalies from the lava lake in the summit crater were detected on clear days, especially around 20-23 August 2023. Anomalies similar to previous years (eg. BGVN 48:02) were seen in both MIROVA (Middle InfraRed Observation of Volcanic Activity) data from MODIS instruments and in Sentinel 2 infrared imagery. The only notable sulfur dioxide plume detected near Saunders was on 25 September 2023, with the TROPOMI instrument aboard the Sentinel-5P satellite.

Geologic Background. Saunders Island consists of a large central volcanic edifice intersected by two seamount chains, as shown by bathymetric mapping (Leat et al., 2013). The young Mount Michael stratovolcano dominates the glacier-covered island, while two submarine plateaus, Harpers Bank and Saunders Bank, extend north. The symmetrical Michael has a 500-m-wide summit crater and a remnant of a somma rim to the SE. Tephra layers visible in ice cliffs surrounding the island are evidence of recent eruptions. Ash clouds were reported from the summit crater in 1819, and an effusive eruption was inferred to have occurred from a N-flank fissure around the end of the 19th century and beginning of the 20th century. A low ice-free lava platform, Blackstone Plain, is located on the north coast, surrounding a group of former sea stacks. A cluster of cones on the SE flank, the Ashen Hills, appear to have been modified since 1820 (LeMasurier and Thomson, 1990). Analysis of satellite imagery available since 1989 (Gray et al., 2019; MODVOLC) suggests frequent eruptive activity (when weather conditions allow), volcanic clouds, steam plumes, and thermal anomalies indicative of a persistent, or at least frequently active, lava lake in the summit crater. Due to this observational bias, there has been a presumption when defining eruptive periods that activity has been ongoing unless there is no evidence for at least 10 months.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard MD 20771, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser (URL: https://dataspace.copernicus.eu/browser).


Shishaldin (United States) — December 2023 Citation iconCite this Report

Shishaldin

United States

54.756°N, 163.97°W; summit elev. 2857 m

All times are local (unless otherwise noted)


New eruption with significant Strombolian explosions, ash plumes, and ashfall

Shishaldin is located on the eastern half of Unimak Island, one of the Aleutian Islands. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century. The previous eruption ended in May 2020 and was characterized by intermittent thermal activity, increased seismicity and surface temperatures, ash plumes, and ash deposits (BGVN 45:06). This report covers a new eruption during July through November 2023, which consisted of significant explosions, ash plumes, ashfall, and lava fountaining. Information comes from daily, weekly, and special reports from the Alaska Volcano Observatory (AVO) and various satellite data. AVO monitors the volcano using local seismic and infrasound sensors, satellite data, web cameras, and remote infrasound and lightning networks.

AVO reported that intermittent tremor and low-frequency earthquakes had gradually become more regular and consistent during 10-13 July. Strongly elevated surface temperatures at the summit were identified in satellite images during 10-13 July. On 11 July AVO raised the Aviation Color Code (ACC) to Yellow (the second color on a four-color scale) and Volcano Alert Level (VAL) to Advisory (the second level on a four-level scale) at 1439. Later in the day on 11 July summit crater incandescence was observed in webcam images. Observations of the summit suggested that lava was likely present at the crater, which prompted AVO to raise the ACC to Orange (the second highest color on a four-color scale) and the VAL to Watch (the second highest level on a four-level scale). The US Coast Guard conducted an overflight on 12 July and confirmed that lava was erupting from the summit. That same day, sulfur dioxide emissions were detected in satellite images.

A significant explosion began at 0109 on 14 July that produced an ash plume that rose to 9-12 km altitude and drifted S over the Pacific Ocean (figure 43). Webcam images and photos taken around 0700 from a ship SW off Unimak Island showed small lahar deposits, which were the result of the interaction of hot pyroclastic material and snow and ice on the flanks. There was also ashfall on the SW and N flanks. A smaller explosion at 0710 generated an ash plume that rose to 4.5 km altitude. Webcam images and pilot reports showed continued low-level ash emissions during the morning, rising to less than 4.6 km altitude; those emissions included a small ash plume near the summit around 1030 resulting from a small explosion.

Figure (see Caption) Figure 43. Photo of a strong ash plume that rose to 9-12 km altitude on the morning of 14 July 2023. Lahar deposits were visible on the SW flank (white arrows). Photo has been color corrected. Courtesy of Christopher Waythomas, AVO.

Seismic tremor amplitude began increasing at around 1700 on 15 July; strongly elevated surface temperatures were also reported. An ash plume rose to 4.6 km altitude and drifted SSE at 2100, based on a satellite image. A continuous ash plume during 2150 through 2330 rose to 5 km altitude and extended 125 km S. At 2357 AVO raised the ACC to Red (the highest color on a four-color scale) and the VAL to Warning (the highest level on a four-level scale), noting that seismicity remained elevated for more than six hours and explosion signals were frequently detected by regional infrasound (pressure sensor) networks. Explosions generated an ash plume that rose to 4.9 km altitude and drifted as far as 500 km SE. Activity throughout the night declined and by 0735 the ACC was lowered to Orange and the VAL to Watch. High-resolution satellite images taken on 16 July showed pyroclastic deposits extending as far as 3 km from the vent; these deposits generated lahars that extended further down the drainages on the flanks. Ash deposits were mainly observed on the SSE flank and extended to the shore of Unimak Island. During 16-17 July lava continued to erupt at the summit, which caused strongly elevated surface temperatures that were visible in satellite imagery.

Lava effusion increased at 0100 on 18 July, as noted in elevated surface temperatures identified in satellite data, increasing seismic tremor, and activity detected on regional infrasound arrays. A significant ash plume at 0700 rose to 7 km altitude and continued until 0830, eventually reaching 9.1 km altitude and drifting SSE (figure 44). As a result, the ACC was raised to Red and the VAL to Warning. By 0930 the main plume detached, but residual low-level ash emissions continued for several hours, remaining below 3 km altitude and drifting S. The eruption gradually declined and by 1208 the ACC was lowered to Orange and the VAL was lowered to Watch. High-resolution satellite images showed ash deposits on the SW flank and pyroclastic deposits on the N, E, and S flanks, extending as far as 3 km from the vent; lahars triggered by the eruption extended farther down the flanks (figure 45). Lava continued to erupt from the summit crater on 19 July.

Figure (see Caption) Figure 44. Photo of an ash-rich plume rising above Shishaldin to 9.1 km altitude on 18 July 2023 that drifted SE. View is from the N of the volcano and Isanotski volcano is visible on the left-hand side of the image. Photo has been color corrected. Courtesy of Chris Barnes, AVO.
Figure (see Caption) Figure 45. Near-infrared false-color satellite image of Shishaldin taken on 18 July 2023 showing ash deposits on the N, E, and S flanks extending as far as 3 km from the vent due to recent eruption events. Courtesy of Matthew Loewen, AVO.

Elevated surface temperatures were detected in satellite images during 19-25 July, despite occasional weather cloud cover, which was consistent with increased lava effusion. During 22-23 July satellite observations acquired after the eruption from 18 July showed pyroclastic flow and lahar deposits extending as far as 3 km down the N, NW, and NE flanks and as far as 1.5 km down the S and SE flanks. Ash deposits covered the SW and NE flanks. No lava flows were observed outside the crater. On 22 July a sulfur dioxide plume was detected in satellite data midday that had an estimated mass of 10 kt. In a special notice issued at 1653 on 22 July AVO noted that eruptive activity had intensified over the previous six hours, which was characterized by an hours-long steady increase in seismic tremor, intermittent infrasound signals consistent with small explosions, and an increase in surface temperatures that were visible in satellite data. Pilots first reported low-level ash plumes at around 1900. At 2320 an ash plume had risen to 9 km altitude based on additional pilot reports and satellite images. The ACC was increased to Red and the VAL to Warning at 2343. Satellite images indicated growth of a significantly higher ash plume that rose to 11 km altitude continued until 0030 and drifted NE. During the early morning hours of 23 July ash plumes had declined to 4.6 k altitude. Seismic tremor peaked at 0030 on 23 July and began to rapidly decline at 0109; active ash emissions were no longer visible in satellite data by 0130. The ACC was lowered to Orange and the VAL to Watch at 0418; bursts of increased seismicity were recorded throughout the morning, but seismicity generally remained at low levels. Elevated surface temperatures were visible in satellite data until about 0600. On 24 July pilots reported seeing vigorous gas-and-steam plumes rising to about 3 km altitude; the plumes may have contained minor amounts of ash.

During 24-25 July low level seismicity and volcanic tremor were detected at low levels following the previous explosion on 23 July. Strongly elevated surface temperatures were observed at the summit crater in satellite data. Around 2200 on 25 July seismicity began to increase, followed by infrasound signals of explosions after 0200 on 26 July. An ash plume rose to 3 km altitude at 0500 and drifted ENE, along with an associated sulfur dioxide plume that drifted NE and had an estimated mass of 22 kt. Diffuse ash emissions were visible in satellite data and rose to 6.1-7.6 km altitude and extended 125 km from the volcano starting around 1130. These ash events were preceded by about seven hours of seismic tremor, infrasound detections of explosions, and five hours of increased surface temperatures visible in satellite data. Activity began to decline around 1327, which included low-frequency earthquakes and decreased volcanic tremor, and infrasound data no longer detected significant explosions. Surface temperatures remained elevated through the end of the month.

Seismicity, volcanic tremor, and ash emissions remained at low levels during early August. Satellite images on 1 August showed that some slumping had occurred on the E crater wall due to the recent explosive activity. Elevated surface temperatures continued, which was consistent with cooling lava. On 2 August small explosive events were detected, consistent with low-level Strombolian activity. Some episodes of volcanic tremor were reported, which reflected low-level ash emissions. Those ash emissions rose to less than 3 km altitude and drifted as far as 92.6 km N. Pilots that were located N of the volcano observed an ash plume that rose to 2.7 km altitude. Seismicity began to increase in intensity around 0900 on 3 August. Seismicity continued to increase throughout the day and through the night with strongly elevated surface temperatures, which suggested that lava was active at the surface.

An ash cloud that rose to 7.6-7.9 km altitude and drifted 60-75 km NE was visible in a satellite image at 0520 on 4 August. Pilots saw and reported the plume at 0836 (figure 46). By 0900 the plume had risen to 9.1 km altitude and extended over 100 km NE. AVO raised the ACC to Red and the VAL to Warning as a result. Seismic tremor levels peaked at 1400 and then sharply declined at 1500 to slightly elevated levels; the plume was sustained during the period of high tremor and drifted N and NE. The ACC was lowered to Orange and the VAL to Watch at 2055. During 5-14 August seismicity remained low and surface temperatures were elevated based on satellite data due to cooling lava. On 9 August a small lava flow was observed that extended from the crater rim to the upper NE flank. It had advanced to 55 m in length and appeared in satellite imagery on 11 August. Occasional gas-and-steam plumes were noted in webcam images. At 1827 AVO noted that seismic tremor had steadily increased during the afternoon and erupting lava was visible at the summit in satellite images.

Figure (see Caption) Figure 46. Photo showing an ash plume rising above Shishaldin during the morning of 4 August 2023 taken by a passing aircraft. The view is from the N showing a higher gas-rich plume and a lower gray ash-rich plume and dark tephra deposits on the volcano’s flank. Photo has been color corrected. Courtesy of Chris Barnes, AVO.

Strong explosion signals were detected at 0200 on 15 August. An ash cloud that was visible in satellite data extended 100 km NE and may have risen as high as 11 km altitude around 0240. By 0335 satellite images showed the ash cloud rising to 7.6 km altitude and drifting NE. Significant seismicity and explosions were detected by the local AVO seismic and infrasound networks, and volcanic lightning was detected by the World Wide Lightning Location Network (WWLLN). A sulfur dioxide plume associated with the eruption drifted over the S Bering Sea and parts of Alaska and western Canada. Seismicity was significantly elevated during the eruption but had declined by 1322. A pilot reported that ash emissions continued, rising as high as 4.9 km altitude. Elevated surface temperatures detected in satellite data were caused by hot, eruptive material (pyroclastic debris and lava) that accumulated around the summit. Eruptive activity declined by 16 August and the associated sulfur dioxide plume had mostly dissipated; remnants continued to be identified in satellite images at least through 18 August. Surface temperatures remained elevated based on satellite images, indicating hot material on the upper parts of the volcano. Small explosions were detected in infrasound data on the morning of 19 August and were consistent with pilot reports of small, short-lived ash plumes that rose to about 4.3 km altitude. Low-level explosive activity was reported during 20-24 August, according to seismic and infrasound data, and weather clouds sometimes prevented views. Elevated surface temperatures were observed in satellite images, which indicated continued hot material on the upper parts of the volcano.

Seismic tremor began to increase at around 0300 on 25 August and was followed by elevated surface temperatures identified in satellite images, consistent with erupting lava. Small explosions were recorded in infrasound data. The ACC was raised to Red and the VAL to Warning at 1204 after a pilot reported an ash plume that rose to 9.1 km altitude. Seismicity peaked at 1630 and began to rapidly decline at around 1730. Ash plumes rose as high as 10 km altitude and drifted as far as 400 km NE. By 2020 the ash plumes had declined to 6.4 km altitude and continued to drift NE. Ash emissions were visible in satellite data until 0000 on 26 August and seismicity was at low levels. AVO lowered the ACC to Orange and the VAL to Watch at 0030. Minor explosive activity within the summit crater was detected during 26-28 August and strongly elevated surface temperatures were still visible in satellite imagery through the rest of the month. An AVO field crew working on Unimak Island observed a mass flow that descended the upper flanks beginning around 1720 on 27 August. The flow produced a short-lived ash cloud that rose to 4.5 km altitude and rapidly dissipated. The mass flow was likely caused by the collapse of spatter that accumulated on the summit crater rim.

Similar variable explosive activity was reported in September, although weather observations sometimes prevented observations. A moderate resolution satellite image from the afternoon of 1 September showed gas-and-steam emissions filling the summit crater and obscuring views of the vent. In addition, hot deposits from the previous 25-26 August explosive event were visible on the NE flank near the summit, based on a 1 September satellite image. On 2 and 4 September seismic and infrasound data showed signals of small, repetitive explosions. Variable gas-and-steam emissions from the summit were visible but there was no evidence of ash. Possible summit crater incandescence was visible in nighttime webcam images during 3-4 September.

Seismicity began to gradually increase at around 0300 on 5 September and activity escalated at around 0830. A pilot reported an ash plume that rose to 7.6 km altitude at 0842 and continued to rise as high as possibly 9.7 km altitude and drifted SSE based on satellite images (figure 47). The ACC was raised to Red and the VAL to Warning at 0900. In addition to strong tremor and sustained explosions, the eruption produced volcanic lightning that was detected by the WWLLN. Around 1100 seismicity decreased and satellite data confirmed that the altitude of the ash emissions had declined to 7.6 km altitude. By 1200 the lower-altitude portion of the ash plume had drifted 125 km E. Significant ash emissions ended by 1330 based on webcam images. The ACC was lowered to Orange and the VAL to Watch at 1440. Satellite images showed extensive pyroclastic debris flows on most of the flanks that extended 1.2-3.3 km from the crater rim.

Figure (see Caption) Figure 47. Webcam image taken from the S of Shishaldin showing a vertical ash plume on 5 September 2023. Courtesy of AVO.

During 6-13 September elevated surface temperatures continued to be observed in satellite data, seismicity remained elevated with weak but steady tremor, and small, low-frequency earthquakes and small explosions were reported, except on 12 September. On 6 September a low-level ash plume rose to 1.5-1.8 km altitude and drifted SSE. Occasional small and diffuse gas-and-steam emissions at the summit were visible in webcam images. Around 1800 on 13 September seismic tremor amplitudes began to increase, and small explosions were detected in seismic and infrasound data. Incandescent lava at the summit was seen in a webcam image taken at 0134 on 14 September during a period of elevated tremor. No ash emissions were reported during the period of elevated seismicity. Lava fountaining began around 0200, based on webcam images. Satellite-based radar observations showed that the lava fountaining activity led to the growth of a cone in the summit crater, which refilled most of the crater. By 0730 seismicity significantly declined and remained at low levels.

Seismic tremor began to increase around 0900 on 15 September and rapidly intensified. An explosive eruption began at around 1710, which prompted AVO to raise the ACC to Red and the VAL to Warning. Within about 30 minutes ash plumes drifted E below a weather cloud at 8.2 km altitude. The National Weather Service estimated that an ash-rich plume rose as high as 12.8 km altitude and produced volcanic lightning. The upper part of the ash plume detached from the vent around 1830 and drifted E, and was observed over the Gulf of Alaska. Around the same time, seismicity dramatically decreased. Trace ashfall was reported in the community of False Pass (38 km ENE) between 1800-2030 and also in King Cove and nearby marine waters. Activity declined at around 1830 although seismicity remained elevated, ash emissions, and ashfall continued until 2100. Lightning was again detected beginning around 1930, which suggested that ash emissions continued. Ongoing explosions were detected in infrasound data, at a lower level than during the most energetic phase of this event. Lightning was last detected at 2048. By 2124 the intensity of the eruption had decreased, and ash emissions were likely rising to less than 6.7 km altitude. Seismicity returned to pre-eruption levels. On 16 September the ACC was lowered to Orange and the VAL to Watch at 1244; the sulfur dioxide plume that was emitted from the previous eruption event was still visible over the northern Pacific Ocean. Elevated surface temperatures, gas-and-steam emissions from the vent, and new, small lahars were reported on the upper flanks based on satellite and webcam images. Minor deposits were reported on the flanks which were likely the result of collapse of previously accumulated lava near the summit crater.

Elevated seismicity with tremor, small earthquakes, and elevated surface temperatures were detected during 17-23 September. Minor gas-and-steam emissions were visible in webcam images. On 20 September small volcanic debris flows were reported on the upper flanks. On 21 September a small ash deposit was observed on the upper flanks extending to the NE based on webcam images. Seismic tremor increased significantly during 22-23 September. Regional infrasound sensors suggested that low-level eruptive activity was occurring within the summit crater by around 1800 on 23 September. Even though seismicity was at high levels, strongly elevated surface temperatures indicating lava at the surface were absent and no ash emissions were detected; weather clouds at 0.6-4.6 km altitude obscured views. At 0025 on 24 September AVO noted that seismicity continued at high levels and nearly continuous small infrasound signals began, likely from low-level eruptive activity. Strongly elevated surface temperatures were identified in satellite images by 0900 and persisted throughout the day; the higher temperatures along with infrasound and seismic data were consistent with lava erupting at the summit. Around 1700 similarly elevated surface temperatures were detected from the summit in satellite data, which suggested that more vigorous lava fountaining had started. Starting around 1800 low-level ash emissions rose to altitudes less than 4.6 km altitude and quickly dissipated.

Beginning at midnight on 25 September, a series of seismic signals consistent with volcanic flows were recorded on the N side of the volcano. A change in seismicity and infrasound signals occurred around 0535 and at 0540 a significant ash cloud formed and quickly reached 14 km altitude and drifted E along the Alaska Peninsula. The cloud generated at least 150 lightning strokes with thunder that could be heard by people in False Pass. Seismicity rapidly declined to near background levels around 0600. AVO increased the ACC to Red and the VAL to Warning at 0602. The ash cloud detached from the volcano at around 0700, rose to 11.6 km altitude, and drifted ESE. Trace to minor amounts of ashfall were reported by the communities of False Pass, King Cove, Cold Bay, and Sand Point around 0700. Ash emissions continued at lower altitudes of 6-7.6 km altitude at 0820. Small explosions at the vent area continued to be detected in infrasound data and likely represented low-level eruptive activity near the vent. Due to the significant decrease in seismicity and ash emissions the ACC was lowered to Orange and the VAL to Watch at 1234. Radar data showed significant collapses of the crater that occurred on 25 September. Satellite data also showed significant hot, degassing pyroclastic and lahar deposits on all flanks, including more extensive flows on the ENE and WSW sections below two new collapse scarps. Following the significant activity during 24-25 September, only low-level activity was observed. Seismicity decreased notably near the end of the strong activity on 25 September and continued to decrease through the end of the month, though tremor and small earthquakes were still reported. No explosive activity was detected in infrasound data through 2 October. Gas-and-steam emissions rose to 3.7 km altitude, as reported by pilots and seen in satellite images. Satellite data from 26 September showed that significant collapses had occurred at the summit crater and hot, steaming deposits from pyroclastic flows and lahars were present on all the flanks, particularly to the ENE and WSW. A small ash cloud was visible in webcam images on 27 September, likely from a collapse at the summit cone. High elevated surface temperatures were observed in satellite imagery during 27-28 September, which were likely the result of hot deposits on the flanks erupted on 25 September. Minor steaming at the summit crater and from an area on the upper flanks was visible in webcam images on 28 September.

During October, explosion events continued between periods of low activity. Seismicity significantly increased starting at around 2100 on 2 October; around the same time satellite images showed an increase in surface temperatures consistent with lava fountaining. Small, hot avalanches of rock and lava descended an unspecified flank. In addition, a distinct increase in infrasound, seismicity, and lightning detections was followed by an ash plume that rose to 12.2 km altitude and drifted S and E at 0520 on 3 October, based on satellite images. Nighttime webcam images showed incandescence due to lava fountaining at the summit and pyroclastic flows descending the NE flank. AVO reported that a notable explosive eruption started at 0547 and lasted until 0900 on 3 October, which prompted a rise in the ACC to Red and the VAL to Warning. Subsequent ash plumes rose to 6-7.6 km altitude by 0931. At 1036 the ACC was lowered back to Orange and the VAL to Watch since both seismic and infrasound data quieted substantially and were slightly above background levels. Gas-and-steam emissions were observed at the summit, based on webcam images. Trace amounts of ashfall were observed in Cold Bay. Resuspended ash was present at several kilometers altitude near the volcano. During the afternoon, low-level ash plumes were visible at the flanks, which appeared to be largely generated by rock avalanches off the summit crater following the explosive activity. These ash plumes rose to 3 km altitude and drifted W. Trace amounts of ashfall were reported by observers in Cold Bay and Unalaska and flights to these communities were disrupted by the ash cloud. Satellite images taken after the eruption showed evidence of pyroclastic flows and lahar deposits in drainages 2 km down the SW flank and about 3.2 km down the NE flank, and continued erosion of the crater rim. Small explosion craters at the end of the pyroclastic flows on the NE flank were noted for the first time, which may have resulted from gas-and-steam explosions when hot deposits interact with underlying ice.

During 4 October seismicity, including frequent small earthquakes, remained elevated, but was gradually declining. Ash plumes were produced for over eight hours until around 1400 that rose to below 3.7 km altitude. These ash plumes were primarily generated off the sides of the volcano where hot rock avalanches from the crater rim had entered drainages to the SW and NE. Two explosion craters were observed at the base of the NE deposits about 3.2 km from the crater rim. Webcam images showed the explosion craters were a source of persistent ash emissions; occasional collapse events also generated ash. Seismicity remained elevated with sulfur dioxide emissions that had a daily average of more than 1,000 tons per day, and frequent small earthquakes through the end of the month. Frequent elevated surface temperatures were identified in satellite images and gas-and-steam plumes were observed in webcam images, although weather conditions occasionally prevented clear views of the summit. Emissions were robust during 14-16 October and were likely generated by the interaction of hot material and snow and ice. During the afternoon of 21 October a strong gas-and-steam plume rose to 3-4.6 km altitude and extended 40 km WSW, based on satellite images and reports from pilots. On 31 October the ACC was lowered to Yellow and the VAL was lowered to Advisory.

Activity in November was characterized by elevated seismicity with ongoing seismic tremor and small, low-frequency earthquakes, elevated surface temperatures, and gas-and-steam emissions. There was an increase in seismic and infrasound tremor amplitudes starting at 1940 on 2 November. As a result, the ACC was again raised to Orange and the VAL was increased to Watch, although ash was not identified in satellite data. An ash cloud rose to 6.1 km altitude and drifted W according to satellite data at 2000. By 0831 on 3 November ash emissions were no longer visible in satellite images. On 6 and 9 November air pressure sensors detected signals consistent with small explosions. Small explosions were detected in infrasound data consistent with weak Strombolian activity on 19 and 21 November. Seismicity started to decrease on 21 November. On 25 November gas-and-steam emissions were emitted from the vent as well as from a scarp on the NE side of the volcano near the summit. A gas-and-steam plume extended about 50 km SSE and was observed in satellite and webcam images on 26 November. On 28 November small explosions were observed in seismic and local infrasound data and gas-and-steam emissions were visible from the summit and from the upper NE collapse scarp based on webcam images. Possible small explosions were observed in infrasound data on 30 November. Weakly elevated surface temperatures and a persistent gas-and-steam plume from the summit and collapse scarps on the upper flanks. A passing aircraft reported the gas-and-steam plume rose to 3-3.4 km altitude on 30 November, but no significant ash emissions were detected.

Satellite data. MODIS thermal anomaly data provided through MIROVA (Middle InfraRed Observation of Volcanic Activity) showed a strong pulse of thermal activity beginning in July 2023 that continued through November 2023 (figure 48). This strong activity was due to Strombolian explosions and lava fountaining events at the summit crater. According to data from MODVOLC thermal alerts, a total of 101 hotspots were detected near the summit crater in July (11-14, 16-19, 23-24 and 26), August (4, 25-26, and 29), September (5, 12, and 17), and October (3, 4, and 8). Infrared satellite data showed large lava flows descending primarily the northern and SE flanks during the reporting period (figure 49). Sulfur dioxide plumes often exceeded two Dobson Units (DUs) and drifted in different directions throughout the reporting period, based on satellite data from the TROPOMI instrument on the Sentinel-5P satellite (figure 50).

Figure (see Caption) Figure 48. Graph of Landsat 8 and 9 OLI thermal data from 1 June 2024 showing a strong surge in thermal activity during July through November 2023. During mid-October, the intensity of the hotspots gradually declined. Courtesy of MIROVA.
Figure (see Caption) Figure 49. Infrared (bands B12, B11, B4) satellite images show several strong lava flows (bright yellow-orange) affecting the northern and SE flanks of Shishaldin on 18 July 2023 (top left), 4 June 2023 (top right), 26 September 2023 (bottom left), and 3 October 2023 (bottom right). Courtesy of Copernicus Browser.
Figure (see Caption) Figure 50. Strong sulfur dioxide plumes were detected at Shishaldin and drifted in different directions on 15 August 2023 (top left), 5 September 2023 (top right), 25 September 2023 (bottom left), and 6 October 2023 (bottom right). Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. The symmetrical glacier-covered Shishaldin in the Aleutian Islands is the westernmost of three large stratovolcanoes in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." Constructed atop an older glacially dissected edifice, it is largely basaltic in composition. Remnants of an older edifice are exposed on the W and NE sides at 1,500-1,800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is covered by massive aa lava flows. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century. A steam plume often rises from the summit crater.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Ioto (Japan) — January 2024 Citation iconCite this Report

Ioto

Japan

24.751°N, 141.289°E; summit elev. 169 m

All times are local (unless otherwise noted)


New eruption with discolored water, ejecta, and floating pumice during October-December 2023

Ioto (Iwo-jima), located about 1,200 km S of Tokyo, lies within a 9-km-wide submarine caldera along the Izu-Bonin-Mariana volcanic arc. Previous eruptions date back to 1889 and have consisted of dominantly phreatic explosions, pumice deposits during 2001, and discolored water. A submarine eruption during July through December 2022 was characterized by discolored water, pumice deposits, and gas emissions (BGVN 48:01). This report covers a new eruption during October through December 2023, which consisted of explosions, black ejecta, discolored water, and floating pumice, based on information from the Japan Meteorological Association (JMA), the Japan Coast Guard (JCG), and satellite data.

JMA reported that an eruption had been occurring offshore of Okinahama on the SE side of the island since 21 October, which was characterized by volcanic tremor, according to the Japan Maritime Self-Defense Force (JMSDF) Iwo Jima Air Base (figure 22). According to an 18 October satellite image a plume of discolored water at the site of this new eruption extended NE (figure 23). During an overflight conducted on 30 October, a vent was identified about 1 km off the coast of Okinahama. Observers recorded explosions every few minutes that ejected dark material about 20 m above the ocean and as high as 150 m. Ejecta from the vent formed a black-colored island about 100 m in diameter, according to observations conducted from the air by the Earthquake Research Institute of the University of Tokyo in cooperation with the Mainichi newspaper (figure 24). Occasionally, large boulders measuring more than several meters in size were also ejected. Observations from the Advanced Land Observing Satellite Daichi-2 and Sentinel-2 satellite images also confirmed the formation of this island (figure 23). Brown discolored water and floating pumice were present surrounding the island.

Figure (see Caption) Figure 22. Map of Ioto showing the locations of recorded eruptions from 1889 through December 2023. The most recent eruption occurred during October through December 2023 and is highlighted in red just off the SE coast of the island and E of the 2001 eruption site. A single eruption highlighted in green was detected just off the NE coast of the island on 18 November 2023. From Ukawa et al. (2002), modified by JMA.
Figure (see Caption) Figure 23. Satellite images showing the formation of the new island formation (white arrow) off the SE (Okinahama) coast of Ioto on 18 October 2023 (top left), 27 November 2023 (top right), 2 December 2023 (bottom left), and 12 December 2023 (bottom right). Discolored water was visible surrounding the new island. By December, much of the island had been eroded. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 24. Photo showing an eruption off the SE (Okinahama) coast of Ioto around 1230 on 30 October 2023. A column of water containing black ejecta is shown, which forms a new island. Occasionally, huge boulders more than several meters in size were ejected with the jet. Dark brown discolored water surrounded the new island. Photo has been color corrected and was taken from the S by the Earthquake Research Institute, University of Tokyo in cooperation of Mainichi newspaper. Courtesy of JMA.

The eruption continued during November. During an overflight on 3 November observers photographed the island and noted that material was ejected 169 m high, according to a news source. Explosions gradually became shorter, and, by the 3rd, they occurred every few seconds; dark and incandescent material were ejected about 800 m above the vent. On 4 November eruptions were accompanied by explosive sounds. Floating, brown-colored pumice was present in the water surrounding the island. There was a brief increase in the number of volcanic earthquakes during 8-14 November and 24-25 November. The eruption temporarily paused during 9-11 November and by 12 November eruptions resumed to the W of the island. On 10 November dark brown-to-dark yellow-green discolored water and a small amount of black floating material was observed (figure 25). A small eruption was reported on 18 November off the NE coast of the island, accompanied by white gas-and-steam plumes (figure 23). Another pause was recorded during 17-19 November, which then resumed on 20 November and continued erupting intermittently. According to a field survey conducted by the National Institute for Disaster Prevention Science and Technology on 19 November, a 30-m diameter crater was visible on the NE coast where landslides, hot water, and gray volcanic ash containing clay have occurred and been distributed previously. Erupted blocks about 10 cm in diameter were distributed about 90-120 m from the crater. JCG made observations during an overflight on 23 November and reported a phreatomagmatic eruption. Explosions at the main vent generated dark gas-and-ash plumes that rose to 200 m altitude and ejected large blocks that landed on the island and in the ocean (figure 26). Discolored water also surrounded the island. The size of the new island had grown to 450 m N-S x 200 m E-W by 23 November, according to JCG.

Figure (see Caption) Figure 25. Photo of the new land formed off the SE (Okinahama) coast of Ioto on 10 November showing discolored water and a small amount of black floating material were visible surrounding the island. Photo has been color corrected. Photographed by JCG courtesy of JMA.
Figure (see Caption) Figure 26. Photo of the new land formed off the SE (Okinahama) coast of Ioto on 23 November showing a phreatomagmatic eruption that ejected intermittent pulses of ash and dark material that rose to 200 m altitude. Photo has been color corrected. Photographed by JCG courtesy of JMA.

The eruption continued through 11 December, followed by a brief pause in activity, which then resumed on 31 December, according to JMA. Intermittent explosions produced 100-m-high black plumes at intervals of several minutes to 30 minutes during 1-10 December. Overflights were conducted on 4 and 15 December and reported that the water surrounding the new island was discolored to dark brown-to-dark yellow-green (figure 27). No floating material was reported during this time. In comparison to the observations made on 23 November, the new land had extended N and part of it had eroded away. In addition, analysis by the Geospatial Information Authority of Japan using SAR data from Daichi-2 also confirmed that the area of the new island continued to decrease between 4 and 15 December. Ejected material combined with wave erosion transformed the island into a “J” shape, 500-m-long and with the curved part about 200 m offshore of Ioto. The island was covered with brown ash and blocks, and the surrounding water was discolored to greenish-brown and contained an area of floating pumice. JCG reported from an overflight on 4 December that volcanic ash-like material found around the S vent on the NE part of the island was newly deposited since 10 November (figure 28). By 15 December the N part of the “J” shaped island had separated and migrated N, connecting to the Okinahama coast and the curved part of the “J” had eroded into two smaller islands (figure 27).

Figure (see Caption) Figure 27. Photos of the new island formed off the SE (Okinahama) coast of Ioto on 4 December 2023 (left) and 15 December 2023 (right). No gas-and-ash emissions or lava flows were observed on the new land. Additionally, dark brown-to-dark yellow-green discolored water was observed surrounding the new land. During 4 and 15 December, the island had eroded to where the N part of the “J” shape had separated and migrated N, connecting to the Okinahama coast and the curved part of the “J” had eroded into two smaller islands. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 28. Photo of new volcanic ash-deposits (yellow dashed lines) near the S vent on the NE coast of Ioto taken by JCG on 4 December 2023. White gas-and-steam emissions were also visible (white arrow). Photo has been color corrected. Courtesy of JMA.

References. Ukawa, M., Fujita, E., Kobayashi, T., 2002, Recent volcanic activity of Iwo Jima and the 2001 eruption, Monthly Chikyu, Extra No. 39, 157-164.

Geologic Background. Ioto, in the Volcano Islands of Japan, lies within a 9-km-wide submarine caldera. The volcano is also known as Ogasawara-Iojima to distinguish it from several other "Sulfur Island" volcanoes in Japan. The triangular, low-elevation, 8-km-long island narrows toward its SW tip and has produced trachyandesitic and trachytic rocks that are more alkalic than those of other volcanoes in this arc. The island has undergone uplift for at least the past 700 years, accompanying resurgent doming of the caldera; a shoreline landed upon by Captain Cook's surveying crew in 1779 is now 40 m above sea level. The Motoyama plateau on the NE half of the island consists of submarine tuffs overlain by coral deposits and forms the island's high point. Many fumaroles are oriented along a NE-SW zone cutting through Motoyama. Numerous recorded phreatic eruptions, many from vents on the W and NW sides of the island, have accompanied the uplift.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Japan Coast Guard (JCG) Volcano Database, Hydrographic and Oceanographic Department, 3-1-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8932, Japan (URL: https://www1.kaiho.mlit.go.jp/GIJUTSUKOKUSAI/kaiikiDB/kaiyo22-2.htm); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Asahi, 5-3-2, Tsukiji, Chuo Ward, Tokyo, 104-8011, Japan (URL: https://www.asahi.com/ajw/articles/15048458).


Purace (Colombia) — December 2023 Citation iconCite this Report

Purace

Colombia

2.3095°N, 76.3948°W; summit elev. 4650 m

All times are local (unless otherwise noted)


Gas-and-ash emission on 16 November 2023

Puracé, located in Colombia, is a stratovolcano that contains a 500-m-wide summit crater. It is part of the Los Coconucos volcanic chain that is a NW-SE trending group of seven cones and craters. The most recent eruption occurred during March 2022 that was characterized by frequent seismicity and gas-and-steam emissions (BGVN 47:06). This report covers a brief eruption during November 2023 based on monthly reports from the Popayán Observatory, part of the Servicio Geologico Colombiano (SGC).

Activity during November 2022 through November 2023 primarily consisted of seismicity: VT-type events, LP-type events, HB-type events, and TR-type events (table 4). Maximum sulfur dioxide values were measured weekly and ranged from 259-5,854 tons per day (t/d) during November 2022 through April 2023. White gas-and-steam emissions were also occasionally reported.

SGC issued a report on 25 October that noted a significant increase in the number of earthquakes associated with rock fracturing. These earthquakes were located SE of the crater between Puracé and Piocollo at depths of 1-4 km. There were no reported variations in sulfur dioxide values, but SGC noted high carbon dioxide values, compared to those recorded in the first half of 2023.

SGC reported that at 1929 on 16 November the seismic network detected a signal that was possibly associated with a gas-and-ash emission, though it was not confirmed in webcam images due to limited visibility. On 17 November an observer confirmed ash deposits on the N flank. Webcam images showed an increase in degassing both inside the crater and from the NW flank, rising 700 m above the crater.

Table 4. Seismicity at Puracé during November 2022-November 2023. Volcano-tectonic (VT), long-period (LP), hybrid (HB), and tremor (TR) events are reported each month. Courtesy of SGC.

Month Volcano-tectonic Long-period Hybrid Tremor
Nov 2022 429 2,023 5 831
Dec 2022 423 1,390 9 834
Jan 2023 719 1,622 0 957
Feb 2023 598 1,701 2 1,124
Mar 2023 331 2,408 147 607
Apr 2023 614 4,427 33 148
May 2023 620 3,717 170 109
Jun 2023 467 3,293 86 148
Jul 2023 1,116 5,809 183 542
Aug 2023 692 2,927 94 321
Sep 2023 887 1,505 82 848
Oct 2023 2,373 2,949 135 692
Nov 2023 1,212 2,302 69 293

Geologic Background. Puracé is an active andesitic volcano with a 600-m-diameter summit crater at the NW end of the Los Coconucos Volcanic Chain. This volcanic complex includes nine composite and five monogenetic volcanoes, extending from the Puracé crater more than 6 km SE to the summit of Pan de Azúcar stratovolcano. The dacitic massif which the complex is built on extends about 13 km NW-SE and 10 km NE-SW. Frequent small to moderate explosive eruptions reported since 1816 CE have modified the morphology of the summit crater, with the largest eruptions in 1849, 1869, and 1885.

Information Contacts: Servicio Geologico Colombiano (SGC), Diagonal 53 No. 34-53 - Bogotá D.C., Colombia (URL: https://www.sgc.gov.co/volcanes).


Aira (Japan) — December 2023 Citation iconCite this Report

Aira

Japan

31.5772°N, 130.6589°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Explosions, ash plumes, ash fall, and crater incandescence during July-October 2023

Aira caldera, located in the northern half of Kagoshima Bay, Japan, contains the post-caldera Sakurajima volcano. Eruptions typically originate from the Minamidake crater, and since the 8th century, ash deposits have been recorded in the city of Kagoshima (10 km W), one of Kyushu’s largest cities. The Minamidake summit cone and crater has had persistent activity since 1955; the Showa crater on the E flank has also been intermittently active since 2006. The current eruption period began during March 2017 and has recently been characterized by intermittent explosions, eruption plumes, and ashfall (BGVN 48:07). This report updates activity during July through October 2023 and describes explosive events, ash plumes, nighttime crater incandescence, and ashfall, according to monthly activity reports from the Japan Meteorological Agency (JMA) and satellite data.

Thermal activity remained at low levels during this reporting period, according to the MIROVA (Middle InfraRed Observation of Volcanic Activity) system (figure 149). There was a slight increase in the number of anomalies during September through October. Occasional thermal anomalies were visible in infrared satellite images mainly at the Minamidake crater (Vent A is located to the left and Vent B is located to the right) (figure 150).

Table 30. Number of monthly explosive events, days of ashfall, area of ash covered, and sulfur dioxide emissions from Sakurajima’s Minamidake crater at Aira during July-October 2023. Note that smaller ash events are not listed. Ashfall days were measured at Kagoshima Local Meteorological Observatory and ashfall amounts represent material covering all the Kagoshima Prefecture. Data courtesy of JMA monthly reports.

Month Explosive events Days of ashfall Ashfall amount (g/m2) SO2 emissions (tons/day)
Jul 2023 3 0 0 1,600-3,200
Aug 2023 3 10 7 1,800-3,300
Sep 2023 3 7 3 1,600-2,300
Oct 2023 33 8 61 2,200-4,200
Figure (see Caption) Figure 149. Thermal activity at Sakurajima in the Aira caldera was relatively low during July through October 2023, based on this MIROVA graph (Log Radiative Power). There was an increase in the number of detected anomalies during September through October. Courtesy of MIROVA.
Figure (see Caption) Figure 150. Infrared (bands B12, B11, B4) satellite images show a persistently strong thermal anomaly (bright yellow-orange) at the Minamidake crater at Aira’s Sakurajima volcano on 28 September 2023 (top left), 3 October 2023 (top right), 23 October 2023 (bottom left), and 28 October 2023 (bottom right). Vent A is located to the left and Vent B is to the right of Vent A; both vents are part of the Minamidake crater. Courtesy of Copernicus Browser.

JMA reported that during July, there were eight eruptions, three of which were explosion events in the Showa crater. Large blocks were ejected as far as 600 m from the Showa crater. Very small eruptions were occasionally reported at the Minamidake crater. Nighttime incandescence was observed in both the Showa and Minamidake crater. Explosions were reported on 16 July at 2314 and on 17 July at 1224 and at 1232 (figure 151). Resulting eruption plumes rose 700-2,500 m above the crater and drifted N. On 23 July the number of volcanic earthquakes on the SW flank of the volcano increased. A strong Mw 3.1 volcanic earthquake was detected at 1054 on 26 July. The number of earthquakes recorded throughout the month was 545, which markedly increased from 73 in June. No ashfall was observed at the Kagoshima Regional Meteorological Observatory during July. According to a field survey conducted during the month, the daily amount of sulfur dioxide emissions was 1,600-3,200 tons per day (t/d).

Figure (see Caption) Figure 151. Webcam image showing a strong, gray ash plume that rose 2.5 km above the crater rim of Aira’s Showa crater at 1232 on 17 July 2023. Courtesy of JMA monthly report (Sakurajima volcanic activity explanatory material, July 2023).

There were three eruptions reported at the Minamidake crater during August, each of which were explosive. The explosions occurred on 9 August at 0345, on 13 August at 2205, and on 31 August at 0640, which generated ash plumes that rose 800-2,000 m above the crater and drifted W. There were two eruptions detected at Showa crater; on 4 August at 2150 ejecta traveled 800 m from the Showa crater and associated eruption plumes rose 2.3 km above the crater. The explosion at 2205 on 13 August generated an ash plume that rose 2 km above the crater and was accompanied by large blocks that were ejected 600 m from the Minamidake crater (figure 152). Nighttime crater incandescence was visible in a high-sensitivity surveillance camera at both craters. Seismicity consisted of 163 volcanic earthquakes, 84 of which were detected on the SW flank. According to the Kagoshima Regional Meteorological Observatory there was a total of 7 g/m2 of ashfall over the course of 10 days during the month. According to a field survey, the daily amount of sulfur dioxide emitted was 1,800-3,300 t/d.

Figure (see Caption) Figure 152. Webcam image showing an eruption plume rising 2 km above the Minamidake crater at Aira at 2209 on 13 August 2023. Courtesy of JMA monthly report (Sakurajima volcanic activity explanatory material, August 2023).

During September, four eruptions were reported, three of which were explosion events. These events occurred at 1512 on 9 September, at 0018 on 11 September, and at 2211 on 13 September. Resulting ash plumes generally rose 800-1,100 m above the crater. An explosion produced an ash plume at 2211 on 13 September that rose as high as 1.7 km above the crater. Large volcanic blocks were ejected 600 m from the Minamidake crater. Smaller eruptions were occasionally observed at the Showa crater. Nighttime crater incandescence was visible at the Minamidake crater. Seismicity was characterized by 68 volcanic earthquakes, 28 of which were detected beneath the SW flank. According to the Kagoshima Regional Meteorological Observatory there was a total of 3 g/m2 of ashfall over the course of seven days during the month. A field survey reported that the daily amount of sulfur dioxide emitted was 1,600-2,300 t/d.

Eruptive activity during October consisted of 69 eruptions, 33 of which were described as explosive. These explosions occurred during 4 and 11-21 October and generated ash plumes that rose 500-3,600 m above the crater and drifted S, E, SE, and N. On 19 October at 1648 an explosion generated an ash plume that rose 3.6 km above the crater (figure 153). No eruptions were reported in the Showa crater; white gas-and-steam emissions rose 100 m above the crater from a vent on the N flank. Nighttime incandescence was observed at the Minamidake crater. On 24 October an eruption was reported from 0346 through 0430, which included an ash plume that rose 3.4 km above the crater. Ejected blocks traveled 1.2 km from the Minamidake crater. Following this eruption, small amounts of ashfall were observed from Arimura (4.5 km SE) and a varying amount in Kurokami (4 km E) (figure 154). The number of recorded volcanic earthquakes during the month was 190, of which 14 were located beneath the SW flank. Approximately 61 g/m2 of ashfall was reported over eight days of the month. According to a field survey, the daily amount of sulfur dioxide emitted was 2,200-4,200 t/d.

Figure (see Caption) Figure 153. Webcam image showing an ash plume rising 3.6 km above the Minamidake crater at Aira at 1648 on 19 October 2023. Photo has been color corrected. Courtesy of JMA monthly report (Sakurajima volcanic activity explanatory material, October 2023).
Figure (see Caption) Figure 154. Photo showing ashfall (light gray) in Kurokami-cho, Sakurajima on 24 October 2023 taken at 1148 following an eruption at Aira earlier that day. Courtesy of JMA monthly report (Sakurajima volcanic activity explanatory material, October 2023).

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim and built an island that was joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4,850 years ago, after which eruptions took place at Minamidake. Frequent eruptions since the 8th century have deposited ash on the city of Kagoshima, located across Kagoshima Bay only 8 km from the summit. The largest recorded eruption took place during 1471-76.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Etna (Italy) — December 2023 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3357 m

All times are local (unless otherwise noted)


Strombolian explosions, lava fountains, and lava flows during July-August 2023

Etna, located on the Italian island of Sicily, has had documented eruptions dating back to 1500 BCE. Activity typically originates from multiple cones at the summit, where several craters have formed and evolved. The currently active craters are Northeast Crater (NEC), Voragine (VOR), and Bocca Nuova (BN), and the Southeast Crater (SEC); VOR and BN were previously referred to as the “Central Crater”. The original Southeast crater formed in 1978, and a second eruptive site that opened on its SE flank in 2011 was named the New Southeast Crater (NSEC). Another eruptive site between the SEC and NSEC developed during early 2017 and was referred to as the "cono della sella" (saddle cone). The current eruption period began in November 2022 and has been characterized by intermittent Strombolian activity, lava flows, and ash plumes (BGVN 48:08). This report updates activity during July through October 2023, which includes primarily gas-and-steam emissions; during July and August Strombolian explosions, lava fountains, and lava flows were reported, based on weekly and special reports by the Osservatorio Etneo (OE), part of the Catania Branch of Italy's Istituo Nazionale di Geofisica e Vulcanologica (INGV) and satellite data.

Variable fumarolic degassing was reported at all summit craters (BN, VOR, NEC, and SEC) throughout the entire reporting period (table 15). The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system based on the analysis of MODIS data showed frequent low-to-moderate power thermal anomalies during the reporting period (figure 399). During mid-August there was a pulse in activity that showed an increase in the power of the anomalies due to Strombolian activity, lava fountains, and lava flows. Infrared satellite imagery captured strong thermal anomalies at the central and southeast summit crater areas (figure 400). Accompanying thermal activity were occasional sulfur dioxide plumes that exceeded 2 Dobson Units (DUs) recorded by the TROPOMI instrument on the Sentinel-5P satellite (figure 401).

Table 15. Summary of activity at the four primary crater areas at the summit of Etna during July-October 2023. Information is from INGV weekly reports.

Month Bocca Nuova (BN) Voragine (VOR) Northeast Crater (NEC) Southeast Crater (SEC)
Jul 2023 Continuous degassing. No observations. Weak gas emissions. Continuous degassing. Sporadic and weak-to-moderate ash emissions. Strombolian explosions.
Aug 2023 Continuous degassing. No observations. No observations. Continuous degassing. Occasional ash emissions. Strombolian activity, lava fountaining, and lava flows.
Sep 2023 Variable degassing. Crater incandescence. Weak fumarolic activity. Weak fumarolic activity. Variable degassing.
Oct 2023 Continuous degassing. Weak fumarolic activity. Weak fumarolic activity. Continuous degassing.
Figure (see Caption) Figure 399. Frequent thermal activity at Etna varied in strength during July through October 2023, as shown on this MIROVA plot (Log Radiative Power). There was a spike in power during mid-August, which reflected an increase in Strombolian activity. Courtesy of MIROVA.
Figure (see Caption) Figure 400. Infrared (bands B12, B11, B4) satellite images showing strong thermal anomalies at Etna’s central and Southeast crater areas on 21 July 2023 (top left), 27 August 2023 (top right), 19 September 2023 (bottom left), and 29 October 2023 (bottom right). Courtesy of Copernicus Browser.
Figure (see Caption) Figure 401. Sulfur dioxide plumes that exceeded 2 Dobson Units (DUs) rose above Etna on 14 July 2023 (top left), 14 August 2023 (top right), 2 September 2023 (bottom left), and 7 October 2023 (bottom right). These plumes drifted NE, S, SE, and SW, respectively. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Activity during July and August was relatively low and mainly consisted of degassing at the summit craters, particularly at SEC and BN. Cloudy weather prevented clear views of the summit during early July. During the night of 2 July some crater incandescence was visible at SEC. Explosive activity resumed at SEC during 9-10 July, which was characterized by sporadic and weak ash emissions that rapidly dispersed in the summit area (figure 402). INGV reported moderate Strombolian activity began at 2034 on 14 July and was confined to the inside of the crater and fed by a vent located in the E part of SEC. An ash emission was detected at 2037. A new vent opened on 15 July in the SE part of BN and began to produce continuous gas-and-steam emissions. During an inspection carried out on 28 July pulsating degassing, along with audible booms, were reported at two active vents in BN. Vigorous gas-and-steam emissions intermittently generated rings. On rare occasions, fine, reddish ash was emitted from BN1 and resuspended by the gas-and-steam emissions.

Figure (see Caption) Figure 402. Webcam image taken by the Monta Cagliato camera showing an ash emission rising above Etna’s Southeast Crater (SEC) on 10 July 2023. Photo has been color corrected. Courtesy of INGV (Report 28/2023, ETNA, Bollettino Settimanale, 03/07/2023 - 09/07/2023).

Around 2000 on 13 August INGV reported a sudden increase in volcanic tremor amplitude. Significant infrasonic activity coincided with the tremor increase. Incandescent flashes were visible through the cloud cover in webcam images of SEC (figure 403). Strombolian activity at SEC began to gradually intensify starting at 2040 as seismicity continued to increase. The Aviation Color Code (ACC) was raised to Yellow (the second lowest-level on a four-color scale) at 2126 and then to Orange (the second highest-level on a four-color scale) at 2129 due to above-background activity. The activity rapidly transitioned from Strombolian activity to lava fountains around 2333 that rose 300-400 m above the crater (figure 403). Activity was initially focused on the E vent of the crater, but then the vent located above the S flank of the cone also became active. A lava flow from this vent traveled SW into the drainage created on 10 February 2022, overlapping with previous flows from 10 and 21 February 2022 and 21 May 2023, moving between Monte Barbagallo and Monte Frumento Supino (figure 404). The lava flow was 350 m long, oriented NNE-SSW, and descended to an elevation of 2.8 km. Flows covered an area of 300,000 m2 and had an estimated volume of 900,000 m3. The ACC was raised to Red at 2241 based on strong explosive activity and ashfall in Rifugio Sapienza-Piano Vetore at 1.7 km elevation on the S flank. INGV reported that pyroclastic flows accompanied this activity.

Figure (see Caption) Figure 403. Webcam images of the lava fountaining event at Etna during 13-14 August 2023 taken by the Milos (EMV) camera. Images show the start of the event with increasing incandescence (a-b), varying intensity in activity (c-e), lava fountaining and pyroclastic flows (f-g), and a strong ash plume (g). Courtesy of INGV (Report 33/2023, ETNA, Bollettino Settimanale, 08/08/2023 - 14/08/2023).
Figure (see Caption) Figure 404. Map of the new lava flow (yellow) and vent (red) at SEC (CSE) of Etna on 13 August 2023. The background image is a shaded model of the terrain of the summit area obtained by processing Skysat images acquired during on 18 August. The full extent of the lava flow was unable to be determined due to the presence of ash clouds. The lava flow extended more than 350 m to the SSW and reached an elevation of 2.8 km and was located W of Mt. Frumento Supino. CSE = Southeast Crater; CNE = Northeast Crater; BN = Bocca Nuova; VOR = Voragine. Courtesy of INGV (Report 34/2023, ETNA, Bollettino Settimanale, 14/08/2023 - 20/08/2023).

Activity peaked between 0240 and 0330 on 14 August, when roughly 5-6 vents erupted lava fountains from the E to SW flank of SEC. The easternmost vents produced lava fountains that ejected material strongly to the E, which caused heavy fallout of incandescent pyroclastic material on the underlying flank, triggering small pyroclastic flows. This event was also accompanied by lightning both in the ash column and in the ash clouds that were generated by the pyroclastic flows. A fracture characterized by a series of collapse craters (pit craters) opened on the upper SW flank of SEC. An ash cloud rose a few kilometers above the crater and drifted S, causing ash and lapilli falls in Rifugio Sapienza and expanding toward Nicolosi, Mascalucia, Catania, and up to Syracuse. Ashfall resulted in operational problems at the Catania airport (50 km S), which lasted from 0238 until 2000. By 0420 the volcanic tremor amplitude values declined to background levels. After 0500 activity sharply decreased, although the ash cloud remained for several hours and drifted S. By late morning, activity had completely stopped. The ACC was lowered to Orange as volcanic ash was confined to the summit area. Sporadic, minor ash emissions continued throughout the day. At 1415 the ACC was lowered to Yellow and then to Green at 1417.

During the night of 14-15 August only occasional flashes were observed, which were more intense during avalanches of material inside the eruptive vents. Small explosions were detected at SEC at 2346 on 14 August and at 0900 on 26 August that each produced ash clouds which rapidly dispersed into the atmosphere (figure 405). According to a webcam image, an explosive event detected at 2344 at SEC generated a modest ash cloud that was rapidly dispersed by winds. The ACC was raised to Yellow at 2355 on 14 August due to increasing unrest and was lowered to Green at 0954 on 15 August.

Figure (see Caption) Figure 405. Webcam image of an ash plume rising above Etna’s SEC at 0902 (local time) on 26 August taken by the Montagnola EMOV camera. Photo has been color corrected. Courtesy of INGV (Report 35/2023, ETNA, Bollettino Settimanale, 21/08/2023 - 27/08/2023).

Activity during September and October was relatively low and mainly characterized by variable degassing from BN and SEC. Intense, continuous, and pulsating degassing was accompanied by roaring sounds and flashes of incandescence at BN both from BN1 and the new pit crater that formed during late July (figure 406). The degassing from the new pit crater sometimes emitted vapor rings. Cloudy weather during 6-8 September prevented observations of the summit craters .

Figure (see Caption) Figure 406. Webcam image (top) showing degassing from Etna’s Bocca Nuova (BN) crater accompanied by nighttime crater incandescence at 0300 (local time) on 2 September 2023 by the Piedimonte Etneo (EPVH) camera and a photo of incandescence at BN1 and the new pit crater (bottom) taken by an observatory scientist from the E rim of BN during a survey on 2 September 2023. Courtesy of INGV (Report 36/2023, ETNA, Bollettino Settimanale, 28/08/2023 - 03/09/2023).

Geologic Background. Mount Etna, towering above Catania on the island of Sicily, has one of the world's longest documented records of volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sezione di Catania - Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/it/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard MD 20771, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Suwanosejima (Japan) — December 2023 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Eruption plumes, crater incandescence, and occasional explosions during July-October 2023

Suwanosejima is an 8-km-long island that consists of a stratovolcano and two active summit craters, located in the northern Ryukyu Islands, Japan. Volcanism over the past century has been characterized by Strombolian explosions, ash plumes, and ashfall. The current eruption began in October 2004 and has more recently consisted of frequent eruption plumes, explosions, and incandescent ejecta (BGVN 48:07). This report covers similar activity of ash plumes, explosions, and crater incandescence during July through October 2023 using monthly reports from the Japan Meteorological Agency (JMA) and satellite data.

Thermal activity during the reporting period was relatively low; only one low-power thermal anomaly was detected during mid-July and one during early August, based on a MIROVA (Middle InfraRed Observation of Volcanic Activity) Log Radiative Power graph of the MODIS thermal anomaly data. On two clear weather days, a thermal anomaly was visible in infrared satellite images (figure 81).

Figure (see Caption) Figure 81. Infrared (bands B12, B11, B4) satellite imagery showing a thermal anomaly (bright yellow-orange) at the Otake crater of Suwanosejima on 23 September 2023 (left) and 18 October 2023 (right). Courtesy of Copernicus Browser.

Low-level activity was reported at the Otake crater during July and no explosions were detected. Eruption plumes rose as high as 1.8 km above the crater. On 13 July an ash plume rose 1.7 km above the crater rim, based on a webcam image. During the night of the 28th crater incandescence was visible in a webcam image. An eruptive event reported on 31 July produced an eruption plume that rose 2.1 km above the crater. Seismicity consisted of 11 volcanic earthquakes on the W flank, the number of which had decreased compared to June (28) and 68 volcanic earthquakes near the Otake crater, which had decreased from 722 in the previous month. According to observations conducted by the University of Tokyo Graduate School of Science, Kyoto University Disaster Prevention Research Institute, Toshima Village, and JMA, the amount of sulfur dioxide emissions released during the month was 400-800 tons per day (t/d).

Eruptive activity in the Otake crater continued during August and no explosions were reported. An eruptive event produced a plume that rose 1 km above the crater at 1447 on 12 August. Subsequent eruptive events were recorded at 0911 on 16 August, at 1303 on 20 August, and at 0317 on 21 August, which produced ash plumes that rose 1-1.1 km above the crater and drifted SE, SW, and W. On 22 August an ash plume was captured in a webcam image rising 1.4 km above the crater (figure 82). Multiple eruptive events were detected on 25 August at 0544, 0742, 0824, 1424, and 1704, which generated ash plumes that rose 1.1-1.2 km above the crater and drifted NE, W, and SW. On 28 August a small amount of ashfall was observed as far as 1.5 km from the crater. There were 17 volcanic earthquakes recorded on the W flank of the volcano and 79 recorded at the Otake crater during the month. The amount of sulfur dioxide emissions released during the month was 400-800 t/d.

Figure (see Caption) Figure 82. Webcam image of an ash plume rising 1.4 km above Suwanosejima’s Otake crater rim on 22 August 2023. Courtesy of JMA (Volcanic activity commentary for Suwanosejima, August 2023).

Activity continued at the Otake crater during September. Occasionally, nighttime crater incandescence was observed in webcam images and ashfall was reported. An eruptive event at 1949 on 4 September produced an ash plume that rose 1 km above the crater and drifted SW. On 9 September several eruption events were detected at 0221, 0301, and 0333, which produced ash plumes that rose 1.1-1.4 km above the crater rim and drifted W; continuous ash emissions during 0404-0740 rose to a maximum height of 2 km above the crater rim (figure 83). More eruptive events were reported at 1437 on 10 September, at 0319 on 11 September, and at 0511 and 1228 on 15 September, which generated ash plumes that rose 1-1.8 km above the crater. During 25, 27, and 30 September, ash plumes rose as high as 1.3 km above the crater rim. JMA reported that large blocks were ejected as far as 300 m from the center of the crater. There were 18 volcanic earthquakes detected beneath the W flank and 82 volcanic earthquakes detected near the Otake crater. The amount of sulfur dioxide released during the month ranged from 600 to 1,600 t/d.

Figure (see Caption) Figure 83. Webcam image of an ash plume rising 2 km above Suwanosejima’s Otake crater rim on 9 September 2023. Courtesy of JMA (Volcanic activity commentary for Suwanosejima, September 2023).

Activity during early-to-mid-October consisted of occasional explosions, a total number of 13, and ash plumes that rose as high as 1.9 km above the Otake crater rim on 29 October (figure 84). These explosions are the first to have occurred since June 2023. Continuous ash emissions were reported during 0510-0555 on 1 October. Explosions were recorded at 0304, 2141, and 2359 on 2 October, at 0112 on 3 October, and at 1326 on 6 October, which produced ash plumes that rose as high as 1 km above the crater rim and drifted SW and W. An explosion was noted at 0428 on 3 October, but emission details were unknown. A total of eight explosions were recorded by the seismic network at 1522 on 14 October, at 0337, 0433, 0555, 1008, and 1539 on 15 October, and at 0454 and 0517 on 16 October. Ash plumes from these explosions rose as high as 900 m above the crater and drifted SE. Eruptive events during 25-27 and 29-30 October generated plumes that rose as high as 1.9 km above the crater and drifted SE, S, and SW. Ash was deposited in Toshima village (3.5 km SSW). Eruptive activity occasionally ejected large volcanic blocks as far as 600 m from the crater. Nighttime crater incandescence was visible in webcams. Intermittent ashfall was reported as far as 1.5 km from the crater. There were 43 volcanic earthquakes detected on the W flank during the month, and 184 volcanic earthquakes detected near the Otake crater. The amount of sulfur dioxide emitted ranged between 400 and 900 t/d.

Figure (see Caption) Figure 84. Webcam image of an ash plume rising 1.9 km above Suwanosejima’s Otake crater on 29 October 2023. Courtesy of JMA (Volcanic activity commentary for Suwanosejima, October 2023).

Geologic Background. The 8-km-long island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two active summit craters. The summit is truncated by a large breached crater extending to the sea on the E flank that was formed by edifice collapse. One of Japan's most frequently active volcanoes, it was in a state of intermittent Strombolian activity from Otake, the NE summit crater, between 1949 and 1996, after which periods of inactivity lengthened. The largest recorded eruption took place in 1813-14, when thick scoria deposits covered residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed, forming a large debris avalanche and creating an open collapse scarp extending to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Nishinoshima (Japan) — November 2023 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 100 m

All times are local (unless otherwise noted)


Gray emissions during October 2023

Nishinoshima is a small island in the Ogasawara Arc, about 1,000 km S of Tokyo, Japan. It contains prominent submarine peaks to the S, W, and NE. Recorded eruptions date back to 1973, with the current eruption period beginning in October 2022. Eruption plumes and fumarolic activity characterize recent activity (BGVN 48:10). This report covers the end of the eruption for September through October 2023, based on information from monthly reports of the Japan Meteorological Agency (JMA) monthly reports, and satellite data.

No eruptive activity was reported during September 2023, although JMA noted that the surface temperature was slightly elevated compared to the surrounding area since early March 2023. The Japan Coast Guard (JCG) conducted an overflight on 20 September and reported white gas-and-steam plumes rising 3 km above the central crater of the pyroclastic cone, as well as multiple white gas-and-steam emissions emanating from the N, E, and S flanks of the crater to the coastline. In addition, dark reddish brown-to-green discolored water was distributed around almost the entire circumference of the island.

Similar low-level activity was reported during October. Multiple white gas-and-steam emissions rose from the N, E, and S flanks of the central crater of the pyroclastic cone and along the coastline; these emissions were more intense compared to the previous overflight observations. Dark reddish brown-to-green discolored water remained visible around the circumference of the island. On 4 October aerial observations by JCG showed a small eruption consisting of continuous gas-and-steam emissions emanating from the central crater, with gray emissions rising to 1.5 km altitude (figure 129). According to observations from the marine weather observation vessel Keifu Maru on 26 October, white gas-and-steam emissions persisted from the center of the pyroclastic cone, as well as from the NW, SW, and SE coasts of the island for about five minutes. Slightly discolored water was visible up to about 1 km.

Figure (see Caption) Figure 129. Aerial photos of gray emissions rising from the central crater of Nishinoshima’s pyroclastic cone to an altitude of 1.5 km on 4 October 2023 taken at 1434 (left) and 1436 (right). Several white gas-and-steam emissions also rose from the N, E, and S flanks of the central crater. Both photos have been color corrected. Courtesy of JCG via JMA (monthly reports of activity at Nishinoshima, October, 2023).

Frequent low-to-moderate power thermal anomalies were recorded in the MIROVA graph (Middle InfraRed Observation of Volcanic Activity) during September (figure 130). Occasional anomalies were detected during October, and fewer during November through December. A thermal anomaly was visible in the crater using infrared satellite imagery on 6, 8, 11, 16, 18, 21, and 23 September and 8, 13, 21, 26, and 28 October (figure 131).

Figure (see Caption) Figure 130. Low-to-moderate power thermal anomalies were detected at Nishinoshima during September through December 2023, showing a decrease in the frequency of anomalies after September, according to this MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 131. Infrared (bands B12, B11, B4) satellite images showing a strong thermal anomaly at the crater of Nishinoshima on 21 September 2023 (left) and 13 October 2023 (right). A strong gas-and-steam plume accompanied the thermal activity, extending NW. Courtesy of Copernicus Browser.

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Multiple eruptions that began in 2013 completely covered the previous exposed surface and continued to enlarge the island. The island is the summit of a massive submarine volcano that has prominent peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the ocean surface 9 km SSE.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Kilauea (United States) — October 2023 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Strong lava fountains, lava flows, and spatter at Halema’uma’u during January-September 2023

Kīlauea is on the island of Hawai’i and overlaps the E flank of the Mauna Loa volcano. Its East Rift Zone (ERZ) has been intermittently active for at least 2,000 years. An extended eruption period began in January 1983 and was characterized by open lava lakes and lava flows from the summit caldera and the East Rift Zone. During May 2018 magma migrated into the Lower East Rift Zone (LERZ) and opened 24 fissures along a 6-km-long NE-trending fracture zone that produced lava flows traveling in multiple directions. As lava emerged from the fissures, the lava lake at Halema'uma'u drained and explosions sent ash plumes to several kilometers altitude (BGVN 43:10).

The current eruption period started during September 2021 and has been characterized by low-level lava effusions in the active Halema’uma’u lava lake (BGVN 48:01). This report covers three notable eruption periods during February, June, and September 2023 consisting of lava fountaining, lava flows, and spatter during January through September 2023 using information from daily reports, volcanic activity notices, and abundant photo, map, and video data from the US Geological Survey's (USGS) Hawaiian Volcano Observatory (HVO).

Activity during January 2023. Small earthquake swarms were recorded on 2 January 2023; increased seismicity and changes in the pattern of deformation were noted on the morning of 5 January. At around 1500 both the rate of deformation and seismicity drastically increased, which suggested magma movement toward the surface. HVO raised the Volcano Alert Level (VAL) to Watch (the second highest level on a four-level scale) and the Aviation Color Code (ACC) to Orange (the second highest color on a four-color scale) at 1520.

Multiple lava fountains and lava effusions from vents in the central eastern portion of the Halema’uma’u crater began on 5 January around 0434; activity was confined to the eastern half of the crater and within the basin of the western half of the crater, which was the focus of the eruption in 2021-2022 (figure 525). Incandescence was visible in webcam images at 1634 on 5 January, prompting HVO to raise the VAL to Warning (the highest level on a four-level scale) and the ACC to Red (the highest color on a four-color scale). Lava fountains initially rose as high as 50 m above the vent at the onset of the eruption (figure 526) but then declined to a more consistent 5-6 m height in the proceeding days. By 1930 that same day, lava had covered most of the crater floor (an area of about 1,200,000 m2) and the lava lake had a depth of 10 m. A higher-elevation island that formed during the initial phase of the December 2020 eruption remained exposed, appearing darker in images, along with a ring of older lava around the lava lake that was active prior to December 2022. Overnight during 5-6 January the lava fountains continued to rise 5 m high, and the lava effusion rate had slowed.

Figure (see Caption) Figure 525. A reference map of Kīlauea showing activity on 6 January 2023, based on measurements taken from the crater rim at approximately 0900. Multiple eruptive vents (orange color) are on the E floor of Halema’uma’u crater effusing into a lava lake (red color). Lava from these vents flowed laterally across the crater floorcovering an area of 880,000 m2. The full extent of new lava from this eruption (red and pink colors) is approximately 1,120,000 m2. An elevated part of the lake (yellow color) that is higher in elevation compared to the rest of the crater floor was not covered in lava flows. Courtesy of USGS, HVO.
Figure (see Caption) Figure 526. Image of the initial lava fountain at the onset of Kīlauea’s eruption on 5 January 2023 from a newly opened vent in the Halema’uma’u crater at 0449. This lava fountain rose as high as 50 m and ejected lava across the crater floor. Courtesy of USGS, HVO.

On 6 January at 0815 HVO lowered the VAL to Watch and the ACC to Orange due to the declining effusion rates. Sulfur dioxide emission rates ranged from 3,000-12,500 tonnes per day (t/d), the highest value of which was recorded on 6 January. Lava continued to erupt from the vents during 6-8 January, although the footprint of the active area had shrunk; a similar progression has been commonly observed during the early stages of recent eruptions at Halema’uma’u. On 9 January HVO reported one dominant lava fountain rising 6-7 m high in the E half of the crater. Lava flows built up the margins of the lake, causing the lake to be perched. On 10 January the eastern lava lake had an area of approximately 120,000 m2 that increased to 250,000 m2 by 17 January. During 13-31 January several small overflows occurred along the margins of the E lake. A smaller area of lava was active within the basin in the W half of the crater that had been the focus of activity during 2021-2022. On 19 January just after 0200 a small ooze-out was observed on the crater’s W edge.

Activity during February 2023. Activity continued in the E part of Halema’uma’u crater, as well as in a smaller basin in the W part of the 2021-2022 lava lake (figure 527). The E lava lake contained a single lava fountain and frequent overflows. HVO reported that during the morning of 1 February the large E lava lake began to cool and crust over in the center of the lake; two smaller areas of lava were observed on the N and S sides by the afternoon. The dominant lava fountain located in the S part of the lava lake paused for roughly 45 minutes at 2315 and resumed by midnight, rising 1-2 m. At 0100 on 2 February lava from the S part was effusing across the entire E lava lake area, covering the crusted over portion in the center of the lake and continuing across the majority of the previously measured 250,000 m2 by 0400. A small lava pond near the E lake produced an overflow around 0716 on 2 February. On 3 February some lava crust began to form against the N and E levees, which defined the 250,000 m2 eastern lava lake. The small S lava fountain remained active, rising 1-6 m high during 3-9 February; around 0400 on 5 February occasional bursts doubled the height of the lava fountain.

Figure (see Caption) Figure 527. An aerial visual and thermal image taken of Kīlauea’s Halema’uma’u crater on 2 February 2023. The largest lava lake is in the E part of the crater, although lava has also filled areas that were previously active in the W part of the crater. The colors of the map indicate temperature, with blues indicative of cooler temperatures and reds indicative of warmer temperatures. Courtesy of USGS, HVO.

A large breakout occurred overnight during 2100 on 4 February to 0900 on 5 February on the N part of the crater floor, equal to or slightly larger in size than the E lava lake. A second, smaller lava fountain appeared in the same area of the E lava lake between 0300 and 0700 on 5 February and was temporarily active. This large breakout continued until 7 February. A small, brief breakout was reported in the S of the E lava lake around midnight on 7 February. In the W lake, as well as the smaller lava pond in the central portion of the crater floor, contained several overflows during 7-10 February and intermittent fountaining. Activity at the S small lava pond and the small S lava fountain within the E lake declined during 9-10 February. The lava pond in the central portion of the crater floor had nearly continuous, expansive flows during 10-13 February; channels from the small central lava pond seemed to flow into the larger E lake. During 13-18 February a small lava fountain was observed in the small lava pond in the central portion of the crater floor. Continuous overflows persisted during this time.

Activity in the eastern and central lakes began to decline in the late afternoon of 17 February. By 18 February HVO reported that the lava effusions had significantly declined, and that the eastern and central lakes were no longer erupting. The W lake in the basin remained active but at a greatly reduced level that continued to decline. HVO reported that this decrease in activity is attributed to notable deflationary tilt that began early on the morning of 17 February and lasted until early 19 February. By 19 February the W lake was mostly crusted over although some weak lava flows remained, which continued through 28 February. The sulfur dioxide emission rates ranged 250-2,800 t/d, the highest value of which was recorded on 6 February.

Activity during March 2023. The summit eruption at Halema’uma’u crater continued at greatly reduced levels compared to the previous two months. The E and central vents stopped effusing lava, and the W lava lake remained active with weak lava flows; the lake was mostly crusted over, although slowly circulating lava intermittently overturned the crust. By 6 March the lava lake in the W basin had stopped because the entire surface was crusted over. The only apparent surface eruptive activity during 5-6 March was minor ooze-outs of lava onto the crater floor, which had stopped by 7 March. Several hornitos on the crater floor still glowed through 12 March according to overnight webcam images, but they did not erupt any lava. A small ooze-out of lava was observed just after 1830 in the W lava lake on 8 March, which diminished overnight. The sulfur dioxide emission rate ranged from 155-321 t/d on 21 March. The VAL was lowered to Advisory, and the ACC was lowered to Yellow (the second lowest on a four-color scale) on 23 March due to a pause in the eruption since 7 March.

Activity during April-May 2023. The eruption at Halema’uma’u crater was paused; no lava effusions were visible on the crater floor. Sulfur dioxide emission rates ranged from 75-185 t/d, the highest of which was measured on 22 April. During May and June summit seismicity was elevated compared to seismicity that preceded the activity during January.

Activity during June 2023. Earthquake activity and changes in the patterns of ground deformation beneath the summit began during the evening of 6 June. The data indicated magma movement toward the surface, prompting HVO to raise the VAL to Watch and the ACC to Orange. At about 0444 on 7 June incandescence in Halema’uma’u crater was visible in webcam images, indicating that a new eruption had begun. HVO raised the VAL to Warning and the ACC to Red (the highest color on a four-color scale). Lava flowed from fissures that had opened on the crater floor. Multiple minor lava fountains were active in the central E portion of the Halema’uma’u crater, and one vent opened on the W wall of the caldera (figure 528). The eruptive vent on the SW wall of the crater continued to effuse into the lava lake in the far SW part of the crater (figure 529). The largest lava fountain consistently rose 15 m high; during the early phase of the eruption, fountain bursts rose as high as 60 m. Lava flows inundated much of the crater floor and added about 6 m depth of new lava within a few hours, covering approximately 10,000 m2. By 0800 on 7 June lava filled the crater floor to a depth of about 10 m. During 0800-0900 the sulfur dioxide emission rate was about 65,000 t/d. Residents of Pahala (30 km downwind of the summit) reported minor deposits of fine, gritty ash and Pele’s hair. A small spatter cone had formed at the vent on the SW wall by midday, and lava from the cone was flowing into the active lava lake. Fountain heights had decreased from the onset of the eruption and were 4-9 m high by 1600, with occasional higher bursts. Inflation switched to deflation and summit earthquake activity greatly diminished shortly after the eruption onset.

Figure (see Caption) Figure 528. Photo of renewed activity at Kīlauea’s Halema’uma’u crater that began at 0444 on 7 June 2023. Lava flows cover the crater floor and there are several active source vents exhibiting lava fountaining. Courtesy of USGS, HVO.
Figure (see Caption) Figure 529. Photo of a lava fountain on the SW wall of Kīlauea’s Halema’uma’u crater on 7 June 2023. By midday a small cone structure had been built up. The fissure was intermittently obscured by gas-and-steam plumes. Courtesy of USGS, HVO.

At 0837 on 8 June HVO lowered the VAL to Watch and the ACC to Orange because the initial high effusion rates had declined, and no infrastructure was threatened. The surface of the lava lake had dropped by about 2 m, likely due to gas loss by the morning of 8 June. The drop left a wall of cooled lava around the margins of the crater floor. Lava fountain heights decreased during 8-9 June but continued to rise to 10 m high. Active lava and vents covered much of the W half of Halema’uma’u crater in a broad, horseshoe-shape around a central, uplifted area (figure 530). The preliminary average effusion rate for the first 24 hours of the eruption was about 150 cubic meters per second, though the estimate did not account for vesiculated lava and variations in crater floor topography. The effusion rate during the very earliest phases of the eruption appeared significantly higher than the previous three summit eruptions based on the rapid coverage of the entire crater floor. An active lava lake, also referred to as the “western lava lake” was centered within the uplifted area and was fed by a vent in the NE corner. Two small active lava lakes were located just SE from the W lava lake and in the E portion of the crater floor.

Figure (see Caption) Figure 530. A compilation of thermal images taken of Kīlauea’s Halema’uma’u crater on 7 June 2023 (top left), 8 June 2023 (top right), 12 June 2023 (bottom left), and 16 June 2023 (bottom right). The initial high effusion rates that consisted of numerous lava fountains and lava flows that covered the entire crater floor began to decline and stabilize. A smaller area of active lava was detected in the SW part of the crater by 12 June. The colors of the thermal map represent temperature, with blue colors indicative of cooler temperatures and red colors indicative of warmer temperatures. Courtesy of USGS, HVO.

During 8-9 June the lava in the central lava lake had a thickness of approximately 1.5 m, based on measurements from a laser rangefinder. During 9-12 June the height of the lava fountains decreased to 9 m high. HVO reported that the previously active lava lake in the E part of the crater appeared stagnant during 10-11 June. The surface of the W lake rose approximately 1 m overnight during 11-12 June, likely due to the construction of a levee around it. Only a few small fountains were active during 12-13 June; the extent of the active lava had retreated so that all activity was concentrated in the SW and central parts of Halema’uma’u crater. Intermittent spattering from the vent on the SW wall was visible in overnight webcam images during 13-18 June. On the morning of 14 June a weak lava effusion originated from near the western eruptive vent, but by 15 June there were no signs of continued activity. HVO reported that other eruptive vents in the SW lava lake had stopped during this time, following several days of waning activity; lava filled the lake by about 0.5 m. Lava circulation continued in the central lake and no active lava was reported in the northern or eastern parts of the crater. Around 0800 on 15 June the top of the SW wall spatter cone collapsed, which was followed by renewed and constant spattering from the top vent and a change in activity from the base vent; several new lava flows effused from the top of the cone, as well as from the pre-existing tube-fed flow from its base. Accumulation of lava on the floor resulted in a drop of the central basin relative to the crater floor, allowing several overflows from the SW lava lake to cascade into the basin during the night of 15 June into the morning of 16 June.

Renewed lava fountaining was reported at the eruptive vent on the SW side of the crater during 16-19 June, which effused lava into the far SW part of the crater. This activity was described as vigorous during midday on 16 June; a group of observatory geologists estimated that the lava was consistently ejected at least 10 m high, with some spatter ejected even higher and farther. Deposits from the fountain further heightened and widened the spatter cone built around the original eruptive vent in the lower section of the crater wall. Multiple lava flows from the base of the cone were fed into the SW lava lake and onto the southwestern-most block from the 2018 collapse within Halema’uma’u on 17 June (figure 531); by 18 June they focused into a single flow feeding into the SW lava lake. On the morning of 19 June a second lava flow from the base of the eruptive cone advanced into the SW lava lake.

Figure (see Caption) Figure 531. Nighttime photo of the upwelling area at the base of the spatter cone at Kīlauea’s Halema’uma’u crater on 17 June 2023. This upwelling feeds a lava flow that spreads out to the E of the spatter cone. Courtesy of M. Cappos, USGS.

Around 1600 on 19 June there was a rapid decline in lava fountaining and effusion at the eruptive vent on the SW side of the crater; vent activity had been vigorous up to that point (figure 532). Circulation in the lava lake also slowed, and the lava lake surface dropped by several meters. Overnight webcam images showed some previously eruptive lava still flowing onto the crater floor, which continued until those flows began to cool. By 21 June no lava was erupting in Halema’uma’u crater. Overnight webcam images during 29-30 June showed some incandescence from previously erupted lava flows as they continued to cool. Seismicity in the crater declined to low levels. Sulfur dioxide emission rates ranged 160-21,000 t/d throughout the month, the highest measurement of which was recorded on 8 June. On 30 June the VAL was lowered to Advisory (the second level on a four-level scale) and the ACC was lowered to Yellow. Gradual inflation was detected at summit tiltmeters during 19-30 June.

Figure (see Caption) Figure 532. Photos showing vigorous lava fountaining and lava flows at Kīlauea’s Halema’uma’u crater at the SW wall eruptive vent on 18 June 2023 at 1330 (left). The eruption stopped abruptly around 1600 on 19 June 2023 and no more lava effusions were visible, as seen from the SW wall eruptive vent at 1830 on 19 June 2023 (right). Courtesy of M. Patrick, USGS.

Activity during July-August 2023. During July, the eruption paused; no lava was erupting in Halema’uma’u crater. Nighttime webcam images showed some incandescence from previously erupted lava as it continued to cool on the crater floor. During the week of 14 August HVO reported that the rate in seismicity increased, with 467 earthquakes of Mw 3.2 and smaller occurring. Sulfur dioxide emission rates remained low, ranging from 75-86 t/d, the highest of which was recorded on 10 and 15 August. On 15 August beginning at 0730 and lasting for several hours, a swarm of approximately 50 earthquakes were detected at a depth of 2-3 km below the surface and about 2 km long directly S of Halema’uma’u crater. HVO reported that this was likely due to magma movement in the S caldera region. During 0130-0500 and 1700-2100 on 21 August two small earthquake swarms of approximately 20 and 25 earthquakes, respectively, occurred at the same location and at similar depths. Another swarm of 50 earthquakes were recorded during 0430-0830 on 23 August. Elevated seismicity continued in the S area through the end of the month.

Activity during September 2023. Elevated seismicity persisted in the S summit with occasional small, brief seismic swarms. Sulfur dioxide measurements were relatively low and were 70 t/d on 8 September. About 150 earthquakes occurred during 9-10 September, and tiltmeter and Global Positioning System (GPS) data showed inflation in the S portion of the crater.

At 0252 on 10 September HVO raised the VAL to Watch and the ACC to Orange due to increased earthquake activity and changes in ground deformation that indicated magma moving toward the surface. At 1515 the summit eruption resumed in the E part of the caldera based on field reports and webcam images. Fissures opened on the crater floor and produced multiple minor lava fountains and flows (figure 533). The VAL and ACC were raised to Warning and Red, respectively. Gas-and-steam plumes rose from the fissures and drifted downwind. A line of eruptive vents stretched approximately 1.4 km from the E part of the crater into the E wall of the down dropped block by 1900. The lava fountains at the onset of the eruption had an estimated 50 m height, which later rose 20-25 m high. Lava erupted from fissures on the down dropped block and expanded W toward Halema’uma’u crater. Data from a laser rangefinder recorded about 2.5 m thick of new lava added to the W part of the crater. Sulfur dioxide emissions were elevated in the eruptive area during 1600-1500 on 10 September, measuring at least 100,000 t/d.

Figure (see Caption) Figure 533. Photo of resumed lava fountain activity at Kīlauea’s Halema’uma’u crater on 10 September 2023. The main lava fountain rises approximately 50 m high and is on the E crater margin. Courtesy of USGS, HVO.

At 0810 on 11 September HVO lowered the VAL and ACC back to Watch and Orange due to the style of eruption and the fissure location had stabilized. The initial extremely high effusion rates had declined (but remained at high levels) and no infrastructure was threatened. An eruption plume, mainly comprised of sulfur dioxide and particulates, rose as high as 3 km altitude. Several lava fountains were active on the W side of the down dropped block during 11-15 September, while the easternmost vents on the down dropped block and the westernmost vents in the crater became inactive on 11 September (figure 534). The remaining vents spanned approximately 750 m and trended roughly E-W. The fed channelized lava effusions flowed N and W into Halema’uma’u. The E rim of the crater was buried by new lava flows; pahoehoe lava flows covered most of the crater floor except areas of higher elevation in the SW part of the crater. The W part of the crater filled about 5 m since the start of the eruption, according to data from a laser rangefinder during 11-12 September. Lava fountaining continued, rising as high as 15 m by the morning of 12 September. During the morning of 13 September active lava flows were moving on the N and E parts of the crater. The area N of the eruptive vents that had active lava on its surface became perched and was about 3 m higher than the surrounding ground surface. By the morning of 14 September active lava was flowing on the W part of the down dropped block and the NE parts of the crater. The distances of the active flows progressively decreased. Spatter had accumulated on the S (downwind) side of the vents, forming ramparts about 20 m high.

Figure (see Caption) Figure 534. Photo of a strong lava fountain in the E part of Kīlauea’s Halema’uma’u crater taken on the morning of 11 September 2023. The lava fountains rise as high as 10-15 m. Courtesy of J. Schmith, USGS.

Vigorous spattering was restricted to the westernmost large spatter cone with fountains rising 10-15 m high. Minor spattering occurred within the cone to the E of the main cone, but HVO noted that the fountains remained mostly below the rim of the cone. Lava continued to effuse from these cones and likely from several others as well, traveled N and W, confined to the W part of the down-dropped block and the NE parts of Halema’uma’u. Numerous ooze-outs of lava were visible over other parts of the crater floor at night. Laser range-finder measurements taken of the W part of the crater during 14-15 September showed that lava filled the crater by 10 m since the start of the eruption. Sulfur dioxide emissions remained elevated after the onset of the eruption, ranging 20,000-190,000 t/d during the eruption activity, the highest of which occurred on 10 September.

Field crews observed the eruptive activity on 15 September; they reported a notable decrease or stop in activity at several vents. Webcam images showed little to no fountaining since 0700 on 16 September, though intermittent spattering continued from the westernmost large cone throughout the night of 15-16 September. Thermal images showed that lava continued to flow onto the crater floor. On 16 September HVO reported that the eruption stopped around 1200 and that there was no observable activity anywhere overnight or on the morning of 17 September. HVO field crews reported that active lava was no longer flowing onto Halema’uma’u crater floor and was restricted to a ponded area N of the vents on the down dropped block. They reported that spattering stopped around 1115 on 16 September. Nighttime webcam images showed some incandescence on the crater floor as lava continued to cool. Field observations supported by geophysical data showed that eruptive tremor in the summit region decreased over 15-16 September and returned to pre-eruption levels by 1700 on 16 September. Sulfur dioxide emissions were measured at a rate of 800 t/d on 16 September while the eruption was waning, and 200 t/d on 17 September, which were markedly lower compared to measurements taken the previous week of 20,000-190,000 t/d.

Geologic Background. Kilauea overlaps the E flank of the massive Mauna Loa shield volcano in the island of Hawaii. Eruptions are prominent in Polynesian legends; written documentation since 1820 records frequent summit and flank lava flow eruptions interspersed with periods of long-term lava lake activity at Halemaumau crater in the summit caldera until 1924. The 3 x 5 km caldera was formed in several stages about 1,500 years ago and during the 18th century; eruptions have also originated from the lengthy East and Southwest rift zones, which extend to the ocean in both directions. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1,100 years old; 70% of the surface is younger than 600 years. The long-term eruption from the East rift zone between 1983 and 2018 produced lava flows covering more than 100 km2, destroyed hundreds of houses, and added new coastline.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI 96718, USA (URL: http://hvo.wr.usgs.gov/).


Tinakula (Solomon Islands) — December 2023 Citation iconCite this Report

Tinakula

Solomon Islands

10.386°S, 165.804°E; summit elev. 796 m

All times are local (unless otherwise noted)


Continued lava flows and thermal activity during June through November 2023

Tinakula is a remote 3.5 km-wide island in the Solomon Islands, located 640 km ESE of the capital, Honiara. The current eruption period began in December 2018 and has more recently been characterized by intermittent lava flows and thermal activity (BGVN 48:06). This report covers similar activity during June through November 2023 using satellite data.

During clear weather days (20 July, 23 September, 23 October, and 12 November), infrared satellite imagery showed lava flows that mainly affected the W side of the island and were sometimes accompanied by gas-and-steam emissions (figure 54). The flow appeared more intense during July and September compared to October and November. According to the MODVOLC thermal alerts, there were a total of eight anomalies detected on 19 and 21 July, 28 and 30 October, and 16 November. Infrared MODIS satellite data processed by MIROVA (Middle InfraRed Observation of Volcanic Activity) detected a small cluster of thermal activity occurring during late July, followed by two anomalies during August, two during September, five during October, and five during November (figure 55).

Figure (see Caption) Figure 54. Infrared (bands B12, B11, B4) satellite images showed lava flows mainly affecting the W flank of Tinakula on 20 July 2023 (top left), 23 September 2023 (top right), 23 October 2023 (bottom left), and 12 November 2023 (bottom right). Some gas-and-steam emissions accompanied this activity. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 55. Low-power thermal anomalies were sometimes detected at Tinakula during July through November 2023, as shown on this MIROVA plot (Log Radiative Power). A small cluster of thermal anomalies were detected during late July. Then, only two anomalies were detected during August, two during September, five during October, and five during November. Courtesy of MIROVA.

Geologic Background. The small 3.5-km-wide island of Tinakula is the exposed summit of a massive stratovolcano at the NW end of the Santa Cruz islands. It has a breached summit crater that extends from the summit to below sea level. Landslides enlarged this scarp in 1965, creating an embayment on the NW coast. The Mendana cone is located on the SE side. The dominantly andesitic volcano has frequently been observed in eruption since the era of Spanish exploration began in 1595. In about 1840, an explosive eruption apparently produced pyroclastic flows that swept all sides of the island, killing its inhabitants. Recorded eruptions have frequently originated from a cone constructed within the large breached crater. These have left the upper flanks and the steep apron of lava flows and volcaniclastic debris within the breach unvegetated.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Scientific Event Alert Network Bulletin - Volume 14, Number 06 (June 1989)

Aira (Japan)

Ash emission but no recorded explosions

Arenal (Costa Rica)

1987-89 explosive activity described

Asosan (Japan)

Ash ejections continue; new vent on crater floor

Atmospheric Effects (1980-1989) (Unknown)

No new volcanic injections into the stratosphere

Bagana (Papua New Guinea)

Explosions; S-flank lava flow remains active

Campi Flegrei (Italy)

Inflation and seismicity resume after 4-year hiatus

Colima (Mexico)

Summit morphology and seismicity described

Etna (Italy)

Summit explosive activity

Izu-Tobu (Japan)

Brief eruption follows two-week seismic swarm

Kilauea (United States)

Earthquake causes bench collapse; no effect on eruption

Langila (Papua New Guinea)

Activity subsides; landslides widen crater

Lascar (Chile)

Continued lava dome growth

Lengai, Ol Doinyo (Tanzania)

Bubbling lava at one vent

Long Valley (United States)

Earthquake swarm near caldera rim

Lonquimay (Chile)

Strong fluorine emission; one person and many animals killed

Manam (Papua New Guinea)

Fewer earthquakes; slow deflation continues

Masaya (Nicaragua)

Lava lake freezes; small explosions

Poas (Costa Rica)

Rains partly refill crater lake; intense gas emission

Rabaul (Papua New Guinea)

Activity remains at background levels

Ruiz, Nevado del (Colombia)

Sharp increase in seismicity precedes ash emission

San Cristobal (Nicaragua)

New fumaroles along fissure on SE spur of Casita

Santa Maria (Guatemala)

Lava production; explosions; hot avalanches

Suwanosejima (Japan)

Frequent explosions; ashfall on inhabited area

Telica (Nicaragua)

Fumaroles emit white plumes

Tokachidake (Japan)

Seismicity increases; no explosions

Ulawun (Papua New Guinea)

White vapor plume; seismicity decreases

Whakaari/White Island (New Zealand)

Explosions continue; craters enlarge



Aira (Japan) — June 1989 Citation iconCite this Report

Aira

Japan

31.5772°N, 130.6589°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Ash emission but no recorded explosions

No explosions . . . were recorded in May or June, but plume emission continued. The highest plume in May rose 1800 m on the 19th. Ash accumulation in May was 112 g/m2 at the observatory. No earthquake swarms were recorded by the nearest seismometer, 2.3 km NW of the crater.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim and built an island that was joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4,850 years ago, after which eruptions took place at Minamidake. Frequent eruptions since the 8th century have deposited ash on the city of Kagoshima, located across Kagoshima Bay only 8 km from the summit. The largest recorded eruption took place during 1471-76.

Information Contacts: JMA.


Arenal (Costa Rica) — June 1989 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


1987-89 explosive activity described

A cooperative study of Arenal by the OVSICORI and the SI, assisted by Earthwatch and Smithsonian Research Expedition volunteers, has completed eight periods of continuous day/night monitoring, generally of 10-14 days each, in the past 2 years. Most of the observations were made from the Arenal Volcanological and Biological Observatory, 2.7 km S of the summit, on the Marigold Genis macademia plantation. The following is excerpted from a report by W. Melson. A more detailed version will be published in Boletín de Vulcanología [see Further Reference, below].

"Over the past 2 years, Arenal's eruptions include the infrequent emission of lava flows and a variety of frequent pyroclastic eruptions that can be classified into three overlapping and sometimes sequential event types. Sounds were recorded at the Observatory using a standard cassette recorder and directional microphone. We also used a sound-level meter and a strip recorder to obtain time-sound intensity records of eruptions. Only rarely is Arenal's summit visible. Thus, we normally must classify eruptions by their sound characteristics (figure 20).

Figure (see Caption) Figure 20. Arenal eruption sound sequence at 0407 on 3 April 1989, beginning with an explosion (type 1) and grading through type 2 to type 3. Sound level intensities were made from a tape recording and are thus only relative. The predominance of low-frequency components in the sequence is shown by comparing the unfiltered sequence (solid line) with the low-frequency filtered (

1. Explosions are intense, brief, energy releases, usually

Figure (see Caption) Figure 21. Explosion plume and impacting blocks, photographed from the Observatory, 2.7 km S of the new summit crater, on 15 April 1989 about 25 seconds after the onset of the explosion at 0759. Plume drift and tephra fall are to the W, the normal direction of trade winds at Arenal.

2. Long-duration eruptions of blocks, bombs, and tephra may occur singly, or, more typically, in a series of varying loudness and ejecta volume. They are commonly associated with an intense, sometimes harmonic seismic event lasting >30 seconds. Pyroclastic flows associated with this type of eruption are of the fallback type, where tephra of low ejection velocity falls on the crater rim and coalesces into coherent flows. We have observed three pyroclastic flows over the past 2 years that descended >1 km from the crater; all were associated with a low-intensity sound signal but with a strong and sustained seismic signal. The sonic signatures are rich in low-frequency components (50 volume % crystals with compositionally evolved matrix glasses that are mainly dacitic.

3. A sequence of rhythmic gas emissions with or without ejection of small amounts of tephra. Frequencies are typically about 0.75-1.5 Hz between separate events. Within a given eruptive sequence, these are the highest-frequency, lowest sound-intensity, events.

"The frequency of eruptions varies widely with time. We have found no clear-cut cyclicity nor other obvious patterns in these data (figure 22). Over the past 2 years, the seven periods of close monitoring suggest a decline in the frequency of pyroclastic eruptions followed by a slight increase. During the April 1989 observations, the number of explosions (type 1) particularly increased. Small lava flows moving down the S slope also led to an increase in recorded rockslides. However, during the past 2 years, most of the lava flows have moved down the N slopes, many of them in the headwaters of the Río Tabacón; rockslides associated with their advance are not audible from the Observatory.

Figure (see Caption) Figure 22. Average number of eruptions at Arenal per hour during each 10-14-day period of observation, 28 April 1987-April 1989.

"The number of pyroclastic events decreased dramatically after about 15 April 1989, reaching the lowest level in the past 2 years. Only one explosion occurred during 5 days of close monitoring 30 June-4 July. During that time, intense lava fountaining in the summit crater was visible at night and at least two wide but thin flows were active on the N flank, in the headwaters of the Río Tabacón, with advancing flow fronts ~1,200 m below the new crater, now at ~1,600 m elevation. This is the second period of low pyroclastic activity associated with a high level of lava flow production. The first was recorded 9-19 February 1988, when an active lava flow had reached ~1,200 m elevation in the headwaters of the Río Tabacón. The rate of magma emission is far greater during times of strong lava emission than during even high levels of pyroclastic activity. It is likely that during periods of high rates of lava production, the conduit is essentially open, preventing formation of a plug by cooling and degassing, and hence the buildup of vapor pressure and attendant pyroclastic events.

"We find no consistent relationship between tremor levels and eruption frequency or type during our last two periods of close monitoring, except for Type 2 eruptions, which were most common at high tremor levels during both periods. Notably, explosions (Type 1 eruptions) occurred at minimal levels during tremor-free periods during the February expedition, but at maximum frequency during periods of maximum tremor in February."

The ICE reported that seismicity declined to a moderate level in June, with a mean of only three recorded volcanic earthquakes/day. However, there was an increase in the number of harmonic tremor episodes, related to lava degassing.

Further Reference. Melson, W., 1989, Las erupciones del Volcán Arenal, 1 al 13 de Abril de 1989: Boletín de Vulcanología (Univ Nacional, Costa Rica), no. 20, p. 15-22 (in Spanish).

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: W. Melson, SI; V. Barboza, J. Barquero, E. Fernández, and R. Saenz, OVSICORI; R. Barquero and G. Alvarado, ICE.


Asosan (Japan) — June 1989 Citation iconCite this Report

Asosan

Japan

32.8849°N, 131.085°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Ash ejections continue; new vent on crater floor

After a small ash ejection 5 April, tephra emission continued at a relatively high rate in May and June. On 8 May at 1000, a vent (1 m in diameter) on the Naka-dake crater floor ejected ash to ~10 m. At 1132, an M 3.3 shock (3 on the JMA Intensity Scale) occurred beneath the crater and was felt at AWS. Five (felt) aftershocks were recorded on 8 May (at 1120, 1147, 1216, 1417, and 2039), and 1 (not felt) was recorded the next day (at 0057) by a seismograph 0.8 km W of the crater. A 1-km area around the crater was closed to tourists by the Aso Disaster Authority. During a field survey at 1910, no ash ejection was observed.

On 16 May, ash rose ~100 m above the crater rim at 0810, and ~200 m at 1030. About 20% of the crater floor was covered by a rainwater pool, from which mud and water were continuously ejected to 3 m. During a field survey on 20 May at 1150, a strong rumbling noise was audible, but no ash ejection was seen.

Ash rose ~200 m above the crater rim on 22 May from 0740 to 0800, and 20 m above the crater floor at 0820. Activity declined, stopping by 1000. Two days later at 1000, ash was ejected to 200 m above the crater rim, and 5 g/m2 of ash was deposited at AWS. Ash had not fallen there since 28 June 1985. Red glow at the vent and in cracks on the crater floor was observed at night through May. During the night of 27 May, red glow emanated from 40-50% of the crater floor. On 28 May, ash rose about 50 m from the N portion of the vent.

In June, a vent on the NW floor of Crater 1 emitted an ash-laden steam plume a few hundred meters above the crater rim. During a 6 June field survey, the vent had enlarged and was emitting a 300-m ash plume. Flames from burning volcanic gases were occasionally observed rising 3-4 m above the crater floor during night visits. Ash accumulation at AWS was 9 g/m2 on the 7th, and 2 g/m2 on the 8th. The Crater 1 vent was buried by ash during rainfall 8-9 June. A new vent (named "891") about 18 m in diameter opened in the center of the crater floor on 10 June, and was the largest new vent since "853" formed 6 May 1985. The highest plumes of the month reached 1,000 m above the crater rim on 7 and 20 June.

Isolated volcanic tremor remained high (200-400 events/day) in May and June (figure 11) with a total of 5,760 events in May and 6,752 in June (compared to 5,821 in April). The amplitude of continuous tremor was generally unchanged in May but increased slightly in June.

Figure (see Caption) Figure 11. Daily number of isolated tremor episodes at Aso, January-June 1989. Courtesy of JMA.

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: JMA.


Atmospheric Effects (1980-1989) (Unknown) — June 1989 Citation iconCite this Report

Atmospheric Effects (1980-1989)

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


No new volcanic injections into the stratosphere

Lidar data from Northern Hemisphere stations showed no evidence of new injections of volcanic material into the stratosphere (figure 67). A polar stratospheric cloud, with strongest backscatter at about 23 km altitude, was detected from Obninsk, USSR on 1 February.

Figure with caption Figure 67. Lidar data from various locations, showing altitudes of aerosol layers during January-June 1989. Note that some layers have multiple peaks. Backscattering ratios from Obninsk and Teplocklychenka are for the Nd-YAG wavelength of 0.53 µm; all others are for the ruby wavelength of 0.69 µm. Integrated values show total backscatter, expressed in steradians-1, integrated over 500-m intervals from 15-30 km at Obninsk and Teplocluchenka, and 300-m intervals from 16-33 km at Mauna Loa.

Geologic Background. The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found here.

Information Contacts: Sergei Khmelevtsov, Institute of Experimental Meteorology, Lenin St. 82, Obninsk, Kaluga Reg., USSR; Thomas DeFoor, Mauna Loa Observatory, P. O. Box 275, Hilo, HI 96720 USA; Horst Jäger, Fraunhofer-Institut für Atmosphärische Umweltforschung, Kreuzeckbahnstrasse 19, D-8100 Garmisch-Partenkirchen, West Germany.


Bagana (Papua New Guinea) — June 1989 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Explosions; S-flank lava flow remains active

"Bagana is currently the most active volcano in Papua New Guinea. Unfortunately, civil disturbance on Bougainville Island Island prevents proper monitoring. The observer reported fluctuating night glows from the summit and from the new (blocky) lava flow on the S flank. Incandescent rockfalls were frequent on all flanks, accompanied by rumbling sounds. Explosions and incandescent projections over the crater were reported 10 and 12-15 June. The thick, white to brown plume . . . produced occasional light ashfalls downwind."

Geologic Background. Bagana volcano, in a remote portion of central Bougainville Island, is frequently active. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although occasional explosive activity produces pyroclastic flows. Lava flows with tongue-shaped lobes up to 50 m thick and prominent levees descend the flanks on all sides.

Information Contacts: P. de Saint-Ours and B. Talai, RVO.


Campi Flegrei (Italy) — June 1989 Citation iconCite this Report

Campi Flegrei

Italy

40.827°N, 14.139°E; summit elev. 458 m

All times are local (unless otherwise noted)


Inflation and seismicity resume after 4-year hiatus

From the beginning of 1985 until the end of 1988, activity . . . was characterized by a generally deflationary trend, but uplift then resumed and a maximum uplift of 7.2 cm was measured in June.

The surveillance network operated by OV consists of eight seismic stations, five tide gauges (four in the Gulf of Pozzuoli, one in Naples for comparison), and four electronic tiltmeters (figure 16). Periodic levelling measurements are made on an extended line and distance measurements are performed twice a year. Radon content and water temperature are monitored in four water wells. Periodic measurements of S/C ratio and water vapor content of fumarolic emissions are made at Solfatara Crater.

Figure (see Caption) Figure 16. Levelling network and tide gauges at Campi Flegrei.

Deformation. Vertical motion recorded by the tide gauge in Pozzuoli harbor showed steady deflation until mid-1987 (figure 15). The record then became more oscillatory and some uplift episodes were observed in the general deflationary trend. Figure 15 also shows vertical motion recorded on the levelling line at benchmark 25 (the site of maximum vertical deformation). A steady trend with an average rate of -12.7 mm/month was observed until mid-1987. From then until the beginning of 1989 a decrease in the subsidence rate was observed, and a net uplift of 7.2 cm was measured January-June 1989. Since the end of 1988, four tilt stations have been installed at Campi Flegrei. They are 2-component horizontal pendulum systems with resolutions of 6.9 and 14.5x10-9 rad for the radial and tangential components, respectively. One tiltmeter is in Baia Castle (on the W side of the bay), the other three along an abandoned tunnel roughly 2.5-3.5 km N of Pozzuoli pier. Different trends were observed December 1987-June 1989, showing complex local movement still not fully understood. Two periods of inclination toward the SE were observed, 10 December 1987-12 February 1988 and 22 March-7 April 1988, compatible with deflation of the area of maximum vertical deformation. In other periods the trends were less compatible with this feature, as if the source of deformation had changed its center. Particularly notable was the rotation of the vector after March 1989, indicating an inclination toward the ENE.

Seismicity. No seismic events were observed from 1985 through the beginning of 1987. Since April 1987, several swarms have been observed (figures 17 and 18): 10 April 1987, 50 events, maximum M 2, W sector of Solfatara; 4 November 1987, 26 events, maximum M 1.1, E sector of Solfatara; March 1989, 15 events, Solfatara area; 3 April 1989, 82 events, maximum M 2.2, Solfatara; May 1989, 33 events, maximum M 2.2, Solfatara; 1-13 June 1989, 45 events, maximum M 2.7. Most notable was the occurrence of several low-frequency events, the first time that such events have been observed. They were generally shallow and on the E border of Solfatara crater.

Figure (see Caption) Figure 17. Seismic stations (large squares) and March-June 1989 earthquake epicenters (diamonds) in the Campi Flegrei area.
Figure (see Caption) Figure 18. Number of local earthquakes recorded in the Campi Flegrei area, January 1987-June 1989.

Chemistry. The Costagliola well near Monte Nuovo has shown a clear increase in average radon content superimposed on annual variations. A similar trend is apparent for radon contents measured in water wells in different parts of Campi Flegrei. Both the S/C ratio and the water vapor content of a fumarole at Solfatara showed a steady increase starting in mid-1986.

Geologists noted that "All of these data seem to indicate a progressive change in the style of activity . . . , and it seems that the steady deflationary trend has come to an end. We still do not know if the picture we have described is the precursor of a new prolonged uplift phase, or if it represents the restoration of a trend similar to that after the 1970-72 uplift episode, characterized by oscillatory activity until 1982. It is notable, however, that Campi Flegrei is displaying in each new episode of unrest a new phenomenon that was not observed in the previous one. In 1970-72 there was a major uplift without significant seismic activity, and in 1982-84 there was uplift accompanied by seismic activity. In this case, although we still do not know if a sustained uplift will occur, there is the occurrence of low-frequency seismic events."

Further Reference. Tedesco, D., Bottiglieri, L., and Pece,R., 1988, 10th of April 1987 seismic swarm; correlation with geochemical parameters in Campi Flegrei Caldera (southern Italy): Geophysical Research Letters, v. 15, p. 661-664.

Geologic Background. Campi Flegrei is a 13-km-wide caldera that encompasses part of Naples and extends to the south beneath the Gulf of Pozzuoli. Episodes of significant uplift and subsidence within the dominantly trachytic caldera have occurred since Roman times. The earliest known eruptive products are dated 47,000 years BP. The caldera formed following two large explosive eruptions, the massive Campanian ignimbrite about 36,000 BP, and the over 40 km3 Neapolitan Yellow Tuff (NYT) about 15,000 BP. Following eruption of the NYT a large number of eruptions originated from widely scattered subaerial and submarine vents. Most activity occurred during three intervals: 15,000-9,500, 8,600-8,200, and 4,800-3,800 BP. The latest eruption were in 1158 CE at Solfatara and activity in 1538 CE that formed the Monte Nuovo cinder cone.

Information Contacts: G. Luongo, C. Del Gaudio, F. Obrizzo, G. Ricciardi, and D. Tedesco, OV; R. Pece and R. Scandone, Univ di Napoli.


Colima (Mexico) — June 1989 Citation iconCite this Report

Colima

Mexico

19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)


Summit morphology and seismicity described

When Julián Flores Díaz and José Angel Cortés visited Colima 13-14 and 25-26 May, the summit area consisted of a dome on the N side, a semicircular depression on the SE side, and an irregular platform (figure 3). Fumaroles were concentrated in three areas on the dome (figure 4). On 14 May, gas emission, dominated by SO2, had increased and the gas was light-brown in color, but it had substantially diminished by 25-26 May.

Figure (see Caption) Figure 3. Sketch of Colima's summit, May 1989. Courtesy of J.F. Díaz.
Figure (see Caption) Figure 4. Map (top) and cross-section (bottom) of Colima's summit area, showing positions of the dome, fumarolic activity, and the summit depression. Courtesy of J.F. Díaz.

The depression that formed 2 July [1987] after a phreatic explosion and avalanche from the summit was 100-150 in diameter and 30-40 m deep (from the high point in the middle of the summit area) [but see 15:12]. The area was warm but fumaroles observed during a November 1988 overflight had disappeared. Altered fragmented rocks and sand were present on the depression's floor. The remainder of the summit area, an irregular platform, was composed of blocks of many shapes and sizes. Warm gases containing SO2 were emitted, and blocks were altered and covered with sulfur. On the SW flank, a talus slope of scoria and sand had developed. Thermometric equipment was not available to the team.

A group from CICBAS, Universidad de Colima (Guillermo Castellanos, Carlos Ariel Ramírez-Vázquez, and Juan Reyes-Gómez) visited the volcano 23-25 May. Average temperatures adjacent to fumaroles were 167°C, a decrease from 216°C measured in May 1988. Emissions were dense, dark-gray in color, and had a pH of 2-3. New fractures were observed near the fumaroles. Rockfall avalanches, persisting for much of the past year, were last seen 14-15 April on the W flank (observed 20 km from the volcano). Three avalanche paths were visible, on the W, E, and N flanks.

Two digital high-gain 3-component seismographs and one analog single-component seismic station were installed near the volcano (figure 5). The seismographs collected data continuously for about 40 hours and recorded an average of 30 events/day. Preliminary analysis of the data by Reyes and Ramírez showed that most of the activity was tectonic with long separation between P- and S-wave arrivals. On 1, 14, and 22 June, the operators of the Red Sismologica Telemetrizada de Colima (a network that will consist of eight short-period, vertical seismograph stations; figure 6) installed three telemetric stations. Data are telemetered to CICBAS in the city of Colima. No deformation data are available, but changes in Colima's shape are visible and geodetic studies would be welcomed.

Figure (see Caption) Figure 5. Location of digital high-gain 3-component seismographs (SS2, SS3) and an analog single-component (SS1) seismograph installed near Colima. Courtesy of G. Castellanos.
Figure (see Caption) Figure 6. Distribution of instruments for the planned Colima Telemetric Seismological Network (RESCO). Courtesy of G. Castellanos.

Geologic Background. The Colima complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the high point of the complex) on the north and the historically active Volcán de Colima at the south. A group of late-Pleistocene cinder cones is located on the floor of the Colima graben west and east of the complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide scarp, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, producing thick debris-avalanche deposits on three sides of the complex. Frequent recorded eruptions date back to the 16th century. Occasional major explosive eruptions have destroyed the summit (most recently in 1913) and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: Julián Flores-Díaz, Instituto de Geografía y Estadística, Univ de Guadalajara; Guillermo Castellanos, Gilberto Ornelas-Arciniega, C. Ariel Ramírez-Vázquez, G.A. Reyes-Dávila, and Hector Tamez, CICBAS, Universidad de Colima.


Etna (Italy) — June 1989 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3357 m

All times are local (unless otherwise noted)


Summit explosive activity

The following, from IIV, describes activity May-June 1989.

Summit activity. (S. Calvari, M. Coltelli, and M. Pompilio.) Vigorous activity at the two central crater vents (Bocca Nuova and La Voragine) continued in May. On the 4th, La Voragine ejected bombs and lapilli that fell as far as the rim of Cratere del Piano (roughly 300 m away), choking the crater bottom with tephra. In late May, explosive activity diminished and continued at a normal level throughout June. Discontinuous effusive activity was observed in May within Bocca Nuova, and bombs accumulated in the crater to ~ 100 m from the rim. From late May through most of June, many bombs, some of considerable size, fell outside the crater. This activity suddenly stopped in late June, when the small cone inside the crater collapsed, and was succeeded by sporadic scoria ejection from two vents. Mild Strombolian activity at Southeast Crater in May slightly eroded the scoria cone that had formed in April (14:05). Strombolian activity continued at a medium-low level in June, with occasional pulses ejecting small numbers of bombs over wide areas. The vent on Northeast Crater's floor continued to degas through May and June.

Seismicity. (V. Longo, A. Montaldo, M. Patané, E. Privitera, and S. Spampinato.) The frequency of tectonic seismicity in May and June was generally similar to that of the past year, with occasional seismic swarms. During the last two days in May, low-energy events were detected ~ 10 km below the volcano's central area. A seismic swarm, recorded 19-24 June on the W flank, was 13-15 km deep and included the largest events (M 3.1-3.2) of the month. One of the earthquakes (on the 24th at 0230) was felt by area residents. On 28 June, a small mainshock-aftershock sequence (11 events) was recorded, with the largest earthquake located near the S portion of the Valle del Bove at <5 km depth. From late June to 1 July, events with M 2.5-3.0 occurred 10-15 km beneath the summit. No significant variations in the volcanic tremor pattern were observed during May or June.

Ground deformation. (O. Campisi, G. Falzone, B. Puglisi, G. Puglisi, and R. Velardita.) Ground deformation measured at the Serra Pizzuta Calvarina borehole tilt station showed no significant variation in May or June. Measurements in May using the S trilateration network showed little deformation since l June 1988.

SO2 emissions. (T. Caltabiano and R. Romano.) The average value of SO2 flux in May 1989 was the lowest of the past year, but moderately high values returned in June. SO2 flux was measured 3, ll, 17, and 24 May and 1, 7, 15, 22, and 29 June. Emissions fluctuated in May, with high values on the 3rd and 17th and low values on the 11th and 24th, reaching only 2,500 t/d on the latter date.

Tephra composition. (S. Calvari, M. Coltelli, and M. Pompilio.) January 1989 activity produced hawaiite tephra, with petrography and chemical composition similar to tephra from the previous year. Tephra emitted from Southeast Crater during 1988 had relatively more evolved compositions, but early 1989 tephra was less differentiated than material emitted by the other summit craters.

Geologic Background. Mount Etna, towering above Catania on the island of Sicily, has one of the world's longest documented records of volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: R. Santacroce, IIV.


Izu-Tobu (Japan) — June 1989 Citation iconCite this Report

Izu-Tobu

Japan

34.9°N, 139.098°E; summit elev. 1406 m

All times are local (unless otherwise noted)


Brief eruption follows two-week seismic swarm

After a 2-week earthquake swarm, a brief submarine eruption built a small cone on the sea bottom a few kilometers off the coast of the Izu Peninsula. [See 14:7 for a more detailed report from JMA.]

Earthquakes began 30 June, and by 9 July, more than 19,000 had been recorded. Many were at depths of 4-5 km in a zone roughly 3-7 km NE of Ito, a city of 72,000 about 100 km SW of Tokyo and 40 km NW of Oshima volcano. The swarm included a pair of strong events that occurred within a minute of each other on 9 July at 1109; the first was of M 5.5, the second slightly weaker. At least 18 people were injured by these shocks, and landslides were reported at 16 sites. A year earlier, more than 17,000 events centered farther from the coast were recorded during a month of seismicity that began in late July 1988. Previous swarms had occurred SE of the 1989 epicentral area in 1984 and 1985, and numerous other 1984-86 events occurred in a zone separating the 1984 and 1985 swarm epicenters.

The eruption began on 13 July. A JMA seismometer started to record microseismicity at 1829. The captain of the RV Takuyo (Hydrographic Dept, JMSA), carrying out a bathymetric survey in the area, reported hearing an explosion sound from the sea bottom and a 30-second vibration at 1833. One minute later, the JMA seismometer was saturated by seismic events and remained saturated for the next 10 minutes or more. At 1840, the crew of the RV Takuyo saw the sea surface dome upward about 500 m from the vessel, then a gray-black plume rose from the same area. Five more plumes, ~30 m high and 100 m across, were observed in the next 5 minutes. The ejection of each plume was accompanied by violent shaking and vibration of the ship. No more eruptive activity was reported. Seismographs were again saturated at 1902, and another seismic sequence, of different frequency, was recorded at 1907. Another 15 minutes of volcanic microseismicity began at 2130. No detailed reports were available for the next few days, but strong seismicity stopped after 16 July.

After the eruption, a bathymetric survey using an unmanned vessel detected a new cone in about 100 m of water at the eruption site. The cone was about 450 m wide, with a summit crater 200 m in diameter, but rose only ~10 m above the sea bottom. The eruption occurred in a region of Recent monogenetic volcanism that has built numerous subaerial and submarine cones (figure 1). One nearby pyroclastic flow (Kawagodiara) on the Izu Peninsula has been dated at about 3,250 BP. No ages are available for the submarine edifices, although very fresh pillow lavas were found downslope during work in a submersible.

Figure (see Caption) Figure 1. Topographic and bathymetric map of the E-central Izu Peninsula and nearby waters, after Ishii and others (1988). The 13 July eruption site is labeled with a star. Young submarine cones are labeled with letters and open triangles. Pillow lavas were found in the outlined area labeled D173, 174 Tanaka.

Reference. Ishii, T., Watanabe, M., Ishizuka, T., Ohta, S., Sakai, H., Haramura, H., Shikazono, N., Togashi, K., Minai, Y., Tominaga, T., Chinzei, K., Horikoshi, M., and Matsumoto, E., 1988, Geological Study with the "Shinkai 2000" in the West Sagami Bay including Calyptogena Colonies; Technical Reports of the Japan Marine Science and Technology Center, 1988, p. 189-218.

Geologic Background. The Izu-Tobu volcano group (Higashi-Izu volcano group) is scattered over a broad, plateau-like area of more than 400 km2 on the E side of the Izu Peninsula. Construction of several stratovolcanoes continued throughout much of the Pleistocene and overlapped with growth of smaller monogenetic volcanoes beginning about 300,000 years ago. About 70 subaerial monogenetic volcanoes formed during the last 140,000 years, and chemically similar submarine cones are located offshore. These volcanoes are located on a basement of late-Tertiary volcanic rocks and related sediments and on the flanks of three Quaternary stratovolcanoes: Amagi, Tenshi, and Usami. Some eruptive vents are controlled by fissure systems trending NW-SE or NE-SW. Thirteen eruptive episodes have been documented during the past 32,000 years. Kawagodaira maar produced pyroclastic flows during the largest Holocene eruption about 3,000 years ago. The latest eruption occurred in 1989, when a small submarine crater was formed NE of Ito City.

Information Contacts: T. Ishii, SI; S. Aramaki, Earthquake Research Institute, Univ of Tokyo; JMA; Hydrographic Dept, JMSA; Asahi Shinbun News, Tokyo.


Kilauea (United States) — June 1989 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Earthquake causes bench collapse; no effect on eruption

A M 6.1 S-flank earthquake on 25 June triggered collapse of the coastal lava bench, but apparently had little effect on the continuing eruption. Lava flows that emerged from the tube system on the lower flanks reached the sea at two new sites, after destroying structures near the coast.

Surface lava flows that broke from the W tube system in April and destroyed houses . . . in May advanced S towards the coast in June. Lower elevation lava breakouts from the W tube, which had moved SW around the Royal Gardens kipuka in May, also continued to advance. Lava flows moving W along the Chain of Craters road destroyed a maintenance area on 21 June. The two flow fronts merged the next day, destroying the National Park Service Wahaula Visitor Center (figure 61). By 25 June, the flow front had advanced another 100 m W along Chain of Craters road. A lava front that had moved to within 30 m of the coast in mid-May, stagnated, reactivated in mid-June, and entered the sea on 22 June in a new area at Kupapau Point. The Kupapau flow (intermittently active) had stagnated by 30 June, but resumed activity in early July. On 23 June, lava began entering the ocean at Poupou (just E of the Wahaula residential area). Lava also continued to enter the ocean E of Kupapau Point.

Figure (see Caption) Figure 61. Map of the coastal area affected by the recent activity of Kupaianaha, as of September 1989. Dashed lines indicate roads buried in June and July; filled squares represent structures destroyed during the same period (VC = Visitor Center). Lava contacts from lower Royal Gardens subdivision to the Wahaula area are preliminary. The four "entries" are places where the lava was entering the ocean in July. Lava contacts from lower Royal Gardens subdivision to the Wahaula area are preliminary. Courtesy of Christina Heliker.

The M 6.1 earthquake on 25 June at 1727 was centered on the SE coast, W of Kalapana, at 19.36°N, 155.08°W, 9 km depth (figure 62). Preliminary assessment of the data suggests that the main shock caused seaward movement of Kīlauea's S flank along a subhorizontal plane at the bottom of the volcanic pile near the ocean floor. Aftershock focal depths indicate rupture from near the surface to slightly more than 10 km depth. The motion was similar to the M 7.2 earthquake that struck the same region on 29 November 1975 and most of the strong S flank earthquakes (M>5.5) commonly occur in the mainshock area. Significant earthquakes also were located in this area in March 1954 and September 1979.

Figure (see Caption) Figure 62. Locations of the M 6.1 earthquake and associated aftershocks, 25 June-6 July, 1989. Courtesy of R. Koyanagi.

The earthquake caused almost total collapse of the seacoast lava bench, but apparently did not significantly disrupt the lava tube system. The next morning, geologists noted that the level of the Kupaianaha lava pond had dropped by ~1 m. Lava flow activity at the coast declined 27-28 June, accompanied by a slight decrease in tremor 26-28 June. On the 28th, tremor near the vent gradually rose to normal as the level of Kupaianaha lava pond rose ~1.5 m. By the next day, activity at the coast returned to the pre-earthquake level. An active lava pond in Pu`u `O`o was visible on 28 June.

During the last few days of June, tremor amplitude was relatively steady beneath the East rift zone near Pu`u `O`o and Kupaianaha. Low-amplitude tremor signals associated with ocean front activity near Kupapau Point also resumed. The 25 June earthquake saturated seismographs, masking signals from the associated lava bench collapse. The number of shallow microearthquakes was about average in the summit region and above average in the East rift zone. Intermediate-depth long-period events in the summit region continued at a moderate rate . . . .

Geologic Background. Kilauea overlaps the E flank of the massive Mauna Loa shield volcano in the island of Hawaii. Eruptions are prominent in Polynesian legends; written documentation since 1820 records frequent summit and flank lava flow eruptions interspersed with periods of long-term lava lake activity at Halemaumau crater in the summit caldera until 1924. The 3 x 5 km caldera was formed in several stages about 1,500 years ago and during the 18th century; eruptions have also originated from the lengthy East and Southwest rift zones, which extend to the ocean in both directions. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1,100 years old; 70% of the surface is younger than 600 years. The long-term eruption from the East rift zone between 1983 and 2018 produced lava flows covering more than 100 km2, destroyed hundreds of houses, and added new coastline.

Information Contacts: C. Heliker and R. Koyanagi, HVO.


Langila (Papua New Guinea) — June 1989 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Activity subsides; landslides widen crater

"Langila returned to very subdued activity in June. Crater 2 released moderate white-grey emissions, accompanied by occasional rumbling noises. Explosions were heard on 1, 2, 6, 24, and 30 June, and a weak red glow was seen above this crater on the night of the 14th.

"When the volcano was inspected on 10 June, Crater 2 had enlarged and deepened since the last field inspection in October 1985 (10:10). The flat, [40]-m-wide, annular platform that formerly surrounded the crater had caved in, resulting in an estimated [130]-m wide crater with a narrow ledge. The crater now has a composite funnel shape produced by the sinking of the former magma plug in two successive steps. The top of the active plug (responsible for the occasional night glow) is now at ~1,045 m altitude (the crater rim is at 1,100-1,120 m) and clogged by debris from sub-continuous rocksliding.

"Crater 3 . . . remains inactive. The crater is sealed at ~900 m asl by a flat muddy floor from wash-outs of the walls (the crater rim is at 1,045-1,080 m altitude). The source of white vapour occasionally observed from the observatory is an active fumarole at the base of the sub-vertical S wall."

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: P. de Saint-Ours and B. Talai, RVO.


Lascar (Chile) — June 1989 Citation iconCite this Report

Lascar

Chile

23.37°S, 67.73°W; summit elev. 5592 m

All times are local (unless otherwise noted)


Continued lava dome growth

A lava dome has been growing in the active summit crater, site of occasional tephra emission since 1986. Observations and pictures from Stephen Foot (MINSAL, Ltda.), who climbed the volcano on 18 April 1989, confirm Paul King's February 1989 report of a steaming lava dome (14:3). The photographs clearly show a dome growing in the W crater of the eastern of Lascar's two andesite cones (figure 1). Until early 1986, this crater was empty, with only solfataric and fumarolic activity. Foot's photographs show that by April 1989 the dome had reached an estimated 200 m in diameter and 50 m height. The dome had steep sides and a blocky, steamy, dark brown surface. Steam emissions of different intensities were still being continuously released in late June, and glow was visible from Toconao (~30 km away) on one occasion.

Figure (see Caption) Figure 1. Photograph of the growing lava dome in Lascar's summit crater, 18 April 1989, by Stephen Foot. Courtesy of M. Gardeweg.

Geologic Background. Láscar is the most active volcano of the northern Chilean Andes. The andesitic-to-dacitic stratovolcano contains six overlapping summit craters. Prominent lava flows descend its NW flanks. An older, higher stratovolcano 5 km E, Volcán Aguas Calientes, displays a well-developed summit crater and a probable Holocene lava flow near its summit (de Silva and Francis, 1991). Láscar consists of two major edifices; activity began at the eastern volcano and then shifted to the western cone. The largest eruption took place about 26,500 years ago, and following the eruption of the Tumbres scoria flow about 9000 years ago, activity shifted back to the eastern edifice, where three overlapping craters were formed. Frequent small-to-moderate explosive eruptions have been recorded since the mid-19th century, along with periodic larger eruptions that produced ashfall hundreds of kilometers away. The largest historical eruption took place in 1993, producing pyroclastic flows to 8.5 km NW of the summit and ashfall in Buenos Aires.

Information Contacts: M. Gardeweg, SERNAGEOMIN, Santiago; S. Foot, MINSAL Ltda., Santiago.


Ol Doinyo Lengai (Tanzania) — June 1989 Citation iconCite this Report

Ol Doinyo Lengai

Tanzania

2.764°S, 35.914°E; summit elev. 2962 m

All times are local (unless otherwise noted)


Bubbling lava at one vent

On 12 January, when Michael Peterson led a field party to the volcano's summit, no liquid lava was visible in the crater. Steam was emitted from vents T4/T7, T8, and T9, as well as from areas along the saddle. Intermittent rumbling sounds originated from near H4 (W of T5). During an overflight in late May, Steve Cunningham witnessed bubbling lava on the SE side of the crater, near T10.

Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

Information Contacts: C. Nyamweru, Kenyatta Univ; Thad Peterson, Arusha, Tanzania.


Long Valley (United States) — June 1989 Citation iconCite this Report

Long Valley

United States

37.7°N, 118.87°W; summit elev. 3390 m

All times are local (unless otherwise noted)


Earthquake swarm near caldera rim

An earthquake swarm began 4 May under the SSW flank of Mammoth Mountain, just outside the SW caldera rim (figure 7). The number of events increased through early June, with 44 recorded on the 11th. Seismicity was continuing as of 10 July, and totaled 712 recorded events (magnitude greater than or equal to 0.3) (figure 8). Most were small (M <1); the largest, M 3.1, occurred on 21 June at 0058. As the swarm continued, most of the events remained centered beneath the SW flank of Mammoth Mountain, on strike with the Inyo chain, at depths ranging from 2 to 9 km. Focal depths during previous swarms have generally been around 6 km. Most of the shallower earthquakes showed less high-frequency energy in their spectra, probably because of attenuation effects, but had clear S-waves and were therefore not considered low-frequency events. However, seven low-frequency events were recorded on 11 June. Several mixed-frequency events had high-frequency P and S-waves superimposed on 1-2-Hz waves, suggesting possible resonance of a fluid-filled cavity. Possible spasmodic tremor was recorded for 2-3 minutes on 2 and 26 June, and 6 July.

Figure (see Caption) Figure 7. Representative epicenters (26-31 May) of the May-July 1989 earthquake swarm at Long Valley. Mammoth Mountain is shown by the solid triangle. Events S of the caldera are in the Sierra Nevada. Courtesy of Stephen McNutt.
Figure (see Caption) Figure 8. Number of local earthquakes per day recorded by the California Division of Mines and Geology NEWT system, 5 May-30 September. Courtesy of Stephen McNutt.

The Devils Postpile dilatometer, near the W foot of Mammoth Mountain, recorded 0.05 microstrain of deformation during the swarm's most active day, 11 June. No significant changes to existing trends were reported from other instruments a few kilometers away.

The May-July swarm is the largest near Mammoth Mountain in 3.5 years; a small swarm occurred there in January 1987. During the past 4 years, virtually all of the other seismic swarms in the Mammoth Lakes area have lasted only a few days. The largest recent swarm, 393 recorded events in the caldera's E moat, began 22 November 1988 and ended after 3 days.

Geologic Background. The large 17 x 32 km Long Valley caldera east of the central Sierra Nevada Range formed as a result of the voluminous Bishop Tuff eruption about 760,000 years ago. Resurgent doming in the central part of the caldera occurred shortly afterwards, followed by rhyolitic eruptions from the caldera moat and the eruption of rhyodacite from outer ring fracture vents, ending about 50,000 years ago. During early resurgent doming the caldera was filled with a large lake that left strandlines on the caldera walls and the resurgent dome island; the lake eventually drained through the Owens River Gorge. The caldera remains thermally active, with many hot springs and fumaroles, and has had significant deformation, seismicity, and other unrest in recent years. The late-Pleistocene to Holocene Inyo Craters cut the NW topographic rim of the caldera, and along with Mammoth Mountain on the SW topographic rim, are west of the structural caldera and are chemically and tectonically distinct from the Long Valley magmatic system.

Information Contacts: S. McNutt, California Division of Mines and Geology, Sacramento.


Lonquimay (Chile) — June 1989 Citation iconCite this Report

Lonquimay

Chile

38.379°S, 71.586°W; summit elev. 2832 m

All times are local (unless otherwise noted)


Strong fluorine emission; one person and many animals killed

The eruption was continuing as of late June. Explosive activity remained relatively weak (VEI 1) through much of May, with occasional more violent pulses (VEI 2) as on 1-3 and 16-25 May. Hugo Moreno flew over the area on 30 May. Strong WNW winds carried the plume directly over Lonquimay village (~20 km ESE of Navidad Crater; figure 12). The lava flow continued to advance very slowly at the front in the Lolco River valley (~9.5 km from the crater) and more vigorously at the Laguna Verde front (~4 km from the crater). Lava volume was estimated at 160 x 106 m3.

Figure (see Caption) Figure 12. Approximate ashfall thicknesses in the Lonquimay area, as of mid-May 1989, courtesy of O. González-Ferrán. The lava flow is shown in black.

As of mid-June, hundreds of cattle and horses had died of osteofluorosis caused by 300-400 ppm fluorine on grass in an 80,000 hectare (800 km2) area. Some dogs have also recently died after suffering from nervous, renal, digestive, and breathing problems. Concentration of very fine ash has at times been at levels 10 times those considered safe for breathing. Mid-June medical checks of 260 people revealed neurological damage with associated reflex loss in 45 adults and children.

A report (quoted in the 24 June El Mercurio) from Maximino Beltrán, Regional Secretary of Health, to the national Subsecretary of Health, detailed numerous neurological and blood chemistry abnormalities discovered in varying proportions of area residents. An autopsy on a 64-year-old woodcutter, exposed to ashfall for more than 8 hours daily, revealed evidence of acute hemorrhagic colitis and massive bilateral lung hemorrhaging, plus central nervous system lesions. Similar lesions (plus lung, liver, and heart problems) were seen in seven dogs (one sick and six outwardly healthy) studied in the eruption area. The report recommended prompt evacuation of the most affected people, the 800 inhabitants of the Bernardo Nanco area, and the evacuation or relocation of ~3,800 persons judged moderately affected, in the town of Lonquimay. Evacuations had apparently begun by early July.

Geologic Background. Lonquimay is a small, flat-topped, symmetrical stratovolcano of late-Pleistocene to dominantly Holocene age immediately SE of Tolguaca volcano. A glacier fills its summit crater and flows down the S flank. It is dominantly andesitic, but basalt and dacite are also found. The prominent NE-SW Cordón Fissural Oriental fissure zone cuts across the entire volcano. A series of NE-flank vents and scoria cones were built along an E-W fissure, some of which have been the source of voluminous lava flows, including those during 1887-90 and 1988-90, that extended out to 10 km.

Information Contacts: H. Moreno, Univ de Chile; O. González-Ferrán, Univ de Chile; Pedro Riffo, Univ de la Frontera; El Mercurio, Santiago.


Manam (Papua New Guinea) — June 1989 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Fewer earthquakes; slow deflation continues

"Activity was at a very low level throughout June. Southern Crater released white to grey vapour [and ash] in weak to moderate amounts. Weak deep rumbling noises were occasionally heard. Main Crater released weak emissions of white vapour. The seismicity fluctuated at a somewhat lower level than 'normal' inter-eruptive rates, between 500 and 1,100 minor events/day. Tilt readings also fluctuated, although continuing on a slow deflationary trend since early March."

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: P. de Saint-Ours and B. Talai, RVO.


Masaya (Nicaragua) — June 1989 Citation iconCite this Report

Masaya

Nicaragua

11.9844°N, 86.1688°W; summit elev. 594 m

All times are local (unless otherwise noted)


Lava lake freezes; small explosions

The February-March lava lake in Santiago Crater (14:02) probably froze over in early March, and degassing from the lake vent had apparently ceased by 12 March. Other vents remained open through April, with occasional strong degassing episodes. Beginning around 11 May, collapses from the W, S, and N sides of the main crater blocked all vents. Little, if any, gas emission was evident until 22 May when park rangers reported more collapses and a plume visible from the Masaya road (6 km from the crater).

On 25 May, geologists found fresh scoria and lithic fragments scattered from Plaza Sapper to the San Pedro crater (figure 7, top). Ten-cm fragments were found to 20 m from the edge of Santiago, 5-cm fragments to 50 m, and fragments <2 cm were found farther away (90% <1 cm). All tephra was highly vesicular, often with smooth surfaces indicating solidification in flight. Many Pelé's tears were found. The fragments were concentrated in small areas, suggesting a number of discrete explosions. Tephra from the explosions rose an estimated 100-300 m above the crater. Most fragments were glassy basalt with occasional small (1-3 mm) fresh plagioclase. Lithic fragments were porphyritic basalts with 10% plagioclase and some were slightly altered hydrothermally.

Figure (see Caption) Figure 7. Sketch of the summit complex at Masaya, May-June 1989 (top) and Santiago Crater, 3 June 1989 (bottom). Courtesy of B. van Wyk de Vries and O. Castellón.

A 3 June visit revealed small amounts of fresh scoria up to 5 cm in diameter as far as 50 m SW of the crater. The tephra was probably erupted on 2 June when inhabitants reported a "brown cloud". Crater geometry was similar to that in February. The lava lake vent and the "cannon" (3rd vent in 14:02) were blocked by collapse debris, but vent No. 2 (glowing vent in 14:02) had enlarged and was thought to be the source of the eruptions. On 25 May the vent was oval and about 4 m across, oriented vertically, rather than horizontally as in February. On the 26th it had enlarged by 1 m, and by 3 June it was 7 x 3 m and rectangular. There appeared to be a considerably larger chamber beneath the vent. The cannon (3rd) deepened slightly between 25 May and 3 June.

Periodic fumarolic activity on the W wall and from a fault on the N side (figure 7, bottom) was also observed. Weak fumaroles along the trend of the fault (on the Nindirí crater floor below La Cruz) had temperatures <45°C. Fumarolic activity decreased from May to June.

Geologic Background. Masaya volcano in Nicaragua has erupted frequently since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold" until it was found to be basalt rock upon cooling. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of observed eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Recent lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: B. van Wyk de Vries and O. Castellón, INETER.


Poas (Costa Rica) — June 1989 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2697 m

All times are local (unless otherwise noted)


Rains partly refill crater lake; intense gas emission

During the first 12 days of May, activity remained similar to that at the end of April. Gas emission was intense, and ejections of mud and lithic ash fed plumes that reached maximum heights of 1.5-2 km above the crater floor. Individual ash ejections lasted for more than an hour. Trade winds generally carried ash clouds toward the WSW. Various towns reported ashfalls, including Atenas, 32 km SW (on 9 May). Some ashfalls also occurred on the ENE and S flanks. On the rim, roughly 300 m W of the center of the crater (point F on figure 18) 5 mm of new ash was measured on 7 May and 60 mm on the 12th. The ash was composed of hydrothermally altered lithic fragments, soluble mud, and sulfur. The maximum measured grain size was 1.5 mm, and 80% of the ash volume was composed of fragments between 0.075 and 0.25 mm.

Figure (see Caption) Figure 18. Sketch map of Poás showing ash isopachs as of 12 May. Grid spacing is 1 km. Thicknesses of ash at each collection point: A, 3 mm; B, 5 mm; C, 13-20 mm; D, 42 mm; E, 50 mm; F, 60 mm. Courtesy of Gerardo Soto.

Gases were dominated by water vapor from the aquifer beneath the crater, and included SO2, H2S, and (possibly) hydrogen. Sulfur sublimates were deposited around fumarolic vents, and some of the sulfur burned, forming SO2. Flames from the combustion of sulfur (and perhaps hydrogen) were intense above some vents. In the center of the area formerly occupied by the crater lake, two primary pyroclastic mud cones (and various smaller neighboring cones) had been growing since mid-April, reaching maximum heights of 25 m despite frequent collapses. In the SE part of the crater, there was a molten, bubbling, sulfur lake and sulfur had flowed across the muddy crater floor. Fumaroles emitted sulfurous gases and a mud-sulfur cone was growing. The crater's NE quadrant included a vigorous fumarole that emitted sulfur-rich gas with a jet-aircraft sound, and deposited sulfur sublimates.

With the onset of the rainy season in mid-May, water started to accumulate in the former crater lake, reaching a depth of about 2 m by early June. Eruptive activity began to decline noticeably on 13 May. By the last week of May, the central cones had collapsed and been reworked by convective bubbling. Nevertheless, emission of water vapor and sulfur gases, some burning, continued at the end of the month. Bubbling was vigorous in the muddy zones on the crater floor, but no mud columns were ejected nor were there ash eruptions. The former site of the sulfur lake was occupied by a muddy area and a fumarole producing sulfur sublimates that burned with red-orange flames. Bubbling mud and intense evaporation were found in the active zone in the NE part of the crater. A zone of weak fumaroles and sulfur sublimates was present on the wall and NE side of the inner crater. Activity on the remnants of the 1953-55 [dome] remained stable through June, with low-temperature fumaroles depositing sulfur, gypsum, other minerals, and clays.

Intense gas emission (dominated by water vapor, with SO2 and H2S) continued in June from the crater lake. The lake remained about 2 m deep through the month. Its inner zone was muddy and showed continuous convective bubbling, while its periphery was emerald green with a pH <= 0.5, fed by multiple surface springs of about pH 2.0. There were five principal hot areas in the lake's inner zone, three in the N area, one in the center, and one to the SE. The NE site showed intense fumarolic activity and had constructed a small mud-sulfur cone that contained an orange-brown lake of molten sulfur and boiling mud. The central N site included small cones with mud/sulfur spines. Fumarolic activity and a mud rampart had developed at the SE site. At the other hot areas, intense convection of muddy water generated waves. Small emissions of muddy ash occurred within the crater, including one on 23 June at 1845 that produced a column hundreds of meters high. Other explosions occurred between 28 June and 2 July.

Substantial changes have been noted in volcanic seismicity. The characteristic B-type shallow (<500 m depth) signals declined in May but increased again in June.

During the first 30 days of May, 2,247 seismic events were recorded, a daily mean of about 75 (figure 19), down from 141/day in April. June's average was similar (1,904 events in the first 27 days, a mean of 71/day) but the number of earthquakes increased sharply after lower activity during the month's first week. Geologists noted that tremor or volcanic noise has become common at Poás, probably resulting from continuous degassing in a partially open conduit. Origins looked like those of B-type signals and the activity could represent continuous trains of B-type events. A-type shocks, of volcano-tectonic origin, had preliminary locations near the crater, with magnitudes <1.

Figure (see Caption) Figure 19. Number of seismic events/day at Poás, 1-30 May and 1-27 June, 1989. Courtesy of Mario Fernández.

Geologic Background. The broad vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the complex stratovolcano extends to the lower N flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, last erupted about 7,500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since an eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: Gerardo J. Soto, Guillermo E. Alvarado, Mario Fernández, and Héctor Flores, UCR.


Rabaul (Papua New Guinea) — June 1989 Citation iconCite this Report

Rabaul

Papua New Guinea

4.2459°S, 152.1937°E; summit elev. 688 m

All times are local (unless otherwise noted)


Activity remains at background levels

"Activity remained at background levels throughout June. There were 152 small earthquakes recorded in the caldera. The daily count fluctuated between 0 and 15. Only two events were large enough to be accurately located, originating 1 km under Greet Harbour. Monthly levelling measurements to Matupit Island show a steady (or slightly subsiding) trend since December 1988. Neither tilt nor EDM data have shown any significant trend."

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the asymmetrical shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1,400 years ago. An earlier caldera-forming eruption about 7,100 years ago is thought to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the N and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and W caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: P. de Saint-Ours and B. Talai, RVO.


Nevado del Ruiz (Colombia) — June 1989 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Sharp increase in seismicity precedes ash emission

Seismic energy release has been at increased levels since about February 1988. A sharp increase in seismicity began on 24 June 1989 with a felt earthquake (M 3.1) in Arenas crater. The next day, a shallow swarm of high-frequency events (also in Arenas crater) began at 1130 and continued for 1 hour. From 0100 to 1100 on the 26th, another high-frequency swarm was centered at 4 km depth, 3 km W and SW of Olleta crater (Olleta is roughly 5 km W of Arenas crater). Late that evening, a shallow high-frequency swarm began in Arenas crater, followed by strong tremor associated with a small ash emission that deposited 1 mm of ash, 4 km from the crater. The press reported that the civil aeronautics board issued a warning to airline pilots to avoid a 60-km area around the volcano. Tremor gradually diminished, disappearing on 28 June. SO2 emission was moderate during June. Dry and electronic tilt did not show significant changes. As of 10 July, a yellow alert remained in effect for population within a 10-km radius of the volcano.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: C. Carvajal, INGEOMINAS, Manizales; Reuters.


San Cristobal (Nicaragua) — June 1989 Citation iconCite this Report

San Cristobal

Nicaragua

12.702°N, 87.004°W; summit elev. 1745 m

All times are local (unless otherwise noted)


New fumaroles along fissure on SE spur of Casita

Previously unobserved fumarolic activity on the SE spur of Casita (at sites 150 m and 0.5-1 km below the communications complex on the summit) was noticed on 8 June. Area residents report that the activity has been present for some time. Emissions appear to originate from a N-S fissure (figure 1). Casita was last reported active in the l6th century.

Figure (see Caption) Figure 1. Oblique sketch of Casita, its fumaroles, and neighboring volcanic features, 8 June 1989. Courtesy of B. van Wyk de Vries and O. Castellón.

Geologic Background. The San Cristóbal volcanic complex, consisting of five principal volcanic edifices, forms the NW end of the Marrabios Range. The symmetrical 1745-m-high youngest cone, named San Cristóbal (also known as El Viejo), is Nicaragua's highest volcano and is capped by a 500 x 600 m wide crater. El Chonco, with several flank lava domes, is located 4 km W of San Cristóbal; it and the eroded Moyotepe volcano, 4 km NE of San Cristóbal, are of Pleistocene age. Volcán Casita, containing an elongated summit crater, lies immediately east of San Cristóbal and was the site of a catastrophic landslide and lahar in 1998. The Plio-Pleistocene La Pelona caldera is located at the eastern end of the complex. Historical eruptions from San Cristóbal, consisting of small-to-moderate explosive activity, have been reported since the 16th century. Some other 16th-century eruptions attributed to Casita volcano are uncertain and may have been from other Marrabios Range volcanoes.

Information Contacts: B. van Wyk de Vries and O. Castellón, INETER, Managua.


Santa Maria (Guatemala) — June 1989 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Lava production; explosions; hot avalanches

Santiaguito's most recent (7th) period of rapid block lava extrusion began in June 1986 and had declined about February 1988. A small lobe that descended slowly toward the W margin of the lava field was 1.3 km from the dome's Caliente vent in November 1988. Very slow extrusion continued until the onset of a new period of vigorous lava production around 14 February. Observations 23-24 March revealed that the new lava flow, about 70 m wide and 20 m thick, was overriding the June 1986-February 1988 lava (figure 9) and its oversteepened front had reached about 1,470 m altitude. Moderate pyroclastic avalanches generated by collapse of the flow at the altitude of maximum slope (2,000-1,800 m) and at its oversteepened front partially filled canyons in the headwaters of the Río Nimá II and the tributary E of the lava flow. Brief observations 3 May about 1 km from the flow (at El Mirador) showed no substantial changes.

Figure (see Caption) Figure 9. Map of Santiaguito Dome, showing the ages of its lobes. Succesive fronts of 1986-89 lava flows are shown. Modified from Rose and others (1987). Courtesy of Otoniel Matías.

During September and October 1988, seismic instruments 2.6 km S and 5 km NNW of Santiaguito recorded 8-28 explosions and 130-330 avalanches/day. After the beginning of November, the number of explosions declined to 4-16 daily and the number of avalanches to 60-120 (figure 10), remaining at similar low to moderate levels through late February. More violent explosions began on 25 February and continued through 13 March, stronger than any since the start of vigorous block lava extrusion in June 1986. Some dense ash columns rose at least 3 km above the crater and were visible from the summit of Fuego, 75 km away. Ash columns during this period easily exceeded the height of Santa María's summit (3,772 m), more than 1,200 m above the vent, forming mushroom-shaped clouds 1 km in diameter. Ash reached parts of Quetzaltenango, 12 km NE, within 15 minutes. During this period, 8-26 explosions were recorded daily. The strongest produced acoustic waves that moved suspended objects 7 km to the S (at Finca El Faro). Sounds similar to a jet turbine continued for up to 4 minutes, alternating with the phreatomagmatic explosions. Winds 24-25 February were dominantly from the N-NE at 20-30 km/hour; fine ashfall was reported to 28 km S-SW (in the El Palmar, San Felipe, and Retalhuleu regions). From 26 February through 13 March, winds were generally from the S-SW, calm in the morning and reaching 18-30 km/hour in the afternoon. Fine ash was carried 7-25 km NW and NE; losses from vegetation damage were reported in Llanos del Pinal, Almolonga, and Quetzaltenango (7, 12, and 14 km N-NE).

Figure (see Caption) Figure 10. Number of daily explosions (bottom) and an extrapolation of the number of daily avalanche events (top) recorded by seismic stations 2.6 km S and 5 km NNW of Santiaguito, November 1988-April 1989. Courtesy of Otoniel Matías.

A brief decline was evident 14-16 March, with only 6-10 small explosions daily generating clouds <=1 km high. Activity increased again 17 March, dominated by degassing that produced dense whitish clouds with little ash and moderate to strong jet turbine sounds. Between 14 and 24 explosions/day were recorded through 31 March. The number of explosions grew gradually in early April, reaching 34 on the 18th (the most recorded in a single day since June 1988) then fell to 14-26/day after the 21st. Avalanches from the dome, the central area of the lava flow (2,000-1,700 m elevation), and its oversteepened front ranged from 150 to 300/day.

Weak to moderate fumarolic emissions persisted from the N and S margins of the Caliente vent area. The E fumarole was more active and acted as a secondary crater during some explosions, feeding columns that were similar to or smaller than those from the main vent. The E fumarole may have been the source of the jet turbine sounds as it underwent high-pressure degassing. After some explosions, its emissions increased, often persisting for several hours as sustained columns rose tens of meters to 1 km. Very weak fumarolic emissions occurred throughout the summit area of the dome complex, frequently linked with increased activity from Caliente vent.

At press time, we learned that Santiaguito erupted an ash column to 4 km above the dome on 19 July at 0915 [see also 14:07]. A pyroclastic flow traveled 5 km down the Río Nimá II, reaching 2 km from Finca La Florida. Ash was 1 cm thick at Finca Monte Bello (6 km WSW) and fell as far as the Mexican border. Thirty two Central American volcanologists, attending a course in El Palmar (12 km SSW of the volcano), witnessed the eruption during good viewing conditions, took photographs, and made a videotape. The eruption was followed by two smaller explosions within 1/2 hour, and another at 1600. Prelimimary observations by volcanologists suggest that the eruption may have been associated with partial collapse around the vent. There were no reports of death or damage.

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing E towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Otoniel Matías and Jorge Girón, INSIVUMEH; W. Rose, Michigan Technological Univ.


Suwanosejima (Japan) — June 1989 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Frequent explosions; ashfall on inhabited area

. . . March-April activity is summarized in table 2. No explosions were observed in May, but several tens of explosions 22-23 June were accompanied by detonations and air shocks. Ash fell on the S part of the small island volcano, in the only inhabited area.

Geologic Background. The 8-km-long island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two active summit craters. The summit is truncated by a large breached crater extending to the sea on the E flank that was formed by edifice collapse. One of Japan's most frequently active volcanoes, it was in a state of intermittent Strombolian activity from Otake, the NE summit crater, between 1949 and 1996, after which periods of inactivity lengthened. The largest recorded eruption took place in 1813-14, when thick scoria deposits covered residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed, forming a large debris avalanche and creating an open collapse scarp extending to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: JMA.


Telica (Nicaragua) — June 1989 Citation iconCite this Report

Telica

Nicaragua

12.606°N, 86.84°W; summit elev. 1036 m

All times are local (unless otherwise noted)


Fumaroles emit white plumes

A visit to the volcano on 5 June revealed two small brown crater lakes, 10 m across (figure 2). A number of large collapses had occurred, covering much of the crater floor with blocks. Fumarolic activity was vigorous (particularly from a vent on the SE side) and produced a continuous plume over the crater. No eruptive activity has been reported since December 1987.

Figure (see Caption) Figure 2. Sketch of the active crater of Telica, 5 June 1989. Courtesy of B. van Wyk de Vries and O. Castellón.

Geologic Background. Telica, one of Nicaragua's most active volcanoes, has erupted frequently since the beginning of the Spanish era. This volcano group consists of several interlocking cones and vents with a general NW alignment. Sixteenth-century eruptions were reported at symmetrical Santa Clara volcano at the SW end of the group. However, its eroded and breached crater has been covered by forests throughout historical time, and these eruptions may have originated from Telica, whose upper slopes in contrast are unvegetated. The steep-sided cone of Telica is truncated by a 700-m-wide double crater; the southern crater, the source of recent eruptions, is 120 m deep. El Liston, immediately E, has several nested craters. The fumaroles and boiling mudpots of Hervideros de San Jacinto, SE of Telica, form a prominent geothermal area frequented by tourists, and geothermal exploration has occurred nearby.

Information Contacts: B. van Wyk de Vries and O. Castellón, INETER, Apartado 1761, Managua, Nicaragua.


Tokachidake (Japan) — June 1989 Citation iconCite this Report

Tokachidake

Japan

43.418°N, 142.686°E; summit elev. 2077 m

All times are local (unless otherwise noted)


Seismicity increases; no explosions

Tephra produced by the phreatomagmatic explosions that began 19 December contained a little fresh magma (scoria and blocks) of basaltic andesite composition similar to that of the 1926 and 1962 ejecta. Some of the pyroclastic flows and surges melted snow and fed small lahars. A detailed description of this eruption can be found in Katsui (1989).

No eruptive activity has occurred since a brief explosion from crater 62-2 on 5 March. A continuous steam plume, which often contained ash in May but was white in June, was observed from Tokachi-dake Observatory. Plume heights reached 800 m above the crater rim in May and 100-600 m in June. A seismograph 4.5 km NNW of the crater recorded only five volcanic earthquakes and no volcanic tremor in May, but seismicity increased in late June (figure 5). A total of 25 volcanic earthquakes was recorded in June, and seismicity remained elevated as of early July.

Figure (see Caption) Figure 5. Daily number of local seismic events, 1 January-9 July 1989 (top) and number of small earthquakes recorded by a seismograph ~2 km NW of the volcano, 11 June-9 July 1989 (bottom). Courtesy of JMA.

Reference. Katsui, Y., ed., 1989, The 1988 eruption of Tokachi-dake, its sequence, mechanism, and influence on community: Report of Natural Disaster Scientific Research no. B-63-5, March 1989, 108 pp (8 papers).

Geologic Background. Tokachidake volcano consists of a group of dominantly andesitic stratovolcanoes and lava domes arranged on a NE-SW line above a plateau of welded Pleistocene tuffs in central Hokkaido. Numerous explosion craters and cinder cones are located on the upper flanks of the small stratovolcanoes, with the youngest Holocene centers located at the NW end of the chain. Frequent historical eruptions, consisting mostly of mild-to-moderate phreatic explosions, have been recorded since the mid-19th century. Two larger eruptions occurred in 1926 and 1962. Partial cone collapse of the western flank during the 1926 eruption produced a disastrous debris avalanche and mudflow.

Information Contacts: JMA.


Ulawun (Papua New Guinea) — June 1989 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


White vapor plume; seismicity decreases

"The level of activity has shown a continuous decrease since the mild phreatic unrest in March. Throughout the month, the terminal crater was releasing a plume of white vapour, while the seismicity was steadily decreasing . . . "

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: P. de Saint-Ours and B. Talai, RVO.


Whakaari/White Island (New Zealand) — June 1989 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Explosions continue; craters enlarge

Eruptions of ash and blocks continued from R.F. Crater and Donald Duck vent in May and June. On 10 May, when R. Fleming visited White Island, R.F. Crater was erupting dark gray coarse ash, most of which fell into the crater. Donald Duck vent was emitting minor amounts of gas. A small (3 m diameter) new vent had opened 20-30 m NNE of Donald Duck, discharging gas and ash. On 1 June, Fleming observed similar conditions.

During geological fieldwork on 23 June, the main crater floor was covered with fine gray ash that thickened toward Donald Duck vent. Block-ejecting explosions (the largest yet from Donald Duck) had apparently also occurred since the 1 June visit. Fresh new impact craters and lithic blocks (up to 1 m in diameter) were abundant to ~200 m SW of Donald Duck, which had enlarged to 100 m in diameter and >200 m in depth. No fresh magma has been detected in the Donald Duck tephra. The new vent NNE of Donald Duck vent was no longer active. The pits that had formed in late January (SEAN 14:01) and the 1980 pits (W of Donald Duck) were quiet, but had recently collapsed (probably due to recent heavy rainfalls) and were deeper, with vertical walls.

Large scoria bombs (1 m) and blocks (>5 m in diameter near the 1978 Crater rim) had been erupted from R.F. Crater, which was emitting a dilute, green-brown ash column and a few small blocks. Coarse ash fell back into the crater. A total of 450 mm of ash had accumulated on the 1978 Crater rim since 26 April. Rare, vesiculated, brown glass was the only indication of fresh magma in the tephra. Hitchhiker vent (in Congress Crater) was slightly enlarged, but had not collapsed, suggesting reinforcement by local intrusions. Recent heavy rainfalls had triggered several debris flows of saturated ash from the 1978 Crater walls. The largest had flowed across the 1978 Crater floor and over the rims of R.F. and Congress Craters.

Fumarole temperatures in the Donald Mound area had dropped since 26 April, and tephra (ejected from Donald Duck) covered the vents. Deflation of the area had accelerated, with the W portion subsiding 21 mm and the NW portion >40 mm since 16 March. The area near the rim of 1978 Crater had subsided 300 mm since the small eruptions in early 1984 (09:02).

Intermittent seismic data after 26 April showed that seismicity had not significantly changed, other than an increase in E-type events (14 in May and 4 in June before transmission ceased). A- and B-type events were recorded most days, with maximum daily totals of 12 and 15 events respectively. Microearthquakes were recorded 26-31 April and 20-21 May, with 10 events/minute on 27 April.

Vegetation studies indicate that the post-l976 eruption is stronger than any in the last several hundred years at White Island (White Island 1976-82 Eruption [appendix by Clarkson and others]: New Zealand Geological Survey Bulletin, in press).

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: I. Nairn and B. Scott, NZGS Rotorua; P. Otway, NZGS Wairakei.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports