Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

San Miguel (El Salvador) Small ash emissions during 22 February 2020

Cleveland (United States) Intermittent thermal anomalies and lava dome subsidence, February 2019-January 2020

Ambrym (Vanuatu) Fissure eruption in December 2018 produces an offshore pumice eruption after lava lakes drain

Copahue (Chile-Argentina) Ash emissions end on 12 November; lake returns to El Agrio Crater in December 2019

Nishinoshima (Japan) Ongoing activity enlarges island with lava flows, ash plumes, and incandescent ejecta, December 2019-February 2020

Krakatau (Indonesia) Tephra and steam explosions in the crater lake; explosions in December 2019 build a tephra cone

Mayotte (France) Seismicity and deformation, with submarine E-flank volcanism starting in July 2018

Fernandina (Ecuador) Fissure eruption produced lava flows during 12-13 January 2020

Masaya (Nicaragua) Lava lake persists with lower temperatures during August 2019-January 2020

Reventador (Ecuador) Nearly daily ash emissions and frequent incandescent block avalanches August 2019-January 2020

Pacaya (Guatemala) Continuous explosions, small cone, and lava flows during August 2019-January 2020

Kikai (Japan) Single explosion with steam and minor ash, 2 November 2019



San Miguel (El Salvador) — March 2020 Citation iconCite this Report

San Miguel

El Salvador

13.434°N, 88.269°W; summit elev. 2130 m

All times are local (unless otherwise noted)


Small ash emissions during 22 February 2020

San Miguel, locally known as Chaparrastique, is a stratovolcano located in El Salvador. Recent activity has consisted of occasional small ash explosions and ash emissions. Infrequent gas-and-steam and ash emissions were observed during this reporting period of June 2018-March 2020. The primary source of information for this report comes from El Salvador's Servicio Nacional de Estudios Territoriales (SNET) and special reports from the Ministero de Medio Ambiente y Recursos Naturales (MARN) in addition to various satellite data.

Based on Sentinel-2 satellite imagery and analyses of infrared MODIS data, volcanism at San Miguel from June 2018 to mid-February was relatively low, consisting of occasional gas-and-steam emissions. During 2019, a weak thermal anomaly in the summit crater was registered in thermal satellite imagery (figure 27). This thermal anomaly persisted during a majority of the year but was not visible after September 2019; faint gas-and-steam emissions could sometimes be seen rising from the summit crater.

Figure (see Caption) Figure 27. Sentinel-2 satellite imagery of a faint but consistent thermal anomaly at San Miguel during 2019. Images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Volcanism was prominent beginning on 13-20 February 2020 when SO2 emissions exceeded 620 tons/day (typical low SO2 values are less than 400 tons/day). During 20-21 February the amplitude of microearthquakes increased and minor emissions of gas-and-steam and SO2 were visible within the crater (figure 28). According to SNET and special reports from MARN, on 22 February at 1055 an ash cloud was visible rising 400 m above the crater rim (figure 29), resulting in minor ashfall in Piedra Azul (5 km SW). That same day RSAM values peaked at 550 units as recorded by the VSM station on the upper N flank, which is above normal values of about 150. Seismicity increased the day after the eruptive activity. Minor gas-and-steam emissions continued to rise 400 m above the crater rim during 23-24 February; the RSAM values fell to 33-97 units. Activity in March was relatively low; some seismicity, including small magnitude earthquakes, occurred during the month in addition to SO2 emissions ranging from 517 to 808 tons/day.

Figure (see Caption) Figure 28. Minor gas-and-steam emissions rising from the crater at San Miguel on 21 February 2020. Courtesy of Ministero de Medio Ambiente y Recursos Naturales (MARN).
Figure (see Caption) Figure 29. Gas-and-steam and ash emissions rising from the crater at San Miguel on 22 February 2020. Courtesy of Ministero de Medio Ambiente y Recursos Naturales (MARN).

Geologic Background. The symmetrical cone of San Miguel volcano, one of the most active in El Salvador, rises from near sea level to form one of the country's most prominent landmarks. The unvegetated summit rises above slopes draped with coffee plantations. A broad, deep crater complex that has been frequently modified by historical eruptions (recorded since the early 16th century) caps the truncated summit, also known locally as Chaparrastique. Radial fissures on the flanks of the basaltic-andesitic volcano have fed a series of historical lava flows, including several erupted during the 17th-19th centuries that reached beyond the base of the volcano on the N, NE, and SE sides. The SE-flank flows are the largest and form broad, sparsely vegetated lava fields crossed by highways and a railroad skirting the base of the volcano. The location of flank vents has migrated higher on the edifice during historical time, and the most recent activity has consisted of minor ash eruptions from the summit crater.

Information Contacts: Servicio Nacional de Estudios Territoriales (SNET), Ministero de Medio Ambiente y Recursos Naturales (MARN), Km. 5½ Carretera a Nueva San Salvador, Avenida las Mercedes, San Salvador, El Salvador (URL: http://www.snet.gob.sv/ver/vulcanologia); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Cleveland (United States) — March 2020 Citation iconCite this Report

Cleveland

United States

52.825°N, 169.944°W; summit elev. 1730 m

All times are local (unless otherwise noted)


Intermittent thermal anomalies and lava dome subsidence, February 2019-January 2020

Cleveland is a stratovolcano located in the western portion of Chuginadak Island, a remote island part of the east central Aleutians. Common volcanism has included small lava flows, explosions, and ash clouds. Intermittent lava dome growth, small ash explosions, and thermal anomalies have characterized more recent activity (BGVN 44:02). For this reporting period during February 2019-January 2020, activity largely consisted of gas-and-steam emissions and intermittent thermal anomalies within the summit crater. The primary source of information comes from the Alaska Volcano Observatory (AVO) and various satellite data.

Low levels of unrest occurred intermittently throughout this reporting period with gas-and-steam emissions and thermal anomalies as the dominant type of activity (figures 30 and 31). An explosion on 9 January 2019 was followed by lava dome growth observed during 12-16 January. Suomi NPP/VIIRS sensor data showed two hotspots on 8 and 14 February 2019, though there was no evidence of lava within the summit crater at that time. According to satellite imagery from AVO, the lava dome was slowly subsiding during February into early March. Elevated surface temperatures were detected on 17 and 24 March in conjunction with degassing; another gas-and-steam plume was observed rising from the summit on 30 March. Thermal anomalies were again seen on 15 and 28 April using Suomi NPP/VIIRS sensor data. Intermittent gas-and-steam emissions continued as the number of detected thermal anomalies slightly increased during the next month, occurring on 1, 7, 15, 18, and 23 May. A gas-and-steam plume was observed on 9 May.

Figure (see Caption) Figure 30. The MIROVA graph of thermal activity (log radiative power) at Cleveland during 4 February 2019 through January 2020 shows increased thermal anomalies between mid-April to late November 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 31. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed intermittent thermal signatures occurring in the summit crater during March 2019 through October 2019. Some gas-and-steam plumes were observed accompanying the thermal anomaly, as seen on 17 March 2019 and 8 May 2019. Courtesy of Sentinel Hub Playground.

There were 10 thermal anomalies observed in June, and 11 each in July and August. Typical mild degassing was visible when photographed on 9 August (figure 32). On 14 August, seismicity increased, which included a swarm of a dozen local earthquakes. The lava dome emplaced in January was clearly visible in satellite imagery (figure 33). The number of thermal anomalies decreased the next month, occurring on 10, 21, and 25 September. During this month, a gas-and-steam plume was observed in a webcam image on 6, 8, 20, and 25 September. On 3-6, 10, and 21 October elevated surface temperatures were recorded as well as small gas-and-steam plumes on 4, 7, 13, and 20-25 October.

Figure (see Caption) Figure 32. Photograph of Cleveland showing mild degassing from the summit vent taken on 9 August 2019. Photo by Max Kaufman; courtesy of AVO/USGS.
Figure (see Caption) Figure 33. Satellite image of Cleveland showing faint gas-and-steam emissions rising from the summit crater. High-resolution image taken on 17 August 2019 showing the lava dome from January 2019 inside the crater (dark ring). Image created by Hannah Dietterich; courtesy of AVO/USGS and DigitalGlobe.

Four thermal anomalies were detected on 3, 6, and 8-9 November. According to a VONA report from AVO on 8 November, satellite data suggested possible slow lava effusion in the summit crater; however, by the 15th no evidence of eruptive activity had been seen in any data sources. Another thermal anomaly was observed on 14 January 2020. Gas-and-steam emissions observed in webcam images continued intermittently.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows intermittent weak thermal anomalies within 5 km of the crater summit during mid-April through November 2019 with a larger cluster of activity in early June, late July and early October (figure 30). Thermal satellite imagery from Sentinel-2 also detected weak thermal anomalies within the summit crater throughout the reporting period, occasionally accompanied by gas-and-steam plumes (figure 31).

Geologic Background. The beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Joined to the rest of Chuginadak Island by a low isthmus, Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/).


Ambrym (Vanuatu) — March 2020 Citation iconCite this Report

Ambrym

Vanuatu

16.25°S, 168.12°E; summit elev. 1334 m

All times are local (unless otherwise noted)


Fissure eruption in December 2018 produces an offshore pumice eruption after lava lakes drain

Ambrym is an active volcanic island in the Vanuatu archipelago consisting of a 12 km-wide summit caldera. Benbow and Marum are two currently active craters within the caldera that have produced lava lakes, explosions, lava flows, ash, and gas emissions, in addition to fissure eruptions. More recently, a submarine fissure eruption in December 2018 produced lava fountains and lava flows, which resulted in the drainage of the active lava lakes in both the Benbow and Marum craters (BGVN 44:01). This report updates information from January 2019 through March 2020, including the submarine pumice eruption during December 2018 using information from the Vanuatu Meteorology and Geohazards Department (VMGD) and research by Shreve et al. (2019).

Activity on 14 December 2018 consisted of thermal anomalies located in the lava lake that disappeared over a 12-hour time period; a helicopter flight on 16 December confirmed the drainage of the summit lava lakes as well as a partial collapse of the Benbow and Marum craters (figure 49). During 14-15 December, a lava flow (figure 49), accompanied by lava fountaining, was observed originating from the SE flank of Marum, producing SO2 and ash emissions. A Mw 5.6 earthquake on 15 December at 2021 marked the beginning of a dike intrusion into the SE rift zone as well as a sharp increase in seismicity (Shreve et al., 2019). This intrusion extended more than 30 km from within the caldera to beyond the east coast, with a total volume of 419-532 x 106 m3 of magma. More than 2 m of coastal uplift was observed along the SE coast due to the asymmetry of the dike from December, resulting in onshore fractures.

Figure (see Caption) Figure 49. Sentinel-2 thermal satellite images of Ambrym before the December 2018 eruption (left), and during the eruption (right). Before the eruption, the thermal signatures within both summit craters were strong and after the eruption, the thermal signatures were no longer detected. A lava flow was observed during the eruption on 15 December. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

Shreve et al. (2019) state that although the dike almost reached the surface, magma did not erupt from the onshore fractures; only minor gas emissions were detected until 17 December. An abrupt decrease in the seismic moment release on 17 December at 1600 marked the end of the dike propagation (figure 50). InSAR-derived models suggested an offshore eruption (Shreve et al., 2019). This was confirmed on 18-19 December when basaltic pumice, indicating a subaqueous eruption, was collected on the beach near Pamal and Ulei. Though the depth and exact location of the fissure has not been mapped, the nature of the basaltic pumice would suggest it was a relatively shallow offshore eruption, according to Shreve et al. (2019).

Figure (see Caption) Figure 50. Geographical timeline summary of the December 2018 eruptive events at Ambrym. The lava lake level began to drop on 14 December, with fissure-fed lava flows during 14-15 December. After an earthquake on 15 December, a dike was detected, causing coastal uplift as it moved E. As the dike continued to propagate upwards, faulting was observed, though magma did not breach the surface. Eventually a submarine fissure eruption was confirmed offshore on 18-19 December. Image modified from Shreve et al. (2019).

In the weeks following the dike emplacement, there was more than 2 m of subsidence measured at both summit craters identified using ALOS-2 and Sentinel-1 InSAR data. After 22 December, no additional large-scale deformation was observed, though a localized discontinuity (less than 12 cm) measured across the fractures along the SE coast in addition to seismicity suggested a continuation of the distal submarine eruption into late 2019. Additional pumice was observed on 3 February 2019 near Pamal village, suggesting possible ongoing activity. These surveys also noted that no gas-and-steam emissions, lava flows, or volcanic gases were emitted from the recently active cracks and faults on the SE cost of Ambrym.

During February-October 2019, onshore activity at Ambrym declined to low levels of unrest, according to VMGD. The only activity within the summit caldera consisted of gas-and-steam emissions, with no evidence of the previous lava lakes (figure 51). Intermittent seismicity and gas-and-steam emissions continued to be observed at Ambrym and offshore of the SE coast. Mével et al. (2019) installed three Trillium Compact 120s posthole seismometers in the S and E part of Ambrym from 25 May to 5 June 2019. They found that there were multiple seismic events, including a Deep-Long Period event and mixed up/down first motions at two stations near the tip of the dike intrusion and offshore of Pamal at depths of 15-20 km below sea level. Based on a preliminary analysis of these data, Mével et al. (2019) interpreted the observations as indicative of ongoing volcanic seismicity in the region of the offshore dike intrusion and eruption.

Figure (see Caption) Figure 51. Aerial photograph of Ambrym on 12 August 2019 showing gas-and-steam emissions rising from the summit caldera. Courtesy of VMGD.

Seismicity was no longer reported from 10 October 2019 through March 2020. Thermal anomalies were not detected in satellite data except for one in late April and one in early September 2019, according to MODIS thermal infrared data analyzed by the MIROVA system. The most recent report from VMGD was issued on 27 March 2020, which noted low-level unrest consisting of dominantly gas-and-steam emissions.

References:

Shreve T, Grandin R, Boichu M, Garaebiti E, Moussallam Y, Ballu V, Delgado F, Leclerc F, Vallée M, Henriot N, Cevuard S, Tari D, Lebellegard P, Pelletier B, 2019. From prodigious volcanic degassing to caldera subsidence and quiescence at Ambrym (Vanuatu): the influence of regional tectonics. Sci. Rep. 9, 18868. https://doi.org/10.1038/s41598-019-55141-7.

Mével H, Roman D, Brothelande E, Shimizu K, William R, Cevuard S, Garaebiti E, 2019. The CAVA (Carnegie Ambrym Volcano Analysis) Project - a Multidisciplinary Characterization of the Structure and Dynamics of Ambrym Volcano, Vanuatu. American Geophysical Union, Fall 2019 Meeting, Abstract and Poster V43C-0201.

Geologic Background. Ambrym, a large basaltic volcano with a 12-km-wide caldera, is one of the most active volcanoes of the New Hebrides Arc. A thick, almost exclusively pyroclastic sequence, initially dacitic then basaltic, overlies lava flows of a pre-caldera shield volcano. The caldera was formed during a major Plinian eruption with dacitic pyroclastic flows about 1,900 years ago. Post-caldera eruptions, primarily from Marum and Benbow cones, have partially filled the caldera floor and produced lava flows that ponded on the floor or overflowed through gaps in the caldera rim. Post-caldera eruptions have also formed a series of scoria cones and maars along a fissure system oriented ENE-WSW. Eruptions have apparently occurred almost yearly during historical time from cones within the caldera or from flank vents. However, from 1850 to 1950, reporting was mostly limited to extra-caldera eruptions that would have affected local populations.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Copahue (Chile-Argentina) — March 2020 Citation iconCite this Report

Copahue

Chile-Argentina

37.856°S, 71.183°W; summit elev. 2953 m

All times are local (unless otherwise noted)


Ash emissions end on 12 November; lake returns to El Agrio Crater in December 2019

Most of the large edifice of Copahue lies high in the central Chilean Andes, but the active El Agrio crater lies on the Argentinian side of the border at the W edge of the Pliocene Caviahue caldera. Infrequent mild-to-moderate explosive eruptions have been recorded since the 18th century. The most recent eruptive episode began with phreatic explosions and ash emissions on 2 August 2019 that continued until mid-November 2019. This report summarizes activity from November 2019 through February 2020 and is based on reports issued by Servicio Nacional de Geología y Minería (SERNAGEOMIN) Observatorio Volcanológico de Los Andes del Sur (OVDAS), Buenos Aires Volcanic Ash Advisory Center (VAAC), satellite data, and photographs from nearby residents.

MIROVA data indicated a few weak thermal anomalies during mid-October to mid-November 2019. Multiple continuous ash emissions were reported daily until mid-November when activity declined significantly. By mid-December the lake inside El Agrio crater had reappeared and occasional steam plumes were the only reported surface activity at Copahue through February 2020.

The Buenos Aires VAAC and SERNAGEOMIN both reported continuous ash emissions during 1-9 November 2019 that were visible in the webcam. Satellite imagery recorded the plumes drifting generally E or NE at 3.0-4.3 km altitude (figure 49). Most of the emissions on 10 November were steam (figure 50). The last pulse of ash emissions occurred on 12 November with an ash plume visible moving SE at 3 km altitude in satellite imagery and a strong thermal anomaly (figure 51). The following day emissions were primarily steam and gas. SERNAGEOMIN noted the ash emissions rising around 800 m above El Agrio crater and also reported incandescence visible during most nights through mid-November. During the second half of November the constant degassing was primarily water vapor with occasional nighttime incandescence. Steam plumes rose 450 m above the crater on 27 November.

Figure (see Caption) Figure 49. Continuous ash emissions at Copahue during 1-9 November 2019 were visible in Sentinel-2 satellite imagery on 2 and 7 November 2019 drifting NE. Natural color rendering uses bands 4,3, and 2. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 50. Most of the emissions from Copahue on 10 November 2019 were steam. Left image courtesy of Valentina Sepulveda, taken from Caviahue, Argentina. Right image courtesy of Sentinel Hub Playground, natural color rendering using bands 4, 3, and 2.
Figure (see Caption) Figure 51. A strong thermal anomaly and an ash plume at Copahue were visible in Sentinel-2 satellite imagery on 12 November 2019. Courtesy of Sentinel Hub Playground, Atmospheric penetration rendering bands 12, 11, and 8A.

Nighttime incandescence was last observed in the SERNAGEOMIN webcam on 1 December; SERNAGEOMIN lowered the alert level from Yellow to Green on 15 December 2019. Throughout December degassing consisted mainly of minor steam plumes (figure 52), the highest plume rose to 300 m above the crater on 18 December, and minor SO2 plumes persisted through the 21st (figure 53),. By mid-December the El Agrio crater lake was returning and satellite images clearly showed the increase in size of the lake through February (figure 54). The only surface activity reported during January and February 2020 was occasional white steam plumes rising near El Agrio crater.

Figure (see Caption) Figure 52. Small wisps of steam were the only emissions from Copahue on 3 December 2019. Courtesy of Valentina Sepulveda, taken from Caviahue, Argentina.
Figure (see Caption) Figure 53. Small plumes of SO2 were recorded at Copahue during November and December 2019. Top row: 7, 9, and 30 November. Bottom row: 1, 20, and 21 December. Courtesy of Global Sulfur Dioxide Monitoring Page, NASA.
Figure (see Caption) Figure 54. The lake within El Agrio crater reappeared between 5 and 12 December 2019 and continued to grow in size through the end of January 2020. Top row (left to right): There was no lake inside the crater on 5 December 2019, only a small steam plume rising from the vent. The first water was visible on 12 December and was slightly larger a few days later on 17 December. Bottom row (left to right): the lake was significantly larger on 4 January 2020 filling an embayment close to the steam vent. Fingers of water filled in areas of the crater as the water level rose on 24 and 29 January. Courtesy of Sentinel Hub Playground.

Geologic Background. Volcán Copahue is an elongated composite cone constructed along the Chile-Argentina border within the 6.5 x 8.5 km wide Trapa-Trapa caldera that formed between 0.6 and 0.4 million years ago near the NW margin of the 20 x 15 km Pliocene Caviahue (Del Agrio) caldera. The eastern summit crater, part of a 2-km-long, ENE-WSW line of nine craters, contains a briny, acidic 300-m-wide crater lake (also referred to as El Agrio or Del Agrio) and displays intense fumarolic activity. Acidic hot springs occur below the eastern outlet of the crater lake, contributing to the acidity of the Río Agrio, and another geothermal zone is located within Caviahue caldera about 7 km NE of the summit. Infrequent mild-to-moderate explosive eruptions have been recorded since the 18th century. Twentieth-century eruptions from the crater lake have ejected pyroclastic rocks and chilled liquid sulfur fragments.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Valentina Sepulveda, Hotel Caviahue, Caviahue, Argentina (URL: https://twitter.com/valecaviahue, Twitter:@valecaviahue).


Nishinoshima (Japan) — March 2020 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 25 m

All times are local (unless otherwise noted)


Ongoing activity enlarges island with lava flows, ash plumes, and incandescent ejecta, December 2019-February 2020

After 40 years of dormancy, Japan’s Nishinoshima volcano, located about 1,000 km S of Tokyo in the Ogasawara Arc, erupted above sea level in November 2013. Lava flows were active through November 2015, emerging from a central pyroclastic cone. A new eruption in mid-2017 continued the growth of the island with ash plumes, ejecta, and lava flows. A short eruptive event in July 2018 produced a new lava flow and vent on the side of the pyroclastic cone. The next eruption of ash plumes, incandescent ejecta, and lava flows, covered in this report, began in early December 2019 and was ongoing through February 2020. Information is provided primarily from the Japan Meteorological Agency (JMA) monthly reports.

Nishinoshima remained quiet after a short eruptive event in July 2018 until MODVOLC thermal alerts appeared on 5 December 2019. Multiple near-daily alerts continued through February 2020. The intermittent low-level thermal anomalies seen in the MIROVA data beginning in May and June 2019 may reflect areas with increased temperatures and fumarolic activity reported by the Japan Coast Guard during overflights in June and July. The significant increase in thermal anomalies in the MIROVA data on 5 December correlates with the beginning of extrusive and explosive activity (figure 63). Eruptive activity included ash emissions, incandescent ejecta, and numerous lava flows from multiple vents that flowed into the sea down several flanks, significantly enlarging the island.

Figure (see Caption) Figure 63. The MIROVA graph of thermal energy from Nishinoshima from 13 April 2019 through February 2020 shows low-level thermal activity beginning in mid-2019; there were reports of increased temperatures and fumarolic activity during that time. Eruptive activity including ash emissions, incandescent ejecta, and numerous lava flows began on 5 December 2019 and was ongoing through February 2020. Courtesy of MIROVA.

A brief period of activity during 12-21 July 2018 produced explosive activity with blocks and bombs ejected 500 m from a new vent on the E flank of the pyroclastic cone, and a 700-m-long lava flow that stopped about 100 m before reaching the ocean (BGVN 43:09). No further activity was reported during 2018. During overflights on 29 and 31 January, and 7 February 2019, white steam plumes drifted from the E crater margin and inner wall of the pyroclastic cone and discolored waters were present around the island, but no other signs of activity were reported. A survey carried out by the Japan Coast Guard during 7-8 June 2019 reported minor fumarolic activity from the summit crater, and high-temperature areas were noted on the hillsides, measured by infrared thermal imaging equipment. Sulfur dioxide emissions were below the detection limit. In an overflight on 12 July 2019, Coast Guard personnel noted a small white plume rising from the E edge of the summit crater of the pyroclastic cone (figure 64).

Figure (see Caption) Figure 64. The Japan Coast Guard noted a small white plume at the summit of Nishinoshima during an overflight on 12 July 2019, but no other signs of activity. Courtesy of JMA (Volcanic activity monthly report, July 2019).

The white plume was still present during an overflight on 14 August 2019. Greenish yellow areas of water about 500 m wide were distributed around the island, and a plume of green water extended 1.8 km from the NW coast. Similar conditions were observed on 15 October 2019; pale yellow-green discolored water was about 100 m wide and concentrated on the N shore of Nishinoshima. No steam plume from the summit was present during a visit on 19 November 2019, but yellow-white discolored water on the N shore was about 100 m wide and 700 m long. Along the NE and SE coasts, yellow-white water was 100-200 m wide and about 1,000 m long.

A MODVOLC thermal alert appeared at Nishinoshima on 5 December 2019. An eruption was observed by the Japan Coast Guard the following day. A pulsating light gray ash plume rose from the summit crater accompanied by tephra ejected 200 m above the crater rim every few minutes (figure 65). In addition, ash and tephra rose intermittently from a crater on the E flank of the pyroclastic cone, from which lava also flowed down towards the E coast (figure 66). By 1300 on 7 December the lava was flowing into the sea (figure 67).

Figure (see Caption) Figure 65. The eruption observed at Nishinoshima on 6 December 2019 included ash and tephra emissions from the summit vent, and ash, tephra, and a lava flow from the vent on the E flank of the pyroclastic cone. Courtesy of JMA (Volcanic activity monthly report, November 2019).
Figure (see Caption) Figure 66. Thermal infrared imagery revealed incandescent ejecta from the summit crater and lava flowing from the E flank vent at Nishinoshima on 6 December 2019. Courtesy of JMA (Volcanic activity monthly report, November 2019).
Figure (see Caption) Figure 67. By 1300 on 7 December 2019 lava from the E-flank vent at Nishinoshima was flowing into the sea. Courtesy of JMA (Volcanic activity monthly report, November 2019).

Observations by the Japan Coast Guard on 15 December 2019 confirmed that vigorous eruptive activity was ongoing; incandescent ejecta and ash plumes rose 300 m above the summit crater rim (figure 68). A new vent had opened on the N flank of the cone from which lava flowed NW to the sea (figure 69). The lava flow from the E-flank crater also remained active and continued flowing into the sea. The Tokyo VAAC reported an ash emission on 24 December that rose to 1,000 m altitude and drifted S. On 31 December, explosions at the summit continued every few seconds with ash and ejecta rising 300 m high. In addition, lava from the NE flank of the pyroclastic cone flowed NE to the sea (figure 70).

Figure (see Caption) Figure 68. Incandescent ejecta and ash rose 300 m above the summit crater rim at Nishinoshima on 15 December 2019. Courtesy of JMA (Volcanic activity monthly report, December 2019).
Figure (see Caption) Figure 69. Lava from a new vent on the NW flank of Nishinoshima was entering the sea on 15 December 2019, producing vigorous steam plumes. Courtesy of JMA (Volcanic activity monthly report, December 2019).
Figure (see Caption) Figure 70. At Nishinoshima on 31 December 2019 lava flowed down the NE flank of the pyroclastic cone into the sea, and incandescent ejecta rose 300 m above summit. Courtesy of JMA and the Japan Coast Guard (Volcanic activity monthly report, December 2019).

Satellite data from JAXA (Japan Aerospace Exploration Agency) made it possible for JMA to produce maps showing the rapid changes in topography at Nishinoshima resulting from the new lava flows. The new E-flank lava flow was readily seen when comparing imagery from 22 November with 6 December 2019 (figure 71a). An image from 6 December compared with 20 December 2019 shows the flow on the E flank splitting and entering the sea at two locations (figure 71b), the flow on the NW flank traveling briefly N before turning W and forming a large fan into the ocean on the W flank, and a new flow heading NE from the summit area of the pyroclastic cone.

Figure (see Caption) Figure 71. Satellite data from JAXA (Japan Aerospace Exploration Agency) made it possible to produce maps showing the changes in topography at Nishinoshima resulting from the new lava flows (shown in blue). In comparing 22 November with 6 December 2019 (A, left), the new lava flow on the E flank was visible. A new image from 20 December compared with 6 December (B, right) showed the flow on the E flank splitting and entering the sea at two locations, the NW-flank flow building a large fan into the ocean on the W flank, and a new flow heading NE from the summit area of the pyroclastic cone. Courtesy of JMA and the Japan Coast Guard (Volcanic activity monthly report, December 2019).

The Tokyo VAAC reported an ash plume visible in satellite imagery on 15 January 2020 that rose to 1.8 km altitude and drifted SE. The Japan Coast Guard conducted an overflight on 17 January that confirmed the continued eruptions of ash, incandescent ejecta, and lava. Dark gray ash plumes were observed at 1.8 km altitude, with ashfall and tephra concentrated around the pyroclastic cone (figure 72). Plumes of steam were visible where the NE lava flow entered the ocean; the E and NW lava entry areas did not appear active but were still hot. Satellite data from ALOS-2 prepared by JAXA confirmed ongoing activity around the summit vent and on the NE flank, while activity on the W flank had ceased (figure 73). An ash plume was reported by the Tokyo VAAC on 25 January; it rose to 1.5 km altitude and drifted SW for most of the day.

Figure (see Caption) Figure 72. Dense, dark gray ash plumes rose from the summit of Nishinoshima on 17 January 2020. Small plumes of steam from lava-seawater interactions were visible on the NE shore of the island as well (far right). Courtesy of JMA and the Japan Coast Guard (Volcanic activity monthly report, January 2020).
Figure (see Caption) Figure 73. JAXA satellite data from 3 January 2020 (left) showed the growth of a new lava delta on the NE flank of Nishinoshima and minor activity occuring on the W flank compared with the previous image from 20 December 2019. By 17 January 2020 (right), the lava flow activity was concentrated on the NE flank with multiple deltas extending out into the sea. The ‘low correlation areas’ shown in blue represent changes in topography caused by new material from lava flows and ejecta added between the dates shown above the images. Courtesy of JMA (Volcanic activity monthly report, January 2020).

On 3 Feburary 2020 the Tokyo VAAC reported an ash plume visible in satellite imagery that rose to 2.1 km altitude and drifted E. The following day the Japan Coast Guard observed eruptions from the summit crater at five minute intervals that produced grayish white plumes. The plumes rose to 2.7 km altitude (figure 74). Large bombs were scattered around the pyroclastic cone, and the summit crater appeared filled with lava except for the active vent. The lava deltas on the NE flank were only active at the tips of the flows producing a few steam jets where lava entered the sea. The active flows were on the SE flank, and a new 200-m-long lava flow was flowing down the N flank of the pyroclastic cone (figure 75). The lava flowing from the E flank of the pyroclastic cone to the SE into the sea, produced larger jets of steam (figure 76). Yellow-brown discolored water appeared around the island in several places.

Figure (see Caption) Figure 74. Ash emissions at Nishinoshima rose to 2.7 km altitude on 4 February 2020; steam jets from lava entering the ocean were active on the SE flank (far side of the island, right). Courtesy of JMA (Volcanic activity monthly report, February 2020).
Figure (see Caption) Figure 75. The lava deltas on the NE flank of Nishinoshima (bottom center) were much less active on 4 February 2020 than the lava flow and growing delta on the SE flank (left). The newest flow headed N from the summit and was 200 m long (right of center). Courtesy of JMA and the Japan Coast Guard (Volcanic activity monthly report, February 2020).
Figure (see Caption) Figure 76. The most active lava flows at Nishinoshima on 4 February 2020 were on the E flank; significant steam plumes rose in multiple locations along the coast where they entered the sea. Intermittent ash plumes also rose from the summit crater. Courtesy of JMA and Japan Coast Guard (Volcanic activity monthly report, February 2020).

JAXA satellite data confirmed that the flow activity was concentrated on the NE flank and shore during the second half of January 2020, but also recorded the new flow down the SE flank that was observed by the Coast Guard in early February. By mid-February the satellite topographic data indicated the decrease in activity in the NE flank flows, the increased activity on the SE and E flank, and the extension of the flow moving due N to the coast (figure 77). Observations on 17 February 2020 by the Japan Coast Guard revealed eruptions from the summit crater every few seconds, and steam-and-ash plumes rising about 600 m. Vigorous white emissions rose from fractures near the top of the W flank of the pyroclastic cone, but thermal data indicated the area was no hotter than the surrounding area (figure 78). The lava flow on the SE coast still had steam emissions rising from the ocean entry point, but activity was weaker than on 4 February. The newest flow moving due N from the summit produced steam emissions where the flow front entered the ocean.

Figure (see Caption) Figure 77. Constantly changing lava flows at Nishinoshima reshaped the island during late January and February 2020. During the second half of January, flows were active on the NE flank, creating deltas into the sea off the NE coast and also on the SE flank into the sea at the SE coast (left). The ‘low correlation areas’ shown in blue represent changes in topography caused by new material from lava flows and ejecta added between the dates shown above the images. By 14 February (right) activity had slowed on the NE flank and expanded on the SE flank and N flank. Data is from the Land Observing Satellite-2 "Daichi-2" (ALOS-2). Courtesy of JMA and JAXA (Volcanic activity monthly report, February 2020).
Figure (see Caption) Figure 78. Vigorous white emissions rose from fractures near the top of the W flank of the pyroclastic cone at Nishinoshima on 17 February 2020, but thermal data indicated the area was no hotter than the surrounding area. Courtesy of JMA and Japan Coast Guard (Volcanic activity monthly report, February 2020).

Sulfur dioxide plumes from Nishinoshima have been small and infrequent in recent years, but the renewed and increased eruptive activity beginning in December 2019 produced several small SO2 plumes that were recorded in daily satellite data (figure 79).

Figure (see Caption) Figure 79. Small sulfur dioxide plumes from Nishinoshima were captured by the TROPOMI instrument on the Sentinel 5P satellite a few times during December 2019-February 2020 as the eruptive activity increased. The large red streak in the 3 February 2020 image is SO2 from an eruption of Kuchinoerabujima volcano (Ryukyu Islands) on the same day. Courtesy of NASA Goddard Space Flight Center and Simon Carn.

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Another eruption that began offshore in 2013 completely covered the previous exposed surface and enlarged the island again. Water discoloration has been observed on several occasions since. The island is the summit of a massive submarine volcano that has prominent satellitic peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the sea surface 9 km SSE.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Japan Aerospace Exploration Agency-Earth Observation Research Center (JAXA-EORC), 7-44-1 Jindaiji Higashi-machi, Chofu-shi, Tokyo 182-8522, Japan (URL: http://www.eorc.jaxa.jp/); Japan Coast Guard (JCG) Volcano Database, Hydrographic and Oceanographic Department, 3-1-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8932, Japan (URL: http://www.kaiho.mlit.go.jp/info/kouhou/h29/index.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Simon Carn, Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: http://www.volcarno.com/, Twitter: @simoncarn).


Krakatau (Indonesia) — February 2020 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 155 m

All times are local (unless otherwise noted)


Tephra and steam explosions in the crater lake; explosions in December 2019 build a tephra cone

Krakatau volcano in the Sunda Strait between Indonesia’s Java and Sumatra Islands experienced a major caldera collapse around 535 CE; it formed a 7-km-wide caldera ringed by three islands. Remnants of this volcano joined to create the pre-1883 Krakatau Island which collapsed during the major 1883 eruption. Anak Krakatau (Child of Krakatau), constructed beginning in late 1927 within the 1883 caldera (BGVN 44:03, figure 56), was the site of over 40 eruptive episodes until 22 December 2018 when a large explosion and flank collapse destroyed most of the 338-m-high edifice and generated a deadly tsunami (BGVN 44:03). The near-sea level crater lake inside the remnant of Anak Krakatau was the site of numerous small steam and tephra explosions from February (BGVN 44:08) through November 2019. A larger explosion in December 2019 produced the beginnings of a new cone above the surface of crater lake. Activity from August 2019 through January 2020 is covered in this report with information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, referred to as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG). Aviation reports are provided by the Darwin Volcanic Ash Advisory Center (VAAC), and photographs are from the PVMBG webcam and visitors to the island.

Explosions were reported on more than ten days each month from August to October 2019. They were recorded based on seismicity, but webcam images also showed black tephra and steam being ejected from the crater lake to heights up to 450 m. Activity decreased significantly after the middle of November, although smaller explosions were witnessed by visitors to the island. After a period of relative quiet, a larger series of explosions at the end of December produced ash plumes that rose up to 3 km above the crater; the crater lake was largely filled with tephra after these explosions. Thermal activity persisted throughout the period of August 2019-January 2020. The wattage of Radiative Power increased from August through mid-October, and then decreased through January 2020 (figure 96).

Figure (see Caption) Figure 96. Thermal activity persisted at Anak Krakatau from 20 March 2019-January 2020. The wattage of Radiative Power increased from August through mid-October, and then decreased through January 2020. Courtesy of MIROVA.

Activity during August-November 2019. The new profile of Anak Krakatau rose to about 155 m elevation as of August 2019, almost 100 m less than prior to the December 2018 explosions and flank collapse (figure 97). Smaller explosions continued during August 2019 and were reported by PVMBG in 12 different VONAs (Volcano Observatory Notice to Aviation) on days 1, 3, 6, 17, 19, 22, 23, 25, and 28. Most of the explosions lasted for less than two minutes, according to the seismic data. PVMBG reported steam plumes of 25-50 m height above the sea-level crater on 20 and 21 August. They reported a visible ash cloud on 22 August; it rose to an altitude of 457 m and drifted NNE according to the VONA. In their daily update, they noted that the eruption plume of 250-400 m on 22 August was white, gray, and black. The Darwin VAAC reported that the ash plume was discernable on HIMAWARI-8 satellite imagery for a short period of time. PVMBG noted ten eruptions on 24 August with white, gray, and black ejecta rising 100-300 m. A webcam installed at month’s end provided evidence of diffuse steam plumes rising 25-150 m above the crater during 28-31 August.

Figure (see Caption) Figure 97. Only one tree survived on the once tree-covered spit off the NE end of Sertung Island after the December 2018 tsunami from Anak Krakatau covered it with ash and debris. The elevation of Anak Krakatau (center) was about 155 m on 8 August 2019, almost 100 m less than before the explosions and flank collapse. Panjang Island is on the left, and 746-m-high Rakata, the remnant of the 1883 volcanic island, is behind Anak Krakatau on the right. Courtesy of Amber Madden-Nadeau.

VONAs were issued for explosions on 1-3, 11, 13, 17, 18, 21, 24-27 and 29 September 2019. The explosion on 2 September produced a steam plume that rose 350 m, and dense black ash and ejecta which rose 200 m from the crater and drifted N. Gray and white tephra and steam rose 450 m on 13 and 17 September; ejecta was black and gray and rose 200 m on 21 September (figure 98). During 24-27 and 29 September tephra rose at least 200 m each day; some days it was mostly white with gray, other days it was primarily gray and black. All of the ejecta plumes drifted N. On days without explosions, the webcam recorded steam plumes rising 50-150 m above the crater.

Figure (see Caption) Figure 98. Explosions of steam and dark ejecta were captured by the webcam on Anak Krakatau on 21 (left) and 26 (right) September 2019. Courtesy of MAGMA Indonesia and PVMBG.

Explosions were reported daily during 12-14, 16-20, 25-27, and 29 October (figure 99). PVMBG reported eight explosions on 19 October and seven explosions the next day. Most explosions produced gray and black tephra that rose 200 m from the crater and drifted N. On many of the days an ash plume also rose 350 m from the crater and drifted N. The seismic events that accompanied the explosions varied in duration from 45 to 1,232 seconds (about 20 minutes). The Darwin VAAC reported the 12 October eruption as visible briefly in satellite imagery before dissipating near the volcano. The first of four explosions on 26 October also appeared in visible satellite imagery moving NNW for a short time. The webcam recorded diffuse steam plumes rising 25-150 m above the crater on most days during the month.

Figure (see Caption) Figure 99. A number of explosions at Anak Krakatau were captured by the webcam and visitors near the island during October 2019, shown here on the 12th, 14th, 17th, and 29th. Black and gray ejecta and steam plumes jetted several hundred meters high from the crater lake during the explosions. Webcam images courtesy of PVMBG and MAGMA Indonesia, with 12 October 2019 (top left) via VolcanoYT. Bottom left photo on 17 October courtesy of Christoph Sator.

Five VONAs were issued for explosions during 5-7 November, and one on 13 November 2019. The three explosions on 5 November produced 200-m-high plumes of steam and gray and black ejecta and ash plumes that rose 200, 450, and 550 m respectively; they all drifted N (figure 100). The Darwin VAAC reported ash drifting N in visible imagery for a brief period also. A 350-m-high ash plume accompanied 200-m-high ejecta on 6 November. Tephra rose 150-300 m from the crater during a 43 second explosion on 7 November. The explosion reported by PVMBG on 13 November produced black tephra and white steam 200 m high that drifted N. For the remainder of the month, when not obscured by fog, steam plumes rose daily 25-150 m from the crater.

Figure (see Caption) Figure 100. PVMBG’s KAWAH webcam captured an explosion with steam and dark ejecta from the crater lake at Anak Krakatau on 5 November 2019. Courtesy of PVMBG and MAGMA Indonesia.

A joint expedition with PVMBG and the Earth Observatory of Singapore (EOS) installed geophysical equipment on Anak Krakatau and Rakata during 12 and 13 November 2019 (figure 101). Visitors to the island during 19-23 and 22-24 November recorded the short-lived landscape and continuing small explosions of steam and black tephra from the crater lake (figures 102 and 103).

Figure (see Caption) Figure 101. A joint expedition to Anak Krakatau with PVMBG and the Earth Observatory of Singapore (EOS) installed geophysical equipment on Anak Krakatau and Rakata (background, left) during 12 and 13 November 2019. Images of the crater lake from the same spot (left) in December and January show the changes at the island (figure 108). Monitoring equipment installed near the shore sits over the many layers of ash and tephra that make up the island (right). Courtesy of Anna Perttu.
Figure (see Caption) Figure 102.The crater lake at Anak Krakatau during a 19-23 November 2019 visit was the site of continued explosions with jets of steam and tephra that rose as high as 30 m. Courtesy of Andrey Nikiforov and Volcano Discovery, used with permission.
Figure (see Caption) Figure 103. The landscape of Anak Krakatau recorded the rapidly evolving sequence of volcanic events during November 2019. Fresh ash covered recent lava near the shoreline on 22 November 2019 (top left). Large blocks of gray tephra (composed of other tephra fragments) were surrounded by reddish brown smaller fragments in the area between the crater and the ocean on 23 November 2019 (top right). Explosions of steam and black tephra rose tens of meters from the crater lake on 23 November 2019 (bottom). Courtesy of and copyright by Pascal Blondé.

Activity during December 2019-January 2020. Very little activity was recorded for most of December 2019. The webcam captured daily images of diffuse steam plumes rising 25-50 m above the crater which occasionally rose to 150 m. A new explosion on 28 December produced black and gray ejecta 200 m high that drifted N; the explosion was similar to those reported during August-November. A new series of explosions from 30 December 2019 to 1 January 2020 produced ash plumes which rose significantly higher than the previous explosions, reaching 2.4-3.0 km altitude and drifting S, E, and SE according to PVMBG (figure 104). They were initially visible in satellite imagery and reported drifting SW by the Darwin VAAC. By 31 December meteorological clouds prevented observation of the ash plume but a hotspot remained visible for part of that day.

Figure (see Caption) Figure 104.The KAWAH webcam at Anak Krakatau captured this image of incandescent ejecta exploding from the crater lake on 30 December 2019 near the start of a new sequence of large explosions. Courtesy of PVMBG and Alex Bogár.

The explosions on 30 and 31 December 2019 were captured in satellite imagery (figure 105) and appeared to indicate that the crater lake was largely destroyed and filled with tephra from a new growing cone, according to Simon Carn. This was confirmed in both satellite imagery and ground-based photography in early January (figures 106 and 107).

Figure (see Caption) Figure 105. Satellite imagery of the explosions at Anak Krakatau on 30 and 31 December 2019 showed dense steam rising from the crater (left) and a thermal anomaly visible through moderate cloud cover (right). Left image courtesy of Simon Carn, and copyright by Planet Labs, Inc. Right image uses Atmospheric Penetration rendering (bands 12, 11, and 8a) to show the thermal anomaly at the base of the steam plume, courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 106. Sentinel-2 images of Anak Krakatau before (left, 21 December 2019) and after (right, 13 January 2020) explosions on 30 and 31 December 2019 show the filling in of the crater lake with new volcanic material. Natural color rendering based on bands 4,3, and 2. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 107. The crater lake at Anak Krakatau changed significantly between the first week of December 2019 (left) and 8 January 2020 (right) after explosions on 30 and 31 December 2019. Compare with figure 101, taken from the same location in mid-November 2019. Left image courtesy of Piotr Smieszek. Right image courtesy of Peter Rendezvous.

Steam plumes rose 50-200 m above the crater during the first week of January 2020. An explosion on 7 January produced dense gray ash that rose 200 m from the crater and drifted E. Steam plume heights varied during the second week, with some plumes reaching 300 m above the crater. Multiple explosions on 15 January produced dense, gray and black ejecta that rose 150 m. Fog obscured the crater for most of the second half of the month; for a brief period, diffuse steam plumes were observed 25-1,000 m above the crater.

General Reference: Perttu A, Caudron C, Assink J D, Metz D, Tailpied D, Perttu B, Hibert C, Nurfiani D, Pilger C, Muzli M, Fee D, Andersen O L, Taisne B, 2020, Reconstruction of the 2018 tsunamigenic flank collapse and eruptive activity at Anak Krakatau based on eyewitness reports, seismo-acoustic and satellite observations, Earth and Planetary Science Letters, 541:116268. https://doi.org/10.1016/j.epsl.2020.116268.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/); Amber Madden-Nadeau, Oxford University (URL: https://www.earth.ox.ac.uk/people/amber-madden-nadeau/, https://twitter.com/AMaddenNadeau/status/1159458288406151169); Anna Perttu, Earth Observatory of Singapore (URL: https://earthobservatory.sg/people/anna-perttu); Simon Carn, Michigan Tech University (URL: https://www.mtu.edu/geo/department/faculty/carn/; https://twitter.com/simoncarn/status/1211793124089044994); VolcanoYT, Indonesia (URL: https://volcanoyt.com/, https://twitter.com/VolcanoYTz/status/1182882409445904386/photo/1; Christoph Sator (URL: https://twitter.com/ChristophSator/status/1184713192670281728/photo/1); Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/); Pascal Blondé, France (URL: https://pascal-blonde.info/portefolio-krakatau/, https://twitter.com/rajo_ameh/status/1199219837265960960); Alex Bogár, Budapest (URL: https://twitter.com/AlexEtna/status/1211396913699991557); Piotr (Piter) Smieszek, Yogyakarta, Java, Indonesia (URL: http://www.lombok.pl/, https://twitter.com/piotr_smieszek/status/1204545970962231296); Peter Rendezvous (URL: https://www.facebook.com/peter.rendezvous ); Wulkany swiata, Poland (URL: http://wulkanyswiata.blogspot.com/, https://twitter.com/Wulkany1/status/1214841708862693376).


Mayotte (France) — March 2020 Citation iconCite this Report

Mayotte

France

12.83°S, 45.17°E; summit elev. 660 m

All times are local (unless otherwise noted)


Seismicity and deformation, with submarine E-flank volcanism starting in July 2018

Mayotte is a volcanic island in the Comoros archipelago between the eastern coast of Africa and the northern tip of Madagascar. A chain of basaltic volcanism began 10-20 million years ago and migrating W, making up four principal volcanic islands, according to the Institut de Physique du Globe de Paris (IPGP) and Cesca et al. (2020). Before May 2010, only two seismic events had been felt by the nearby community within recent decades. New activity since May 2018 consists of dominantly seismic events and lava effusion. The primary source of information for this report through February 2020 comes from semi-monthly reports from the Réseau de Surveillance Volcanologique et Sismologique de Mayotte (REVOSIMA), a cooperative program between the Institut de Physique du Globe de Paris (IPGP), the Bureau de Recherches Géologiques et Minières (BRGM), and the Observatoire Volcanologique du Piton de la Fournaise (OVPF-IPGP); Lemoine et al. (2019), the Centre National de la Recherche Scientifique (CNRS), and the Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER).

Seismicity was the dominant type of activity recorded in association with a new submarine eruption. On 10 May 2018, the first seismic event occurred at 0814, detected by the YTMZ accelerometer from the French RAP Network, according to BRGM and Lemoine et al. (2019). Seismicity continued to increase during 13-15 May 2018, with the strongest recorded event for the Comoros area occurring on 15 May at 1848 and two more events on 20-21 May (figure 1). At the time, no surface effusion were directly observed; however, Global Navigation Satellite System (GNSS) instruments were deployed to monitor any ground motion (Lemoine et al. 2019).

Figure (see Caption) Figure 1. A graph showing the number of daily seismic events greater than M 3.5 occurring offshore of Mayotte from 10 May 2018 through 15 February 2020. Seismicity significantly decreased in July 2018, but continued intermittently through February 2020, with relatively higher seismicity recorded in late August and mid-September 2018. Courtesy of IPGP and REVOSIMA.

Seismicity decreased dramatically after June 2018, with two spikes in August and September (see figure 1). Much of this seismicity occurred offshore 50 km E of Mayotte Island (figure 2). The École Normale Supérieure, the Observatoire Volcanologique du Piton de la Fournaise (OVPF-IPGP), and the REVOSIMA August 2019 bulletin reported that measurements from the GNSS stations and Teria GPS network data indicated eastward surface deformation and subsidence beginning in July 2018. Based on this ground deformation data Lemoine et al. (2019) determined that the eruptive phase began fifty days after the initial seismic events occurred, on 3 July 2018.

Figure (see Caption) Figure 2. Maps of seismic activity offshore near Mayotte during May 2019. Seismic swarms occurred E of Mayotte Island (top) and continued in multiple phases through October 2019. New lava effusions were observed 50 km E of Petite Terre (bottom). Bottom image has been modified with annotations; courtesy of IPGP, BRGM, IFREMER, CNRS, and University of Paris.

Between 2 and 18 May 2019, an oceanographic campaign (MAYOBS 1) discovered a new submarine eruption site 50 km E from the island of Mayotte (figure 2). The director of IPGP, Marc Chaussidon, stated in an interview with Science Magazine that multibeam sonar waves were used to determine the elevation (800 m) and diameter (5 km) of the new submarine cone (figure 3). In addition, this multibeam sonar image showed fluid plumes within the water column rising from the center and flanks of the structure. According to REVOSIMA, these plumes rose to 1 km above the summit of the cone but did not breach the ocean surface. The seafloor image (figure 3) also indicated that as much as 5 km3 of magma erupted onto the seafloor from this new edifice during May 2019, according to Science Magazine.

Figure (see Caption) Figure 3. Seafloor image of the submarine vent offshore of Mayotte created with multibeam sonar from 2 to 18 May 2019. The red line is the outline of the volcanic cone located at approximately 3.5 km depth. The blue-green color rising from the peak of the red outline represents fluid plumes within the water column. Courtesy of IPGP.

On 17 May 2019, a second oceanographic campaign (MAYOBS 2) discovered new lava flows located 5 km S of the new eruptive site. BRGM reported that in June a new lava flow had been identified on the W flank of the cone measuring 150 m thick with an estimated volume of 0.3 km3 (figure 4). According to REVOSIMA, the presence of multiple new lava flows would suggest multiple effusion points. Over a period of 11 months (July 2018-June 2019) the rate of lava effusion was at least 150-200 m3/s; between 18 May to 17 June 2019, 0.2 km3 of lava was produced, and from 17 June to 30 July 2019, 0.3 km3 of lava was produced. The MAYOBS 4 (19 July 2019-4 August 2019) and SHOM (20-21 August 2019) missions revealed a new lava flow formed between 31 July and 20 August to the NW of the eruptive site with a volume of 0.08 km3 and covering 3.25 km2.

Figure (see Caption) Figure 4. Bathymetric map showing the location of the new lava flow on the W flank of the submarine cone offshore to the E of Mayotte Island. The MAYOBS 2 campaign was launched in June 2019 (left) and MAYOBS 4 was launched in late July 2019 (right). Courtesy of BRGM.

During the MAYOBS 4 campaign in late July 2019, scientists dredged the NE flank of the cone for samples and took photographs of the newly erupted lava (figure 5). Two dives found the presence of pillow lavas. When samples were brought up to the surface, they exploded due to the large amount of gas and rapid decompression.

Figure (see Caption) Figure 5. Photographs taken using the submersible interactive camera system (SCAMPI) of newly formed pillow lavas (top) and a vesicular sample (bottom) dredged near the new submarine eruptive site at Mayotte in late July 2019. Courtesy of BRGM.

During April-May 2019 the rate of ground deformation slowed. Deflation was also observed up to 90 km E of Mayotte in late October 2019 and consistently between August 2019 and February 2020. Seismicity continued intermittently through February 2020 offshore E of Mayotte Island, though the number of detected events started to decrease in July 2018 (see figure 1). Though seismicity and deformation continued, the most recent observation of new lava flows occurred during the MAYOBS 4 and SHOM campaigns on 20 August 2019, as reported in REVOSIMA bulletins.

References: Cesca S, Heimann S, Letort J, Razafindrakoto H N T, Dahm T, Cotton F, 2020. Seismic catalogues of the 2018-2019 volcano-seismic crisis offshore Mayotte, Comoro Islands. Nat. Geosci. 13, 87-93. https://doi.org/10.1038/s41561-019-0505-5.

Lemoine A, Bertil D, Roulle A, Briole P, 2019. The volcano-tectonic crisis of 2018 east of Mayotte, Comoros islands. Preprint submitted to EarthArXiv, 28 February 2019. https://doi.org/10.31223/osf.io/d46xj.

Geologic Background. Mayotte, located in the Mozambique Channel between the northern tip of Madagascar and the eastern coast of Africa, consists two main volcanic islands, Grande Terre and Petite Terre, and roughly twenty islets within a barrier-reef lagoon complex (Zinke et al., 2005; Pelleter et al., 2014). Volcanism began roughly 15-10 million years ago (Pelleter et al., 2014; Nougier et al., 1986), and has included basaltic lava flows, nephelinite, tephrite, phonolitic domes, and pyroclastic deposits (Nehlig et al., 2013). Lavas on the NE were active from about 4.7 to 1.4 million years and on the south from about 7.7 to 2.7 million years. Mafic activity resumed on the north from about 2.9 to 1.2 million years and on the south from about 2 to 1.5 million years. Several pumice layers found in cores on the barrier reef-lagoon complex indicate that volcanism likely occurred less than 7,000 years ago (Zinke et al., 2003). More recent activity that began in May 2018 consisted of seismicity and ground deformation occurring offshore E of Mayotte Island (Lemoine et al., 2019). One year later, in May 2019, a new subaqueous edifice and associated lava flows were observed 50 km E of Petite Terre during an oceanographic campaign.

Information Contacts: Réseau de Surveillance Volcanologique et Sismologique de Mayotte (REVOSIMA), a cooperative program of a) Institut de Physique du Globe de Paris (IPGP), b) Bureau de Recherches Géologiques et Minières (BRGM), c) Observatoire Volcanologique du Piton de la Fournaise (OVPF-IPGP); (URL: http://www.ipgp.fr/fr/reseau-de-surveillance-volcanologique-sismologique-de-mayotte); Observatoire Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris, 14 route nationale 3, 27 ème km, 97418 La Plaine des Cafres, La Réunion, France (URL: http://www.ipgp.fr/fr); Bureau de Recherches Géologiques et Minières (BRGM), 3 avenue Claude-Guillemin, BP 36009, 45060 Orléans Cedex 2, France (URL: https://www.brgm.fr/); Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), 1625 route de Sainte-Anne, CS 10070, 29280 Plouzané, France (URL: https://wwz.ifremer.fr/); Centre National de la Recherche Scientifique (CNRS), 3 rue Michel-Ange, 75016 Paris, France (URL: http://www.cnrs.fr/); École Normale Supérieure, 45 rue d'Ulm, F-75230 Paris Cedex 05, France (URL: https://www.ens.psl.eu/); Université de Paris, 85 boulevard Saint-Germain, 75006 Paris, France (URL: https://u-paris.fr/en/498-2/); Roland Pease, Science Magazine (URL: https://science.sciencemag.org/, article at https://www.sciencemag.org/news/2019/05/ship-spies-largest-underwater-eruption-ever) published 21 May 2019.


Fernandina (Ecuador) — March 2020 Citation iconCite this Report

Fernandina

Ecuador

0.37°S, 91.55°W; summit elev. 1476 m

All times are local (unless otherwise noted)


Fissure eruption produced lava flows during 12-13 January 2020

Fernandina is a volcanic island in the Galapagos islands, around 1,000 km W from the coast of mainland Ecuador. It has produced nearly 30 recorded eruptions since 1800, with the most recent events having occurred along radial or circumferential fissures around the summit crater. The most recent previous eruption, starting on 16 June 2018, lasted two days and produced lava flows from a radial fissure on the northern flank. Monitoring and scientific reports come from the Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN).

A report from IG-EPN on 12 January 2020 stated that there had been an increase in seismicity and deformation occurring during the previous weeks. On the day of the report, 11 seismic events had occurred, with the largest magnitude of 4.7 at a depth of 5 km. Shortly before 1810 that day a circumferential fissure formed below the eastern rim of the La Cumbre crater, at about 1.3-1.4 km elevation, and produced lava flows down the flank (figure 39). A rapid-onset seismic swarm reached maximum intensity at 1650 on 12 January (figure 40); a second increase in seismicity indicating the start of the eruption began around 70 minutes later (1800). A hotspot was observed in NOAA / CIMSS data between 1800 and 1810, and a gas plume rising up to 2 km above the fissure dispersed W to NW. The eruption lasted 9 hours, until about 0300 on 13 January.

Figure (see Caption) Figure 39. Lava flows erupting from a circumferential fissure on the eastern flank of Fernandina on 12 January 2020. Photos courtesy of Parque Nacional Galápagos.
Figure (see Caption) Figure 40. Graph showing the Root-Mean-Square (RMS) amplitude of the seismic signals from the FER-1 station at Fernandina on 12-13 January 2020. The graph shows the increase in seismicity leading to the eruption on the 12th (left star), a decrease in the seismicity, and then another increase during the event (right star). Courtesy of S. Hernandez, IG-EPN (Report on 13 January 2020).

A report issued at 1159 local time on 13 January 2020 described a rapid decrease in seismicity, gas emissions, and thermal anomalies, indicating a rapid decline in eruptive activity similar to previous events in 2017 and 2018. An overflight that day confirmed that the eruption had ended, after lava flows had extended around 500 m from the crater and covered an area of 3.8 km2 (figures 41 and 42). Seismicity continued on the 14th, with small volcano-tectonic (VT) earthquakes occurring less than 500 m below the surface. Periodic seismicity was recorded through 13-15 January, though there was an increase in seismicity during 17-22 January with deformation also detected (figure 43). No volcanic activity followed, and no additional gas or thermal anomalies were detected.

Figure (see Caption) Figure 41. The lava flow extents at Fernandina of the previous two eruptions (4-7 September 2017 and 16-21 June 2018) and the 12-13 January 2020 eruption as detected by FIRMS thermal anomalies. Thermal data courtesy of NASA; figure prepared by F. Vásconez, IG-EPN (Report on 13 January 2020).
Figure (see Caption) Figure 42. This fissure vent that formed on the E flank of Fernandina on 12 January 2020 produced several lava flows. A weak gas plume was still rising when this photo was taken the next day, but the eruption had ceased. Courtesy of Parque Nacional Galápagos.
Figure (see Caption) Figure 43. Soil displacement map for Fernandina during 10 and 16 January 2020, with the deformation generated by the 12 January eruption shown. Courtesy of IG-EPN (Report on 23 January 2020).

Geologic Background. Fernandina, the most active of Galápagos volcanoes and the one closest to the Galápagos mantle plume, is a basaltic shield volcano with a deep 5 x 6.5 km summit caldera. The volcano displays the classic "overturned soup bowl" profile of Galápagos shield volcanoes. Its caldera is elongated in a NW-SE direction and formed during several episodes of collapse. Circumferential fissures surround the caldera and were instrumental in growth of the volcano. Reporting has been poor in this uninhabited western end of the archipelago, and even a 1981 eruption was not witnessed at the time. In 1968 the caldera floor dropped 350 m following a major explosive eruption. Subsequent eruptions, mostly from vents located on or near the caldera boundary faults, have produced lava flows inside the caldera as well as those in 1995 that reached the coast from a SW-flank vent. Collapse of a nearly 1 km3 section of the east caldera wall during an eruption in 1988 produced a debris-avalanche deposit that covered much of the caldera floor and absorbed the caldera lake.

Information Contacts: Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); Dirección del Parque Nacional Galápagos (DPNG), Isla Santa Cruz, Galápagos, Ecuador (URL: http://www.galapagos.gob.ec/).


Masaya (Nicaragua) — February 2020 Citation iconCite this Report

Masaya

Nicaragua

11.985°N, 86.165°W; summit elev. 594 m

All times are local (unless otherwise noted)


Lava lake persists with lower temperatures during August 2019-January 2020

Masaya is a basaltic caldera located in Nicaragua and contains the Nindirí, San Pedro, San Juan, and Santiago craters. The currently active Santiago crater hosts a lava lake, which has remained active since December 2015 (BGVN 41:08). The primary source of information for this August 2019-January 2020 report comes from the Instituto Nicareguense de Estudios Territoriales (INETER) and satellite -based imagery and thermal data.

On 16 August, 13 September, and 11 November 2019, INETER took SO2 measurements by making a transect using a mobile DOAS spectrometer that sampled for gases downwind of the volcano. Average values during these months were 2,095 tons/day, 1,416 tons/day, and 1,037 tons/day, respectively. August had the highest SO2 measurements while those during September and November were more typical values.

Satellite imagery showed a constant thermal anomaly in the Santiago crater at the lava lake during August 2019 through January 2020 (figure 82). According to a news report, ash was expelled from Masaya on 15 October 2019, resulting in minor ashfall in Colonia 4 de Mayo (6 km NW). On 21 November thermal measurements were taken at the fumaroles and near the lava lake using a FLIR SC620 thermal camera (figure 83). The temperature measured 287°C, which was 53° cooler than the last time thermal temperatures were taken in May 2019.

Figure (see Caption) Figure 82. Sentinel-2 thermal satellite imagery showed the consistent presence of an active lava lake within the Santiago crater at Masaya during August 2019 through January 2020. Images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 83. Thermal measurements taken at Masaya on 21 November 2019 with a FLIR SC620 thermal camera that recorded a temperature of 287°C. Courtesy of INETER (Boletin Sismos y Volcanes de Nicaragua, Noviembre, 2019).

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed intermittent low-power thermal anomalies compared to the higher-power ones before May 2019 (figure 84). The thermal anomalies were detected during August 2019 through January 2020 after a brief hiatus from early may to mid-June.

Figure (see Caption) Figure 84. Thermal anomalies occurred intermittently at Masaya during 21 February 2019 through January 2020. Courtesy of MIROVA.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Historical lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); La Jornada (URL: https://www.lajornadanet.com/, article at https://www.lajornadanet.com/index.php/2019/10/16/volcan-masaya-expulsa-cenizas/#.Xl6f8ahKjct).


Reventador (Ecuador) — February 2020 Citation iconCite this Report

Reventador

Ecuador

0.077°S, 77.656°W; summit elev. 3562 m

All times are local (unless otherwise noted)


Nearly daily ash emissions and frequent incandescent block avalanches August 2019-January 2020

Reventador is an andesitic stratovolcano located in the Cordillera Real, Ecuador. Historical eruptions date back to the 16th century, consisting of lava flows and explosive events. The current eruptive activity has been ongoing since 2008 with previous activity including daily explosions with ash emissions, and incandescent block avalanches (BGVN 44:08). This report covers volcanism from August 2019 through January 2020 using information primarily from the Instituto Geofísico (IG-EPN), the Washington Volcano Ash Advisory Center (VAAC), and various infrared satellite data.

During August 2019 to January 2020, IG-EPN reported almost daily explosive eruptions and ash plumes. September had the highest average of explosive eruptions while January 2020 had the lowest (table 11). Ash plumes rose between a maximum of 1.2 to 2.5 km above the crater during this reporting period with the highest plume height recorded in December. The largest amount of SO2 gases produced was during the month of October with 502 tons/day. Frequently at night during this reporting period, crater incandescence was observed and was occasionally accompanied by incandescent block avalanches traveling as far as 900 m downslope from the summit of the volcano.

Table 11. Monthly summary of eruptive events recorded at Reventador from August 2019 through January 2020. Data courtesy of IG-EPN (August to January 2020 daily reports).

Month Average Number of Explosions Max plume height above the crater Max SO2
Aug 2019 26 1.6 km --
Sep 2019 32 1.7 km 428 tons/day
Oct 2019 29 1.3 km 502 tons/day
Nov 2019 25 1.2 km 432 tons/day
Dec 2019 25 2.5 km 331 tons/day
Jan 2020 12 1.7 km --

During the month of August 2019, between 11 and 45 explosions were recorded every day, frequently accompanied by gas-and-steam and ash emissions (figure 119); plumes rose more than 1 km above the crater on nine days. On 20 August the ash plume rose to a maximum 1.6 km above the crater. Summit incandescence was seen at night beginning on 10 August, continuing frequently throughout the rest of the reporting period. Incandescent block avalanches were reported intermittently beginning that same night through 26 January 2020, ejecting material between 300 to 900 m below the summit and moving on all sides of the volcano.

Figure (see Caption) Figure 119. An ash plume rising from the summit of Reventador on 1 August 2019. Courtesy of Radio La Voz del Santuario.

Throughout most of September 2019 gas-and-steam and ash emissions were observed almost daily, with plumes rising more than 1 km above the crater on 15 days, according to IG-EPN. On 30 September, the ash plume rose to a high of 1.7 km above the crater. Each day, between 18 and 72 explosions were reported, with the latter occurring on 19 September. At night, crater incandescence was commonly observed, sometimes accompanied by incandescent material rolling down every flank.

Elevated seismicity was reported during 8-15 October 2019 and almost daily gas-and-steam and ash emissions were present, ranging up to 1.3 km above the summit. Every day during this month, between 13 and 54 explosions were documented and crater incandescence was commonly observed at night. During November 2019, gas-and-steam and ash emissions rose greater than 1 km above the crater except for 10 days; no emissions were reported on 29 November. Daily explosions ranged up to 42, occasionally accompanied by crater incandescence and incandescent ejecta.

Washington VAAC notices were issued almost daily during December 2019, reporting ash plumes between 4.6 and 6 km altitude throughout the month and drifting in multiple directions. Each day produced 5-52 explosions, many of which were accompanied by incandescent blocks rolling down all sides of the volcano up to 900 m below the summit. IG-EPN reported on 11 December that a gas-and-steam and ash emission column rose to a maximum height of 2.5 km above the crater, drifting SW as was observed by satellite images and reported by the Washington VAAC.

Volcanism in January 2020 was relatively low compared to the other months of this reporting period. Explosions continued on a nearly daily basis early in the month, ranging from 20 to 51. During 5-7 January incandescent material ejected from the summit vent moved as block avalanches downslope and multiple gas-and-steam and ash plumes were produced (figures 120, 121, and 122). After 9 January the number of explosions decreased to 0-16 per day. Ash plumes rose between 4.6 and 5.8 km altitude, according to the Washington VAAC.

Figure (see Caption) Figure 120. Night footage of activity on 5 (top) and 6 (bottom) January 2020 at the summit of Reventador, producing a dense, dark gray ash plume and ejecting incandescent material down multiple sides of the volcano. This activity is not uncommon during this reporting period. Courtesy of Martin Rietze, used with permission.
Figure (see Caption) Figure 121. An explosion at Reventador on 7 January 2020, which produced a dense gray ash plume. Courtesy of Martin Rietze, used with permission.
Figure (see Caption) Figure 122. Night footage of the evolution of an eruption on 7 January 2020 at the summit of Reventador, which produced an ash plume and ejected incandescent material down multiple sides of the volcano. Courtesy of Martin Rietze, used with permission.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed frequent and strong thermal anomalies within 5 km of the summit during 21 February 2019 through January 2020 (figure 123). In comparison, the MODVOLC algorithm reported 24 thermal alerts between August 2019 and January 2020 near the summit. Some thermal anomalies can be seen in Sentinel-2 thermal satellite imagery throughout this reporting period, even with the presence of meteorological clouds (figure 124). These thermal anomalies were accompanied by persistent gas-and-steam and ash plumes.

Figure (see Caption) Figure 123. Thermal anomalies at Reventador persisted during 21 February 2019 through January 2020 as recorded by the MIROVA system (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 124. Sentinel-2 thermal satellite images of Reventador from August 2019 to January 2020 showing a thermal hotspot in the central summit crater summit. In the image on 7 January 2020, the thermal anomaly is accompanied by an ash plume. Courtesy of Sentinel Hub Playground.

Geologic Background. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Information Contacts: Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Radio La Voz del Santuario (URL: https://www.facebook.com/Radio-La-Voz-del-Santuario-126394484061111/, posted at: https://www.facebook.com/permalink.php?story_fbid=2630739100293291&id=126394484061111); Martin Rietze, Taubenstr. 1, D-82223 Eichenau, Germany (URL: https://mrietze.com/, https://www.youtube.com/channel/UC5LzAA_nyNWEUfpcUFOCpJw/videos).


Pacaya (Guatemala) — February 2020 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Continuous explosions, small cone, and lava flows during August 2019-January 2020

Pacaya is a highly active basaltic volcano located in Guatemala with volcanism consisting of frequent lava flows and Strombolian explosions originating in the Mackenney crater. The previous report summarizes volcanism that included multiple lava flows, Strombolian activity, avalanches, and gas-and-steam emissions (BGVN 44:08), all of which continue through this reporting period of August 2019 to January 2020. The primary source of information comes from reports by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH) in Guatemala and various satellite data.

Strombolian explosions occurred consistently throughout this reporting period. During the month of August 2019, explosions ejected material up to 30 m above the Mackenney crater. These explosions deposited material that contributed to the formation of a small cone on the NW flank of the Mackenney crater. White and occasionally blue gas-and-steam plumes rose up to 600 m above the crater drifting S and W. Multiple incandescent lava flows were observed traveling down the N and NW flanks, measuring up to 400 m long. Small to moderate avalanches were generated at the front of the lava flows, including incandescent blocks that measured up to 1 m in diameter. Occasionally incandescence was observed at night from the Mackenney crater.

In September 2019 seismicity was elevated compared to the previous month, registering a maximum of 8,000 RSAM (Realtime Seismic Amplitude Measurement) units. White and occasionally blue gas-and-steam plumes that rose up to 1 km above the crater drifted generally S as far as 3 km from the crater. Strombolian explosions continued, ejecting material up to 100 m above the crater rim. At night and during the early morning, crater incandescence was observed. Incandescent lava flows traveled as much as 600 m down the N and NW flanks toward the Cerro Chino crater (figure 116). On 21 September two lava flows descended the SW flank. Constant avalanches with incandescent blocks measuring 1 m in diameter occurred from the front of many of these lava flows.

Figure (see Caption) Figure 116. Webcam image of Pacaya on 25 September 2019 showing thermal signatures and the point of emission on the NNW flank at night using Landsat 8 (Nocturnal) imagery (left) and a daytime image showing the location of these lava effusions (right) along with gas-and-steam emissions from the active crater. Courtesy of INSIVUMEH.

Weak explosions continued through October 2019, ejecting material up to 75 m above the crater and building a small cone within the crater. White and occasionally blue gas-and-steam plumes rose 400-800 m above the crater, drifting W and NW and extending up to 4 km from the crater during the week of 26 October-1 November. Lava flows measuring up to 250 m long, originating from the Mackenney crater were descending the N and NW flanks (figure 117). Avalanches carrying large blocks 1 m in diameter commonly occurred at the front of these lava flows.

Figure (see Caption) Figure 117. Photo of lava flows traveling down the flanks of Pacaya taken between 28 September 2019 and 4 October. Courtesy of INSIVUMEH (28 September 2019 to 4 October Weekly Report).

Continuing Strombolian explosions in November 2019 ejected material 15-75 m above the crater, which then contributed to the formation of the new cone. White and occasionally blue gas-and-steam plumes rose 100-600 m above the crater drifting in different directions and extending up to 2 km. Multiple lava flows from the Mackenney crater moving down all sides of the volcano continued, measuring 50-700 m long. Avalanches were generated at the front of the lava flows, often moving blocks as large as 1 m in diameter. The number of lava flows decreased during 2-8 November and the following week of 9-15 November no lava flows were observed, according to INSIVUMEH. During the week of 16-22 November, a small collapse occurred in the Mackenney crater and explosive activity increased during 16, 18, and 20 November, reaching RSAM units of 4,500. At night and early morning in late November crater incandescence was visible. On 24 November two lava flows descended the NW flank toward the Cerro Chino crater, measuring 100 m long.

During December 2019, much of the activity remained the same, with Strombolian explosions originating from two emission points in the Mackenney crater ejecting material 75-100 m above the crater; white and occasionally blue gas-and-steam plumes to 100-300 m above the crater drifted up to 1.5 km downwind to the S and SW. Lava flows descended the S and SW flanks reaching 250-600 m long (figure 118). On 29 December seismicity increased, reaching 5,000 RSAM units.

Figure (see Caption) Figure 118. Lava flows moving to the S and SW at Pacaya on 31 December 2019. Courtesy of INSIVUMEH (28 December 2019 to 3 January 2020 Weekly Report).

Consistent Strombolian activity continued into January 2020 ejecting material 25-100 m above the crater. These explosions deposited material inside the Mackenney crater, contributing to the formation of a small cone. White and occasionally blue fumaroles consisting of mostly water vapor were observed drifting in different directions. At night, summit incandescence and lava flows were visible descending the N, NW, and S flanks with the flow on the NW flank traveling toward the Cerro Chino crater.

During August 2019 through January 2020, multiple lava flows and bright thermal anomalies (yellow-orange) within the crater were seen in Sentinel-2 thermal satellite imagery (figures 119 and 120). In addition, constant strong thermal anomalies were detected by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system during 21 February 2019 through January 2020 within 5 km of the summit (figure 121). A slight decrease in energy was seen from May to June and August to September. Energy increased again between November and December. According to the MODVOLC algorithm, 37 thermal alerts were recorded during August 2019 through January 2020.

Figure (see Caption) Figure 119. Sentinel-2 thermal satellite images of Pacaya showing thermal activity (bright yellow-orange) during August 2019 to November. All images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 120. Sentinel-2 thermal satellite images of Pacaya showing thermal activity (bright yellow-orange) during December 2019 through January 2020. All images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 121. The MIROVA thermal activity graph (log radiative power) at Pacaya during 21 February 2019 to January 2020 shows strong, frequent thermal anomalies through January with a slight decrease in energy between May 2019 to June 2019 and August 2019 to September 2019. Courtesy of MIROVA.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kikai (Japan) — February 2020 Citation iconCite this Report

Kikai

Japan

30.793°N, 130.305°E; summit elev. 704 m

All times are local (unless otherwise noted)


Single explosion with steam and minor ash, 2 November 2019

The 19-km-wide submerged Kikai caldera at the N end of Japan’s Ryukyu Islands was the source of one of the world's largest Holocene eruptions about 6,300 years ago, producing large pyroclastic flows and abundant ashfall. During the last century, however, only intermittent minor ash emissions have characterized activity at Satsuma Iwo Jima island, the larger subaerial fragment of the Kikai caldera; several events have included limited ashfall in communities on nearby islands. The most recent event was a single day of explosions on 4 June 2013 that produced ash plumes and minor ashfall on the flank. A minor episode of increased seismicity and fumarolic activity was reported in late March 2018, but no ash emissions were reported. A new single-day event on 2 November 2019 is described here with information provided by the Japan Meteorological Agency (JMA).

JMA reduced the Alert Level to 1 on 27 April 2018 after a brief increase in seismicity during March 2018 (BGVN 45:05); no significant changes in volcanic activity were observed for the rest of the year. Steam plumes rose from the summit crater to heights around 1,000 m; the highest plume rose 1,800 m. Occasional nighttime incandescence was recorded by high-sensitivity surveillance cameras. SO2 measurements made during site visits in March, April, and May indicated amounts ranging from 300-1,500 tons per day, similar to values from 2017 (400-1,000 tons per day). Infrared imaging devices indicated thermal anomalies from fumarolic activity persisted on the N and W flanks during the three site visits. A field survey of the SW flank on 25 May 2018 confirmed that the crater edge had dropped several meters into the crater since a similar survey in April 2007. Scientists on a 19 December 2018 overflight had observed fumarolic activity.

There were no changes in activity through October 2019. Weak incandescence at night continued to be periodically recorded with the surveillance cameras (figure 9). A brief eruption on 2 November 2019 at 1735 local time produced a gray-white plume that rose slightly over 1,000 m above the Iodake crater rim (figure 10). As a result, JMA raised the Alert Level from 1 to 2. During an overflight the following day, a steam plume rose a few hundred meters above the summit, but no further activity was observed. No clear traces of volcanic ash or other ejecta were found around the summit (figure 11). Infrared imaging also showed no particular changes from previous measurements. Discolored seawater continued to be observed around the base of the island in several locations.

Figure (see Caption) Figure 9. Incandescence at night on 25 October 2019 was observed at Satsuma Iwo Jima (Kikai) with the Iwanogami webcam. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, October 1st year of Reiwa [2019]).
Figure (see Caption) Figure 10. The Iwanogami webcam captured a brief gray-white ash and steam emission rising above the Iodake crater rim on Satsuma Iwo Jima (Kikai) on 2 November 2019 at 1738 local time. The plume rose slightly over 1,000 m before dissipating. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, October 1st year of Reiwa [2019]).
Figure (see Caption) Figure 11. During an overflight of Satsuma Iwo Jima (Kikai) on 3 November 2019 no traces of ash were seen from the previous day’s explosion; only steam plumes rose a few hundred meters above the summit, and discolored water was present in a few places around the shoreline. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, October 1st year of Reiwa [2019]).

For the remainder of November 2019, steam plumes rose up to 1,300 m above the summit, and nighttime incandescence was occasionally observed in the webcam. Seismic activity remained low and there were no additional changes noted through January 2020.

Geologic Background. Kikai is a mostly submerged, 19-km-wide caldera near the northern end of the Ryukyu Islands south of Kyushu. It was the source of one of the world's largest Holocene eruptions about 6,300 years ago when rhyolitic pyroclastic flows traveled across the sea for a total distance of 100 km to southern Kyushu, and ashfall reached the northern Japanese island of Hokkaido. The eruption devastated southern and central Kyushu, which remained uninhabited for several centuries. Post-caldera eruptions formed Iodake lava dome and Inamuradake scoria cone, as well as submarine lava domes. Historical eruptions have occurred at or near Satsuma-Iojima (also known as Tokara-Iojima), a small 3 x 6 km island forming part of the NW caldera rim. Showa-Iojima lava dome (also known as Iojima-Shinto), a small island 2 km E of Tokara-Iojima, was formed during submarine eruptions in 1934 and 1935. Mild-to-moderate explosive eruptions have occurred during the past few decades from Iodake, a rhyolitic lava dome at the eastern end of Tokara-Iojima.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 26, Number 07 (July 2001)

Managing Editor: Richard Wunderman

Bezymianny (Russia)

Explosive eruption on 7 August sends plume to ~10 km altitude

Fournaise, Piton de la (France)

11 June-7 July eruption; two lava flows block highway

Kikai (Japan)

Ashfall and volcanic tremor through July 2001

Long Valley (United States)

Decreased seismicity during 1999-2000

Merapi (Indonesia)

Volcanism continues at decreased intensity; Alert reduced from 4 to 2

Ruapehu (New Zealand)

Tremor episode peaks on 16 February, lahars predicted for near future

Soufriere Hills (United Kingdom)

29 July dome collapse and rockfalls

Stromboli (Italy)

Continued Strombolian activity during March-May 2001; crater morphology changes

Suwanosejima (Japan)

Explosive eruptions in May and July

Tungurahua (Ecuador)

Summary of August 2000-August 2001 eruptive activity



Bezymianny (Russia) — July 2001 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Explosive eruption on 7 August sends plume to ~10 km altitude

Weak fumarolic activity and gas-steam plumes, along with several small earthquakes, occurred from the latter months of the year 2000 through July 2001. AVHRR satellite data confirmed a one-pixel thermal anomaly on 20 November at 0650, and a weak thermal anomaly on 3 January.

On 23-24 July, seismic and satellite data showed gas-and-steam plumes, along with shallow earthquakes and long local seismic events that were possibly due to collapses and/or avalanches. With the beginning of an extrusive process at the dome, the level of concern was raised from Green (volcano is dormant; normal seismicity and fumarolic activity) to Orange (volcano is in eruption or eruption may occur at any time). KVERT reported that an AVHRR image at 0718 on 26 July revealed a 3-pixel thermal anomaly that had a maximum band-3 temperature of 26.8°C within a background near 8°C. The anomaly had a linear shape and SE-trend from the summit. Afterward, a weakening of activity occurred and the level of concern was lowered to Yellow (volcano is restless; eruption may occur). Intermittent weak activity, including shallow earthquakes, fumarolic activity above the dome, and long local seismic events were observed through 31 July. Weak shallow earthquakes within the volcano's edifice, along with probable collapses and avalanches were recorded during 6-9 August.

On 7 August at 1128 (6 August at 2228 UTC) an explosive eruption began. The level of concern was raised to Red (significant eruption is occurring or explosive eruption expected at any time). Spasmodic volcanic tremor up to 11.7 x 10-6 m/s was recorded until 1300. Tremor amplitude increased up to 1.0 x 10-6 m/s until 1410, then decreased. Observers in Klyuchi town reported that an ash plume 5 km above the volcano rose to 10 km by 1215, and extended to the E-SE. At the same time observers at Kozirevsk village reported that an ash plume rose 2-2.5 km above the dome and extended to the SW. At 1300 a gas-ash plume rose 2 km above the dome and extended SW 40 km. Observers at Kronoki seismic station reported an ash fall (50 g per square m). Satellite images showed a plume centered off the E coast of Kamchatka about 200 km south of Kronotsky. The plume was approximately 200 km long and 100 km wide and headed due S. A thermal anomaly showed that a viscous lava flow had formed at the dome of volcano. After the 7 August eruption through 31 August, background seismicity was recorded and occasional gas-and-steam clouds were observed. The level of concern was dropped to Green.

Geologic Background. Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of (a)U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA; Tokyo VAAC, Tokyo, Japan (URL: https://ds.data.jma.go.jp/svd/vaac/data/).


Piton de la Fournaise (France) — July 2001 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


11 June-7 July eruption; two lava flows block highway

A short seismic crisis with 126 recorded events started at Piton de la Fournaise on 11 June 2001 at 1327. At 1350 extensometer variations indicated that a new eruption had started on the ESE flank, in the same area as the previous eruption on 27 March 2001. En echelon fissures started at about 2.5 km elevation on the S flank, 200 m below the Dolomieu summit caldera. More fissures were located between 1.8 and 2 km elevation on the E flank at the southern base of crater Signal de l'Enclos and N of the Ducrot crater. Several lava flows descended the Grand Brûlé but their progression was very slow; at 1700 the front of the lava flow was still located at an elevation of ~1.5 km. On the morning of 12 June, only the lower fissure at 1.8 km elevation was still active. It was ~200 m long, with several lava fountains 20-30 m high. The lava flow followed the northern border of the 27 March lava and descended to about 400 m elevation in the Grand Brûlé.

On 16 June a cone began to form and lava fountains rose up to 30 m above the surface in an area at 1.8 km elevation. An active fissure was located on the E flank at the S base of crater Signal de l'Enclos. Tremor weakened but continued under the volcano's E flank through late June. Lava fountains were visible at two vents; at one vent strong degassing occurred, while at the other vent a boiling lava lake occasionally overflowed, sending lava towards the NE. New lava flows were observed on 29 June in the Grand Brûlé area traveling to the N. On 1 July an increase in tremor occurred for about 1 hour and was accompanied by strong degassing at the cone and a strong amount of lava emission. Several dozen small flows were visible by the next day. Tremor and the intensity of local earthquakes increased during the first week of July. The earthquakes had magnitudes less than 3 and were located under Dolomieu crater at a depth near sea level. On 6 and 7 July two aa lava flows, 80 and 100 m wide and up to 5 m high, crossed the national highway in the Grand Brûlé area (see figure 65). On the afternoon of 7 July the end of the eruption was marked by the disappearance of tremor and a dramatic decrease in the intensity of local earthquakes.

Figure (see Caption) Figure 65. On 6 July 2001, police and security personnel watch as molten lava from Piton de la Fournaise blocks the main national RN 2 road, which connects Réunion island from E to S.

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Thomas Staudacher and Georges Boudon, Observatoire du Piton de la Fournaise Institut de Physique du Globe de Paris - B89, 4 Place Jussieu, 75252 Paris cedex 05, France.


Kikai (Japan) — July 2001 Citation iconCite this Report

Kikai

Japan

30.793°N, 130.305°E; summit elev. 704 m

All times are local (unless otherwise noted)


Ashfall and volcanic tremor through July 2001

This report covers activity through July 2001. Volcanic tremor was recorded during 20 to 23 July 2001. A seismometer about 700 m SW of Iwo-dake crater recorded 50-110 earthquakes daily, in comparison to 30-90 earthquakes recorded daily during December 2000 and March 2001. The Iwo-jima branch of the Mishima village office reported that ash fell during 19-21 July. A white plume rose to ~ 20 m above the crater. Faint ashfall and weak volcanic tremor had occurred since December 2000.

Geologic Background. Kikai is a mostly submerged, 19-km-wide caldera near the northern end of the Ryukyu Islands south of Kyushu. It was the source of one of the world's largest Holocene eruptions about 6,300 years ago when rhyolitic pyroclastic flows traveled across the sea for a total distance of 100 km to southern Kyushu, and ashfall reached the northern Japanese island of Hokkaido. The eruption devastated southern and central Kyushu, which remained uninhabited for several centuries. Post-caldera eruptions formed Iodake lava dome and Inamuradake scoria cone, as well as submarine lava domes. Historical eruptions have occurred at or near Satsuma-Iojima (also known as Tokara-Iojima), a small 3 x 6 km island forming part of the NW caldera rim. Showa-Iojima lava dome (also known as Iojima-Shinto), a small island 2 km E of Tokara-Iojima, was formed during submarine eruptions in 1934 and 1935. Mild-to-moderate explosive eruptions have occurred during the past few decades from Iodake, a rhyolitic lava dome at the eastern end of Tokara-Iojima.

Information Contacts: Volcano Research Center, Earthquake Research Institute, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan (URL: http://www.eri.u-tokyo.ac.jp/VRC/index_E.html).


Long Valley (United States) — July 2001 Citation iconCite this Report

Long Valley

United States

37.7°N, 118.87°W; summit elev. 3390 m

All times are local (unless otherwise noted)


Decreased seismicity during 1999-2000

The following summarizes activity at Long Valley during 1999 (Hill, 1999) and 2000 (Hill, 2000). Summaries of activity during 1996, 1997 and 1998 can be found in BGVN 22:11, 22:12, and 24:06.

Summary of activity during 1999. The lowest level of activity within Long Valley since the onset of unrest in 1979-80 occurred in 1999. Earthquake activity and ground deformation were subdued throughout the year. The two largest earthquakes within the caldera were M 2.9 and 3.1 events that occurred on 1 January beneath the S margin of the caldera (5 km ESE of Mammoth Lakes), and on 27 March beneath the S margin of the resurgent dome (9 km E of Mammoth Lakes), respectively. On 24-25 February, a swarm of ~42 small earthquakes was centered just outside the caldera 1-2 km E of Lake Mary (5 km WSW of Mammoth Lakes); the largest in this sequence were M 3.2 and 2.9 events.

Two aspects of caldera seismicity during 1999 were noteworthy. One was the abrupt decrease in seismicity rate within the caldera on 15 May coincident with a M 5.6 earthquake S of the caldera in the Sierra Nevada. The second was a brief swarm of small earthquakes beneath the N flank of Mammoth Mountain within the hour following the M 7.1 Hector Mine earthquake of 16 October, the epicenter of which was in the Mojave Desert ~430 km SE of the caldera. This latter set of events appear to be a subtle example of remote triggering similar to events in the Long Valley caldera and elsewhere following the M 7.3 Landers earthquake in June 1992. Aside from a transient response to the 16 October earthquake, deformation within the caldera remained stationary through 1999.

The rate of deep long-period (LP) "volcanic" earthquake activity beneath the W flank of Mammoth Mountain tapered off following the elevated rate that persisted through the end of 1998. Deep LP earthquakes in 1999 included ~30 events, compared to an average of ~200 events/year during 1997-98. Initial results from the analysis of data collected during a 1997 seismic experiment indicates that these LP events occurred within a N-striking planar distribution that dips steeply (roughly 80°) W at depths of 10-20 km.

Carbon dioxide (CO2) soil-gas concentrations measured at fixed depths in the Horseshoe Lake (HSL) tree-kill area continued to show annual variation with snow depth and occasional fluctuations during the snow-free months. The only notable fluctuation in CO2 concentrations during 1999 involved a three-week increase at the SKI monitoring site (near Chair 19 in the Mammoth Mountain Ski Area) that began four days after the 15 May earthquake; whether these two events are related is unclear. With respect to the cold CO2 emissions from the soils, radioactive carbon measurements on cores from trees at the margin of the HSL tree-kill area indicated that the CO2 discharge in that area has been relatively constant since about 1995. Analyses of helium isotopic composition on the N side of Mammoth Mountain showed that the trend of decreasing 3He/4He at the MMF steam vent since 1997 was interrupted by a rise in May 1999 following a period of increased LP activity in the fall of 1998.

Summary of activity during 2000. Continuing the trend set in 1999, activity levels in the Long Valley caldera and vicinity remained low throughout 2000 (figure 23). Low-level earthquake activity within the caldera was scattered beneath the S moat, the S and E margins of the resurgent dome, and Mammoth Mountain. The largest of these intra-caldera earthquakes was a M 2.3 event that occurred as part of a cluster of half a dozen small earthquakes beneath Mammoth Mountain on 27 April. Activity in the Sierra Nevada immediately S of the caldera was largely concentrated in the aftershock zone of the 8 June 1998, 14 July 1998, and 15 May 1999 earthquakes. The largest earthquake of the year in the region was a M 3.8 earthquake on 20 January located in the Sierra Nevada midway between Convict Lake and Mt. Morrison.

Figure (see Caption) Figure 23. Earthquake epicenters in the Long Valley region during 2000. Courtesy of the USGS.

The rate of deep LP earthquakes beneath the W flank of Mammoth Mountain, which began in 1989-90, accelerated significantly in 1997 through early 1998, tapered off in early 1999, and increased again in mid-2000 (figure 24). The increased rate began with a burst of some 15 events in July and included several additional bursts of 5-10 events each in December. Altogether, about 50 deep LP earthquakes were recorded at depths of 10-25 km beneath Mammoth Mountain during 2000.

Figure (see Caption) Figure 24. Time history of deep LP earthquakes in the Long Valley caldera beneath Mammoth Mountain from 1989 through 2000. The continuous line shows cumulative number (right ordinate), and vertical lines indicate number of LP events per week (left ordinate). Courtesy of the USGS.

Two very-long-period (VLP) earthquakes were detected with hypocenters roughly 4 km beneath the summit of Mammoth Mountain; one on 6 July (0356 UTC) and the other on 13 August (0007 UTC). These two events, together with a similar event on 12 October 1996, are the only VLP earthquakes that have been detected beneath Mammoth Mountain since instrumental capability for detecting seismic events in this frequency band was acquired sometime in the 1990's. The fact that both the 6 July and 13 August VLP events were accompanied by spasmodic bursts of brittle failure earthquakes, opens the possibility that the 1989 Mammoth Mountain earthquake swarm, which included multiple episodes of spasmodic bursts, may have also included significant VLP activity. These Mammoth Mountain VLP events are similar to those beneath Kilauea, which Bernard Chouet and colleagues interpret as the result of small slugs of magma, magmatic brine, or magmatic gas moving through a crack-like restriction. At this low rate, these VLP events do not indicate impending volcanic activity.

No significant deformation episodes were recorded during 2000. The two-color EDM data show small fluctuations about a slight contraction (subsidence) of the resurgent dome of 0.5-1.0 cm for the year. The center of the resurgent dome remains roughly 80 cm higher than in the late 1970's prior to the last two decades of caldera unrest. In contrast to Yellowstone and Campi Flegrei calderas, which showed pronounced uplift through the early 1980's followed by partial subsidence, Long Valley caldera has yet to show any significant subsidence. Rabaul, the other large caldera with well-documented deformation over the last couple of decades, showed sustained uplift at varying rates through the 1980's and early 1990's with no evidence of subsidence until the onset of eruptive activity in September 1994.

Hydrological monitoring in the caldera revealed no significant changes in water wells or stream flow that might be attributable to caldera unrest. Short-term CO2-flux variations during the snow-free months in the HSL tree-kill area appeared to be primarily related to local meteorological conditions. These measurements also show that the total CO2 flux has remained relatively steady over the past several years with no indication of a systematic decline with time. Soil-gas CO2 measured at fixed depths in the HSL tree-kill area continue to show an annual variation with snow depth and occasional temporary fluctuations during the snow-free months. The only notable fluctuation in CO2 concentrations during 2000 occurred at the Laurel Springs station (LSP), which showed a spike in late April and a number of spikes from mid-June through September. The process leading to these spikes remains to be determined. At this point, however, these spikes do not represent a hazard of the sort associated with the sustained high CO2 flux in the Mammoth Mountain tree-kill areas.

References: Hill, David P., 1999, Review of Long Valley Caldera activity for 1999: Long Valley Observatory, U.S. Geological Survey.

Hill, David P., 2000, Long Valley Observatory quarterly report October-December 2000 and annual summary for 2000: Long Valley Observatory, Volcano Hazards Program, U.S. Geological Survey.

Geologic Background. The large 17 x 32 km Long Valley caldera east of the central Sierra Nevada Range formed as a result of the voluminous Bishop Tuff eruption about 760,000 years ago. Resurgent doming in the central part of the caldera occurred shortly afterwards, followed by rhyolitic eruptions from the caldera moat and the eruption of rhyodacite from outer ring fracture vents, ending about 50,000 years ago. During early resurgent doming the caldera was filled with a large lake that left strandlines on the caldera walls and the resurgent dome island; the lake eventually drained through the Owens River Gorge. The caldera remains thermally active, with many hot springs and fumaroles, and has had significant deformation, seismicity, and other unrest in recent years. The late-Pleistocene to Holocene Inyo Craters cut the NW topographic rim of the caldera, and along with Mammoth Mountain on the SW topographic rim, are west of the structural caldera and are chemically and tectonically distinct from the Long Valley magmatic system.

Information Contacts: David Hill, Long Valley Observatory, U.S. Geological Survey, Volcano Hazards Program, MS 910, 345 Middlefield Rd., Menlo Park, CA 94025 USA (URL: https://volcanoes.usgs.gov/observatories/calvo/).


Merapi (Indonesia) — July 2001 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Volcanism continues at decreased intensity; Alert reduced from 4 to 2

After the large 10 February eruption (see BGVN 26:01), volcanic activity, including lava avalanches and pyroclastic flows, continued but decreased in intensity. Pyroclastic flows entered the Sat, Lamat, Senowo, and Bebeng rivers to a maximum runout distance of 2-3 km. High fumarole temperatures around the summit indicated that magma remained near the surface. The W and S sides of "lava dome 2001" grew and covered "lava dome 1997" to the S. Several fumaroles appeared to mark a fracture in the area of the 10 February eruption. Fractures formed in a similar manner prior to the November 1994 eruption.

The hazard status was at its highest level, 4 (on a scale of 1-4), through the week of 21-27 February 2001. The Alert Level was reduced to 3 the following week, and then to 2 during 7-13 March, where it remained through August.

Over the interval 14 February to 28 August, ash emissions rose up to ~150 m above the summit, and fumaroles emitted gas that rose up to ~950 m above the summit. Superficial earthquakes dominated the seismicity, though over time they continued to decrease in number and amplitude. Observations on 10 and 17 March revealed that high-pressure fumaroles appeared on most of the dome's surface. An observer reported that on 13 April a small amount of ash fell around the Babadan Post Observatory ~7 km W of the volcano. Activity at Merapi increased during 23-29 April, with reports of several medium-sized pyroclastic flows. Table 10 provides a more detailed description of weekly activity at Mt. Merapi from 14 February through 28 August.

Table 10. Summary of activity at Merapi from 14 February through 28 August 2001. Courtesy of VSI.

Interval Description of Activity
14 Feb-20 Feb 2001 Lava and pyroclastic flows continued but decreased in intensity, pyroclastic flows entered the Sat, Lamat, Senowo, and Bebung rivers. Maximum runut 2-3 km. Flows traveled 1.5-2.5 km to the WSW for 1-2 hours. High temperatures around Merapi indicated that magma was near the surface; the W and S sides of "lava dome bgvn_2001" grew and covered "lava dome 1997" to the S; several fumaroles appeared to mark a fracture along where the 10 February eruption occurred.
21 Feb-27 Feb 2001 Volcanic activity decreased. Daily ash emissions rose to ~150 m above the summit.
07 Mar-13 Mar 2001 Volcanic activity decreased, 100 avalanches per day. Maximum runout of 2.3-2.5 km SW. On 6 March a pyroclastic flow deposited material up to 1.5 km down the Sat river.
14 Mar-20 Mar 2001 Volcanic activity continued, hot avalanches continued to enter the Sat, Senowo, Bebeng, and Lamat rivers. Maximum runout of 2.5 km in the Sat river, pyroclastic flows up to 2.75 km down the Sat, Senowo, and Bebeng rivers. Superficial earthquakes dominated the seismicity but decreased. On 19 March high-pressure fumaroles appeared on most of the dome's surface.
21 Mar-27 Mar 2001 Volcanic activity continued. hot avalanches continued to enter the Sat, Senowo, Bebeng, and Lamat rivers. Maximum runout of 3 km in the Sat river. Pyroclastic flows traveled up to 1 km down the Sat, Senowo, and Bebeng rivers. Superficial earthquakes dominated the seismicity but decreased. On 17 March a summit visit revealed that high-pressure fumaroles remained on most of the dome's surface.
11 Apr-17 Apr 2001 Volcanic activity continued. Lava avalanches continued to enter upstream areas of the Sat, Senowo, Lamat, and Bebeng rivers. Maximum runout of 2.5 km in the Sat river; an observer reported that 10 pyroclastic flows traveled down the Sat, Senowo, and Bebeng rivers, reaching as far as 2.3 km in the Sat river. Fumaroles emitted steam and gas up to 950 m above the volcano's summit; number and amplitude of earthquakes was high but decreasing, seismic activity was dominated by avalanche earthquakes.
18 Apr-24 Apr 2001 Lava avalanches continued to fill the upstream areas of the Sat, Senowo, Lamat, and Bebeng rivers. Maximum runout of 2 km in the Sat river; 11 pyroclastic flows entered the Sat and Lamat rivers, reaching as far as 3 km. Avalanche earthquakes dominated the seismicity but their amplitude and frequency decreased; on 13 April a small amount of ash fell around the Babadan Post Observatory ~7 km W of the volcano.
25 Apr-1 May 2001 Lava avalanches continued to flow down the Sat, Senowo, Lamat, and Bebeng rivers. Maximum runout of 2 km. Fumaroles emitted gas that rose up to 500 m above the summit, seismic activity dominated by earthquakes.
02 May-08 May 2001 Activity increased, with reports of several medium-sized pyroclastic flows. Four pyroclastic flows were observed traveling into the upper reaches of the Sat, Senowo, Lamat, and Bebeng rivers. Maximum runout of 1.8 km in the Sat river; lava avalanches traveled up to 2.5 km down the Sat river. Superficial earthquakes dominated the seismicity.
11 Jul-17 Jul 2001 Lava avalanches. Maximum runout of 2.5 km SW. Low-pressure emissions from fumaroles rose 700 m above the volcano.
18 Jul-25 Jul 2001 52 lava avalanches. Maximum runout of 2.8 km SW. Emissions from low-pressure fumaroles rose to 755 m above the summit.
22 Aug-28 Aug 2001 Lava avalanches. Maximum runout of 2.8 km to the SW. Seismic activity dominated by avalanche earthquakes.

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: Dali Ahmad, Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin VAAC, Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, Northern Territory 0811, Australia; Australian Broadcasting Company; Associated Press; Meteorological and Geophysical Agency of Indonesia (Badan Meteorologi dan Geofisika, BMG), Jalan Angkasa I/2 Kemayoran, Jakarta Pusat 10720, Indonesia (URL: http://www.bmg.go.id/).


Ruapehu (New Zealand) — July 2001 Citation iconCite this Report

Ruapehu

New Zealand

39.28°S, 175.57°E; summit elev. 2797 m

All times are local (unless otherwise noted)


Tremor episode peaks on 16 February, lahars predicted for near future

Ruapehu showed no signs of volcanic unrest from the end of September 2000 (described in BGVN 25:09) until mid-January 2001, when small to moderate amounts of volcanic tremor occurred. Ruapehu continued to experience low-level seismic activity, including volcanic earthquakes, through the beginning of February 2001. In mid-February, the Institute of Geological and Nuclear Sciences (IGNS) reported several periods of moderately elevated volcanic tremor. An episode of strong volcanic tremor peaked on 16 February and was the strongest tremor recorded since the 1996 eruptions, but direct observations of the crater revealed a lack of unusual surface activity. By approximately 23 February the tremor had declined to background levels. After the tremor event in February, no eruptive activity occurred, and seismic activity continued at a low level. Ruapehu remained at Alert Level 1 (signs of volcanic unrest) throughout the time period.

According to the New Zealand Herald, Ruapehu's summit crater lake had filled at twice its normal rate over the summer of 2000, causing fears of a catastrophic mudslide in the near future. A massive lahar has been predicted within 6 years from the summer of 2002-2003, with a peak flow 50% larger than the 1953 Christmas Eve disaster that wiped out the Tangiwai rail bridge, killing 151 travelers. A $370,000 early-warning system is planned that would provide 1 hour warning of the lahar's arrival on the Desert Road and 2 hours warning of its arrival at Tangiwai.

Geologic Background. Ruapehu, one of New Zealand's most active volcanoes, is a complex stratovolcano constructed during at least four cone-building episodes dating back to about 200,000 years ago. The 110 km3 dominantly andesitic volcanic massif is elongated in a NNE-SSW direction and surrounded by another 100 km3 ring plain of volcaniclastic debris, including the Murimoto debris-avalanche deposit on the NW flank. A series of subplinian eruptions took place between about 22,600 and 10,000 years ago, but pyroclastic flows have been infrequent. A single historically active vent, Crater Lake, is located in the broad summit region, but at least five other vents on the summit and flank have been active during the Holocene. Frequent mild-to-moderate explosive eruptions have occurred in historical time from the Crater Lake vent, and tephra characteristics suggest that the crater lake may have formed as early as 3000 years ago. Lahars produced by phreatic eruptions from the summit crater lake are a hazard to a ski area on the upper flanks and to lower river valleys.

Information Contacts: Institute of Geological & Nuclear Sciences (IGNS), Private Bag 2000, Wairakei, New Zealand (URL: http://www.gns.cri.nz/); The New Zealand Herald, PO Box 32, Auckland, New Zealand.


Soufriere Hills (United Kingdom) — July 2001 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


29 July dome collapse and rockfalls

This report covers the interval from 9 March to 17 August 2001 and chronicles ongoing dome growth, including a vigorous episode of dome collapse and mass wasting on 28-29 July. As reported in BGVN 26:02, on 25 February 2001, the direction of the continuing dome growth changed markedly, shifting its predominant growth from the volcano's E side towards the S side. Then, as also reported in the Bulletin, the character of the seismicity changed dramatically in early March with the number of hybrid earthquakes exceeding 300/week (table 37). However, by mid-March, seismic activity had decreased significantly. Dome growth with attendant rockfalls, pyroclastic flows, and ash clouds continued at low levels until early-May. A small pyroclastic flow occurred on 9 May and traveled ~2.5 km down the White River to the S of the dome. The number of rockfalls increased substantially in the following week and remained at higher levels until early August. Observations during the week of 11-18 May indicated that the main dome growth was still concentrated in the S sector of the dome, and a lobe of new lava was observed over Galway. Reports from the week of 8-15 June noted that the summit over Galway appeared to contain the highest point on the dome.

Table 37. Seismic and SO2 data from Soufriere Hills during 16 February to 17 August 2001. Courtesy of MVO.

Week Rockfall Hybrid Volcano-tectonic Long-period Range of Average Daily SO2 (tons/day)
16 Feb-23 Feb 2001 486 18 6 53 210-720
23 Feb-02 Mar 2001 729 388 3 58 180-1400
02 Mar-09 Mar 2001 629 280 4 45 100-1230
09 Mar-16 Mar 2001 294 4 0 23 360-460
16 Mar-23 Mar 2001 84 5 2 8 120-190
23 Mar-30 Mar 2001 33 5 3 1 200-275
30 Mar-06 Apr 2001 62 18 1 1 200-370
06 Apr-13 Apr 2001 52 9 6 3 40-520
13 Apr-20 Apr 2001 54 48 1 9 20-70
20 Apr-27 Apr 2001 31 10 1 2 100-250
27 Apr-04 May 2001 98 10 3 7 130-220
04 May-11 May 2001 104 34 6 22 80-180
11 May-18 May 2001 240 17 1 31 170
18 May-25 May 2001 237 26 0 109 700
25 May-01 Jun 2001 266 36 3 383 90-370
01 Jun-08 Jun 2001 224 25 6 164 130-320
08 Jun-15 Jun 2001 373 71 0 169 770-1410
15 Jun-22 Jun 2001 462 11 1 77 460-630
22 Jun-29 Jun 2001 299 1 0 26 860
29 Jun-06 Jul 2001 295 4 1 28 120
06 Jul-13 Jul 2001 297 7 0 38 347
13 Jul-20 Jul 2001 719 5 2 57 709-943
20 Jul-27 Jul 2001 706 8 1 30 339-854
27 Jul-03 Aug 2001 453 15 0 67 --
03 Aug-10 Aug 2001 258 13 2 13 680-950
10 Aug-17 Aug 2001 186 6 3 3 --

Two notable events occurred during the week of 29 June-6 July. First, on the morning of 30 June, there were prolonged rockfalls that involved ~0.5 x 106 m3 of material transported down the N side of the talus apron in the Tar River valley. Second, on the evening of 4 July, two small pyroclastic flows passed down the W flank of the volcano in the Amersham area, stopping ~1 km short of the sea. Following the pyroclastic flows in the Amersham area, the daytime entry zone (DETZ) was closed until further notice and has remained that way through at least 17 August.

Lava dome collapse. Shortly after 1700 on 29 July, a large pyroclastic flow passed down the Tar River valley on the volcano's E flank and a continuous, dense plume of ash developed and blew W. Pyroclastic-flow output increased gradually over the next three hours, with many of the flows reaching the sea. The downwind plume deposited substantial amounts of wet ash with accretionary lapilli over the residential areas of Salem, Isles Bay, and Olveston.

Pyroclastic-flow activity peaked at ~1950, when surge clouds associated with the largest flow moved out over the sea, followed by rock fragments falling over a wide area in the NW of the island in the sector between Salem and St. Peters. Some fragments were pumiceous, although the majority consisted of angular, dense lithic fragments generally less than a few centimeters in size, but with maximum dimensions of 6 cm. A second peak in pyroclastic-flow output took place shortly after 2200, when another large flow entered the sea and extended out from the shore for 0.5 km or more and rock fragments fell in the Salem area again. After about 0200 on 30 July seismic signals indicated that this dome collapse had largely finished, and the activity level declined rapidly. The ash plume from the collapse dispersed for considerable distances to the NW. Ash was deposited as far away as Puerto Rico and the Virgin Islands.

Observation flights indicated that a large portion of the dome had collapsed. The general summit region dropped ~150 m and there was a complex, amphitheater-shaped scar several hundred meters deep incised into the core of the dome at the head of the Tar River valley. Within this scar, a new dome began extruding. Observations indicated that minor pyroclastic flows also occurred in the upper reaches of White's, Tuitt's, and Gages ghauts, and also on the southern flanks of the dome in the upper reaches of White River. The main pyroclastic flows in the Tar River were highly erosive; they incised a deep canyon extending across the delta region to the shore and split the delta into two distinct lobes. Analysis of seismic data indicated that the two most intensive periods of pyroclastic-flow activity were associated with explosive events related to the collapse of the largest fragments of the dome.

Reports after 3 August noted that activity at Soufriere Hills was at a low level, and it continued that way to the end of the reporting period (17 August). Small-scale rockfalls and minor pyroclastic flows occurred, but clear views of the upper parts of the volcano were hampered by clouds. Occasional views of the dome noted that it was continuing to grow in the scar produced by the 29 July collapse.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), Mongo Hill, Montserrat, West Indies (URL: http://www.mvo.ms/).


Stromboli (Italy) — July 2001 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Continued Strombolian activity during March-May 2001; crater morphology changes

This report discusses the period March-May 2001, which included a 10-day interval of field observations. Observers and instruments documented variable volcanism and seismicity ongoing since the last report (BGVN 26:04).

Seismic activity increased in early March, as recorded by the University of Udine summit station, which is located 300 m from the craters at 800 m elevation. On 13 March the number of events per day reached 200. The latter half of March was characterized by a decrease of tremor intensity and by a noteworthy number of saturating events (peaking at 63 on 20 March). In April a reprise of the tremor intensity occurred but the number of triggering seismic events decreased. May was characterized by an increased number of seismic events.

During 14 days (10-24 May) of continuous seismic, thermal, and infrasonic measurements, the authors recorded a detailed 16-hour-long log of activity, and they updated the crater terrace map (figures 65 and 66). During the period, 1,050 seismically determined Strombolian events were recorded overall. These came from the NE, Central, and SW craters, with respective craters discharging 463, 42, and 545 events, respectively. These data provide an average daily rate (over the 62-hour period) that ranged from 5 to 31 events/hour and averaged 17 events/hour. Thus, the average repose time between eruptions was ~3.5 min; the largest measured repose time for the three vents was 22 minutes.

Figure (see Caption) Figure 65. A sketch map showing Stromboli's Crater. The Terrace was drawn during 10-24 May 2001 from Pizzo Sopra la Fossa and fitted to the map produced from the September 1995 EDM survey of the Crater. Note that, the prefix "2" has been used to denote Central Crater vents as opposed to the "3" prefix used BGVN 25:08. The map does not use contours, instead the long lines show the steepest gradient of the slope. Courtesy of Andy Harris.
Figure (see Caption) Figure 66. A panoramic view of Stromboli's crater terrace area taken on 10 May from Pizzo Sopra la Fossa and highlighting plumes from synchronous activity at the two SW Crater vents (3/3, 3/2). Brown ash rose from 3/2 and gray ash rose from 3/3. Courtesy of Dave Rothery.

Breaking these statistics down by individual crater, the NE, Central, and SW craters had respective daily averages that ranged as follows: 2-21, 0-3, and 1-19 events/hour. The crater's average event rates were 8, 1, and 9 events/hour, respectively. This gives average repose times for the craters of 8, 69, and 7 min, respectively. For comparison, the maximum repose times at NE, Central, and SW craters were 46, 420 and 105 minutes.

As in May 2000 (BGVN 25:08), the NE Crater consisted of two smaller pits separated by a low septum, the two pits being the location of one and two active vents, respectively. Of these, the western-most vent (1/1) and eastern-most vent (1/2) were most active, with average rates of 4 and 3 events/hour, respectively, compared with ~1 event/hour for vent 1/3. The SW crater contained three active vents that often showed paired or synchronous activity. However, the exact combination of paired eruptions varied daily. For example, on 16 May, an eruption from 3/1 would often be followed by one from 3/2 within a few seconds; but, on 19 May, an eruption from 3/1 would be followed by one from 3/3. As in previous years, eruptions from the SW crater had longer durations and were richer in ash than those from the NE crater.

The frequency and style of activity at the NE crater showed significant variations. During 10-11 May, the NE crater erupted up to 10 times/hour. Events at vent 1/1 were characterized by single-shot, ejecta-loaded Strombolian eruptions, while those at vent 1/2 were long duration (typically 10-20 s), gas-rich eruptions with diffuse ejecta sprays. During 14-15 May, the eruption rate increased to 12-17 events/hour, as eruptions at 1/1 switched to longer duration (~10 s), gas-rich ejections mixed with ash and small bombs. At the same time, events from vent 1/2 contained more bombs that reached ~300 m above the crater. On 16 May, maximum eruption rates declined to 8 events/hour, and ejections from 1/1 and 1/2 were characterized by diffuse sprays of small incandescent bombs mixed with ash to ~200 m. During 17-20 May, activity from both vents was characterized by strong eruptions, often occurring in multiple pulses, with heavy bomb loads to 200-300 m above the crater, and maximum eruption rates of 21 events/hour. Activity declined by 21 May and, by 23 May, activity consisted of gas-rich eruptions with rare-to-no bombs and maximum eruption rates of 5-6 events/hour.

During 11-20 May, the eruption rate at the SW crater increased from 1-12 events/hour (11-16 May) to 6-19 events/hour (18-20 May). Events were typified by 20- to 40-second-long emissions of gas, ash, and bombs. During this period, the ash component appeared to decline and the bomb component appeared to increase. The area inundated by bombs gradually increased, reaching the outer flank of the NE crater by 17 May. Activity peaked on 22 May when strong eruptions with heavy bomb loads were observed. At this time bombs hit the cliff below the Pizzo Sopra la Fossa and cleared the lower section of the pizzo ridge where the lowest tourist shelters are located. Bombs ~0.5 m in diameter fell within 20 m of that location and the path was littered with fresh scoria tens of centimeters in diameter. By 23 May, activity had changed entirely with the eruption rate down to 5-6 events/hour and activity characterized by gas- and ash-rich ejections with few or no bombs.

The Central Crater had evolved significantly since May 2000, when the a funnel-shaped pit that had developed during 1997-99 in the SE sector of the crater (BGVN 24:06) was active with a single degassing vent only (BGVN 25:08). Over the intervening period this pit has filled and now has an inactive hornito. Since May 2000, a new hornito (2B) has developed on the rim of this pit, with a 5-10 m wide vent (2A) at its base. The 2A vent was incandescent by night and radiometer-measured temperatures were in the range 726-577°C.

The summit of the 2B hornito was occupied by an open vent that was the source of continuous gas emission with weakly formed puffs, but no eruptions during the observation period. Vent 2A was the source of vigorous degassing with well-formed puffs. Frequent vigorous phases here often sent one or two pieces of scoria to a height of 10 m above the vent rim. This vent was also the location of rare Strombolian explosions, with just 11 observed during the entire 62-hour observation period.

A new ~2 m wide vent (2C) had also opened towards the center of the Central Crater, and appeared to be the source of a small lava flow that was not observed during May 2000. The surface shows a pahoehoe form, and the flow extends around the base of the inactive hornito 2E and laps up against the back wall of the Crater Terrace (figure 65). Vent 2C was also the source of rare (24 over the entire observation period) Strombolian eruptions, characterized by loud, emissions that created well-formed column-shaped ejecta-bearing plumes.

Explanation of seismic events. In the discussion above, the number of seismic "events" is not directly comparable to the number of "eruptions" for two reasons. First, not all eruptions produce a seismic signal in the frequency range recorded by the short-period seismometer installed by University of Udine. Second, the seismic acquisition at Udine employs a trigger algorithm, which, although not perfectly efficient, has been kept constant since the installation of the 3-component station in 1992 to guarantee coherency between the graphs presented in the Bulletin.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Andy Harris, Department of Earth Sciences, The Open University, Milton Keynes, MK7 6AA, U.K.; Roberto Carniel, Dipartimento di Georisorse e Territorio, Università di Udine, via Cotonificio 114, I-33100 Udine, Italy (URL: http://www.swisseduc.ch/stromboli/); Maurizio Ripepe, Dipartimento di Scienze della Terra, Università di Firenze, via G. La Pira 4, I-50121 Firenze, Italy; Emanuele Marchetti, Dipartimento di Scienze della Terra, Università di Firenze, via G. La Pira 4, I-50121 Firenze, Italy; John Bailey, Department of Geology and Geophysics, SOEST, University of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA; Scott Rowland, Department of Geology and Geophysics, SOEST, University of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA; Jürg Alean, Kantonsschule Zürcher Unterland, CH8180 Bülach, Switzerland; Dave Rothery, Department of Earth Sciences, The Open University, Milton Keynes, MK7 6AA, U.K.; Jonathan Dehn, University of Alaska Fairbanks, 903 Koyukuk Drive, Fairbanks, AK 99775, USA; Stromboli On-line, maintained by Jürg Alean and Roberto Carniel (URL: http://www.swisseduc.ch/stromboli/).


Suwanosejima (Japan) — July 2001 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Explosive eruptions in May and July

Several eruptions occurred at Suwanose-jima in May-July 2001. Beginning on the morning of 9 May 2001 volcanic activity increased at Suwanose-jima when a tremor event commenced (figure 4). The tremor increased at 1100 and became more violent at 2100.

Figure (see Caption) Figure 4. Daily eruptions, tremor events, and B and A earthquakes registered at Suwanose-jima up to 11 May. Here, an eruption is defined as a volcanic earthquake, associated with an acoustic signal of more than 1 Pa. Courtesy of the Japanese Meteorological Agency.

On 11 May an eruption produced ash clouds that rose to 1.8-7.6 km altitude. A seismo-acoustical record of an eruption signal on 10 May is shown on figure 5. Abundant ash fell on 11 May [in the village ~4 km SSW of the active crater].

Figure (see Caption) Figure 5. Seismo-acoustical record of an eruption signal received at Suwanose-jima on 10 May. The bottom panel shows the requisite acoustic signal that was recorded by a microphone. Courtesy of the Japanese Meteorological Agency.

Vigorous eruptions on the evening of 12 May and the morning of 13 May deposited up to 3 cm of ash in the village (figure 6). At 0900 on 14 May the eruption seemed to have stopped.

Figure (see Caption) Figure 6. Photo taken from a helicopter of the beginning of the 12 May eruption at Suwanose-jima. Courtesy of the Japanese Meteorological Agency.

The Sakurajima Volcano Observatory also reported that plumes associated with volcanic tremor events have been observed at Suwanose-jima since the new crater was formed during the December 2000 eruption.

Volcanic tremor was also detected near Suwanose-jima's On-take (Otake) crater beginning at 2200 on 25 July and lasting until at least 26 July. JMA reported that an eruption on 26 July at 1430 produced a volcanic plume that rose to 1.3 km above the crater and drifted to the S. That day seismometers ~2 km SW of the crater recorded explosions at 0501, 0558, 0935, and 1055. Ash fell [in the village] the morning of 26 July.

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japanese Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan; Tokyo Volcanic Ash Advisory Center, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Disaster Prevention Research Institute, Kyoto University, Japan (URL: http://www.dpri.kyoto-u.ac.jp/); Setsuya Nakada and Hidefumi Watanabe, Volcano Research Center, Earthquake Research Institute, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan (URL: http://www.eri.u-tokyo.ac.jp/VRC/index_E.html).


Tungurahua (Ecuador) — July 2001 Citation iconCite this Report

Tungurahua

Ecuador

1.467°S, 78.442°W; summit elev. 5023 m

All times are local (unless otherwise noted)


Summary of August 2000-August 2001 eruptive activity

Tungurahua was last discussed in BGVN 25:07, in a report covering the first half of the year 2000. This report was taken chiefly from available updates on the Instituto Geofísico (IG) website. Some of the graphics currently available there and discussed in this report cover the interval 1998-2000.

The subsequent part of this report focuses on activity from August 2000 through 15 August 2001. During this latter interval, aviation reports were issued daily, often several times a day. The final section of this report presents some statistics on Tungurahua's recent human impact from a report issued on 5 September 2001.

Tunguharua's continued eruptions were accompanied by varying SO2 fluxes, tremor, and earthquakes. Hazard concerns remained high, and plume heights reached over 11 km altitude (5 km over the summit) on three days in the first half of August 2001.

Observations during 2000. Between January and October 2000 Tungurahua produced significant discharges and explosions, some of which included impressive ash columns and shows of lava in the crater documenting the presence of shallow magma in the edifice. Seismically inferred magmatic intrusions took place in January, April-May, and August-October 2000. The critical seismicity included intense tremor and swarms of long-period and volcano-tectonic earthquakes.

As shown on figure 7, earthquakes of long-period (LP) and volcano-tectonic (VT) types both underwent progressive increases during the year 2000 but decreased again by November 2000. (More recent data were unavailable at the time of this writing.) Earthquakes attributed to explosions grew in number suddenly during November 1999 and then subsequently proceeded to decrease in number until becoming inconspicuous during late 2000. Elevated numbers of earthquakes, particularly LP earthquakes, correlated with eruptive outbursts (arrows). High numbers of LP earthquakes also persisted between outbursts.

Figure (see Caption) Figure 7. Monthly number of earthquakes registered at Tungurahua during January 1998 to December 2000. High numbers of volcano-tectonic and long-period earthquakes generally occurred starting in middle to late 1999. Around this time, earthquakes with explosion signatures were sometimes abundant as well. Arrows indicate times of seismically inferred magmatic intrusions. Courtesy of Instituto Geofisico.

Figure 8 illustrates how during September 1999-December 2000 the energy contained in combined harmonic tremor and hydrothermally generated tremor underwent a sudden peak in January 2000, a time when the numbers of earthquakes seen on figure 1 also showed a strong rise. Two subsequent, progressively smaller peaks in tremor energy occurred at roughly 4-month intervals. Intervals of high tremor energy strongly correlated with eruptive outbursts.

Figure (see Caption) Figure 8. At Tungurahua, the energy contained in tremor (both harmonic and hydrothermal types) during September 1999-December 2000. The interval of maximum tremor energy, around January 2000, developed rapidly and then decreased through time at least as late as December 2000. The intervals that included the highest tremor energy were inferred to reflect magmatic intrusions (arrows). Courtesy of Instituto Geofisico.

SO2 flux climbed to over 10,000 tons/day during late 1999 and early 2000, but dropped thereafter stabilizing in the hundreds of tons per day range in late 2000 (figure 9). A synopsis of SO2 flux has yet to be reported for 2001. A statement discussing the week of 10-16 January 2001 noted that SO2 flux had been in the 1,000 tons/day range but had risen to 2,000-2,400 tons/day. During that same week, new fumaroles were noted at an inaccessible spot on the NW flank above Baños. Plumes that week rose at least one kilometer over the summit (table 4).

Figure (see Caption) Figure 9. SO2 flux measured at Tungurahua during July 1999-December 2000. After the large peaks (~10,000 tons/day) the SO2 values dropped significantly and then tended to decrease through the end of 2000. Courtesy of Instituto Geofisico.

Table 4. A summary of hazard status and plume height observations for Tungurahua, 1 November 2000 to 21 August 2001. These data were summarized from GVP / USGS WeeklyRreports derived from IG data. Some of the taller plume heights came from the Washington VAAC and were based on satellite imagery and local aviation reports.

Dates Description of Activity
01 Nov-07 Nov 2000 Plumes 0.5 km above crater.
08 Nov-14 Nov 2000 13 November small ash cloud near the summit level blown SE.
22 Nov-28 Nov 2000 27 November small ash-and-gas discharges reached 0.5 km above the summit.
29 Nov-05 Dec 2000 Sporadic gas column. Plumes 0.3-0.5 km above crater.
06 Dec-12 Dec 2000 9 December ash cloud moving SW at summit height.
13 Dec-19 Dec 2000 14 December ash cloud moving NE at 0.5 km above the summit.
20 Dec-26 Dec 2000 21 December ash cloud at 1 km above the summit but not seen on GOES-8 imagery.
03 Jan-09 Jan 2001 Plumes seen several times during this week; no ash visible. Emissions on 3-4 January were moderate sized and ash bearing. 2.9-km maximum plume height.
10 Jan-16 Jan 2001 Plumes ~ 2 km above crater.
17 Jan-23 Jan 2001 Plumes ~ 2 km above crater.
14 Feb-20 Feb 2001 19 February lahars down NW flank via Cusua Gorge; steam column to 1 km.
21 Feb-27 Feb 2001 Plumes ~ 4 km above crater.
14 Mar-20 Mar 2001 13 March ash cloud moving NW at 4.6 km above the summit. 15 March ash cloud 3.2 km above the summit. 16 March ash cloud 3.8 km above the summit.
21 Mar-27 Mar 2001 22 March incandescent eruption column 2 km above the summit; 23 March ash cloud ~2 km above the summit resulting from a half-hour emission.
28 Mar-03 Apr 2001 29 March ash cloud moving W at 1 km above the summit; another small eruption on 2 April.
11 Apr-17 Apr 2001 Plumes ~2 km above crater.
18 Apr-24 Apr 2001 Incandescent dome followed by small steam columns.
25 Apr-01 May 2001 25 April ash cloud at 2 km; more eruptions followed but poor visibility. 29 and 30 April lahars to the Pampas, Cusua, Hacienda, and Achupashal sectors; river levels rose in the Ulba and Mandur sectors. Lahars in Pampas sector blocked the Pelileo-Banos channel during 0710 to 1100 on 29 April and destroyed the highway.
02 May-08 May 2001 Small steam-and-ash plumes during the week. Possible small lahar on 3 May.
09 May-15 May 2001 Heavy rainfall caused remobilization of ash deposited on the upper flanks, producing several lahars. Lahars went down the Cusua, Basural, Mandur, Bascun, and Ulba gorges and closed the Banos-Riobamba highway and blocked a route to the town of Banos.
16 May-22 May 2001 Small 15 May eruptions sent ash up to 3 km above the summit. Light ash fell in the towns of Cotalo and Bilbao. 17 May ash cloud 4 km above the summit drifted SW. Intense activity suggested by seismicity but cloudy conditions. 19 May ash cloud rose to 1.7 km.
23 May-29 May 2001 2-km-high ash plume on 26 May, poor visibility.
30 May-05 Jun 2001 Activity increased. A large number of long-period earthquakes accompanied several small eruptions and near-continuous ash clouds. 31 May eruption sent an ash cloud up to 2.9 km above the summit, which drifted W. Incandescent blocks ejected and a sound like a cannon shot was heard kilometers away. Eruptions on 29 May at 2012 sent ash 2.2 km above the summit, on 30 May at 1211 (ash plume to unknown height), and on 2 June at 1709 with an ash plume 2.9 km above the summit. Incandescent material visible in the crater.
06 Jun-12 Jun 2001 Several small eruptions. 5 June ash cloud moving W at 2 km above the summit.
13 Jun-19 Jun 2001 4.7-7 km maximum plume height.
20 Jun-26 Jun 2001 22 June eruptions at 0630 and 0652 sent ash clouds 0.8 and 3.8 km above the summit, respectively. No ash visible on satellite imagery. Small explosions 25 June at 0138 and 1328 produced ash clouds that rose ~1 km above the summit and drifted W. Small amounts of ash deposited in the town of Ambato, ~40 km NW.
27 Jun-03 Jul 2001 17 and 28 June ash clouds to 2 km above the summit; ash fell W, damaging crops. 3 July W-drifting ash 0.8-2.6 km above the summit.
04 Jul-10 Jul 2001 5 July a larger-than-average ash plume rose to 2.6 km above the summit; however, satellite imagery and additional information suggested that a dense, SE-drifting ash cloud rose to 4 km above the summit.
11 Jul-17 Jul 2001 12 July an eruption sent a cloud to ~3.3 km above the summit; it drifted W to NW.
18 Jul-24 Jul 2001 Heavy rain remobilized ash deposited on the flanks, generating lahars, and several small-to-moderate eruptions produced ash clouds. On 19 July lahars down the W flank reached the Banos-Riobamba highway. Larger eruption on 20 July produced an ash cloud that rose to ~2.9 km above the summit.
25 Jul-31 Jul 2001 25 July the highest ash cloud of the week rose ~4 km above the summit and drifted SW.
01 Aug-07 Aug 2001 2 August until at least 3 August there was an increase in activity. Continuous tremor began on 3 August; maybe associated with continuous ash emission. Several eruptions during the week; largest on 5 August produced ash cloud to ~7.5 km above the summit.
08 Aug-14 Aug 2001 Ongoing eruptions since at least 6 August, sending steam-and-ash clouds to 2.5-8 km above the summit. Ash clouds primarily drifted W. On 13 August three particularly strong emissions at about 0630, 1200, and 1315. Two distinct areas of ash visible in satellite imagery; one contained ash from the strong emissions, rose to ~6.6 km above the summit and drifted E; the other ash cloud was fed from continuous emissions and possibly rose to ~5 km above the summit and drifted SW. On 14 August one of about five explosions ascended to 8 km above the summit. It was emitted at 0746 and had a reduced displacement of 13.2 cm2.
15 Aug-21 Aug 2001 Series of eruptions that began on 6 August continued during the week. Seismicity characterized by many long-period earthquakes and seismic signals that represented ash emissions. Several sporadic explosions occurred, with the largest explosion beginning on 15 August. The eruption produced an ash cloud that rose to 7.2 km above the summit. On 17 August volcanic activity increased slightly and incandescent material was ejected up to 1 km W of the crater. According to news reports, as of 15 August ash affected more than 23,000 people, blanketed approximately 89,000 acres of crops, and killed an undetermined number of livestock.

Reports noted an inferred intrusion during 9-12 October 2000. On 13 October, a debris flow occurred, but volcanism diminished considerably. The last explosion around this time took place on 23 October.

At the beginning of December 2000, IG survey crews detected a slight swelling in the EDM lines on the volcano's NW flank. An electronic inclinometer that could have helped confirm this deformation was located above the Refugio station. Unfortunately it was damaged when struck by rocks.

Summary of activity during November 2000-August 2001.Variable ash-cloud heights and other activity are summarized in table 1, which covers the time interval 1 November 2000 through 15 August 2001. Stated in terms of height above the summit, ash clouds rose to more than 7 km on two days in August; to 6 km on 1 day in August; and to 2-4 km on 38 days, mostly in June and July. Smaller ash clouds ascended 1-2 km on 28 days in the early months of 2001. Plumes ascended

During 17 October 1999-12 November 2000 ash plume heights exceeded 7 km over the summit on 8 days, chiefly during late 1999 through early 2000. In October 1999 an ash plume rose to ~13 km over the summit.

Observations during 2001. In early January 2001, two volcano-tectonic (VT) events were located 4-5 km below the NW flank. After 3 January, Tungurahua's 300-m-diameter summit crater had an increase in ash emissions, seen visually from the Guadalupe branch observatory, 11 km N of the volcano (table 1).

New fumaroles became apparent in late November 2000 at 4,400 m elevation on the NW flank, in the main drainage that feeds into the town of Baños (population 18,000). The fumaroles were located in a 100- to 150-m-long area.

During 10-12 June 2001, uncommonly intense and prolonged rains fell over the eastern provinces and the Andean foothills of Ecuador. At one pluviometer (rain gauge) that the IG operates on Tungurahua's NW flank, 120 mm of rain fell in two days. The rain-generated lahars that flowed down Tungurahua's flanks were the largest ever recorded, carrying volcanic blocks the size of small cars. The lahars closed the road between Ambato and Baños for hours and totally destroyed the road between Baños and Penipe. Other floods and lahars were recorded in rivers born on the volcano. Along the Vascun and Ulba rivers, some houses on the flood plains were inundated but not destroyed. The Rio Pastaza, on the N flank of Tungurahua, registered a record water flow rate of 1,760 m3/s.

The rains triggered a landslide that overcame two people living downstream of Baños in the vicinity of Rio Negro. Out milking cows, they were swept into the nearby Pastaza river. These two deaths, although in Tungurahua province, were not related to the lahars. As of July 2001, no one had died from the recent lahars. All together, the rainy season left a death toll of ~80 people in Ecuador, including losses from landslides and flooding away from the volcano.

An explosion on 17 June 2001 rose 4.8-7 km above the summit. Owing to clear weather, it was witnessed by many of the region's inhabitants. No pyroclastic flows were produced, and the explosion ceased after about a minute. After that time, the volcano produced about 1 explosion/day. These mid-June explosions were relatively small (their seismic signatures had reduced displacements of 2-5 cm2), but they generally came without warning.

Light ashfalls were also frequent W of the volcano. They affected many crops (including corn, peas, beans, potatoes, tomatoes, blackberries, and squash; as well as orchards of peaches and apples). A 27 August report by the Pan American Health Organization (PAHO) stated that by late August 2001 various areas had received up to 2.5 cm of ash.

Scientists came to believe that a weak seal was forming in the volcano's conduit system. The seal was thought to break under sufficient recharge pressure. In addition, this new spurt of mid-June activity could be attributed to a small injection of magma that was believed to have occurred during 17-18 May. The fresh injection rose up through the conduit and was seen as incandescence on 26 May and when Strombolian fountaining was observed. Later explosions could stem from residual gases and heat.

Earth Probe TOMS (Total Ozone Mapping Spectrometer) detected a weak ash and SO2 plume from Tungurahua on 6 August at around 0630. The plume was directed generally WSW and extended to approximately 4°S, 83°W, containing an estimated SO2mass of

Practice evacuation and maps. On 26 June 2001, 2,000-3,000 people in Baños conducted a simulated evacuation, the first in over a year. It was organized by "Ojos del Volcán" ("Eyes of the Volcano"), a local organization whose members include hotel owners, climbing guides, and tour operators. Other organizers included the IG, local civil defense authorities, the Red Cross, police, firefighters, and health officials. Participants walked to three previously identified zones of temporary refuge. The exercise was successful and revealed some unforseen shortcomings in the local disaster plans. Figures 10 and 11 show maps indicating topography and potential hazard zones.

Figure (see Caption) Figure 10. Diagram showing Tunguharua's landscape as seen from the SW. Note N arrow along left margin. Courtesy of Instituto Geofisico.
Figure (see Caption) Figure 11. Generalized Tunguharua hazards map (N is towards the top) indicating areas of relative risk. The city of Baños lies within the zone of highest potential risk (central, darker shaded area). The town of Patate lies within the zone of lowest potential risk (lightly shaded); Pelileo Nuevo and Pelileo Viejo lie just outside this zone. Lahar risks continue hundreds of kilometers off the map towards the E along the downstream portions of the Rio Pastaza (dark strand intersecting the map's E margin). The Pastaza is confined by a dam ~4 km E of Baños. Solid and dashed curves represent areas with inferred risks from airfall ash. Courtesy of Instituto Geofisico.

Human impact. A report was issued by the United Nations Office for the Coordination of Humanitarian Affairs on 5 September 2001, following a multi-agency meeting the day before. The report cited updated Civil Defense statistics on Tungurahua's impact.

As of 5 September, no ash had fallen in the previous 10 days; still, 39,000 people (8,000 families) had been affected by the volcano. Respiratory infections had increased. Ash had affected potable water supplies in some rural communities prompting more water-quality monitoring. There were 3,107 houses damaged.

A total of 53,597 hectares (ha) of farmland and pastures have been affected, of which 17,017 ha lie in the province of Tungurahua, 28,580 ha in Chimborazo, and 8,000 ha in Bolivar. Due to stress and new feed, 13,113 cattle developed health problems. Some were evacuated. The report also discussed a system for enlisting and tracking relief contributions.

Geologic Background. Tungurahua, a steep-sided andesitic-dacitic stratovolcano that towers more than 3 km above its northern base, is one of Ecuador's most active volcanoes. Three major edifices have been sequentially constructed since the mid-Pleistocene over a basement of metamorphic rocks. Tungurahua II was built within the past 14,000 years following the collapse of the initial edifice. Tungurahua II itself collapsed about 3000 years ago and produced a large debris-avalanche deposit and a horseshoe-shaped caldera open to the west, inside which the modern glacier-capped stratovolcano (Tungurahua III) was constructed. Historical eruptions have all originated from the summit crater, accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. Prior to a long-term eruption beginning in 1999 that caused the temporary evacuation of the city of Baños at the foot of the volcano, the last major eruption had occurred from 1916 to 1918, although minor activity continued until 1925.

Information Contacts: Geophysical Institute (Instituto Geofísico), Escuela Politécnica Nacional, Apartado 17-01-2759, Quito, Ecuador; Associated Press; NOAA Operational Significant Events Imagery Support Team (OSEI), NOAA/NESDIS, World Weather Building, Room 510, 5200 Auth Road, Camp Springs, MD 20748 (URL: https://www.nnvl.noaa.gov/); Washington VAAC, Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ssd.noaa.gov/); Volcano Disaster Assistance Program (VDAP), U.S. Geological Survey, 5400 MacArthur Blvd, Vancouver, WA 98661 (URL: https://volcanoes.usgs.gov/vdap/); Simon Carn and Arlin Krueger, Joint Center for Earth Systems Technology (NASA/UMBC), University of Maryland Baltimore County, Academic IV-/a, Room 114J, 1000 Hilltop Circle, Baltimore, MD 21250; Office for the Coordination of Humanitarian Affairs (OCHA), United Nations, New York, NY 10017 USA (URL: https://reliefweb.int/); Pan American Health Organization (PAHO), United Nations, 525-23rd Street, NW, Washington, DC 20037 USA (URL: http://www.paho.org/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).