Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Manam (Papua New Guinea) Few ash plumes during November-December 2022

Krakatau (Indonesia) Strombolian activity and ash plumes during November 2022-April 2023

Stromboli (Italy) Strombolian explosions and lava flows continue during January-April 2023

Nishinoshima (Japan) Small ash plumes and fumarolic activity during November 2022 through April 2023

Karangetang (Indonesia) Lava flows, incandescent avalanches, and ash plumes during January-June 2023

Ahyi (United States) Intermittent hydroacoustic signals and discolored plumes during November 2022-June 2023

Kadovar (Papua New Guinea) An ash plume and weak thermal anomaly during May 2023

San Miguel (El Salvador) Small gas-and-ash explosions during March and May 2023

Semisopochnoi (United States) Occasional explosions, ash deposits, and gas-and-steam plumes during December 2022-May 2023

Ebeko (Russia) Continued explosions, ash plumes, and ashfall during October 2022-May 2023

Home Reef (Tonga) Discolored plumes continued during November 2022-April 2023

Ambae (Vanuatu) New lava flow, ash plumes, and sulfur dioxide plumes during February-May 2023



Manam (Papua New Guinea) — July 2023 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Few ash plumes during November-December 2022

Manam is a 10-km-wide island that consists of two active summit craters: the Main summit crater and the South summit crater and is located 13 km off the northern coast of mainland Papua New Guinea. Frequent mild-to-moderate eruptions have been recorded since 1616. The current eruption period began during June 2014 and has more recently been characterized by intermittent ash plumes and thermal activity (BGVN 47:11). This report updates activity that occurred from November 2022 through May 2023 based on information from the Darwin Volcanic Ash Advisory Center (VAAC) and various satellite data.

Ash plumes were reported during November and December 2022 by the Darwin VAAC. On 7 November an ash plume rose to 2.1 km altitude and drifted NE based on satellite images and weather models. On 14 November an ash plume rose to 2.1 km altitude and drifted W based on RVO webcam images. On 20 November ash plumes rose to 1.8 km altitude and drifted NW. On 26 December an ash plume rose to 3 km altitude and drifted S and SSE.

Intermittent sulfur dioxide plumes were detected using the TROPOMI instrument on the Sentinel-5P satellite, some of which exceeded at least two Dobson Units (DU) and drifted in different directions (figure 93). Occasional low-to-moderate power thermal anomalies were recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system; less than five anomalies were recorded each month during November 2022 through May 2023 (figure 94). Two thermal hotspots were detected by the MODVOLC thermal alerts system on 10 December 2022. On clear weather days, thermal activity was also captured in infrared satellite imagery in both the Main and South summit craters, accompanied by gas-and-steam emissions (figure 95).

Figure (see Caption) Figure 93. Distinct sulfur dioxide plumes were captured, rising from Manam based on data from the TROPOMI instrument on the Sentinel-5P satellite on 16 November 2022 (top left), 6 December 2022 (top right), 14 January 2023 (bottom left), and 23 March 2023 (bottom right). Plumes generally drifted in different directions. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 94. Occasional low-to-moderate power thermal anomalies were detected at Manam during November 2022 through May 2023, as shown in this MIROVA graph (Log Radiative Power). Only three anomalies were detected during late November, one in early December, two during January 2023, one in late March, four during April, and one during late May. Courtesy of MIROVA.
Figure (see Caption) Figure 95. Infrared (bands B12, B11, B4) satellite images show a consistent thermal anomaly (bright yellow-orange) in both the Main (the northern crater) and South summit craters on 10 November 2022 (top left), 15 December 2022 (top right), 3 February 2023 (bottom left), and 24 April 2023 (bottom right). Gas-and-steam emissions occasionally accompanied the thermal activity. Courtesy of Copernicus Browser.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Krakatau (Indonesia) — July 2023 Citation iconCite this Report

Krakatau

Indonesia

6.1009°S, 105.4233°E; summit elev. 285 m

All times are local (unless otherwise noted)


Strombolian activity and ash plumes during November 2022-April 2023

Krakatau is located in the Sunda Strait between Java and Sumatra, Indonesia. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan cones and left only a remnant of Rakata. The post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones; it has been the site of frequent eruptions since 1927. The current eruption period began in May 2021 and has recently consisted of explosions, ash plumes, and thermal activity (BGVN 47:11). This report covers activity during November 2022 through April 2023 based on information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, referred to as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), MAGMA Indonesia, the Darwin Volcanic Ash Advisory Center (VAAC), and several sources of satellite data.

Activity was relatively low during November and December 2022. Daily white gas-and-steam plumes rose 25-100 m above the summit and drifted in different directions. Gray ash plumes rose 200 m above the summit and drifted NE at 1047 and at 2343 on 11 November. On 14 November at 0933 ash plumes rose 300 m above the summit and drifted E. An ash plume was reported at 0935 on 15 December that rose 100 m above the summit and drifted NE. An eruptive event at 1031 later that day generated an ash plume that rose 700 m above the summit and drifted NE. A gray ash plume at 1910 rose 100 m above the summit and drifted E. Incandescent material was ejected above the vent based on an image taken at 1936.

During January 2023 daily white gas-and-steam plumes rose 25-300 m above the summit and drifted in multiple directions. Gray-to-brown ash plumes were reported at 1638 on 3 January, at 1410 and 1509 on 4 January, and at 0013 on 5 January that rose 100-750 m above the summit and drifted NE and E; the gray-to-black ash plume at 1509 on 4 January rose as high as 3 km above the summit and drifted E. Gray ash plumes were recorded at 1754, 2241, and 2325 on 11 January and at 0046 on 12 January and rose 200-300 m above the summit and drifted NE. Toward the end of January, PVMBG reported that activity had intensified; Strombolian activity was visible in webcam images taken at 0041, 0043, and 0450 on 23 January. Multiple gray ash plumes throughout the day rose 200-500 m above the summit and drifted E and SE (figure 135). Webcam images showed progressively intensifying Strombolian activity at 1919, 1958, and 2113 on 24 January; a gray ash plume at 1957 rose 300 m above the summit and drifted E (figure 135). Eruptive events at 0231 and 2256 on 25 January and at 0003 on 26 January ejected incandescent material from the vent, based on webcam images. Gray ash plumes observed during 26-27 January rose 300-500 m above the summit and drifted NE, E, and SE.

Figure (see Caption) Figure 135. Webcam images of a strong, gray ash plume (left) and Strombolian activity (right) captured at Krakatau at 0802 on 23 January 2023 (left) and at 2116 on 24 January 2023 (right). Courtesy of PVMBG and MAGMA Indonesia.

Low levels of activity were reported during February and March. Daily white gas-and-steam plumes rose 25-300 m above the summit and drifted in different directions. The Darwin VAAC reported that continuous ash emissions rose to 1.5-1.8 km altitude and drifted W and NW during 1240-1300 on 10 March, based on satellite images, weather models, and PVMBG webcams. White-and-gray ash plumes rose 500 m and 300 m above the summit and drifted SW at 1446 and 1846 on 18 March, respectively. An eruptive event was recorded at 2143, though it was not visible due to darkness. Multiple ash plumes were reported during 27-29 March that rose as high as 2.5 km above the summit and drifted NE, W, and SW (figure 136). Webcam images captured incandescent ejecta above the vent at 0415 and around the summit area at 2003 on 28 March and at 0047 above the vent on 29 March.

Figure (see Caption) Figure 136. Webcam image of a strong ash plume rising above Krakatau at 1522 on 28 March 2023. Courtesy of PVMBG and MAGMA Indonesia.

Daily white gas-and-steam plumes rose 25-300 m above the summit and drifted in multiple directions during April and May. White-and-gray and black plumes rose 50-300 m above the summit on 2 and 9 April. On 11 May at 1241 a gray ash plume rose 1-3 km above the summit and drifted SW. On 12 May at 0920 a gray ash plume rose 2.5 km above the summit and drifted SW and at 2320 an ash plume rose 1.5 km above the summit and drifted SW. An accompanying webcam image showed incandescent ejecta. On 13 May at 0710 a gray ash plume rose 2 km above the summit and drifted SW (figure 137).

Figure (see Caption) Figure 137. Webcam image of an ash plume rising 2 km above the summit of Krakatau at 0715 on 13 May 2023. Courtesy of PVMBG and MAGMA Indonesia.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data showed intermittent low-to-moderate power thermal anomalies during November 2022 through April 2023 (figure 138). Some of this thermal activity was also visible in infrared satellite imagery at the crater, accompanied by gas-and-steam and ash plumes that drifted in different directions (figure 139).

Figure (see Caption) Figure 138. Intermittent low-to-moderate power thermal anomalies were detected at Krakatau during November 2022 through April 2023, based on this MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 139. A thermal anomaly (bright yellow-orange) was visible at Krakatau in infrared (bands B12, B11, B4) satellite images on clear weather days during November 2022 through May 2023. Occasional gas-and-steam and ash plumes accompanied the thermal activity, which drifted in different directions. Images were captured on 25 November 2022 (top left), 15 December 2022 (top right), 27 January 2023 (bottom left), and 12 May 2023 (bottom right). Courtesy of Copernicus Browser.

Geologic Background. The renowned Krakatau (frequently mis-named as Krakatoa) volcano lies in the Sunda Strait between Java and Sumatra. Collapse of an older edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of that volcano are preserved in Verlaten and Lang Islands; subsequently the Rakata, Danan, and Perbuwatan cones were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption caused more than 36,000 fatalities, most as a result of tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Stromboli (Italy) — July 2023 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Strombolian explosions and lava flows continue during January-April 2023

Stromboli, located in Italy, has exhibited nearly constant lava fountains for the past 2,000 years; recorded eruptions date back to 350 BCE. Eruptive activity occurs at the summit from multiple vents, which include a north crater area (N area) and a central-southern crater (CS area) on a terrace known as the ‘terrazza craterica’ at the head of the Sciara del Fuoco, a large scarp that runs from the summit down the NW side of the volcano-island. Activity typically consists of Strombolian explosions, incandescent ejecta, lava flows, and pyroclastic flows. Thermal and visual monitoring cameras are located on the nearby Pizzo Sopra La Fossa, above the terrazza craterica, and at multiple flank locations. The current eruption period has been ongoing since 1934 and recent activity has consisted of frequent Strombolian explosions and lava flows (BGVN 48:02). This report updates activity during January through April 2023 primarily characterized by Strombolian explosions and lava flows based on reports from Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) and various satellite data.

Frequent explosive activity continued throughout the reporting period, generally in the low-to-medium range, based on the number of hourly explosions in the summit crater (figure 253, table 16). Intermittent thermal activity was recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data (figure 254). According to data collected by the MODVOLC thermal algorithm, a total of 9 thermal alerts were detected: one on 2 January 2023, one on 1 February, five on 24 March, and two on 26 March. The stronger pulses of thermal activity likely reflected lava flow events. Infrared satellite imagery captured relatively strong thermal hotspots at the two active summit craters on clear weather days, showing an especially strong event on 8 March (figure 255).

Figure (see Caption) Figure 253. Explosive activity persisted at Stromboli during January through April 2023, with low to medium numbers of daily explosions at the summit crater. The average number of daily explosions (y-axis) during January through April (x-axis) are broken out by area and as a total, with red for the N area, blue for the CS area, and black for the combined total. The data are smoothed as daily (thin lines) and weekly (thick lines) averages. The black squares along the top represent days with no observations due to poor visibility (Visib. Scarsa). The right axis indicates the qualitative activity levels from low (basso) to highest (altissimo) with the green highlighted band indicating the most common level. Courtesy of INGV (Report 17/2023, Stromboli, Bollettino Settimanale, 18/04/2023 - 24/04/2023).

Table 16. Summary of type, frequency, and intensity of explosive activity at Stromboli by month during January-April 2023; information from webcam observations. Courtesy of INGV weekly reports.

Month Explosive Activity
Jan 2023 Typical Strombolian activity with spattering and lava overflows in the N crater area. Explosions were reported from 4 vents in the N area and 1-2 vents in the CS area. The average hourly frequency of explosions was low-to-medium (1-12 events/hour). The intensity of the explosions varied from low (less than 80 m high) to medium (less than 150 m high) in the N crater area and up to high (greater than 150 m high) in the CS crater area.
Feb 2023 Typical Strombolian activity with spattering in the N crater area. Explosions were reported from 2-3 vents in the N area and 1-4 vents in the CS area. The average hourly frequency of explosions was low-to-medium (1-14 events/hour). The intensity of the explosions varied from low (less than 80 m high) to medium (less than 150 m high) in the N crater area and up to high (greater than 150 m high) in the CS crater area.
Mar 2023 Typical Strombolian activity with spattering and lava overflows in the N crater area. Explosions were reported from 2-3 vents in the N area and 2-4 vents in the CS area. The average hourly frequency of explosions was low-to-medium (1-18 events/hour). The intensity of the explosions varied from low (less than 80 m high) to medium (less than 150 m high) in the N crater area and up to high (greater than 150 m high) in the CS crater area.
Apr 2023 Typical Strombolian activity. Explosions were reported from 2 vents in the N area and 2-3 vents in the CS area. The average hourly frequency of explosions was low-to-high (1-16 events/hour). The intensity of the explosions varied from low (less than 80 m high) to medium (less than 150 m high) in both the N and CS crater areas.
Figure (see Caption) Figure 254. Intermittent thermal activity at Stromboli was detected during January through April 2023 and varied in strength, as shown in this MIROVA graph (Log Radiative Power). A pulse of activity was captured during late March. Courtesy of MIROVA.
Figure (see Caption) Figure 255. Infrared (bands B12, B11, B4) satellite images showing persistent thermal anomalies at both summit crater on 1 February 2023 (top left), 23 March 2023 (top right), 8 March 2023 (bottom left), and 27 April 2023. A particularly strong thermal anomaly was visible on 8 March. Courtesy of Copernicus Browser.

Activity during January-February 2023. Strombolian explosions were reported in the N crater area, as well as lava effusion. Explosive activity in the N crater area ejected coarse material (bombs and lapilli). Intense spattering was observed in both the N1 and N2 craters. In the CS crater area, explosions generally ejected fine material (ash), sometimes to heights greater than 250 m. The intensity of the explosions was characterized as low-to-medium in the N crater and medium-to-high in the CS crater. After intense spattering activity from the N crater area, a lava overflow began at 2136 on 2 January that flowed part way down the Sciara del Fuoco, possibly moving down the drainage that formed in October, out of view from webcams. The flow remained active for a couple of hours before stopping and beginning to cool. A second lava flow was reported at 0224 on 4 January that similarly remained active for a few hours before stopping and cooling. Intense spattering was observed on 11 and 13 January from the N1 crater. After intense spattering activity at the N2 crater at 1052 on 17 January another lava flow started to flow into the upper part of the Sciara del Fuoco (figure 256), dividing into two: one that traveled in the direction of the drainage formed in October, and the other one moving parallel to the point of emission. By the afternoon, the rate of the flow began to decrease, and at 1900 it started to cool. A lava flow was reported at 1519 on 24 January following intense spattering in the N2 area, which began to flow into the upper part of the Sciara del Fuoco. By the morning of 25 January, the lava flow had begun to cool. During 27 January the frequency of eruption in the CS crater area increased to 6-7 events/hour compared to the typical 1-7 events/hour; the following two days showed a decrease in frequency to less than 1 event/hour. Starting at 1007 on 30 January a high-energy explosive sequence was produced by vents in the CS crater area. The sequence began with an initial energetic pulse that lasted 45 seconds, ejecting predominantly coarse products 300 m above the crater that fell in an ESE direction. Subsequent and less intense explosions ejected material 100 m above the crater. The total duration of this event lasted approximately two minutes. During 31 January through 6, 13, and 24 February spattering activity was particularly intense for short periods in the N2 crater.

Figure (see Caption) Figure 256. Webcam images of the lava flow development at Stromboli during 17 January 2023 taken by the SCT infrared camera. The lava flow appears light yellow-green in the infrared images. Courtesy of INGV (Report 04/2023, Stromboli, Bollettino Settimanale, 16/01/2023 - 22/01/2023).

An explosive sequence was reported on 16 February that was characterized by a major explosion in the CS crater area (figure 257). The sequence began at 1817 near the S2 crater that ejected material radially. A few seconds later, lava fountains were observed in the central part of the crater. Three explosions of medium intensity (material was ejected less than 150 m high) were recorded at the S2 crater. The first part of this sequence lasted approximately one minute, according to INGV, and material rose 300 m above the crater and then was deposited along the Sciara del Fuoco. The second phase began at 1818 at the S1 crater; it lasted seven seconds and material was ejected 150 m above the crater. Another event 20 seconds later lasted 12 seconds, also ejecting material 150 m above the crater. The sequence ended with at least three explosions of mostly fine material from the S1 crater. The total duration of this sequence was about two minutes.

Figure (see Caption) Figure 257. Webcam images of the explosive sequence at Stromboli on 16 February 2023 taken by the SCT and SCV infrared and visible cameras. The lava appears light yellow-green in the infrared images. Courtesy of INGV (Report 08/2023, Stromboli, Bollettino Settimanale, 13/02/2023 - 19/02/2023).

Short, intense spattering activity was noted above the N1 crater on 27 and 28 February. A lava overflow was first reported at 0657 from the N2 crater on 27 February that flowed into the October 2022 drainage. By 1900 the flow had stopped. A second lava overflow also in the N crater area occurred at 2149, which overlapped the first flow and then stopped by 0150 on 28 February. Material detached from both the lava overflows rolled down the Sciara del Fuoco, some of which was visible in webcam images.

Activity during March-April 2023. Strombolian activity continued with spattering activity and lava overflows in the N crater area during March. Explosive activity at the N crater area varied from low (less than 80 m high) to medium (less than 150 m high) and ejected coarse material, such as bombs and lapilli. Spattering was observed above the N1 crater, while explosive activity at the CS crater area varied from medium to high (greater than 150 m high) and ejected coarse material. Intense spattering activity was observed for short periods on 6 March above the N1 crater. At approximately 0610 a lava overflow was reported around the N2 crater on 8 March, which then flowed into the October 2022 drainage. By 1700 the flow started to cool. A second overflow began at 1712 on 9 March and overlapped the previous flow. It had stopped by 2100. Material from both flows was deposited along the Sciara del Fuoco, though much of the activity was not visible in webcam images. On 11 March a lava overflow was observed at 0215 that overlapped the two previous flows in the October 2022 drainage. By late afternoon on 12 March, it had stopped.

During a field excursion on 16 March, scientists noted that a vent in the central crater area was degassing. Another vent showed occasional Strombolian activity that emitted ash and lapilli. During 1200-1430 low-to-medium intense activity was reported; the N1 crater emitted ash emissions and the N2 crater emitted both ash and coarse material. Some explosions also occurred in the CS crater area that ejected coarse material. The C crater in the CS crater area occasionally showed gas jetting and low intensity explosions on 17 and 22 March; no activity was observed at the S1 crater. Intense, longer periods of spattering were reported in the N1 crater on 19, 24, and 25 March. Around 2242 on 23 March a lava overflow began from the N1 crater that, after about an hour, began moving down the October 2022 drainage and flow along the Sciara del Fuoco (figure 258). Between 0200 and 0400 on 26 March the flow rate increased, which generated avalanches of material from collapses at the advancing flow front. By early afternoon, the flow began to cool. On 25 March at 1548 an explosive sequence began from one of the vents at S2 in the CS crater area (figure 258). Fine ash mixed with coarse material was ejected 300 m above the crater rim and drifted SSE. Some modest explosions around Vent C were detected at 1549 on 25 March, which included an explosion at 1551 that ejected coarse material. The entire explosive sequence lasted approximately three minutes.

Figure (see Caption) Figure 258. Webcam images of the lava overflow in the N1 crater area of Stromboli on 23 March 2023 taken by the SCT infrared camera. The lava appears light yellow-green in the infrared images. The start of the explosive sequence was also captured on 25 March 2023 accompanied by an eruption plume (e) captured by the SCT and SPT infrared webcams. Courtesy of INGV (Report 13/2023, Stromboli, Bollettino Settimanale, 20/03/2023 - 26/03/2023).

During April explosions persisted in both the N and CS crater areas. Fine material was ejected less than 80 m above the N crater rim until 6 April, followed by ejection of coarser material. Fine material was also ejected less than 80 m above the CS crater rim. The C and S2 crater did not show significant eruptive activity. On 7 April an explosive sequence was detected in the CS crater area at 1203 (figure 259). The first explosion lasted approximately 18 seconds and ejected material 400 m above the crater rim, depositing pyroclastic material in the upper part of the Sciara del Fuoco. At 1204 a second, less intense explosion lasted approximately four seconds and deposited pyroclastic products outside the crater area and near Pizzo Sopra La Fossa. A third explosion at 1205 was mainly composed of ash that rose about 150 m above the crater and lasted roughly 20 seconds. A fourth explosion occurred at 1205 about 28 seconds after the third explosion and ejected a mixture of coarse and fine material about 200 m above the crater; the explosion lasted roughly seven seconds. Overall, the entire explosive sequence lasted about two minutes and 20 seconds. After the explosive sequence on 7 April, explosions in both the N and CS crater areas ejected material as high as 150 m above the crater.

Figure (see Caption) Figure 259. Webcam images of the explosive sequence at Stromboli during 1203-1205 (local time) on 7 April 2023 taken by the SCT infrared camera. Strong eruption plumes are visible, accompanied by deposits on the nearby flanks. Courtesy of INGV (Report 15/2023, Stromboli, Bollettino Settimanale, 03/04/2023 - 09/04/2023).

On 21 April research scientists from INGV made field observations in the summit area of Stromboli, and some lapilli samples were collected. In the N crater area near the N1 crater, a small cone was observed with at least two active vents, one of which was characterized by Strombolian explosions. The other vent produced explosions that ejected ash and chunks of cooled lava. At the N2 crater at least one vent was active and frequently emitted ash. In the CS crater area, a small cone contained 2-3 degassing vents and a smaller, possible fissure area also showed signs of degassing close to the Pizzo Sopra La Fossa. In the S part of the crater, three vents were active: a small hornito was characterized by modest and rare explosions, a vent that intermittently produced weak Strombolian explosions, and a vent at the end of the terrace that produced frequent ash emissions. Near the S1 crater there was a hornito that generally emitted weak gas-and-steam emissions, sometimes associated with “gas rings”. On 22 April another field inspection was carried out that reported two large sliding surfaces on the Sciara del Fuoco that showed where blocks frequently descended toward the sea. A thermal anomaly was detected at 0150 on 29 April.

Geologic Background. Spectacular incandescent nighttime explosions at Stromboli have long attracted visitors to the "Lighthouse of the Mediterranean" in the NE Aeolian Islands. This volcano has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent scarp that formed about 5,000 years ago due to a series of slope failures which extends to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy, (URL: http://www.ct.ingv.it/en/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Nishinoshima (Japan) — July 2023 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 100 m

All times are local (unless otherwise noted)


Small ash plumes and fumarolic activity during November 2022 through April 2023

Nishinoshima is a small island located about 1,000 km S of Tokyo in the Ogasawara Arc in Japan. The island is the summit of a massive submarine volcano that has prominent peaks to the S, W, and NE. Eruptions date back to 1973; the most recent eruption period began in October 2022 and was characterized by ash plumes and fumarolic activity (BGVN 47:12). This report describes ash plumes and fumarolic activity during November 2022 through April 2023 based on monthly reports from the Japan Meteorological Agency (JMA) monthly reports and satellite data.

The most recent eruptive activity prior to the reporting internal occurred on 12 October 2022, when an ash plume rose 3.5 km above the crater rim. An aerial observation conducted by the Japan Coast Guard (JCG) on 25 November reported that white fumaroles rose approximately 200 m above the central crater of a pyroclastic cone (figure 119), and multiple plumes were observed on the ESE flank of the cone. Discolored water ranging from reddish-brown to brown and yellowish-green were visible around the perimeter of the island (figure 119). No significant activity was reported in December.

Figure (see Caption) Figure 119. Aerial photo of gas-and-steam plumes rising 200 m above Nishinoshima on 25 November 2022. Reddish brown to brown and yellowish-green discolored water was visible around the perimeter of the island. Courtesy of JCG via JMA (monthly reports of activity at Nishinoshima, November 2022).

During an overflight conducted by JCG on 25 January 2023 intermittent activity and small, blackish-gray plumes rose 900 m above the central part of the crater were observed (figure 120). The fumarolic zone of the E flank and base of the cone had expanded and emissions had intensified. Dark brown discolored water was visible around the perimeter of the island.

Figure (see Caption) Figure 120. Aerial photo of a black-gray ash plume rising approximately 900 m above the crater rim of Nishinoshima on 25 January 2023. White fumaroles were visible on the E slope of the pyroclastic cone. Dense brown to brown discolored water was observed surrounding the island. Photo has been color corrected. Courtesy of JCG via JMA (monthly reports of activity at Nishinoshima, January, 2023).

No significant activity was reported during February through March. Ash plumes at 1050 and 1420 on 11 April rose 1.9 km above the crater rim and drifted NW and N. These were the first ash plumes observed since 12 October 2022. On 14 April JCG carried out an overflight and reported that no further eruptive activity was visible, although white gas-and-steam plumes were visible from the central crater and rose 900 m high (figure 121). Brownish and yellow-green discolored water surrounded the island.

Figure (see Caption) Figure 121. Aerial photo of white gas-and-steam plumes rising 900 m above Nishinoshima on 14 April 2023. Brown and yellow-green discolored water is visible around the perimeter of the island. Photo has been color corrected. Courtesy of JCG via JMA (monthly reports of activity at Nishinoshima, April, 2023).

Intermittent low-to-moderate power thermal anomalies were recorded in the MIROVA graph (Middle InfraRed Observation of Volcanic Activity) during November 2022 through April 2023 (figure 123). A cluster of six to eight anomalies were detected during November while a smaller number were detected during the following months: two to three during December, one during mid-January 2023, one during February, five during March, and two during April. Thermal activity was also reflected in infrared satellite data at the summit crater, accompanied by occasional gas-and-steam plumes (figure 124).

Figure (see Caption) Figure 123. Intermittent low-to-moderate thermal anomalies were detected at Nishinoshima during November 2022 through April 2023, according to this MIROVA graph (Log Radiative Power). A cluster of anomalies occurred throughout November, while fewer anomalies were detected during the following months. Courtesy of MIROVA.
Figure (see Caption) Figure 124. Infrared (bands B12, B11, B4) satellite images show a small thermal anomaly at the summit crater of Nishinoshima on 9 January 2023 (left) and 8 February 2023 (right). Gas-and-steam plumes accompanied this activity and extended S and SE, respectively. Courtesy of Copernicus Browser.

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Multiple eruptions that began in 2013 completely covered the previous exposed surface and continued to enlarge the island. The island is the summit of a massive submarine volcano that has prominent peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the ocean surface 9 km SSE.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Karangetang (Indonesia) — July 2023 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Lava flows, incandescent avalanches, and ash plumes during January-June 2023

Karangetang (also known as Api Siau), at the northern end of the island of Siau, Indonesia, contains five summit craters along a N-S line. More than 40 eruptions have been recorded since 1675; recent eruptions have included frequent explosive activity, sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters and collapses of lava flow fronts have produced pyroclastic flows. The two active summit craters are Kawah Dua (the N crater) and Kawah Utama (the S crater, also referred to as the “Main Crater”). The most recent eruption began in late November 2018 and has more recently consisted of weak thermal activity and gas-and-steam emissions (BGVN 48:01). This report updates activity characterized by lava flows, incandescent avalanches, and ash plumes during January through June 2023 using reports from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), MAGMA Indonesia, the Darwin VAAC (Volcano Ash Advisory Center), and satellite data.

Activity during January was relatively low and mainly consisted of white gas-and-steam emissions that rose 25-150 m above Main Crater (S crater) and drifted in different directions. Incandescence was visible from the lava dome in Kawah Dua (the N crater). Weather conditions often prevented clear views of the summit. On 18 January the number of seismic signals that indicated avalanches of material began to increase. In addition, there were a total of 71 earthquakes detected during the month.

Activity continued to increase during the first week of February. Material from Main Crater traveled as far as 800 m down the Batuawang (S) and Batang (W) drainages and as far as 1 km W down the Beha (W) drainage on 4 February. On 6 February 43 earthquake events were recorded, and on 7 February, 62 events were recorded. White gas-and-steam emissions rose 25-250 m above both summit craters throughout the month. PVMBG reported an eruption began during the evening of 8 February around 1700. Photos showed incandescent material at Main Crater. Incandescent material had also descended the flank in at least two unconfirmed directions as far as 2 km from Main Crater, accompanied by ash plumes (figure 60). As a result, PVMBG increased the Volcano Alert Level (VAL) to 3 (the second highest level on a 1-4 scale).

Figure (see Caption) Figure 60. Photos of the eruption at Karangetang on 8 February 2023 that consisted of incandescent material descending the flanks (top left), ash plumes (top right and bottom left), and summit crater incandescence (bottom right). Courtesy of IDN Times.

Occasional nighttime webcam images showed three main incandescent lava flows of differing lengths traveling down the S, SW, and W flanks (figure 61). Incandescent rocks were visible on the upper flanks, possibly from ejected or collapsed material from the crater, and incandescence was the most intense at the summit. Based on analyses of satellite imagery and weather models, the Darwin VAAC reported that daily ash plumes during 16-20 February rose to 2.1-3 km altitude and drifted NNE, E, and SE. BNPB reported on 16 February that as many as 77 people were evacuated and relocated to the East Siau Museum. A webcam image taken at 2156 on 17 February possibly showed incandescent material descending the SE flank. Ash plumes rose to 2.1 km altitude and drifted SE during 22-23 February, according to the Darwin VAAC.

Figure (see Caption) Figure 61. Webcam image of summit incandescence and lava flows descending the S, SW, and W flanks of Karangetang on 13 February 2023. Courtesy of MAGMA Indonesia.

Incandescent avalanches of material and summit incandescence at Main Crater continued during March. White gas-and-steam emissions during March generally rose 25-150 m above the summit crater; on 31 March gas-and-steam emissions rose 200-400 m high. An ash plume rose to 2.4 km altitude and drifted S at 1710 on 9 March and a large thermal anomaly was visible in images taken at 0550 and 0930 on 10 March. Incandescent material was visible at the summit and on the flanks based on webcam images taken at 0007 and 2345 on 16 March, at 1828 on 17 March, at 1940 on 18 March, at 2311 on 19 March, and at 2351 on 20 March. Incandescence was most intense on 18 and 20 March and webcam images showed possible Strombolian explosions (figure 62). An ash plume rose to 2.4 km altitude and drifted SW on 18 March, accompanied by a thermal anomaly.

Figure (see Caption) Figure 62. Webcam image of intense summit incandescence and incandescent avalanches descending the flanks of Karangetang on 18 March 2023. Photo has been color corrected. Courtesy of MAGMA Indonesia.

Summit crater incandescence at Main Crater and on the flanks persisted during April. Incandescent material at the S crater and on the flanks was reported at 0016 on 1 April. The lava flows had stopped by 1 April according to PVMBG, although incandescence was still visible up to 10 m high. Seismic signals indicating effusion decreased and by 6 April they were no longer detected. Incandescence was visible from both summit craters. On 26 April the VAL was lowered to 2 (the second lowest level on a 1-4 scale). White gas-and-steam emissions rose 25-200 m above the summit crater.

During May white gas-and-steam emissions generally rose 50-250 m above the summit, though it was often cloudy, which prevented clear views; on 21 May gas-and-steam emissions rose 50-400 m high. Nighttime N summit crater incandescence rose 10-25 m above the lava dome, and less intense incandescence was noted above Main Crater, which reached about 10 m above the dome. Sounds of falling rocks at Main Crater were heard on 15 May and the seismic network recorded 32 rockfall events in the crater on 17 May. Avalanches traveled as far as 1.5 km down the SW and S flanks, accompanied by rumbling sounds on 18 May. Incandescent material descending the flanks was captured in a webcam image at 2025 on 19 May (figure 63) and on 29 May; summit crater incandescence was observed in webcam images at 2332 on 26 May and at 2304 on 29 May. On 19 May the VAL was again raised to 3.

Figure (see Caption) Figure 63. Webcam image showing incandescent material descending the flanks of Karangetang on 19 May 2023. Courtesy of MAGMA Indonesia.

Occasional Main Crater incandescence was reported during June, as well as incandescent material on the flanks. White gas-and-steam emissions rose 10-200 m above the summit crater. Ash plumes rose to 2.1 km altitude and drifted SE and E during 2-4 June, according to the Darwin VAAC. Material on the flanks of Main Crater were observed at 2225 on 7 June, at 2051 on 9 June, at 0007 on 17 June, and at 0440 on 18 June. Webcam images taken on 21, 25, and 27 June showed incandescence at Main Crater and from material on the flanks.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed strong thermal activity during mid-February through March and mid-May through June, which represented incandescent avalanches and lava flows (figure 64). During April through mid-May the power of the anomalies decreased but frequent anomalies were still detected. Brief gaps in activity occurred during late March through early April and during mid-June. Infrared satellite images showed strong lava flows mainly affecting the SW and S flanks, accompanied by gas-and-steam emissions (figure 65). According to data recorded by the MODVOLC thermal algorithm, there were a total of 79 thermal hotspots detected: 28 during February, 24 during March, one during April, five during May, and 21 during June.

Figure (see Caption) Figure 64. Strong thermal activity was detected during mid-February 2023 through March and mid-May through June at Karangetang during January through June 2023, as recorded by this MIROVA graph (Log Radiative Power). During April through mid-May the power of the anomalies decreased, but the frequency at which they occurred was still relatively high. A brief gap in activity was shown during mid-June. Courtesy of MIROVA.
Figure (see Caption) Figure 65. Incandescent avalanches of material and summit crater incandescence was visible in infrared satellite images (bands 12, 11, 8A) at both the N and S summit crater of Karangetang on 17 February 2023 (top left), 13 April 2023 (top right), 28 May 2023 (bottom left), and 7 June 2023 (bottom right), as shown in these infrared (bands 12, 11, 8A) satellite images. The incandescent avalanches mainly affected the SW and S flanks. Sometimes gas-and-steam plumes accompanied the thermal activity. Courtesy of Copernicus Browser.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented (Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); IDN Times, Jl. Jend. Gatot Subroto Kav. 27 3rd Floor Kuningan, Jakarta, Indonesia 12950, Status of Karangetang Volcano in Sitaro Islands Increases (URL: https://sulsel.idntimes.com/news/indonesia/savi/status-gunung-api-karangetang-di-kepulauan-sitaro-meningkat?page=all).


Ahyi (United States) — July 2023 Citation iconCite this Report

Ahyi

United States

20.42°N, 145.03°E; summit elev. -75 m

All times are local (unless otherwise noted)


Intermittent hydroacoustic signals and discolored plumes during November 2022-June 2023

Ahyi seamount is a large, conical submarine volcano that rises to within 75 m of the ocean surface about 18 km SE of the island of Farallon de Pajaros in the Northern Marianas. The remote location of the seamount has made eruptions difficult to document, but seismic stations installed in the region confirmed an eruption in the vicinity in 2001. No new activity was detected until April-May 2014 when an eruption was detected by NOAA (National Oceanic and Atmospheric Administration) divers, hydroacoustic sensors, and seismic stations (BGVN 42:04). New activity was first detected on 15 November by hydroacoustic sensors that were consistent with submarine volcanic activity. This report covers activity during November 2022 through June 2023 based on daily and weekly reports from the US Geological Survey.

Starting in mid-October, hydroacoustic sensors at Wake Island (2.2 km E) recorded signals consistent with submarine volcanic activity, according to a report from the USGS issued on 15 November 2022. A combined analysis of the hydroacoustic signals and seismic stations located at Guam and Chichijima Island, Japan, suggested that the source of this activity was at or near the Ahyi seamount. After a re-analysis of a satellite image of the area that was captured on 6 November, USGS confirmed that there was no evidence of discoloration at the ocean surface. Few hydroacoustic and seismic signals continued through November, including on 18 November, which USGS suggested signified a decline or pause in unrest. A VONA (Volcano Observatory Notice for Aviation) reported that a discolored water plume was persistently visible in satellite data starting on 18 November (figure 6). Though clouds often obscured clear views of the volcano, another discolored water plume was captured in a satellite image on 26 November. The Aviation Color Code (ACC) was raised to Yellow (the second lowest level on a four-color scale) and the Volcano Alert Level (VAL) was raised to Advisory (the second lowest level on a four-level scale) on 29 November.

Figure (see Caption) Figure 6. A clear, true color satellite image showed a yellow-green discolored water plume extending NW from the Ahyi seamount (white arrow) on 21 November 2022. Courtesy of Copernicus Browser.

During December, occasional detections were recorded on the Wake Island hydrophone sensors and discolored water over the seamount remained visible. During 2-7, 10-12, and 16-31 December possible explosion signals were detected. A small area of discolored water was observed in high-resolution Sentinel-2 satellite images during 1-6 December (figure 7). High-resolution satellite images recorded discolored water plumes on 13 December that originated from the summit region; no observations indicated that activity breached the ocean surface. A possible underwater plume was visible in satellite images on 18 December, and during 19-20 December a definite but diffuse underwater plume located SSE from the main vent was reported. An underwater plume was visible in a satellite image taken on 26 December (figure 7).

Figure (see Caption) Figure 7. Clear, true color satellite images showed yellow-green discolored water plumes extending NE and W from Ahyi (white arrows) on 1 (left) and 26 (right) December 2022, respectively. Courtesy of Copernicus Browser.

Hydrophone sensors continued to detect signals consistent with possible explosions during 1-8 January 2023. USGS reported that the number of detections decreased during 4-5 January. The hydrophone sensors experienced a data outage that started at 0118 on 8 January and continued through 10 January, though according to USGS, possible explosions were recorded prior to the data outage and likely continued during the outage. A discolored water plume originating from the summit region was detected in a partly cloudy satellite image on 8 January. On 11-12 and 15-17 January possible explosion signals were recorded again. One small signal was detected during 22-23 January and several signals were recorded on 25 and 31 January. During 27-31 January a plume of discolored water was observed above the seamount in satellite imagery (figure 8).

Figure (see Caption) Figure 8. True color satellite images showed intermittent yellow-green discolored water plumes of various sizes extending N on 5 January 2023 (top left), SE on 30 January 2023 (top right), W on 4 February 2023 (bottom left), and SW on 1 March 2023 (bottom right) from Ahyi (white arrows). Courtesy of Copernicus Browser.

Low levels of activity continued during February and March, based on data from pressure sensors on Wake Island. During 1 and 4-6 February activity was reported, and a submarine plume was observed on 4 February (figure 8). Possible explosion signals were detected during 7-8, 10, 13-14, and 24 February. During 1-2 and 3-5 March a plume of discolored water was observed in satellite imagery (figure 8). Almost continuous hydroacoustic signals were detected in remote pressure sensor data on Wake Island 2,270 km E from the volcano during 7-13 March. During 12-13 March water discoloration around the seamount was observed in satellite imagery, despite cloudy weather. By 14 March discolored water extended about 35 km, but no direction was noted. USGS reported that the continuous hydroacoustic signals detected during 13-14 March stopped abruptly on 14 March and no new detections were observed. Three 30 second hydroacoustic detections were reported during 17-19 March, but no activity was visible due to cloudy weather. A data outage was reported during 21-22 March, making pressure sensor data unavailable; a discolored water plume was, however, visible in satellite data. A possible underwater explosion signal was detected by pressure sensors at Wake Island on 26, 29, and 31 March, though the cause and origin of these events were unclear.

Similar low activity continued during April, May, and June. Several signals were detected during 1-3 April in pressure sensors at Wake Island. USGS suggested that these may be related to underwater explosions or earthquakes at the volcano, but no underwater plumes were visible in clear satellite images. The pressure sensors had data outages during 12-13 April and no data were recorded; no underwater plumes were visible in satellite images, although cloudy weather obscured most clear views. Eruptive activity was reported starting at 2210 on 21 May. On 22 May a discolored water plume that extended 4 km was visible in satellite images, though no direction was recorded. During 23-24 May some signals were detected by the underwater pressure sensors. Possible hydroacoustic signals were detected during 2-3 and 6-8 June. Multiple hydroacoustic signals were detected during 9-11 and 16-17 June, although no activity was visible in satellite images. One hydroacoustic signal was detected during 23-24 June, but there was some uncertainty about its association with volcanic activity. A single possible hydroacoustic signal was detected during 30 June to 1 July.

Geologic Background. Ahyi seamount is a large conical submarine volcano that rises to within 75 m of the ocean surface ~18 km SE of the island of Farallon de Pajaros in the northern Marianas. Water discoloration has been observed there, and in 1979 the crew of a fishing boat felt shocks over the summit area, followed by upwelling of sulfur-bearing water. On 24-25 April 2001 an explosive eruption was detected seismically by a station on Rangiroa Atoll, Tuamotu Archipelago. The event was well constrained (+/- 15 km) at a location near the southern base of Ahyi. An eruption in April-May 2014 was detected by NOAA divers, hydroacoustic sensors, and seismic stations.

Information Contacts: US Geological Survey, Volcano Hazards Program (USGS-VHP), 12201 Sunrise Valley Drive, Reston, VA, USA, https://volcanoes.usgs.gov/index.html; Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Kadovar (Papua New Guinea) — June 2023 Citation iconCite this Report

Kadovar

Papua New Guinea

3.608°S, 144.588°E; summit elev. 365 m

All times are local (unless otherwise noted)


An ash plume and weak thermal anomaly during May 2023

Kadovar is a 2-km-wide island that is the emergent summit of a Bismarck Sea stratovolcano. It lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the volcano, filling an arcuate landslide scarp open to the S. Submarine debris-avalanche deposits occur to the S of the island. The current eruption began in January 2018 and has comprised lava effusion from vents at the summit and at the E coast; more recent activity has consisted of ash plumes, weak thermal activity, and gas-and-steam plumes (BGVN 48:02). This report covers activity during February through May 2023 using information from the Darwin Volcanic Ash Advisory Center (VAAC) and satellite data.

Activity during the reporting period was relatively low and mainly consisted of white gas-and-steam plumes that were visible in natural color satellite images on clear weather days (figure 67). According to a Darwin VAAC report, at 2040 on 6 May an ash plume rose to 4.6 km altitude and drifted W; by 2300 the plume had dissipated. MODIS satellite instruments using the MODVOLC thermal algorithm detected a single thermal hotspot on the SE side of the island on 7 May. Weak thermal activity was also detected in a satellite image on the E side of the island on 14 May, accompanied by a white gas-and-steam plume that drifted SE (figure 68).

Figure (see Caption) Figure 67. True color satellite images showing a white gas-and-steam plume rising from Kadovar on 28 February 2023 (left) and 30 March 2023 (right) and drifting SE and S, respectively. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 68. Infrared (bands B12, B11, B4) image showing weak thermal activity on the E side of the island, accompanied by a gas-and-steam plume that drifted SE from Kadovar on 14 May 2023. Courtesy of Copernicus Browser.

Geologic Background. The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the andesitic volcano, filling an arcuate landslide scarp open to the south; submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. A period of heightened thermal phenomena took place in 1976. An eruption began in January 2018 that included lava effusion from vents at the summit and at the E coast.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


San Miguel (El Salvador) — June 2023 Citation iconCite this Report

San Miguel

El Salvador

13.434°N, 88.269°W; summit elev. 2130 m

All times are local (unless otherwise noted)


Small gas-and-ash explosions during March and May 2023

San Miguel in El Salvador is a broad, deep crater complex that has been frequently modified by eruptions recorded since the early 16th century and consists of the summit known locally as Chaparrastique. Flank eruptions have produced lava flows that extended to the N, NE, and SE during the 17-19th centuries. The most recent activity has consisted of minor ash eruptions from the summit crater. The current eruption period began in November 2022 and has been characterized by frequent phreatic explosions, gas-and-ash emissions, and sulfur dioxide plumes (BGVN 47:12). This report describes small gas-and-ash explosions during December 2022 through May 2023 based on special reports from the Ministero de Medio Ambiente y Recursos Naturales (MARN).

Activity has been relatively low since the last recorded explosions on 29 November 2022. Seismicity recorded by the San Miguel Volcano Station (VSM) located on the N flank at 1.7 km elevation had decreased by 7 December. Sulfur dioxide gas measurements taken with DOAS (Differential Optical Absorption Spectroscopy) mobile equipment were below typical previously recorded values: 300 tons per day (t/d). During December, small explosions were recorded by the seismic network and manifested as gas-and-steam emissions.

Gas-and-ash explosions in the crater occurred during January 2023, which were recorded by the seismic network. Sulfur dioxide values remained low, between 300-400 t/d through 10 March. At 0817 on 14 January a gas-and-ash emission was visible in webcam images, rising just above the crater rim. Some mornings during February, small gas-and-steam plumes were visible in the crater. On 7 March at 2252 MARN noted an increase in degassing from the central crater; gas emissions were constantly observed through the early morning hours on 8 March. During the early morning of 8 March through the afternoon on 9 March, 12 emissions were registered, some accompanied by ash. The last gas-and-ash emission was recorded at 1210 on 9 March; very fine ashfall was reported in El Tránsito (10 km S), La Morita (6 km W), and La Piedrita (3 km W). The smell of sulfur was reported in Piedra Azul (5 km SW). On 16 March MARN reported that gas-and-steam emissions decreased.

Low degassing and very low seismicity were reported during April; no explosions have been detected between 9 March and 27 May. The sulfur dioxide emissions remained between 350-400 t/d; during 13-20 April sulfur dioxide values fluctuated between 30-300 t/d. Activity remained low through most of May; on 23 May seismicity increased. An explosion was detected at 1647 on 27 May generated a gas-and-ash plume that rose 700 m high (figure 32); a decrease in seismicity and gas emissions followed. The DOAS station installed on the W flank recorded sulfur dioxide values that reached 400 t/d on 27 May; subsequent measurements showed a decrease to 268 t/d on 28 May and 100 t/d on 29 May.

Figure (see Caption) Figure 32. Webcam image of a gas-and-ash plume rising 700 m above San Miguel at 1652 on 27 May 2023. Courtesy of MARN.

Geologic Background. The symmetrical cone of San Miguel, one of the most active volcanoes in El Salvador, rises from near sea level to form one of the country's most prominent landmarks. A broad, deep, crater complex that has been frequently modified by eruptions recorded since the early 16th century caps the truncated unvegetated summit, also known locally as Chaparrastique. Flanks eruptions of the basaltic-andesitic volcano have produced many lava flows, including several during the 17th-19th centuries that extended to the N, NE, and SE. The SE-flank flows are the largest and form broad, sparsely vegetated lava fields crossed by highways and a railroad skirting the base of the volcano. Flank vent locations have migrated higher on the edifice during historical time, and the most recent activity has consisted of minor ash eruptions from the summit crater.

Information Contacts: Ministero de Medio Ambiente y Recursos Naturales (MARN), Km. 5½ Carretera a Nueva San Salvador, Avenida las Mercedes, San Salvador, El Salvador (URL: http://www.snet.gob.sv/ver/vulcanologia).


Semisopochnoi (United States) — June 2023 Citation iconCite this Report

Semisopochnoi

United States

51.93°N, 179.58°E; summit elev. 1221 m

All times are local (unless otherwise noted)


Occasional explosions, ash deposits, and gas-and-steam plumes during December 2022-May 2023

Semisopochnoi is located in the western Aleutians, is 20-km-wide at sea level, and contains an 8-km-wide caldera. The three-peaked Mount Young (formerly Cerberus) was constructed within the caldera during the Holocene. Each of these peaks contains a summit crater; the lava flows on the N flank appear younger than those on the S side. The current eruption period began in early February 2021 and has more recently consisted of intermittent explosions and ash emissions (BGVN 47:12). This report updates activity during December 2022 through May 2023 using daily, weekly, and special reports from the Alaska Volcano Observatory (AVO). AVO monitors the volcano using local seismic and infrasound sensors, satellite data, web cameras, and remote infrasound and lightning networks.

Activity during most of December 2022 was relatively quiet; according to AVO no eruptive or explosive activity was observed since 7 November 2022. Intermittent tremor and occasional small earthquakes were observed in geophysical data. Continuous gas-and-steam emissions were observed from the N crater of Mount Young in webcam images on clear weather days (figure 25). On 24 December, there was a slight increase in earthquake activity and several small possible explosion signals were detected in infrasound data. Eruptive activity resumed on 27 December at the N crater of Mount Young; AVO issued a Volcano Activity Notice (VAN) that reported minor ash deposits on the flanks of Mount Young that extended as far as 1 km from the vent, according to webcam images taken during 27-28 December (figure 26). No ash plumes were observed in webcam or satellite imagery, but a persistent gas-and-steam plume that might have contained some ash rose to 1.5 km altitude. As a result, AVO raised the Aviation Color Code (ACC) to Orange (the second highest level on a four-color scale) and the Volcano Alert Level (VAL) to Watch (the second highest level on a four-level scale). Possible explosions were detected during 21 December 2022 through 1 January 2023 and seismic tremor was recorded during 30-31 December.

Figure (see Caption) Figure 25. Webcam image of a gas-and-steam plume rising above Semisopochnoi from Mount Young on 21 December 2022. Courtesy of AVO.
Figure (see Caption) Figure 26. Webcam image showing fresh ash deposits (black color) at the summit and on the flanks of Mount Young at Semisopochnoi, extending up to 1 km from the N crater. Image was taken on 27 December 2022. Image has been color corrected. Courtesy of AVO.

During January 2023 eruptive activity continued at the active N crater of Mount Young. Minor ash deposits were observed on the flanks, extending about 2 km SSW, based on webcam images from 1 and 3 January. A possible explosion occurred during 1-2 January based on elevated seismicity recorded on local seismometers and an infrasound signal recorded minutes later by an array at Adak. Though no ash plumes were observed in webcam or satellite imagery, a persistent gas-and-steam plume rose to 1.5 km altitude that might have carried minor traces of ash. Ash deposits were accompanied by periods of elevated seismicity and infrasound signals from the local geophysical network, which AVO reported were likely due to weak explosive activity. Low-level explosive activity was also detected during 2-3 January, with minor gas-and-steam emissions and a new ash deposit that was visible in webcam images. Low-level explosive activity was detected in geophysical data during 4-5 January, with elevated seismicity and infrasound signals observed on local stations. Volcanic tremor was detected during 7-9 January and very weak explosive activity was detected in seismic and infrasound data on 9 January. Weak seismic and infrasound signals were recorded on 17 January, which indicated minor explosive activity, but no ash emissions were observed in clear webcam images; a gas-and-steam plume continued to rise to 1.5 km altitude. During 29-30 January, ash deposits near the summit were observed on fresh snow, according to webcam images.

The active N cone at Mount Young continued to produce a gas-and-steam plume during February, but no ash emissions or explosive events were detected. Seismicity remained elevated with faint tremor during early February. Gas-and-steam emissions from the N crater were observed in clear webcam images on 11-13 and 16 February; no explosive activity was detected in seismic, infrasound, or satellite data. Seismicity has also decreased, with no significant seismic tremor observed since 25 January. Therefore, the ACC was lowered to Yellow (the second lowest level on a four-color scale) and the VAL was lowered to Advisory (the second lowest level on a four-color scale) on 22 February.

Gas-and-steam emissions persisted during March from the N cone of Mount Young, based on clear webcam images. A few brief episodes of weak tremor were detected in seismic data, although seismicity decreased over the month. A gas-and-steam plume detected in satellite data extended 150 km on 18 March. Low-level ash emissions from the N cone at Mount Young were observed in several webcam images during 18-19 March, in addition to small explosions and volcanic tremor. The ACC was raised to Orange and the VAL increased to Watch on 19 March. A small explosion was detected in seismic and infrasound data on 21 March.

Low-level unrest continued during April, although cloudy weather often obscured views of the summit; periods of seismic tremor and local earthquakes were recorded. During 3-4 April a gas-and-steam plume was visible traveling more than 200 km overnight; no ash was evident in the plume, according to AVO. A gas-and-steam plume was observed during 4-6 April that extended 400 km but did not seem to contain ash. Small explosions were detected in seismic and infrasound data on 5 April. Occasional clear webcam images showed continuing gas-and-steam emissions rose from Mount Young, but no ash deposits were observed on the snow. On 19 April small explosions and tremor were detected in seismic and infrasound data. A period of seismic tremor was detected during 22-25 April, with possible weak explosions on 25 April. Ash deposits were visible near the crater rim, but it was unclear if these deposits were recent or due to older deposits.

Occasional small earthquakes were recorded during May, but there were no signs of explosive activity seen in geophysical data. Gas-and-steam emissions continued from the N crater of Mount Young, based on webcam images, and seismicity remained slightly elevated. A new, light ash deposit was visible during the morning of 5 May on fresh snow on the NW flank of Mount Young. During 10 May periods of volcanic tremor were observed. The ACC was lowered to Yellow and the VAL to Advisory on 17 May due to no additional evidence of activity.

Geologic Background. Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked Mount Cerberus (renamed Mount Young in 2023) was constructed within the caldera during the Holocene. Each of the peaks contains a summit crater; lava flows on the N flank appear younger than those on the south side. Other post-caldera volcanoes include the symmetrical Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented eruptions have originated from Young, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone could have been recently active.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).


Ebeko (Russia) — June 2023 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Continued explosions, ash plumes, and ashfall during October 2022-May 2023

Ebeko, located on the N end of Paramushir Island in the Kuril Islands, consists of three summit craters along a SSW-NNE line at the northern end of a complex of five volcanic cones. Eruptions date back to the late 18th century and have been characterized as small-to-moderate explosions from the summit crater, accompanied by intense fumarolic activity. The current eruption period began in June 2022 and has recently consisted of frequent explosions, ash plumes, and thermal activity (BGVN 47:10). This report covers similar activity during October 2022 through May 2023, based on information from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.

Activity during October consisted of explosive activity, ash plumes, and occasional thermal anomalies. Visual data by volcanologists from Severo-Kurilsk showed explosions producing ash clouds up to 2.1-3 km altitude which drifted E, N, NE, and SE during 1-8, 10, 16, and 18 October. KVERT issued several Volcano Observatory Notices for Aviation (VONA) on 7, 13-15, and 27 October 2022, stating that explosions generated ash plumes that rose to 2.3-4 km altitude and drifted 5 km E, NE, and SE. Ashfall was reported in Severo-Kurilsk (Paramushir Island, about 7 km E) on 7 and 13 October. Satellite data showed a thermal anomaly over the volcano on 15-16 October. Visual data showed ash plumes rising to 2.5-3.6 km altitude on 22, 25-29, and 31 October and moving NE due to constant explosions.

Similar activity continued during November, with explosions, ash plumes, and ashfall occurring. KVERT issued VONAs on 1-2, 4, 6-7, 9, 13, and 16 November that reported explosions and resulting ash plumes that rose to 1.7-3.6 km altitude and drifted 3-5 km SE, ESE, E, and NE. On 1 November ash plumes extended as far as 110 km SE. On 5, 8, 12, and 24-25 November explosions and ash plumes rose to 2-3.1 km altitude and drifted N and E. Ashfall was observed in Severo-Kurilsk on 7 and 16 November. A thermal anomaly was visible during 1-4, 16, and 20 November. Explosions during 26 November rose as high as 2.7 km altitude and drifted NE (figure 45).

Figure (see Caption) Figure 45. Photo of an ash plume rising to 2.7 km altitude above Ebeko on 26 November 2022. Photo has been color corrected. Photo by L. Kotenko, IVS FEB RAS.

Explosions and ash plumes continued to occur in December. During 1-2 and 4 December volcanologists from Severo-Kurilsk observed explosions that sent ash to 1.9-2.5 km altitude and drifted NE and SE (figure 46). VONAs were issued on 5, 9, and 16 December reporting that explosions generated ash plumes rising to 1.9 km, 2.6 km, and 2.4 km altitude and drifted 5 km SE, E, and NE, respectively. A thermal anomaly was visible in satellite imagery on 16 December. On 18 and 27-28 December explosions produced ash plumes that rose to 2.5 km altitude and drifted NE and SE. On 31 December an ash plume rose to 2 km altitude and drifted NE.

Figure (see Caption) Figure 46. Photo of an explosive event at Ebeko at 1109 on 2 December 2022. Photo has been color corrected. Photo by S. Lakomov, IVS FEB RAS.

Explosions continued during January 2023, based on visual observations by volcanologists from Severo-Kurilsk. During 1-7 January explosions generated ash plumes that rose to 4 km altitude and drifted NE, E, W, and SE. According to VONAs issued by KVERT on 2, 4, 10, and 23 January, explosions produced ash plumes that rose to 2-4 km altitude and drifted 5 km N, NE, E, and ENE; the ash plume that rose to 4 km altitude occurred on 10 January (figure 47). Satellite data showed a thermal anomaly during 3-4, 10, 13, 16, 21, 22, and 31 January. KVERT reported that an ash cloud on 4 January moved 12 km NE. On 6 and 9-11 January explosions sent ash plumes to 4.5 km altitude and drifted W and ESE. On 13 January an ash plume rose to 3 km altitude and drifted SE. During 20-24 January ash plumes from explosions rose to 3.7 km altitude and drifted SE, N, and NE. On 21 January the ash plume drifted as far as 40 km NE. During 28-29 and 31 January and 1 February ash plumes rose to 4 km altitude and drifted NE.

Figure (see Caption) Figure 47. Photo of a strong ash plume rising to 4 km altitude from an explosive event on 10 January 2023 (local time). Photo by L. Kotenko, IVS FEB RAS.

During February, explosions, ash plumes, and ashfall were reported. During 1, 4-5 and 7-8 February explosions generated ash plumes that rose to 4.5 km altitude and drifted E and NE; ashfall was observed on 5 and 8 February. On 6 February an explosion produced an ash plume that rose to 3 km altitude and drifted 7 km E, causing ashfall in Severo-Kurilsk. A thermal anomaly was visible in satellite data on 8, 9, 13, and 21 February. Explosions on 9 and 12-13 February produced ash plumes that rose to 4 km altitude and drifted E and NE; the ash cloud on 12 February extended as far as 45 km E. On 22 February explosions sent ash to 3 km altitude that drifted E. During 24 and 26-27 February ash plumes rose to 4 km altitude and drifted E. On 28 February an explosion sent ash to 2.5-3 km altitude and drifted 5 km E; ashfall was observed in Severo-Kurilsk.

Activity continued during March; visual observations showed that explosions generated ash plumes that rose to 3.6 km altitude on 3, 5-7, and 9-12 March and drifted E, NE, and NW. Thermal anomalies were visible on 10, 13, and 29-30 March in satellite imagery. On 18, 21-23, 26, and 29-30 March explosions produced ash plumes that rose to 2.8 km altitude and drifted NE and E; the ash plumes during 22-23 March extended up to 76 km E. A VONA issued on 21 March reported an explosion that produced an ash plume that rose to 2.8 km altitude and drifted 5 km E. Another VONA issued on 23 March reported that satellite data showed an ash plume rising to 3 km altitude and drifted 14 km E.

Explosions during April continued to generate ash plumes. On 1 and 4 April an ash plume rose to 2.8-3.5 km altitude and drifted SE and NE. A thermal anomaly was visible in satellite imagery during 1-6 April. Satellite data showed ash plumes and clouds rising to 2-3 km altitude and drifting up to 12 km SW and E on 3 and 6 April (figure 48). KVERT issued VONAs on 3, 5, 14, 16 April describing explosions that produced ash plumes rising to 3 km, 3.5 km, 3.5 km, and 3 km altitude and drifting 5 km S, 5 km NE and SE, 72 km NNE, and 5 km NE, respectively. According to satellite data, the resulting ash cloud from the explosion on 14 April was 25 x 7 km in size and drifted 72-104 km NNE during 14-15 April. According to visual data by volcanologists from Severo-Kurilsk explosions sent ash up to 3.5 km altitude that drifted NE and E during 15-16, 22, 25-26, and 29 April.

Figure (see Caption) Figure 48. Photo of an ash cloud rising to 3.5 km altitude at Ebeko on 6 April 2023. The cloud extended up to 12 km SW and E. Photo has been color corrected. Photo by L. Kotenko, IVS FEB RAS.

The explosive eruption continued during May. Explosions during 3-4, 6-7, and 9-10 May generated ash plumes that rose to 4 km altitude and drifted SW and E. Satellite data showed a thermal anomaly on 3, 9, 13-14, and 24 May. During 12-16, 23-25, and 27-28 May ash plumes rose to 3.5 km altitude and drifted in different directions due to explosions. Two VONA notices were issued on 16 and 25 May, describing explosions that generated ash plumes rising to 3 km and 3.5 km altitude, respectively and extending 5 km E. The ash cloud on 25 May drifted 75 km SE.

Thermal activity in the summit crater, occasionally accompanied by ash plumes and ash deposits on the SE and E flanks due to frequent explosions, were visible in infrared and true color satellite images (figure 49).

Figure (see Caption) Figure 49. Infrared (bands B12, B11, B4) and true color satellite images of Ebeko showing occasional small thermal anomalies at the summit crater on 4 October 2022 (top left), 30 April 2023 (bottom left), and 27 May 2023 (bottom right). On 1 November (top right) ash deposits (light-to-dark gray) were visible on the SE flank. An ash plume drifted NE on 30 April, and ash deposits were also visible to the E on both 30 April and 27 May. Courtesy of Copernicus Browser.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Home Reef (Tonga) — June 2023 Citation iconCite this Report

Home Reef

Tonga

18.992°S, 174.775°W; summit elev. -10 m

All times are local (unless otherwise noted)


Discolored plumes continued during November 2022-April 2023

Home Reef is a submarine volcano located in the central Tonga islands between Lateiki (Metis Shoal) and Late Island. The first recorded eruption occurred in the mid-19th century, when an ephemeral island formed. An eruption in 1984 produced a 12-km-high eruption plume, a large volume of floating pumice, and an ephemeral island 500 x 1,500 m wide, with cliffs 30-50 m high that enclosed a water-filled crater. Another island-forming eruption in 2006 produced widespread pumice rafts that drifted as far as Australia; by 2008 the island had eroded below sea level. The previous eruption occurred during October 2022 and was characterized by a new island-forming eruption, lava effusion, ash plumes, discolored water, and gas-and-steam plumes (BGVN 47:11). This report covers discolored water plumes during November 2022 through April 2023 using satellite data.

Discolored plumes continued during the reporting period and were observed in true color satellite images on clear weather days. Satellite images show light green-yellow discolored water extending W on 8 and 28 November 2022 (figure 31), and SW on 18 November. Light green-yellow plumes extended W on 3 December, S on 13 December, SW on 18 December, and W and S on 23 December (figure 31). On 12 January 2023 discolored green-yellow plumes extended to the NE, E, SE, and N. The plume moved SE on 17 January and NW on 22 January. Faint discolored water in February was visible moving NE on 1 February. A discolored plume extended NW on 8 and 28 March and NW on 13 March (figure 31). During April, clear weather showed green-blue discolored plumes moving S on 2 April, W on 7 April, and NE and S on 12 April. A strong green-yellow discolored plume extended E and NE on 22 April for several kilometers (figure 31).

Figure (see Caption) Figure 31. Visual (true color) satellite images showing continued green-yellow discolored plumes at Home Reef (black circle) that extended W on 28 November 2022 (top left), W and S on 23 December 2022 (top right), NW on 13 March 2023 (bottom left), and E and NE on 22 April 2023 (bottom right). Courtesy of Copernicus Browser.

Geologic Background. Home Reef, a submarine volcano midway between Metis Shoal and Late Island in the central Tonga islands, was first reported active in the mid-19th century, when an ephemeral island formed. An eruption in 1984 produced a 12-km-high eruption plume, large amounts of floating pumice, and an ephemeral 500 x 1,500 m island, with cliffs 30-50 m high that enclosed a water-filled crater. In 2006 an island-forming eruption produced widespread dacitic pumice rafts that drifted as far as Australia. Another island was built during a September-October 2022 eruption.

Information Contacts: Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Ambae (Vanuatu) — June 2023 Citation iconCite this Report

Ambae

Vanuatu

15.389°S, 167.835°E; summit elev. 1496 m

All times are local (unless otherwise noted)


New lava flow, ash plumes, and sulfur dioxide plumes during February-May 2023

Ambae, also known as Aoba, is a large basaltic shield volcano in Vanuatu. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas. Periodic phreatic and pyroclastic explosions have been reported since the 16th century. A large eruption more than 400 years ago resulted in a volcanic cone within the summit crater that is now filled by Lake Voui; the similarly sized Lake Manaro fills the western third of the caldera. The previous eruption ended in August 2022 that was characterized by gas-and-steam and ash emissions and explosions of wet tephra (BGVN 47:10). This report covers a new eruption during February through May 2023 that consisted of a new lava flow, ash plumes, and sulfur dioxide emissions, using information from the Vanuatu Meteorology and Geo-Hazards Department (VMGD) and satellite data.

During the reporting period, the Alert Level remained at a 2 (on a scale of 0-5), which has been in place since December 2021. Activity during October 2022 through March 2023 remained relatively low and mostly consisted of gas-and-steam emissions in Lake Voui. VMGD reported that at 1300 on 15 November a satellite image captured a strong amount of sulfur dioxide rising above the volcano (figure 99), and that seismicity slightly increased. The southern and northern part of the island reported a strong sulfur dioxide smell and heard explosions. On 20 February 2023 a gas-and-ash plume rose 1.3 km above the summit and drifted SSW, according to a webcam image (figure 100). Gas-and-steam and possibly ash emissions continued on 23 February and volcanic earthquakes were recorded by the seismic network.

Figure (see Caption) Figure 99. Satellite image of the strong sulfur dioxide plume above Ambae taken on 15 November 2022. The Dobson Units (DU) exceeded 12. Courtesy of VMGD.
Figure (see Caption) Figure 100. Webcam image of a gas-and-ash plume rising above Ambae at 1745 on 20 February 2023. The plume drifted SSW. Courtesy of VMGD.

During April, volcanic earthquakes and gas-and-steam and ash emissions were reported from the cone in Lake Voui. VMGD reported that activity increased during 5-7 April; high gas-and-steam and ash plumes were visible, accompanied by nighttime incandescence. According to a Wellington VAAC report, a low-level ash plume rose as high as 2.5 km above the summit and drifted W and SW on 5 April, based on satellite imagery. Reports in Saratamata stated that a dark ash plume drifted to the WSW, but no loud explosion was heard. Webcam images from 2100 showed incandescence above the crater and reflected in the clouds. According to an aerial survey, field observations, and satellite data, water was no longer present in the lake. A lava flow was reported effusing from the vent and traveling N into the dry Lake Voui, which lasted three days. The next morning at 0745 on 6 April a gas-and-steam and ash plume rose 5.4 km above the summit and drifted ESE, based on information from VMGD (figure 101). The Wellington VAAC also reported that light ashfall was observed on the island. Intermittent gas-and-steam and ash emissions were visible on 7 April, some of which rose to an estimated 3 km above the summit and drifted E. Webcam images during 0107-0730 on 7 April showed continuing ash emissions. A gas-and-steam and ash plume rose 695 m above the summit crater at 0730 on 19 April and drifted ESE, based on a webcam image (figure 102).

Figure (see Caption) Figure 101. Webcam image showing a gas-and-ash plume rising 5.4 km above the summit of Ambae at 0745 on 6 April 2023. Courtesy of VMGD.
Figure (see Caption) Figure 102. Webcam image showing a gas-and-ash plume rising 695 m above the summit of Ambae at 0730 on 19 April 2023. Courtesy of VMGD.

According to visual and infrared satellite data, water was visible in Lake Voui as late as 24 March 2023 (figure 103). The vent in the caldera showed a gas-and-steam plume drifted SE. On 3 April thermal activity was first detected, accompanied by a gas-and-ash plume that drifted W (figure 103). The lava flow moved N within the dry lake and was shown cooling by 8 April. By 23 April much of the water in the lake had returned. Occasional sulfur dioxide plumes were detected by the TROPOMI instrument on the Sentinel-5P satellite that exceeded 2 Dobson Units (DU) and drifted in different directions (figure 104).

Figure (see Caption) Figure 103. Satellite images showing both visual (true color) and infrared (bands B12, B11, B4) views on 24 March 2023 (top left), 3 April 2023 (top left), 8 April 2023 (bottom left), and 23 April 2023 (bottom right). In the image on 24 March, water filled Lake Voui around the small northern lake. A gas-and-steam plume drifted SE. Thermal activity (bright yellow-orange) was first detected in infrared data on 3 April 2023, accompanied by a gas-and-ash plume that drifted W. The lava flow slowly filled the northern part of the then-dry lake and remained hot on 8 April. By 23 April, the water in Lake Voui had returned. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 104. Images showing sulfur dioxide plumes rising from Ambae on 26 December 2022 (top left), 25 February 2023 (top right), 23 March 2023 (bottom left), and 5 April 2023 (bottom right), as detected by the TROPOMI instrument on the Sentinel-5P satellite. These plumes exceeded at least 2 Dobson Units (DU) and drifted in different directions. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. The island of Ambae, also known as Aoba, is a massive 2,500 km3 basaltic shield that is the most voluminous volcano of the New Hebrides archipelago. A pronounced NE-SW-trending rift zone with numerous scoria cones gives the 16 x 38 km island an elongated form. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas, the largest of which is 6 km in diameter. That large central edifice is also called Manaro Voui or Lombenben volcano. Post-caldera explosive eruptions formed the summit craters about 360 years ago. A tuff cone was constructed within Lake Voui (or Vui) about 60 years later. The latest known flank eruption, about 300 years ago, destroyed the population of the Nduindui area near the western coast.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); Wellington Volcanic Ash Advisory Centre (VAAC), Meteorological Service of New Zealand Ltd (MetService), PO Box 722, Wellington, New Zealand (URL: http://www.metservice.com/vaac/, http://www.ssd.noaa.gov/VAAC/OTH/NZ/messages.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 40, Number 02 (February 2015)

Managing Editor: Richard Wunderman

Asosan (Japan)

Ongoing emissions leading to a larger, late-2014 eruption with ashfall

Etna (Italy)

Strombolian eruptions, ash emissions, and new effusive vents through February 2015

Fournaise, Piton de la (France)

June 2014 and February 2015 eruptions

Popocatepetl (Mexico)

During November 2012-December 2014, ongoing exhalations and explosions



Asosan (Japan) — February 2015 Citation iconCite this Report

Asosan

Japan

32.8849°N, 131.085°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Ongoing emissions leading to a larger, late-2014 eruption with ashfall

This report summarizes behavior at Naka-dake (Nakadake) crater at Asosan (Aso, Aso-san) caldera chiefly during January 2014-February 2015. During this reporting interval Naka-dake continued to emit gas, steam, and small ash plumes. A larger eruption took place starting 25 November 2014, causing ashfall and glowing emissions. This closed a local airport, and triggered hundreds of reports on ash plumes for the aviation community by the Tokyo Volcanic Ash Advisory Center (VAAC). That eruption continued through 2014. The eruption went on into 2015 but was generally described as intermittent during late December 2014 through at least the end of February 2015. The Alert Level remained at 2 (on a scale increasing from 1 to 5) for the duration of the reporting interval. Our last report, BGVN 37:08, described the emission of ash plumes and other behavior during May-June 2011. Some remarks in this report also refer to earlier behavior, for example, a short subsection includes what JMA recorded as important in a terse summary of 2011.

Eruption details were extracted and synthesized mainly from Japan Meteorological Agency (JMA) sources. JMA frequently communicated with the Tokyo VAAC about Asosan's eruptive status. This report also discusses Volcano Ash Advisories (VAAs) issued by the JMA's Tokyo VAAC. For many of the VAAs, evidence of ash-bearing plumes reported by JMA could not be reliably detected in the satellite images. For example, the images were sometimes obscured by overlying weather-cloud cover. The plumes were also generally only rising to a few kilometers in altitude. In at least some cases, the low plumes appeared bent by high winds.

Naka-daka Crater Number 1 remained the active vent for the most part during the past eight decades. That same pattern held true during this reporting interval when myriad small eruptions, often to or below 1 km above the crater rim were documented. Visibility was sometimes impaired but monitoring instrumentation confirmed a pattern of ongoing eruption. In some cases, the eruption was not clearly seen but fresh ash was recorded. Webcameras regularly documented incandescence both in the crater and onto the crater rim. Smaller ash plumes were too numerous to mention except in occasional cases. High winds were often mentioned, which may have bearing on restricting plume heights.

Location and brief background. Asosan is located on the S of the main island of Japan (Honshu) on the island of Kyushu (figure 31).

Figure (see Caption) Figure 31. Location maps showing (circular 'global' inset) Japan, and (larger map) the location of Asosan (Aso) on Kyushu island. Taken from The Daily Mail news article issued on 28 November 2014 (Malm, 2014).

The rim of Nake-dake is unusually developed for such an active volcano. Both a road and cable car carry tourists there. Shelter dugouts are provided around the crater. The Aso Volcano Museum is located nearby. Figure 32, made from radar imagery, shows Asosan's morphology.

Figure (see Caption) Figure 32. Morphology of the Asosan caldera seen in shaded relief (color scale for elevations absent). N is towards the top; the N-S cross-caldera distance is ~25 km. Note the central highlands, a series of ~17 post-caldera cones that includes the active Nake-dake and its Crater Number 1. The caldera's topographic boundary is distinct on all sides but a drainage has breached the W side. This caldera vented four sets of massive eruptive deposits (pyroclastic-flows and associated ash-falls; Miyabuchi, 2013; Fujii, 2001). Source: Wikipedia (from a Nasa Shuttle Radar Topography Mission).

JMA (2013) includes a map showing the location of 12 calderas in Japan. Asosan, the largest and most active, has had many small eruptions in the past few thousand years, including many witnessed eruptions in the interval of recorded history. Spica (2013) discusses Aso in the context of other calderas in the Kyushu region.

Figure 33 shows a shaded-relief map focusing on the post-caldera cones in the central highland area.

Figure (see Caption) Figure 33. A shaded relief map of the elevated central area (post-caldera cones and their craters) of the Aso caldera, adding naming labels in English of some of the main features. As seen in the previous figure, the caldera floor (moat) is outside and encircling this central topographic high. Both conventional topographic and a digital elevation map (50 m grid) were used to make this map, which was published by the Geospatial Information Authority of Japan. Source: JMA (2013).

JMA's website features this summary on Asosan.

"Asosan (Aso Volcano) comprises the Aso caldera and post-caldera central cones. The Aso caldera, 25 km north-south and 18 km east-west in diameter, was formed by four gigantic pyroclastic-flow eruptions from approximately 270,000 to 90,000 years ago. Post-caldera central cones were initiated soon after the last caldera-forming eruption, producing not only local lava flows but also voluminous tephra layers which fell far beyond the caldera. Nakadake Volcano, which is the only active central cone of basaltic andesite to basalt [composition], is one of the most active volcanoes in Japan. The active crater of Nakadake Volcano is a composite of seven craterlets aligned N-S [elongate zone of depressions to the left of the label "Nakadake" and above the letter 't' in the label "Nakadake-Crater" on figure 33; see also SEAN 04:07 for a sketch map focused on this area)]. Only the northernmost [Nakadake] crater (No. 1 crater) has been active in the past 80 years, although some others were active before the 1933 eruption. The Nakadake No. 1 crater is occupied by a hyperacidic crater lake during its calm periods. During active periods, its volcanic activity is characterized by ash and strombolian eruptions and phreatic or phreatomagmatic explosions."

According to Fujii and others (2001), "Aso caldera in central Kyushu, Japan, is one of the largest calderas in the world and covers an area of 380 km2. In late Pleistocene time, eruptions of voluminous pyroclastic flows occurred intermittently, resulting in formation of the caldera. The Aso pyroclastic-flow deposits are divided into four major units, i.e. Aso-1, Aso-2, Aso-3, and Aso-4 . . . [and] welded tuffs of these units are widely distributed in central Kyushu, and are generally well suited for paleomagnetic research . . .. K-Ar ages for Aso-1, Aso-2, Aso-3, and Aso-4 have been determined to be 266 ± 14 ka, 141 ± 5 ka, 123 ± 6 ka, and 89 ± 7 ka, respectively (Matsumoto and others, 1991)."

JMA summary for 2011 activity. JMA (2013) tabulated a summary of witnessed events (eruptions, possible eruptions, damage, significant behavior, etc.) at Asosan going back to the year 553. In the most recent behavior discussed, the authors briefly note that during 2011 (an interval they term Heisei 23) the following behavior occurred.

First, after the Mw ~9 Tohoku earthquake ~70 km off the Pacific coast on 11 March 2011, earthquakes temporarily increased roughly 10 km to the NW of the active crater. Second, very small emissions of gray-white volcanic ash occurred during 15 May to 9 June 2011. On 15 May a very small amount of tephra fall was confirmed at Sensuikyo, ~2 km to the NE of the Nakadake Number 1 crater.

2014 Activity. JMA reporting for 13 January 2014 noted the emission of a very small eruption. This came in the wake of increased tremor in late December 2013 and an increase in hazard status to Alert Level 2. (As previously mentioned, the Level remained at 2 for the duration of the reporting interval.) Further escalation in tremor took place on 2 January. On 10 January emissions reached 1,200 metric tons/day (t/d) of sulfur-dioxide (SO2). The 13 January 2014 eruption took place at Naka-dake, which emitted a grayish-white plume that rose to 600 m that traveled S and deposited traces of ash. The resulting report from the Tokyo VAAC (a Volcanic Ash Advisory (VAA)) stating they failed to detect identifiable ash in the plume data captured on satellite images.

The small 13 January 2014 eruption triggered the first Asosan VAA in over a year. The other VAAs during January 2014 were issued on the 27th, 29th, 30th, and 31st. On one of those days, two VAAs were issued, and thus, for January there were 6 VAAs.

Bulletin editors note that the VAAs are not a linear measure of the number of eruptions. Small eruptions may not trigger a VAA at all. Several consecutive VAAs may occur associated with a single potentially larger eruption, which are issued in an effort to track an ash plume. Again, this may be an example where the number of VAAs is not reflective of the number of eruptions. Despite this, the number of VAAs are easily counted owing to new online archives. The Tokyo VAACs online presentation system is tablular in nature and is thus well suited to enable a count of reports per month.

The tally for VAAs on Asosan during 2013 was zero. The tally for 2014 involved 171 VAAs. Monthly totals for 2014 are as follows: January, 6; February, 3; March-July, 0; August, 3; September, 2; October, 0; November, 25; and December, 132. For further comparison, the tally for January and February 2015 involved 250 VAAs, with January, 132, and February, 118.

JMA reported that seismicity increased from 21 to 23 January 2014, and then decreased on 24 January. On 23 January a volcanologist observed ash plumes rising from the central vent on the crater floor. On 29 January an ash plume reported by a pilot rose to 2.7 km altitude and drifted NW. Later that day a plume rose to an altitude of 1.5 km and drifted N. JMA reported that a very small Asosan explosion occurred on 31 January. An off-white plume rose 100 m above the crater rim and drifted S.

On 5 February 2014 scientists measured decreased SO2 emissions and fewer volcanic earthquakes.

According to the Tokyo VAAC during 30 August-1 September 2014 eruptions continuously emitted ash plumes that rose to heights of 1.2-2.1 km drifting N and NE. For example, on 1 and 6 September eruptions emitting trace amounts of ash sent plumes 600 m above the rim. (Tokyo VAAC issued VAAs stating this plume lacked identifiable ash in available satellite images.) JMA instrument surveys established SO2 flux rates on 21 August of 1,000 t/d, and in early September of 1,200 tons/day. Counts tallying daily volcano-tectonic earthquakes (and cases of tremor) were made during 1-4 September occurring in the range 48-92 (429-500); during 5-7 September occurring the in the range 55-129 (401-463); during 8-15 September occurring in the range 394-564 (80-174).

JMA reported that during 8-16 September a persistent white plume was observed 1 km above the crater.

Preliminary counts for volcanic earthquakes (394-564 per day) and tremor (80-174 per day) were reported during 8-15 September. Field surveys conducted on 9 and 12 September yielded elevated temperatures from fumaroles and the surface of the S crater wall.

Tremor accompanied a very small eruption recorded on 22-24 October. Ashfall observed on the 24th indicated another such eruption.

During 7 September and 24 November 2014, VAAs were absent for Aso. In contrast, during 25 November 2014-31 December 2014 there were 171 VAAs issued. Multiple VAAs were issued on several different days in this later interval, for example, on 26 November, 7 VAAs were issued.

Asosan continued to erupt during the 7 September-24 November 2014 interval. Some monitored parameters such as earthquakes, tremor, and SO2 emissions were elevated. A small eruption took place on 6 September, for example, sending a plume to 600 m above the crater. During 8-16 September JMA noted a persistent white plume 1 km above the crater. During the week 12-18 November, a steam plume rose 400 m above the crater rim.

With the start of the surge in VAAs beginning on 25 November 2014 (noted above), a stronger and comparatively sustained eruption began. During the eruption on the 25th an ash plume rose to 1.8 km above the crater rim. Ash soon fell to the E in Hanoi Aso (Kumamoto Region), Taketa (30 km NE, Oita Region), Gokase (25 km WSW, Miyazaki Region), and in Minamiaso (10 km SW, Kumamoto Region). Incandescence at night was seen with webcams.

On 26 November tephra ascended 100 m above the crater rim and an ash plume rose 1 km. Tremor began a few hours before the eruption and on the 26th, continued to be elevated. The eruption continued on 27 November; ash plumes rose 1.5 km. Volcanologists observed a strombolian eruption and found 7 cm of fresh ash that contained fist-sized scoria. Ash fell to the W, affecting the city of Kumamoto (38 km WSW). According to a news article, flights in and out of Kumamoto airport were either cancelled or diverted. On 28 November ash plumes rose 1.5 km. The eruption continued through at least 30 November; ash plumes rose at most 1.5 km and incandescent material was ejected onto the crater rim.

Although inclement weather restricted views of the crater, monitored parameters and available views indicated that the 25 November eruption continued through to at least 22 December, when it became intermittent. Ash plumes to about 1 km above the crater rim and incandescent material on the crater rim were common through the end of the year (and beyond, through this reporting interval ending in February 2015, and described as the ongoing eruption.

A news report in the 28 November 2014 issue of the Daily Mail by Sara Malm (Malm, 2014) indicated dozens of cancelled flights at Kumamoto's airport. That report included the Associated Press photo seen in figure 34. The date of the photo in that article was ambiguous, but a different article with the same photo (see caption) gave 26 November 2014 as the photo's date. The angled, bent-over character of the ash plume and location of Crater Number 1 (the active crater, at the N end of the row of craters) indicate the view was from the NW and implies strong winds roughly from the N.

Figure (see Caption) Figure 34. A photo taken on 26 November 2014 of Asosan in eruption. The gray ash plume is escaping at Nake-dake Crater Number 1 blowing roughly S. The plume does not rise vertically. The plume ascends near the vent but for some distance beyond the vent the plume descends. At distance the plume appears to spread over considerable vertical extent, from near the ground surface to above the field of view. Source: Phys.Org news (crediting AP/Kyodo News).

An undated video in Malm (2014) also showed the plume. The video also showed an aerial view of the visitor area on the crater rim, which was blanketed in gray ash. Other scenes included children walking to school wearing dust masks and carrying folded umbrellas, and close up shots of what appeared to be dark colored, highly vesicular spatter.

In a 29 November 2014 MODIS image of the region, Asosan was under weather clouds but a clear view revealed a prominent ~30-km-long, beige-colored, funnel-shaped area trending SE. This was interpreted by Nasa Earth Observatory authors Jeff Schmaltz and Adam Voiland as airborne ash. Webcamera images around this time showed a glowing pit crater with extensive areas containing incandescent tephra around it. A copious plume also discharged nearby.

During a field survey on 10 December volcanologists observed 20-cm-wide blocks near the crater and 5- to 10-cm-wide blocks within 1.2 km SW of the crater. During 12-15 December the plume rose 1 km above the crater rim and ash fell to the E in Hanoi Aso (Kumamoto Region).

JMA reports for 15-30 December described the usual eruptive ash plumes that again rose 600-1,000 m above the crater and some cases of still glowing material on the crater rim. SO2 fluxes were 2,000-3,100 t/d during 15 and 18 December.

2015 activity. As noted above, the VAAs for 2014 totaled 171, and the VAAs for the months of January and February 2015 totaled 250. This is consistent with ongoing eruption at Asosan, which was also the basic conclusion in JMA reports from monitoring and direct observations during January-February 2015, although they often described the eruption during both these months as intermittent.

JMA reported cases during January where plumes rose up to 1 km above the crater, and in some cases glowing material reached the crater rim. JMA reported SO2 fluxes of 500-2600 tons of SO2. Both tilt and GPS instrumentation recorded slight growth across the active crater. A pilot report on 29 January indicated an ash plume to 2.7 km altitude (~1.1 km above the rim) and drifting NW.

An image acquired on 13 January 2015 was discussed by Jesse Allen and Adam Voiland of Nasa Earth Observatory. They reported that the image was from the Operational Land Imager (OLI) on Landsat 8. They indicated that it showed ash drifting ten's of kilometers S from Aso.

For February 2015, JMA reported episodes of volcanic earthquakes, high-amplitude tremor, and infrasound data that continued to indicate ongoing intermittent eruptions. Webcamera views again documented cases of glowing material reaching the rim during the first half of the month. Plumes again rose up to 1 km above the crater rim. JMA reported intermittently detected eruptions, including during 2-6, 9-13, and 16-20 February.

References.

Fujii, J., Nakajima, T., & Kamata, H., 2001, Paleomagnetic directions of the Aso pyroclastic-flow and the Aso-4 co-ignimbrite ash-fall deposits in Japan. Earth, planets and space, 53(12), 1137-1150. (URL: http://download.springer.com/static/pdf/873/art:10.1186/BF03352409.pdf?originUrl=http://link.springer.com/article/10.1186/BF03352409&token2=exp=1434307643~acl=/static/pdf/873/art:10.1186/BF03352409.pdf?originUrl=http://link.springer.com/article/10.1186/BF03352409*~hmac=b718e24427a5900c5057d59ebb12b501c1ae870b932122de89cc3a01a5f5318f ).

JMA (Japan Meteorological Agency), 2013, National Catalog of the Active Volcanoes of Japan (4th edition; online English version), (URL: http://www.data.jma.go.jp/svd/vois/data/tokyo/STOCK/souran_eng/menu.htm ) (accessed in June 2015)

Khin, K, 2013, Field trip to Aso volcano, Kyushu, Japan, Slideshare.net (13 annotated slides) (URL: http://www.slideshare.net/kyikyaw2/field-trip-to-aso-volcano-kyushu-japan )

Malm, S, 2014, Flights cancelled across Japanese region after Mount Aso volcano erupts for the first time in 22 years, spewing lava, smoke and a kilometre-high ash cloud, The Daily Mail 28 November 2014 (7 graphics files and a 58-second video) (accessed online June 2015) ((URL: http://www.dailymail.co.uk/news/article-2852674/Volcano-south-Japan-erupts-disrupting-flights.html#ixzz3d5POqZhu )

Matsumoto, A., K. Uto, K. Ono, and K. Watanabe, 1991, K-Ar age determinations for Aso volcanic rocks—concordance with volcano stratigraphy and application to pyroclastic flows, Abstracts to Fall Meeting in 1991, Volcanol. Soc. Japan , 73 (in Japanese).

Miyabuchi, Y, 2013, A 90,000-year tephrostratigraphic framework of Aso Volcano, Japan, Sedimentary Geology, Volume 220, Issues 3–4, 15 October 2009, Pages 169-189, ISSN 0037-0738, (URL: http://dx.doi.org/10.1016/j.sedgeo.2009.04.018 ; http://www.sciencedirect.com/science/article/pii/S0037073809001006 )

Spica, 2013, Southern Japan Calderas, Volcano Café (Volcano discussions in your living room), Wordpress.com (22 July 2013)(accessed June 2015) (URL: https://volcanocafe.wordpress.com/2013/07/22/southern-japan-calderas/ )

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/); Tokyo Volcanic Ash Advisory Center (VAAC), Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Aso Volcano Museum (URL: http://www.asomuse.jp; and Jeff Schmaltz and Adam Voiland, NASA Earth Observatory (URL: http://earthobservatory.nasa.gov).


Etna (Italy) — February 2015 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3357 m

All times are local (unless otherwise noted)


Strombolian eruptions, ash emissions, and new effusive vents through February 2015

Our last report (BGVN 39:11) covered activity at Etna through 13 June 2014, which consisted primarily of ongoing emissions of E-directed lavas from a vent area on the lower E flank of the New South East Crater (NSEC). This report, summarizing first-hand accounts by the Istituto Nazionale di Geofisica e Vulcanologia (INGV-Catania), covers the subsequent interval from 14 June 2014 through 2 February 2015. INGV described several eruptive episodes, including strombolian eruptions, ash emissions, and the appearance of new effusive vents at the E base of the North East Cone (NEC) and on the high E flank of the NSEC cone.

Activity during June-December 2014. On 14 June a new eruptive episode began within the NSEC, with near-continuous strombolian explosions and lava fountaining. Fine ash emissions were concurrent with lava that began to overflow the edge of the South East Crater (SEC), forming a flow that continued downhill on the W wall of Valle del Bove. During the morning of 15 June the overflowing lava followed the fissure that had been formed on 28 November 2013. Explosive activity occurred from three vents inside the crater. A spatter cone also formed in the NSEC's E sector, partially filling the fissure formed on the high NE flank during eruptions of late December 2013, and January–March 2014. During 14-15 June tremor increased sharply and remained moderately high until 18 June, when it returned to normal levels.

INGV noted that this lively strombolian activity over the course of four days was similar to the episode of effusive lava emissions observed during 14-16 and 19-31 December 2013 in terms of duration and intensity.

After images of a thermal anomaly in webcam images from Monte Cagliato, located on the E flank of Etna, a new, small fissure (tens of meters long) at the E base of the North East Crater (NEC) was observed by INGV Etna observatory personnel during 5-6 July. The vent was located between 3,015 and 3,025 m elevation. Weak spattering from this vent fed a lava flow that extended ~100 m within the saddle of the NSEC and SEC cones. Weak and sporadic strombolian explosions and small ash emissions were observed during 6-7 July from NSEC, but by 11 July this activity had ceased. Activity from the new fissure continued through 11 July with frequent strombolian explosions that were audible in nearby towns. The lava flow diverged; the longer of the two branches extended ~1.5 km, reaching the bottom of Valle del Leone.

On the morning of 25 July about 1114 local time, a new eruptive vent opened near the same eruptive fissure. This new vent ("25 July vent"), located at a distance of about 150-200 m to the N of the one from 5 July, was a source of strombolian explosions, accompanied at times by modest quantities of ash. This activity continued through 31 July. The strombolian explosions occurred at intervals of about 2-5 seconds and were often accompanied by visible compression waves ("flashing arcs") and audible rumblings up to a few tens of meters away, mostly in the E and NE sectors of the volcano. As previously observed, for example during the paroxysmal episode at the NSEC during 14-16 December 2013, the rumblings were interpreted as the result of explosions of gas bubbles inside the eruptive vent. Emissions of bombs and scoria occasionally rose 200 m high and fell within a few hundred meter radius around the vent. In a few instances, the explosions were accompanied by small quantities of ash. The lava flows, which had reached ~1.8 km during the preceding week, (halting on the saddle between the Valle del Leone and the Valle del Bove), had in the recent days overlapped the earlier ones, with active fronts at least 1 km from the effusive vent.

On 9 August INGV reported a strong decrease in volcanic tremor. From the 25 July vent, there began a gradual increase in the ash emissions that formed an ash plume, which rose to 1 km above the vent area and renewed strong strombolian activity in the evening. Strombolian activity increased at NSEC and was accompanied by small emissions of black ash that remained within the crater.

With the intensification of activity at the NSEC, the eruptive activity at the E flank of the NEC diminished. At 0645 on 9 August an effusive vent opened on the high E flank of the NSEC cone, which caused a small landslide and emitted a lava flow that after an hour had reached the E base of the cone. During the first 24 hours of activity, a small pyroclastic cone in the W portion of the NSEC summit appeared, increasing the height of the NSEC structure that began to grow in 2011. On 13 August INGV reported continued strombolian explosions, accompanied by modest emissions of ash and lava from a single vent on the high E flank of the NSEC. The lava flows emitted from the effusive vent to the E had almost ceased to advance the evening before, but two new branches were overlapping the earlier flow. The longest flow changed direction to later descend about 3 km NE toward Monte Simone. INGV reported that the eruption at NSEC had ended on 15 August and that the lava flow activity had ceased by 16 August (figure 151).

Figure (see Caption) Figure 151. This photo was taken on the morning of 16 August 2014 from the town of Tremestieri Etneo (from 20 km S of Etna). It shows Etna's NSEC (at right) with its new peak formed during the eruptive episode of 9-15 August. The old SEC cone (which appears lower) resides at left. Courtesy of Istituto Nazionale di Geofisica e Vulcanologia (INGV-Catania).

Beginning in the afternoon of 7 October through 16 October the NSEC produced weak and intermittent explosive activity; small ash puffs were rapidly dispersed by the wind. During some nights small strombolian explosions ejected incandescent material a few tens of meters above the crater rim.

Starting at 1850 on 28 December the NSEC produced a short but intense eruption characterized by lava fountains, lava flows, and an ash plume that drifted E, and caused ash and lapilli fall in the nearby towns of Milo, Fornazzo, Sant'Alfio, and Giarre. It was the first typically "paroxysmal" event at the NSEC since 2 December 2013. Inclement weather prevented observations of the summit area, so the erupting crater was not identifiable. Two lava flows traveled E and NE, towards the Valle del Bove. Tremor began to decrease at 2030, and indicated that the eruption was over at 2200 (figure 152).

Figure (see Caption) Figure 152. Lava flows deposited associated with Etna's large 28 December 2014 eruption (red). N is towards the top. The NSEC vented on a fissure developed a few hundred meters to the SE of the SEC (NNW-trending dashed blue line). Courtesy of INGV.

On 29 December, cameras viewing Etna recorded small ash emissions from the NSEC and persistent glow from the saddle between the SEC and NSEC cones at dusk. INGV indicated that this paroxysmal episode occurred at a series of eruptive vents along a NE-SW fissure that cut across the NSEC and the southern flank of the old SEC. From the two extremities of this fissure lava flows emerged, traveling SW toward the area of Milia-Galvarina and NW toward the northern part of the Valle del Bove near Monte Simone, reaching lengths of about 4.5 and 3.3 km, respectively (figure 152).

Activity during January 2015. During the night on 1 and 2 January, cameras recorded intermittent flashes from Voragine Crater (one of four summit craters), indicating strombolian activity there for the first time in nearly two years. At 0730 on 2 January explosions at NSEC generated ash plumes that drifted SW. Emissions ejected pyroclastic materials up to ~150 m above the crater rim, which intensified during the evening of 3 January.

At night during 6-7 January the frequency of strombolian explosions at the Voragine Crater decreased; however, some of the explosions ejected incandescent pyroclastic material outside of the crater and onto the W and SW flanks. On 7 January many of the small explosions generated brown ash plumes that rose a few hundred meters above Etna's summit and quickly dissipated. Strombolian activity increased on 8 January, possibly from two vents within the crater. Pyroclastic material continued to be ejected out of the crater. Early on 9 January strombolian activity again decreased and gave way to ash emissions that rose several hundred meters. During the evening on the same day some ash emissions were accompanied by incandescent pyroclastic material that at times fell on the external flanks of the central summit. Ash emissions continued the next morning, decreased, and had almost completely ceased by late morning. Ash emissions rapidly resumed in the afternoon and were sometimes accompanied by strombolian explosions. During the morning of 13 January, new ash emissions began at the Voragine. For some hours, these emissions were continuous, but successively diminished in the afternoon to every 5-10 minutes. Marco Neri, of the INGV- Osservatorio Etneo, during a helicopter overflight on 14 January, captured a clear view of these emissions and of the summit crater area (figure 153).

Figure (see Caption) Figure 153. Summit craters of Etna seen from helicopter on the morning of 14 January 2015, looking NW. In the foreground is the cone of the New South East Crater (NSEC), its summit vent being much enlarged after the 28 December 2014 paroxysm, and the old South East Crater (SEC), with an extensive fumarolic area on the saddle between the two cones. Note the two conspicuous eruptive fissures (labeled), one on the NE flank of the NSEC (in the lower right portion of the image), and the other on the S flank of the old SEC (which opened on 28 December 2014). In the background are the Bocca Nuova (at left), the Voragine (center, emitting a dense white vapor plume), and the North East Crater (NEC) (at right). The town visible in the distance at upper right is Randazzo, on the N-NW flank of Etna. Photo and caption courtesy of Marco Neri, INGV-Osservatorio Etneo.

In the evening on 14 January weak strombolian activity was recorded at the Voragine Crater and NEC. The next day, occasionally pulsating ash emissions rose from the NEC and drifted SE. Ash emissions continued through 17 January; cloud cover prevented observations of the summit area on 18 January.

A new eruptive episode began on 31 January and continued through the morning of 2 February. Poor meteorological conditions prevented views of the summit area during the first 36 hours of the eruption. During improved viewing conditions on the evening of 1 February, volcanologists observed lively strombolian activity from a single vent in the saddle between the SEC and NSEC cones. Explosions occurred every few seconds and ejected incandescent bombs 200 m high, which fell on the S flank of the SEC. At the same time, from a vent at the southern base SEC cone corresponding to the lowest part of the SE eruptive fissure from 28 December, a lava flow issued that traveled 2 km S, dividing into two branches. At dawn on 2 February the strombolian activity produced a dense ash cloud that drifted E. At about 0750 emissions stopped, and volcanic tremor suddenly decreased.

Geologic Background. Mount Etna, towering above Catania on the island of Sicily, has one of the world's longest documented records of volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/).


Piton de la Fournaise (France) — February 2015 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


June 2014 and February 2015 eruptions

Piton de la Fournaise is located on Réunion island, which lies to the E of Madagascar in the Indian Ocean (figure 84). In this Bulletin, we discuss eruptions in June 2014 and February 2015. The June 2014 eruption took place on 21 June, from 0135 to 2109 local time. The February 2015 eruption occurred from 1100 local time on 4 February to 2230 local time on 15 February. In this report, all times are local unless otherwise stated (local time= UTC + 04 hours). This report represents a synthesis of available information published by Observatoire Volcanologique du Piton de la Fournaise (OVPDLF).

Our last Bulletin report on Piton de la Fournaise (BGVN 37:03) documented increased seismicity and eruptive activity from August to December 2010. Piton de la Fournaise's last eruption took place from 14 October 2010 through 10 December 2010 (BGVN 37:03).

Figure (see Caption) Figure 84. Map of Reunion Island, highlighting the location of Piton de la Fournaise, a basaltic shield volcano. As shown in the inset map (top right corner), Reunion is located to the E of Madagascar. Courtesy of Observatório Vulcanológico Geotérmico Açores.

June 2014. Piton de la Fournaise erupted on 21 June 2014, ending a three and a half year period of quiescence that began on 11 December 2010.

Preceding the eruption, Piton de la Fournaise experienced a period of high activity from 7 to 20 June 2014. Table 4 details the number of volcano-tectonic (VT) earthquakes and rock-fall events recorded during this interval. The greatest number of daily VT earthquakes was recorded on 20 June, and highest number of rock-fall events occurred on 17 June. Through email correspondence, OVPDLF personnel reported that over this period (7-20 June), no deformation or significant gas emissions were detected. They also reported that observed seismicity occurred between 500 and 1,200 m above sea level (a.s.l.).

Table 4. The number of volcano-tectonic (VT) earthquakes and rock-fall events recorded at Piton de la Fournaise from 7 to 20 June 2014, which was considered a period of high activity. Source: email correspondence with OVPDLF personnel.

Date Volcano-tectonic (VT) earthquakes Rockfall events
07 Jun 2014 3 27
08 Jun 2014 1 25
09 Jun 2014 8 29
10 Jun 2014 20 41
11 Jun 2014 53 53
12 Jun 2014 45 67
13 Jun 2014 125 261
14 Jun 2014 32 93
15 Jun 2014 35 87
16 Jun 2014 54 97
17 Jun 2014 207 415
18 Jun 2014 38 32
19 Jun 2014 51 54
20 Jun 2014 ~346 80

On 21 June 2014, at 0006, a seismic crisis began and continued for 74 minutes (email correspondence). Then at 0020, deformation began and persisted for ~3 hours (email correspondence). At 0120, tremor was detected and, at 0135, an eruption began as verified by OVPDLF cameras, which captured incandescence given off by the eruption (email correspondence). The venting took place within Enclos Fouqué on the ESE side of the central cone (figure 85) (email correspondence). OVPDLF reported that the eruptive fissures on the cone's ESE side sat between the Maillard crater and a small plateau at ~2300 m altitude (figure 85) (OVPDLF, 2014a).

During the morning of 21 June, a helicopter flyby noted (a) the presence of two eruptive fissures. From the more active fissure, small lava fountains emanated and built a spatter rampart; (b) two lava flows developed and traveled more than 1.5 km from the more active fissure. One of the flows, continued moving ~250 m E after passing the Langlois crater and the other flow continued ~500 m E-S after passing the Langlois crater (the Langlois crater is located ~2 km SE of the Dolomieu crater, figure 85); and (c) a very dilute SO2 plume extended N (OVPDLF, 2014a).

Figure (see Caption) Figure 85. Topographic map of Piton de la Fournaise, which includes the names of features associated with the volcano (the labelling on the map is in French; cratère translates to crater in English). From Gaba (2007).

During 21 June 2014, OVPDLF raised the Alert Level to 1 ("probable or imminent eruption"), and public access to the volcano was restricted. According to email correspondence with OVPDLF personnel, the eruption ended at 2109 on 21 June. OVPDLF further reported that the intensity of the detected tremor decreased during the day and disappeared at 2109 (OVPDLF, 2014a).

November and December 2014. On 2 December 2014, OVPDLF published an activity report (OVPDLF, 2014b), which indicated the following, (a) 113 VT earthquakes were recorded between 1 November and 1 December, with the highest number of earthquakes being recorded on 1 November (figure 86); (b) the majority of the earthquakes were located between 500 and 1,000 m a.s.l. at the base of Piton de la Fournaise's summit; (c) deformation registered by OVPDLF's geodetic network remained the same since September 2014; and (d) since 1 September 2014, the geochemical station at the summit detected low emissions of SO2 that were often coupled with CO2, H2O and H2S. That report also stated that on 1 November 2014, the hazard status "Vigilance Volcanic phase" was initiated due to increased geophysical activity. OVPDLF (2014b) stated that this status was lifted on 1 December 2014.

Figure (see Caption) Figure 86. Histogram of the number of volcano-tectonic earthquakes recorded from 1 November 2014 to 1 December 2014. A total of 113 VT earthquakes were recorded over this interval and the highest number of earthquakes was recorded on 1 November 2014. Courtesy of OVPDLF (2014b).

February 2015. The next eruption at Piton de la Fournaise began on 4 February 2015. The information in this section was found in the reference, OVPDLF (2015), unless otherwise stated. Between 0400 and 0900 on 4 February, 180 earthquakes were recorded, five of which had magnitudes greater than 2. At 0910, a seismic crisis started and at 1050, a volcanic tremor began. Ten minutes later, at 1100, an eruption began at an eruptive fissure on the S flank of Piton de la Fournaise's cone within Enclos Fouqué. Due to the eruption, Alert Level 2-2 ('ongoing eruption') was declared.

On 5 February 2015, the eruption continued even though the intensity of the tremor had decreased since its initiation on 4 February. OVPDLF reported that the eruptive fissure formed 100 m W of Bory crater (figures 85 and 87). The fissure had a length of ~500 m and activity was reported to be concentrated at its southernmost end. The fissure emitted a lava flow that traveled S-SW, and after passing Rivals crater, it divided into several branches as it continued to spread farther S and SW (figure 87). The southernmost branch of the flow traveled passed Cornu crater (figure 85). That evening, at 1800 local time, the tremor had significantly decreased in intensity. The intensity of the tremor was about six times lower than it was at the beginning of the eruption. The eruptive fissure remained active and projected lava ~10 m high.

The eruption continued on 6 February 2015. The tremor intensity was still very low and the lava flow and its branches were still active. OVPDLF reported that during field observations, there was low levels of outgassing and material projected from eruptive vents had built small cones. On 8 February, the eruption continued and low magnitude earthquakes located in the upper part of Piton de la Fournaise reappeared. Despite poor weather, OVPDLF observed that lava continued flowing from the vents and one flow traveled farther W. By 9 February, no significant changes were noted and by late morning, the eruptive fissure was weakly active and only small splashes of lava were observed.

Figure (see Caption) Figure 87. Map highlighting the margins of the lava flow and its branches in red as of 8 February 2015. For scale, the Dolomieu crater is ~1.0 km in E-W diameter. The lava that fed this flow was emitted from an eruptive fissure 100 m W of Bory crater. On the map, Bory crater is the small indent to the left of the larger Dolomieu crater. The flow length is ~2.4 km. Although the eruption continued until 15 February, there was little change to the basic pattern of the lava flow and its branches according to OVPDLF. Courtesy of OVPDLF.

The eruption continued in a similar manner until 15 February 2015. Between 10 and 15 February, OVPDLF reported that the tremor remained low and there were no significant changes in other recorded geophysical parameters. During this interval, poor weather conditions sometimes hindered observations. On the morning of 14 February, due to the absence of clouds, OVPDLF observed a clear plume rising between 2.8 and 3 km in altitude, and concluded it was probably rich in water vapor.

In the morning of 15 February, the tremor was low and stable, and equivalent to what was recorded in previous days. According to OVPDLF, at 1700 on 15 February, the tremor began to decrease in intensity. The tremor then underwent a few hours of rapid fluctuations in its intensity, before disappearing at 2230. With the disappearance of the tremor, the eruption ended. The following day, Volcano Discovery reported that the Alert Level had been lowered.

References. Gaba, E. (Wikimedia Commons user, Sting), 2007, Topographic map of the Piton de la Fournaise shield volcano on the Réunion island, Wikipedia (initial image from the NASA Shuttle Radar Topography Mission), URL: http://commons.wikimedia.org/wiki/File:Piton_Fournaise_topo_map-fr.svg#/media/File:Piton_Fournaise_topo_map-fr.svg, accessed on 27 May 2015

OVPDLF, 2014a, Actualités (News), URL: http://www.ipgp.fr/fr/ovpf/actualites-ovpf, accessed in June 2014

OVPDLF, 2014b, Bilan d'activité à la levée de la vigilance volcanique (Activity report to the lifting of the volcanic alert), URL: http://www.ipgp.fr/fr/OVPDLF/communique-de-lOVPDLF-2-decembre-2014, accessed on 10 June 2015

OVPDLF, 2015, Archive actualités (News Archive), URL: http://www.ipgp.fr/fr/OVPDLF/archive-actualites, accessed on 27 May 2015

Observatório Vulcanológico Geotérmico Açores, 2015, Notícia 1682 - Vulcão Piton de la Fournaise, Ilha da Reunião: nova erupção registada este domingo (News No. 1682 - Piton de la Fournaise volcano, Reunion Island: new recorded eruption on Sunday), URL: http://ovga.centrosciencia.azores.gov.pt/sites/default/files/Map_ide-reunion-piton-de-la-fournaise.jpg, accessed on 10 June 2015

Volcano Discovery, 2014, Piton de la Fournaise volcano (La Réunion): eruption ends, URL:

http://www.volcanodiscovery.com/piton_fournaise/news/45631/Piton-de-la-Fournaise-volcano-La-Runion-eruption-ends.html, accessed on 27 May 2015

Volcano Discovery, 2014, Piton de la Fournaise volcano (La Réunion): alert level raised, eruption warning, URL: http://www.volcanodiscovery.com/piton_fournaise/news/49537/Piton-de-la-Fournaise-volcano-La-Runion-alert-level-raised-eruption-warning.html, accessed on 27 May 2015

Volcano Discovery, 2015, Piton de la Fournaise volcano (La Réunion): eruption seems to have ended, URL: http://www.volcanodiscovery.com/piton_fournaise/news/51262/Piton-de-la-Fournaise-volcano-La-Runion-eruption-seems-to-have-ended.html, accessed on 27 May 2015.

Geologic Background. Piton de la Fournaise is a massive basaltic shield volcano on the French island of Réunion in the western Indian Ocean. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three scarps formed at about 250,000, 65,000, and less than 5,000 years ago by progressive eastward slumping, leaving caldera-sized embayments open to the E and SE. Numerous pyroclastic cones are present on the floor of the scarps and their outer flanks. Most recorded eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest scarp, which is about 9 km wide and about 13 km from the western wall to the ocean on the E side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures outside the scarps.

Information Contacts: Observatoire Volcanologique du Piton de la Fournaise (OVPDLF), Institut de Physique du Globe de Paris, 14 route nationale 3, 27ème km, 97418 La Plaine des Cafres, La Réunion, France (URL: http://www.ipgp.fr/fr/OVPDLF/observatoire-volcanologique-piton-de-fournaise); Nicolas Villeneuve, OVPDLF.


Popocatepetl (Mexico) — February 2015 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


During November 2012-December 2014, ongoing exhalations and explosions

This report summarizes events at Popocatépetl during November 2012-December 2014. Almost all of the data discussed came from (~800) online daily reports by the Centro Nacional de Prevención de Desastres (CENAPRED). Many of those reports are issued covering a 24 hour interval (from 1000 on the stated day back to 1000 on the previous day), with occasional cases of later supplemental reports the same day. A link to those reports is provided in the "Information Contacts" section. Our previous report on Popocatépetl discussed the ongoing eruption during July-October 2012 (BGVN 37:09).

Behavior during the reporting interval included persistent emissions (often containing ash). When visibility permitted, web cameras documented nighttime emissions containing incandescent fragments, in many cases, rising hundreds of meters above the crater rim and spreading across the upper flanks. These eruptions typically deposited tephra up to ~1.5 km from the crater where it was conspicuous on the snow and ice that crowns the summit. Occasional air photos also depicted ballistics or their impacts and tracks in the summit area. Ashfall was not uncommon in villages on the volcano and it occasionally fell in parts of Mexico City and the city of Puebla. Many plumes rose on the order of 1 km, reported by CENAPRED in many cases several times a week if not more frequently. Periods of tremor occurred, some of which lasted for more than one hour. At least one volcanic-tectonic earthquake occurred on many days (maximum coda magnitudes, Mc, generally 2.0 to 2.5). Earthquakes are in general thus dismissed from detailed discussion below; however, for one sample month, November 2013, we include a larger emphasis on the record of larger earthquakes reported daily by CENAPRED. Many of the commonplace processes such as those in the above list were sufficiently common that, in order to save space, they are often omitted from this narrative.

One way CENAPRED quantifies Popocatépetl's behavior is to use daily 'exhalations' (substantive plumes inferred to contain ash) which have long been a means of monitoring and characterizing this large and tall andesitic stratovolcano. The term 'exhalation' was used extensively in Bulletin reports starting with BGVN 22:03 in 1997. Exhalations are still currently tabulated by CENAPRED. Those appear in histograms in each daily report (assessing a 24 hour interval ending at 1000 on the stated reporting date).

Wright and others (2002) explain 'exhalations' further and clarify the distinction to the larger events that they classify as 'explosions.' The authors included photos and infrared imagery to illustrate the term (omitted here).

"Exhalations are short duration (3–90 min) ash-rich gas plumes . . .. CENAPRED provide daily Web-based activity updates in which exhalations are classified as small, moderate, or large on the basis of their duration and resultant plume height. Plumes can rise as much as 5000 m above the crater rim but are generally smaller. Exhalations are common and as many as several tens can occur each day. The ash they transport may be non-juvenile in nature (possibly with a juvenile component since March 1996 when lava extrusion began), and exhalations are thought to be the result of intermittent high-pressure gas streams that scour rock fragments from the conduit walls. Thermal video images, which measure the amount of radiation emitted in the 8–14 μm region of the electromagnetic spectrum . . ., indicate that by the time the plumes have reached the altitude of the crater rim, the ash-gas mixture is generally of a very low temperature (9–12°C at the plume exterior) due to the rapid entrainment of air at ambient temperatures.

"Explosions are less frequent than exhalations. They result in larger, darker ash plumes, with bombs often thrown clear of the crater to form a high-temperature ejecta blanket on the upper slopes of the volcano . . .. The plumes most commonly reach heights of between 3000 and 5000 m above the crater rim, although several larger explosions have occurred during the recent activity. The explosion of 30 June 1997, for example, was the largest recorded since 1922 and generated a plume 13,000 m high. Although explosions during the recent activity have been most common during periods of dome growth, they have also been observed during periods when no magmatic activity has been observed on the crater floor."

Wright and others (2002) also make this comment: "Clearly, periods of prolonged and total cloud cover will prevent any useable data being acquired." They were addressing satellite observations but this also applies to visual- and webcamera-based observations. This means that during some intervals adverse meteorological factors (clouds, rain, snow, etc.) could reduce the number of reported exhalations.

From this it is reasonably clear that the vast majority (if not all) of the eruptions during the reporting interval (November 2012-December 2014) were in the category of exhalations. During this reporting interval, several plumes did reach 3-4 km above the crater rim, as is noted below (e.g., during May-July 2013) and but we know of none reported that rose to over 5 km over the crater rim (~10.4 km altitude).

The maximum number of daily exhalations in the recent past stood, since July 2012, at 211. On 23 May 2013 that record was broken when 314 daily exhalations occurred. A second increase in that maximum value occurred twice more when the daily values reached 480 exhalations on both 4 and 6 June 2014.

As discussed in other Bulletin reporting since the onset of the eruption in March 1996 (BGVN 21:01), dramatic events involved dome dynamics in the steep-walled, cylindrical, ~0.5-km-diameter summit crater. There, emissions of lava and tephra constructed the dome. Occasional energetic discharges from the vent beneath this growing dome blew out the dome's central area, leaving the dome with a ring-shaped morphology. This process has taken place many times in the intervening years since 1996 and continued in this reporting interval too.

Further discussion and references on the topic of exhalations and explosions with particular reference to Popocatépetl also appear in other studies (e.g., de la Cruz-Reyna and others, 2008; González-Mellado and de la Cruz-Reyna, 2008; and Tárraga and others, 2012).

November 2012-December 2013 activity. During the remainder of 2012, the Alert Level remained at Yellow, Phase Two (where it had been since lowered on 1 September 2012).

The usual plumes, occasionally bearing ash, rose up to ~1 km above the crater on many days during November-December 2012. For example, during 3-4 November 2012, CENAPRED daily reports noted 9 more significant eruptions and associated plumes registered at these respective times: 1100, 1450, 1548, 2346, 0157, 0240, 0532, 0835, and 0931.

On the basis of 15-day averages shown on histograms in CENAPRED daily reports, the overall November monthly average was 43. During December 2012 the overall average was 31. Lower monthly averages than December's 31 appeared during January 2013 through the first half of March 2013. During the second half of March 2013 the average daily exhalations again rose to similar levels (31). The averages dropped again after that the averages remained low well into May and early June 2013 although during these later months some daily values increased significantly. The average value for the second half of June 2013 was 33.

During the first two weeks of May 2013 there were increases in earthquakes, tremor, and emissions. During 7-8 May, CENAPRED called attention to an episode of high amplitude spasmodic tremor. It was accompanied by an explosion on 8 May that ejected an ash plume that rose 3 km above the crater and drifted SE. Ashfall was reported from the villages of San Pedro Benito Juarez (10-12 km SE), San Juan Tianguismanalco (22 km SE), and Atlixco (23 km SE), and in some areas of the City of Puebla (~50 km to the E). The main tremor episode was accompanied by incandescent fragments that reached up to 500 m distance from Popocatépetl (chiefly NE). As reported on the 8th, during the last 24 hours CENAPRED detected 40 low intensity exhalations; 2 additional stronger ones sent a small amounts of ash towards the SE. Tremor during early May generally remained below daily intervals of up to a few hours.

On 10 May 2013 CENAPRED noted that during the last 24 hours there occurred 46 generally small exhalations. In addition, two explosions occurred, of moderate magnitude, sending ash ~1 km above the crater. Tremor duration for that interval lasted ~3 hours, including some time periods with high-amplitude signals. Three small volcano-tectonic earthquakes also occurred. A second report later on 10 May indicated that during 1142-1443 a series of ash emissions and periods of spasmodic and harmonic tremor occurred with ash plumes rising as much as 1 km above the crater, again producing ashfall. Similar plume heights were seen on 11 May, and the daily report noted there were in the last 24 hours a total of 53 (chiefly small-to-moderate) exhalations.

According to CENAPRED, seismicity had intensified on the afternoon and night prior to 12 May (when the Alert Level rose to Yellow, Phase Three, stipulating a 12 km radius exclusionary zone). Additionally, the report for 12 May 2013 said that in the last 24 h, 43 exhalations of low and moderate intensity were recorded. In general, steam-and-gas plumes with small amounts of ash rose from the crater. Although foggy conditions sometimes limited visibility, sporadic ejections of incandescent tephra fell back into the crater and onto the NNE flank, 300 m from the crater rim. Tremor registered in 1-2 hour intervals, continuously or in segments. Each such interval began with an eruptive burst of moderate intensity. The most important burst took place at 1700 on the 12th and was perceived by many residents in the E and SE sectors.

On 13 May 2013 steam-and-gas plumes were observed rising from the crater during periods of good visibility. On 14 May an explosive event generated an ash plume that rose to 3 km altitude. Incandescent tephra landed up to 600 m away on the NE flank. Cloud cover again obscured summit views. Seismicity, including tremor, remained elevated. The histogram in the daily report listed 25 exhalations during the past 24 hours.

On 14 May 2013, volcanologists aboard an overflight observed a lava dome 350 m in diameter and 50 m thick, found the dome slightly deflated after an explosion. Similar dome- related events seemingly took place again during the next few days. The histogram in the daily report listed 41 exhalations during the past 24 hours.

CENAPRED noted a vigorous eruption at 0146 on 15 May that discharged an ash plume to over 3 km above the crater rim, blown NE sending tephra up to 1.5 km downslope. At 1804 that day a second blast sent a column to somewhat below 3.5 km above the crater, blown N. Both these events correlated with spasmodic tremor. The histogram in the daily report listed 56 exhalations during the past 24 hours.

On 16 May 2013, some intervals of tremor again corresponded with discharge of glowing fragments, the majority of which fell back into the crater (a process frequently mentioned throughout the reporting interval). Ash plumes rose 2 km and drifted NE. Minor ashfall was reported in Paso de Cortés, 7 km N. Incandescent tephra reached 400 m from the crater rim to the N and NE. Seismometers registered an Mc 2.2 earthquake. The histogram in the daily report listed 55 exhalations during the past 24 hours.

Two punctuated eruptions were described for the 24-hour interval ending at 1000 on the 17th (one reaching 4 km above the rim) The first took place at 2214, when the crater issued a strong explosion; the resulting incandescent fragmental material covered the flanks to 1.5 km distance and the associated gas-and-ash column rose to under 3 km above the crater, drifting NE. The second took place at 0028, generating an eruption column to 4 km above the crater and casting glowing fragments up to 1.5 km from the crater. The report for the 17th said that moderate-to-small exhalations during the past 24 hours totaled 31. On 17, 18, 19, and 20 May 2013 histograms in the respective CENAPRED reports noted that in the past 24 hours they each registered 31, 18, 24, and 54 exhalations.

During an overflight on 18 May, volcanologists observed the active crater, 200 m wide and 40 m deep, located in the dome's surface. The rest of the dome was covered with rock fragments. Tephra had landed as far as 0.5 km down the NE flank. CENAPRED inferred that the missing material forming this crater was likely excavated by explosions associated with hours of tremor that took place during 14-17 May.

On 23-27 May 2013, tremor decreased. A flight on 28 May captured several photos, one of which appears in figure 67. Note the steep crater within the ring-shaped dome and the abundance of fragmental character of some material on the dome's surface. The CENAPRED caption also drew attention to marks made by ballistic material that burrowed into the snow and ice in the summit area.

Figure (see Caption) Figure 67. Aerial photo taken looking downward at the summit area of Popocatépetl on 28 May 2013. The summit hosts a deep, steep sided circular crater, within which grows a dome. The dome is frequently reamed out by powerful explosive bursts leaving the dome with a crater as seen here. Courtesy of CENAPRED (from their 1 June 2013 daily report).

During 1-7 June exhalations on the daily histograms ranged between 32 and 93. They were often described as of low intensity (steam rich and ash poor), but in some cases they were described as reaching moderate intensity. Cloud cover often prevented visual observations. Volcano-tectonic earthquakes up to Mc 2.7 took place. On 7 June 2013 the Alert Level was lowered to Yellow, Phase Two.

During the rest of June 2013, significant emissions continued. For example, during 12-17 June 2013, plumes containing ash rose as high as 4 km above the crater, and ashfall was reported in many nearby villages (figure 68). For the eruption on the 17th, perceptible ash fell as far as the SE portion of Mexico City. The eruption on the 17th was accompanied by tremor with a duration of over 2 hours and other seismicity also remained at times high.

Figure (see Caption) Figure 68. Webcam image of an explosion at Popocatépetl on 17 June 2013 (at 13:26:55 local time, which corresponds to 18:26:55 UTC). The explosion generated an ash plume that reached greater than 4 km above the crater and threw incandescent fragments up to 2 km out of the crater, causing small grassland fires. Courtesy of CENAPRED.

An overflight on 25 June led to the insight that eruptions in the past few days had further altered the dome. It then had the dimensions of 250 m in diameter and 60 m deep.

According to CENAPRED's daily report on 3 July 2013, seismic activity increased again during the past 24 hours when the seismic network detected tremor for 36 minutes and two larger earthquakes (at 0407 and 0918 on the 3rd) with respective coda magnitudes, Mc 2.9 and 2.6. The daily report noted 84 exhalations on the part of the histogram for the last 24 hour interval ending at 1000 on 3 July. This was accompanied by persistent gas and ash emissions and diffuse ash plumes that rose 2-3.5 km above the crater and produced ashfall in areas as far as México City. Incandescent tephra was ejected short distances onto the N and E flanks.

This increased activity continued on 4 July 2013. According to news articles, multiple airlines canceled flights to and from the México City and Toluca (105 km WNW) airports on 4 July. The number of cancelled flights, according to the news, was 47. Flights resumed later that day.

On 5 July 2013, almost continuous tremor was recorded. Ash plumes drifted NW. Scientists employed both infrared webcamera imaging and an overflight to observe continuously ejected incandescent tephra that landed as far away as 1.5 km from the crater on almost all flanks, and an ash plume that rose 2 km. Cloud cover often obscured visual observations. A news article stated that four airlines canceled a total of 17 flights.

On 6 July 2013, low frequency, high amplitude tremor was accompanied by gas, steam, and ash emissions that rose 3 km. Three explosions were detected, but cloud cover prevented visual confirmation. News articles noted ashfall again in parts of México City. Government officials raised the Alert Level to Yellow, Phase Three, excluding the public within a 12 km radius of the crater. Later that day, the low frequency tremor amplitude decreased, followed by diminishing emissions of gas and ash.

During 7-9 July 2013, tremor was accompanied by persistent emissions of steam, gas, and small amounts of ash that drifted WSW and NW; cloud cover continued to hinder visual observations. Three explosions produced gas containing ash. Incandescence and ejected incandescent tephra were sometimes observed. During overflights on 7 and 10 July, scientists observed that a new lava dome, 250 m in diameter and 20 m thick, had recently formed in the crater.

During an overflight on 15 July 2013, scientists observed a 200-m wide and 20 to 30 m deep crater in the lava dome. The attributed the new morphology last seen on 10 July to dome destruction owing to explosions in the past few days. They also reported on M 2.3, 1.8 and 1.7 earthquakes, as well as 82 minutes of high-frequency tremor on 15 July 2013.

Emissions and occasional explosions that generated plumes with some ash continued during 10-16 July 2013 (figure 68). According to a news article, on 12 July 2013 an Alaska Airlines flight to México City's international airport was canceled and operations at a small airport in Puebla were suspended.

On 23 July 2013, the Alert Level was lowered to Yellow, Phase Two, a status that prevailed through December 2014 (the end of this reporting interval).

On 31 July 2013 a clear decrease in the size of the water vapor and gas plumes was observed; plumes blew down the NW flank and rose only 100 m above the crater rim. An explosion was detected at 2312 on 1 August, but cloud cover prevented confirmation of any ejecta. On 2 August minor amounts of ash fell in the Tepetlixpa, Atlautla, Ecatzingo, and Ozumba municipalities of Mexico State. On 4 August emissions of gas, steam, and ash drifted NW. During 5-6 August a few observed plumes rose 1-2 km and drifted WNW, W, and WSW.

On 14 August 2013 a period of tremor was accompanied by an ash emission that drifted W and fell on towns as far as ~20 km away. Gas-and-steam plumes were observed during 15-16 August. A period of tremor on 17 August was accompanied by an ash plume that rose 1.5 km and drifted WSW. Ash fell in in towns as far as 65 km SW (Cuernavaca). On 18 August tremor was accompanied by an ash emission that rose 1.2 km and drifted SW. On 19 August minor steam-and-gas emissions drifted W. During 19-20 August emissions likely contained small amounts of ash but cloud cover prevented confirmation. On 28 August ash plumes rose 200-800 m and drifted SW. Gas-and-steam plumes were observed the next day and on the 30th an ash plume rose 1 km above the crater and drifted W.

During much of September and October 2013 clouds sometimes blocked clear views of the volcano. The volcano continued to undergo seismic unrest and to emit steam and gas plumes often containing minor amounts of ash. Early September ash blew WSW to fall on settlements as far as 24 km away (including, on the 1st, at Tetela del Volcán, 20 km SW, and Ocuituco, 24 km SW, and on the 2nd, at Ecatzingo, 15 km SW. On 4 September the number of daily exhalation during the previous 15 days averaged at 5, but on that day it stood at 44 exhalations. Average values for 15 day intervals remained under ~25 during September through December 2013.

Other observational details from this interval are similar to those noted above. For example, on 24 October an explosion at 2111 produced an ash plume that rose 1 km and drifted SW. Eight low-intensity explosions on 26 October increased gas and steam emissions and produced slight amounts of ash.

Despite the low number of exhalations near year's end, during 30 October 5 November 2013, exhalations were frequently detected, varying from 30 to 97 times per day. Between 31 October and 5 November, four volcano tectonic earthquakes were recorded (Mc 2.1-2.5). Tremor was frequently detected; on 1 November, 3 hours and 21 minutes of high-frequency tremor was recorded.

During November 2013 tremor durations reached highs on the 5th, 6th, and 17th, respectively, at 55, 60, and 67 minutes. November's larger local earthquakes reported by CENAPRED included the following: on the 5th, Mc 2.1-2.5; 6th, Mc 2.7; 9th, Mc 2.3; 10th, two cases with Mc 2.1; 11th, Mc 2.3, 18th, three cases with Mc approaching 2; 20th, 6 cases with some Mc approaching 2.5; 21st; Mc 2.0; 22nd, five cases, Mc 2-3.5; 23rd, Mc 2.0; 24th, two cases with Mc 2.1; 25th, Mc 2.0; 28th, Mc 1.8; and 29th, Mc 1.2.

The Washington Volcanic Ash Advisory Center (VAAC) issued advisories for Popocatépetl every month during 2013, except for November and December 2013. The advisories were most numerous during April through July 2013. According to CENAPRED, a daily average of about 6,000 metric tons of sulfur dioxide was emitted during both 2013 and 2014.

2014 activity. During 2014, the Washington VAAC issued advisories for Popocatépetl every month, except for March. The number of advisories issued was considerably lower than that for 2013. At year's end, the Alert Level remained at Yellow, Phase Two.

Activity in 2014 was broadly similar to that in 2013, with above-mentioned frequent gas-and-steam emissions, often with minor ash content. Issues with limited visibility at times due to cloud cover also remained.

The 15-day average of the daily exhalations often stood at less than 4 during January and through 19 February 2014. Activity increased during 19-25 February 2014. At least eight explosions generated plumes (mostly ash) that rose 1-2 km above the crater. An explosion at 1233 on 21 February sent an ash plume to 4 km above the crater rim. On 26 February, scientists aboard an overflight observed that another lava dome (dome number 48) had been destroyed, leaving a funnel shaped cavity about 80 m deep. A new dome 20 30 m wide was at the bottom of the cavity. On 27 February, activity decreased considerably.

CENAPRED's 15-day average of the daily exhalations stood at 7 or below during March 2014 but it rose to 34 by 18 April 2014 and dropping to 22 by the end of that month. It rose again in late May 2014 (to 45 on 31 May). On 16 June it stood at 57; and for the last half of June it declined to below 10.

The daily value reached 480 exhalations on 4 and 6 June 2014, a new record.

Monitored and eruptive activity briefly increased in early July 2014. For example, CENAPRED reported tremor on 2 July (maximum of 80 minutes in 24 hours) and 12 July (minimum of 8 minutes). Up to 216 exhalations of low and moderate intensity were detected on 9 July. The 15-day average of the daily exhalations also rose during early July 2014, reaching over 50 during the first half of the month but dropping towards the end to 15 (on the 31st).

The first half of August had a 15-day average of 33 daily exhalations and the second half, 46 daily exhalations. Those averages (first half of the month and second half of the month) were as follows for the rest of the year: September (14 and 31); October (40 and 39); November (55 and 13); and December (41 and 72).

During 27 August and 2 September 2014, plumes reached as high as 3 km above the crater. Tremor and volcanic-tectonic earthquakes were recorded in early September.

On 17 September 2014, a day with 126 exhalations recorded by CENAPRED's monitoring system, an ash emission at 1813 resulted from a moderate explosion. The emission reached 3 km above the crater rim. It blew SE and light ash fell at villages in that direction. During the same day five other exhalations reached ~1.5 km above the crater rim. During 7-8 October 2014 ashfall was reported in Cuautla (43 km SW), Tetela del Volcán (20 km SW), Huaquechula (30 km SSW), and Morelos (60 km SW). On 12 October ash plumes rose 2 km and drifted NE. Ashfall was reported in Paso de Cortés (8 km NNW) and Tlalmanalco (30 km NW).

CENAPRED reported that during a 14 October 2014 overflight, volcanologists observed that the diameter of the inner crater (formed in July 2013) had increased to 350 m. The bottom of the inner crater floor was 100 m below the floor of the main crater, cup shaped, and covered with tephra. No sign of the lava dome (number 52) emplaced in early August 2014 was visible. Steam emissions originated from a crack in the N wall of the inner crater and ash emission came from the bottom of the crater.

Although for brevity we have generally excluded examples of explosions and ashfall for September and October 2014, which were broadly similar to previous months, a small explosion at 0317 on 25 October ejected tephra 100 m outboard onto the S flank. A steam-and-gas plume containing a small amount of ash rose 1.5 km above the crater and drifted SW. Ashfall was reported in Tetela del Volcán (20 km SW). A small explosion at 0111 on 26 October ejected a plume that rose 1.1 km above the crater rim and sent tephra 200 m onto the N flank.

Histograms in daily reports issued during 3-5 November 2014 described exhalations totaling 267, 190, and 147, respectively. These were broadly described as a continuous gas-and-steam plume, mainly with minor amounts of ash. Some more vigorous and ash rich emissions occurred and, for example, on 5 November the plume rose as high as 1 km and caused light ashfall in Paso de Cortés. That daily report also showed videos that showed incandescent fragments spreading ~800 m over the upper flanks. The 5 November report also showed a seismic record captured in the interval 2000 on the 4th to 0130 on the 5th illustrating ~190 seismic events. About an hour after those events, the same record indicated an Mc 2.1 earthquake. On 6 November, a small rockslide on the SW flank was recorded by a webcam and the seismic network. Scientists aboard an overflight observed a new dome (number 53), emplaced during 4 5 November; it was an estimated 250 m in diameter and 30 m thick.

During 7 11 November 2014, seismicity indicated continuing gas-and-steam emissions, with small amounts of ash. Incandescence from the crater was observed most nights. Explosions during 10-11 November ejected incandescent tephra and generated ash plumes that rose 1.2 km above the crater. Gas-and-steam emissions continued through the rest of November.

During December 2014, occasional explosions continued, generating ash plumes that rose as high as 3-3.5 km, resulting in minor ashfall on nearby villages. One or more rockslides were noted in addition to the usual small ash plumes, the occasional incandescence at the crater and associated with tephra. One plume on 8 December rose to 3 km above the crater. CENAPRED reported that the international airport in Puebla was temporarily closed on 17 December 2014 due to ashfall from an explosion that generated a 2 km high ash plume. The explosion also ejected incandescent tephra that landed 700 m down the N flank. During an overflight during the last half of December, volcanologists observed a lava dome at the bottom of the crater. The Alert Level remained at Yellow, Phase Two.

References: de la Cruz-Reyna, S, Yokoyama, I, Martínez-Bringas, A, and Ramos, E, 2008, Precursory seismicity of the 1994 eruption of Popocatépetl Volcano, Central Mexico. Bulletin of Volcanology, 70(6), 753-767.

González-Mellado, AO, and de la Cruz-Reyna, S, 2008, A simplified equation of state for the density of silicate hydrous magmas: an application to the Popocatépetl buoyancy-driven dome growth process. Journal of Volcanology and Geothermal Research, 171(3), 287-300.

Tárraga, M, de la Cruz-Reyna, S, Mendoza-Rosas, A, Carniel, R, Martínez-Bringas, A, García, A, and Ortiz, R, 2012, Dynamical parameter analysis of continuous seismic signals of Popocatépetl volcano (Central Mexico): A case of tectonic earthquakes influencing volcanic activity. Acta Geophysica, 60(3), 664-681.

Wright, RS, de La Cruz-Reyna, S, Harris, A, Flynn, L, and Gomez-Palacios, JJ, 2002, Infrared satellite monitoring at Popocatépetl: Explosions, exhalations, and cycles of dome growth, J. Geophys. Res., 107(B8), doi: 10.1029/2000JB000125.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Centro Nacional de Prevencion de Desastres (CENAPRED) (URL: https://www.gob.mx/cenapred/); Washington Volcanic Ash Advisory Center (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/index.html); Agence France Presse (AFP)(URL: http://www.afp.com/en/); Associated Press (URL: http://www.ap.org/); Stuff (URL: http://www.stuff.co.nz).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports