Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Sabancaya (Peru) Explosions, ash and SO2 plumes, thermal anomalies, and lava dome growth during June-November 2019

Karangetang (Indonesia) Lava flows, strong thermal anomalies, gas-and-steam emissions, and ash plumes during May-November 2019

Ulawun (Papua New Guinea) New vent, lava fountaining, lava flow, and ash plumes in late September-October 2019

Nyamuragira (DR Congo) Strong thermal anomalies and fumaroles within the summit crater during June-November 2019

Bagana (Papua New Guinea) Intermittent gas-and-steam emissions and thermal anomalies during June-November 2019

Kerinci (Indonesia) Intermittent gas-and-steam and ash plumes during June-early November 2019

Bezymianny (Russia) Lava dome growth, ongoing thermal anomalies, moderate gas-steam emissions, June-November 2019

Mayon (Philippines) Gas-and-steam plumes and summit incandescence during May-October 2019

Merapi (Indonesia) Low-volume dome growth continues during April-September 2019 with rockfalls and small block-and-ash flows

Manam (Papua New Guinea) Significant eruption on 28 June produced an ash plume up to 15.2 km and pyroclastic flows

Tangkuban Parahu (Indonesia) Phreatic eruption on 27 July followed by intermittent explosions through to 17 September 2019

Sheveluch (Russia) Frequent ash explosions and lava dome growth continue through October 2019



Sabancaya (Peru) — December 2019 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Explosions, ash and SO2 plumes, thermal anomalies, and lava dome growth during June-November 2019

Sabancaya is an andesitic stratovolcano located in Peru. The most recent eruptive episode began in early November 2016, which is characterized by gas-and-steam and ash emissions, seismicity, and explosive events (BGVN 44:06). The ash plumes are dispersed by wind with a typical radius of 30 km, which occasionally results in ashfall. Current volcanism includes high seismicity, gas-and-steam emissions, ash and SO2 plumes, numerous thermal anomalies, and explosive events. This report updates information from June through November 2019 using information primarily from the Instituto Geofisico del Peru (IGP) and Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico) (OVI-INGEMMET).

Table 5. Summary of eruptive activity at Sabancaya during June-November 2019 based on IGP weekly reports, the Buenos Aires VAAC advisories, the HIGP MODVOLC hotspot monitoring algorithm, and Sentinel-5P/TROPOMI satellite data.

Month Avg. Daily Explosions by week Max plume Heights (km above crater) Plume drift MODVOLC Alerts Min Days with SO2 over 2 DU
Jun 2019 12, 13, 16, 17 2.6-3.8 30 km S, SW, E, SE, NW, NE 15 20
Jul 2019 23, 22, 16, 13 2.3-3.7 E, SE, S, NE 7 25
Aug 2019 12, 30, 25, 26 2-4.5 30 km NW, W S, NE, SE, SW 7 25
Sep 2019 29, 32, 24, 15 1.5-2.5 S, SE, E, W, NW, SW 14 26
Oct 2019 32, 36, 44, 48, 28 2.5-3.5 S, SE, SW, W 11 25
Nov 2019 58, 50, 47, 17 2-4 W, SW, S, NE, E 13 22

Explosions, ash emissions, thermal signatures, and high concentrations of SO2 were reported each week during June-November 2019 by IGP, the Buenos Aires Volcanic Ash Advisory Centre (VAAC), HIGP MODVOLC, and Sentinel-2 and Sentinel-5P/TROPOMI satellite data (table 5). Thermal anomalies were visible in the summit crater, even in the presence of meteoric clouds and ash plumes were occasionally visible rising from the summit in clear weather (figure 68). The maximum plume height reached 4.5 km above the crater drifting NW, W, and S the week of 29 July-4 August, according to IGP who used surveillance cameras to visually monitor the plume (figure 69). This ash plume had a radius of 30 km, which resulted in ashfall in Colca (NW) and Huambo (W). On 27 July the SO2 levels reached a high of 12,814 tons/day, according to INGEMMET. An average of 58 daily explosions occurred in early November, which is the largest average of this reporting period.

Figure (see Caption) Figure 68. Sentinel-2 satellite imagery detected ash plumes, gas-and-steam emissions, and multiple thermal signatures (bright yellow-orange) in the crater at Sabancaya during June-November 2019. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 69. A webcam image of an ash plume rising from Sabancaya on 1 August 2019 at least 4 km above the crater. Courtesy of IGP.

Seismicity was also particularly high between August and September 2019, according to INGEMMET. On 14 August, roughly 850 earthquakes were detected. There were 280 earthquakes reported on 15 September, located 6 km NE of the crater. Both seismic events were characterized as seismic swarms. Seismicity decreased afterward but continued through the reporting period.

In February 2017, a lava dome was established inside the crater. Since then, it has been growing slowly, filling the N area of the crater and producing thermal anomalies. On 26 October 2019, OVI-INGEMMET conducted a drone overflight and captured video of the lava dome (figure 70). According to IGP, this lava dome is approximately 4.6 million cubic meters with a growth rate of 0.05 m3/s.

Figure (see Caption) Figure 70. Drone images of the lava dome and degassing inside the crater at Sabancaya on 26 (top) and 27 (bottom) October 2019. Courtesy of INGEMMET (Informe Ténico No A6969).

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows strong, consistent thermal anomalies occurring all throughout June through November 2019 (figure 71). In conjunction with these thermal anomalies, the October 2019 special issue report by INGEMMET showed new hotspots forming along the crater rim in July 2018 and August 2019 (figure 72).

Figure (see Caption) Figure 71. Thermal anomalies at Sabancaya for 3 January through November 2019 as recorded by the MIROVA system (Log Radiative Power) were frequent, strong, and consistent. Courtesy of MIROVA.
Figure (see Caption) Figure 72. Thermal hotspots on the NW section of the crater at Sabancaya using MIROVA images. These images show the progression of the formation of at least two new hotspots between February 2017 to August 2019. Courtesy of INGEMMET, Informe Técnico No A6969.

Sulfur dioxide emissions also persisted at significant levels from June through November 2019, as detected by Sentinel-5P/TROPOMI satellite data (figure 73). The satellite measurements of the SO2 emissions exceeded 2 DU (Dobson Units) at least 20 days each month during this time. These SO2 plumes sometimes occurred for multiple consecutive days (figure 74).

Figure (see Caption) Figure 73. Consistent, large SO2 plumes from Sabancaya were seen in TROPOMI instrument satellite data throughout June-November 2019, many of which drifted in different directions based on the prevailing winds. Courtesy of NASA Goddard Space Flight Center.
Figure (see Caption) Figure 74. Persistent SO2 plumes from Sabancaya appeared daily during 13-16 September 2019 in the TROPOMI instrument satellite data. Courtesy of NASA Goddard Space Flight Center.

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Instituto Geofisico del Peru (IGP), Calle Badajoz N° 169 Urb. Mayorazgo IV Etapa, Ate, Lima 15012, Perú (URL: https://www.gob.pe/igp); Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Karangetang (Indonesia) — December 2019 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Lava flows, strong thermal anomalies, gas-and-steam emissions, and ash plumes during May-November 2019

Karangetang (also known as Api Siau), located on the island of Siau in the Sitaro Regency, North Sulawesi, Indonesia, has experienced more than 40 recorded eruptions since 1675 in addition to many smaller undocumented eruptions. In early February 2019, a lava flow originated from the N crater (Kawah Dua) traveling NNW and reaching a distance over 3 km. Recent monitoring showed a lava flow from the S crater (Kawah Utama, also considered the "Main Crater") traveling toward the Kahetang and Batuawang River drainages on 15 April 2019. Gas-and-steam emissions, ash plumes, moderate seismicity, and thermal anomalies including lava flow activity define this current reporting period for May through November 2019. The primary source of information for this report comes from daily and weekly reports by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), the Darwin Volcanic Ash Advisory Center (VAAC), and satellite data.

PVMBG reported that white gas-and-steam emissions were visible rising above both craters consistently between May through November 2019 (figures 30 and 31). The maximum altitude for these emissions was 400 m above the Dua Crater on 27 May and 700 m above the Main Crater on 12 June. Throughout the reporting period PVMBG noted that moderate seismicity occurred, which included both shallow and deep volcanic earthquakes.

Figure (see Caption) Figure 30. A Sentinel-2 image of Karangetang showing two active craters producing gas-and-steam emissions with a small amount of ash on 7 August 2019. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 31. Webcam images of gas-and-steam emissions rising from the summit of Karangetang on 14 (top) and 25 (bottom) October 2019. Courtesy of PVMBG via Øystein Lund Andersen.

Activity was relatively low between May and June 2019, consisting mostly of gas-and-steam emissions. On 26-27 May 2019 crater incandescence was observed above the Main Crater; white gas-and-steam emissions were rising from both craters (figures 32 and 33). At 1858 on 20 July, incandescent avalanches of material originating from the Main Crater traveled as far as 1 km W toward the Pangi and Kinali River drainages. By 22 July the incandescent material had traveled another 500 m in the same direction as well as 1 km in the direction of the Nanitu and Beha River drainages. According to a Darwin VAAC report, discreet, intermittent ash eruptions on 30 July resulted in plumes drifting W at 7.6 km altitude and SE at 3 km, as observed in HIMAWARI-8 satellite imagery.

Figure (see Caption) Figure 32. Photograph of summit crater incandescence at Karangetang on 12 May 2019. Courtesy of Dominik Derek.
Figure (see Caption) Figure 33. Photograph of both summit crater incandescence at Karangetang on 12 May 2019 accompanied by gas-and-steam emissions. Courtesy of Dominik Derek.

On 5 August 2019 a minor eruption produced an ash cloud that rose 3 km and drifted E. PVMBG reported in the weekly report for 5-11 August that an incandescent lava flow from the Main Crater was traveling W and SW on the slopes of Karangetang and producing incandescent avalanches (figure 34). During 12 August through 1 September lava continued to effuse from both the Main and Dua craters. Avalanches of material traveled as far as 1.5 km SW toward the Nanitu and Pangi River drainages, 1.4-2 km to the W of Pangi, and 1.8 km down the Sense River drainage. Lava fountaining was observed occurring up to 10 m above the summit on 14-20 August.

Figure (see Caption) Figure 34. Photograph of summit crater incandescence and a lava flow from Karangetang on 7 August 2019. Courtesy of MAGMA Indonesia.

PVMBG reported that during 2-22 September lava continued to effuse from both craters, traveling SW toward the Nanitu, Pangi, and Sense River drainages as far as 1.5 km. On 24 September the lava flow occasionally traveled 0.8-1.5 km toward the West Beha River drainage. The lava flow from the Main Crater continued through at least the end of November, moving SW and W as far as 1.5 km toward the Nanitu, Pangi, and Sense River drainages. In late October and onwards, incandescence from both summit craters was observed at night. The lava flow often traveled as far as 1 km toward the Batang and East Beha River drainage on 12 November, the West Beha River drainage on 15, 22, 24, and 29 November, and the Batang and West Beha River drainages on 25-27 November (figure 35). On 30 November a Strombolian eruption occurred in the Main Crater accompanied by gas-and-steam emissions rising 100 m above the Main Crater and 50 m above the Dua Crater. Lava flows traveled SW and W toward the Nanitu, Sense, and Pangi River drainages as far as 1.5 km, the West Beha and Batang River drainages as far as 1 km, and occasionally the Batu Awang and Kahetang River drainages as far as 2 km. Lava fountaining was reported occurring 10-25 m above the Main Crater and 10 m above the Dua Crater on 6, 8-12, 15, 21-30 November.

Figure (see Caption) Figure 35. Webcam image of gas-and-steam emissions rising from the summit of Karangetang accompanied by incandescence and lava flows at night on 27 November 2019. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed consistent and strong thermal anomalies within 5 km of the summit craters from late July through November 2019 (figure 36). Satellite imagery from Sentinel-2 corroborated this data, showing strong thermal anomalies and lava flows originating from both craters during this same timeframe (figure 37). In addition to these lava flows, satellite imagery also captured intermittent gas-and-steam emissions from May through November (figure 38). MODVOLC thermal alerts registered 165 thermal hotspots near Karangetang's summit between May and November.

Figure (see Caption) Figure 36. Frequent and strong thermal anomalies at Karangetang between 3 January through November 2019 as recorded by the MIROVA system (Log Radiative Power) began in late July and were recorded within 5 km of the summit craters. Courtesy of MIROVA.
Figure (see Caption) Figure 37. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed ongoing thermal activity (bright orange) at Karangetang from July into November 2019. The lava flows traveled dominantly in the W direction from the Main Crater. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 38. Sentinel-2 satellite imagery showing gas-and-steam emissions with a small amount of ash (middle and right) rising from both craters of Karangetang during May through November 2019. Courtesy of Sentinel Hub Playground.

Sentinel-5P/TROPOMI satellite data detected multiple sulfur dioxide plumes between May and November 2019 (figure 39). These emissions occasionally exceeded 2 Dobson Units (DU) and drifted in different directions based on the dominant wind pattern.

Figure (see Caption) Figure 39. SO2 emissions from Karangetang (indicated by the red box) were seen in TROPOMI instrument satellite data during May through November 2019, many of which drifted in different directions based on the prevailing winds. Top left: 27 May 2019. Top middle: 26 July 2019. Top right: 17 August 2019. Bottom left: 27 September 2019. Bottom middle: 3 October 2019. Bottom right: 21 November 2019. Courtesy of NASA Goddard Space Flight Center.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: https://www.oysteinlundandersen.com); Dominik Derek (URL: https://www.facebook.com/07dominikderek/).


Ulawun (Papua New Guinea) — December 2019 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


New vent, lava fountaining, lava flow, and ash plumes in late September-October 2019

Ulawun is a basaltic-to-andesitic stratovolcano located in West New Britain, Papua New Guinea, with typical activity consisting of seismicity, gas-and-steam plumes, and ash emissions. The most recent eruption began in late June 2019 involving ash and gas-and-steam emissions, increased seismicity, and a pyroclastic flow (BGVN 44:09). This report includes volcanism from September to October 2019 with primary source information from the Rabaul Volcano Observatory (RVO) and the Darwin Volcanic Ash Advisory Centre (VAAC).

Activity remained low through 26 September 2019, mainly consisting of variable amounts of gas-and-steam emissions and low seismicity. Between 26 and 29 September RVO reported that the seismicity increased slightly and included low-level volcanic tremors and Real-Time Seismic Amplitude Measurement (RSAM) values in the 200-400 range on 19, 20, and 22 September. On 30 September small volcanic earthquakes began around 1000 and continued to increase in frequency; by 1220, they were characterized as a seismic swarm. The Darwin VAAC advisory noted that an ash plume rose to 4.6-6 km altitude, drifting SW and W, based on ground reports.

On 1 October 2019 the seismicity increased, reaching RSAM values up to 10,000 units between 0130 and 0200, according to RVO. These events preceded an eruption which originated from a new vent that opened on the SW flank at 700 m elevation, about three-quarters of the way down the flank from the summit. The eruption started between 0430 and 0500 and was defined by incandescence and lava fountaining to less than 100 m. In addition to lava fountaining, light- to dark-gray ash plumes were visible rising several kilometers above the vent and drifting NW and W (figure 21). On 2 October, as the lava fountaining continued, ash-and-steam plumes rose to variable heights between 2 and 5.2 km (figures 22 and 23), resulting in ashfall to the W in Navo. Seismicity remained high, with RSAM values passing 12,000. A lava flow also emerged during the night which traveled 1-2 km NW. The main summit crater produced white gas-and-steam emissions, but no incandescence or other signs of activity were observed.

Figure (see Caption) Figure 21. Photographs of incandescence and lava fountaining from Ulawun during 1-2 October 2019. A) Lava fountains along with ash plumes that rose several kilometers above the vent. B) Incandescence and lava fountaining seen from offshore. Courtesy of Christopher Lagisa.
Figure (see Caption) Figure 22. Photographs of an ash plume rising from Ulawun on 1 October 2019. In the right photo, lava fountaining is visible. Courtesy of Christopher Lagisa.
Figure (see Caption) Figure 23. Photograph of lava fountaining and an ash plume rising from Ulawun on 1 October 2019. Courtesy of Joe Metto, WNB Provincial Disaster Office (RVO Report 2019100101).

Ash emissions began to decrease by 3 October 2019; satellite imagery and ground observations showed an ash cloud rising to 3 km altitude and drifting N, according to the Darwin VAAC report. RVO reported that the fissure eruption on the SW flank stopped on 4 October, but gas-and-steam emissions and weak incandescence were still visible. The lava flow slowed, advancing 3-5 m/day, while declining seismicity was reflected in RSAM values fluctuating around 1,000. RVO reported that between 23 and 31 October the main summit crater continued to produce variable amounts of white gas-and-steam emissions (figure 24) and that no incandescence was observed after 5 October. Gas-and-steam emissions were also observed around the new SW vent and along the lava flow. Seismicity remained low until 27-29 October; it increased again and peaked on 30 October, reaching an RSAM value of 1,700 before dropping and fluctuating around 1,200-1,500.

Figure (see Caption) Figure 24. Webcam photo of a gas-and-steam plume rising from Ulawun on 30 October 2019. Courtesy of the Rabaul Volcano Observatory (RVO).

In addition to ash plumes, SO2 plumes were also detected between September and October 2019. Sentinel-5P/TROPOMI data showed SO2 plumes, some of which exceeded 2 Dobson Units (DU) drifting in different directions (figure 25). MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed strong, frequent thermal anomalies within 5 km of the summit beginning in early October 2019 and throughout the rest of the month (figure 26). Only one thermal anomaly was detected in early December.

Figure (see Caption) Figure 25. Sentinel-5P/TROPOMI data showing a high concentration of SO2 plumes rising from Ulawun between late September-early October 2019. Top left: 11 September 2019. Top right: 1 October 2019. Bottom left: 2 October 2019. Bottom right: 3 October 2019. Courtesy of the NASA Space Goddard Flight Center.
Figure (see Caption) Figure 26. Frequent and strong thermal anomalies at Ulawun for February through December 2019 as recorded by the MIROVA system (Log Radiative Power) began in early October and continued throughout the month. Courtesy of MIROVA.

Activity in November was relatively low, with only a variable amount of white gas-and-steam emissions visible and low (less than 200 RSAM units) seismicity with sporadic volcanic earthquakes. Between 9-22 December, a webcam showed intermittent white gas-and-steam emissions were observed at the main crater, accompanied by some incandescence at night. Some gas-and-steam emissions were also observed rising from the new SW vent along the lava flow.

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Christopher Lagisa, West New Britain Province, Papua New Guinea (URL: https://www.facebook.com/christopher.lagisa, images posted at https://www.facebook.com/christopher.lagisa/posts/730662937360239 and https://www.facebook.com/christopher.lagisa/posts/730215604071639).


Nyamuragira (DR Congo) — December 2019 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Strong thermal anomalies and fumaroles within the summit crater during June-November 2019

Nyamuragira (also known as Nyamulagira) is a high-potassium basaltic shield volcano located in the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo. Previous volcanism consisted of the reappearance of a lava lake in the summit crater in mid-April 2018, lava emissions, and high seismicity (BGVN 44:05). Current activity includes strong thermal signatures, continued inner crater wall collapses, and continued moderate seismicity. The primary source of information for this June-November 2019 report comes from the Observatoire Volcanologique de Goma (OVG) and satellite data and imagery from multiple sources.

OVG reported in the July 2019 monthly that the inner crater wall collapses that were observed in May continued to occur. During this month, there was a sharp decrease in the lava lake level, and it is no longer visible. However, the report stated that lava fountaining was visible from a small cone within this crater, though its activity has also decreased since 2014. In late July, a thermal anomaly and fumaroles were observed originating from this cone (figure 85). Seismicity remained moderate throughout this reporting period.

Figure (see Caption) Figure 85. Photograph showing the small active cone within the crater of Nyamuragira in late July 2019. Fumaroles are also observed within the crater originating from the small cone. Courtesy of Sergio Maguna.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows strong, frequent thermal anomalies within 5 km of the summit between June through November (figure 86). The strength of these thermal anomalies noticeably decreases briefly in September. MODVOLC thermal alerts registered 54 thermal hotspots dominantly near the N area of the crater during June through November 2019. Satellite imagery from Sentinel-2 corroborated this data, showing strong thermal anomalies within the summit crater during this same timeframe (figure 87).

Figure (see Caption) Figure 86. The MIROVA graph of thermal activity (log radiative power) at Nyamuragira during 30 January through November 2019 shows strong, frequent thermal anomalies through November with a brief decrease in activity in late April-early May and early September. Courtesy of MIROVA.
Figure (see Caption) Figure 87. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed ongoing thermal activity at Nyamuragira into November 2019. Courtesy of Sentinel Hub Playground.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sergio Maguna (Facebook: https://www.facebook.com/sergio.maguna.9, images posted at https://www.facebook.com/sergio.maguna.9/posts/1267625096730837).


Bagana (Papua New Guinea) — December 2019 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Intermittent gas-and-steam emissions and thermal anomalies during June-November 2019

Bagana volcano is found in a remote portion of central Bougainville Island in Papua New Guinea. The most recent eruptive phase that began in early 2000 has produced ash plumes and thermal anomalies (BGVN 44:06, 50:01). Activity has remained low between January-July 2019 with rare thermal anomalies and occasional steam plumes. This reporting period updates information for June-November 2019 and includes thermal anomalies and intermittent gas-and-steam emissions. Thermal data and satellite imagery are the primary sources of information for this report.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed an increased number of thermal anomalies within 5 km from the summit beginning in late July-early August (figure 38). Two Sentinel-2 thermal satellite images showed faint, roughly linear thermal anomalies, indicative of lava flows trending EW and NS on 7 July 2019 and 6 August, respectively (figure 39). Weak thermal hotspots were briefly detected in late September-early October after a short hiatus in September. No thermal anomalies were recorded in Sentinel-2 past August due to cloud cover; however, gas-and-steam emissions were visible on 7 July and in September (figures 39, 40, and 41).

Figure (see Caption) Figure 38. Thermal anomalies near the crater summit at Bagana during February-November 2019 as recorded by the MIROVA system (Log Radiative Power) increased in frequency and power in early August. A small cluster was detected in early October after a brief pause in activity in early September. Courtesy of MIROVA.
Figure (see Caption) Figure 39. Sentinel-2 thermal satellite imagery showing small thermal anomalies at Bagana between July-August 2019. Left: A very faint thermal anomaly and a gas-and-steam plume is seen on 7 July 2019. Right: Two small thermal anomalies are faintly seen on 6 August 2019. Both Sentinel-2 satellite images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 40. A gas-and-steam plume rising from the summit of Bagana on 18 September 2019. Courtesy of Brendan McCormick Kilbride (University of Manchester).

The Deep Carbon Observatory (DCO) scientific team partnered with the Rabaul Volcano Observatory and the Bougainville Disaster Office to observe activity at Bagana and collect gas data using drone technology during two weeks of field work in mid-September 2019. For this field work, the major focus was to understand the composition of the volcanic gas emitted at Bagana and measure the concentration of these gases. Since Bagana is remote and difficult to climb, research about its gas emissions has been limited. The recent advancements in drone technology has allowed for new data collection at the summit of Bagana (figure 41). Most of the emissions consisted of water vapor, according to Brendan McCormick Kilbride, one of the volcanologists on this trip. During 14-19 September there was consistently a strong gas-and-steam plume from Bagana (figure 42).

Figure (see Caption) Figure 41. Degassing plumes seen from drone footage 100 m above the summit of Bagana. Top: Zoomed out view of the summit of Bagana degassing. Bottom: Closer perspective of the gases emitted from Bagana. Courtesy of Kieran Wood (University of Bristol) and the Bristol Flight Laboratory.
Figure (see Caption) Figure 42. Photos of gas-and-steam plumes rising from Bagana between 14-19 September 2019. Courtesy of Brendan McCormick Kilbride (University of Manchester).

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Brendan McCormick Kilbride, University of Manchester, Manchester M13 9PL, United Kingdom (URL: https://www.research.manchester.ac.uk/portal/brendan.mccormickkilbride.html, Twitter: https://twitter.com/BrendanVolc); Kieran Wood, University of Bristol, Bristol BS8 1QU, United Kingdom (URL: http://www.bristol.ac.uk/engineering/people/kieran-t-wood/index.html, Twitter: https://twitter.com/DrKieranWood, video posted at https://www.youtube.com/watch?v=A7Hx645v0eU); University of Bristol Flight Laboratory, Bristol BS8 1QU, United Kingdom (Twitter: https://twitter.com/UOBFlightLab).


Kerinci (Indonesia) — December 2019 Citation iconCite this Report

Kerinci

Indonesia

1.697°S, 101.264°E; summit elev. 3800 m

All times are local (unless otherwise noted)


Intermittent gas-and-steam and ash plumes during June-early November 2019

Kerinci, located in Sumatra, Indonesia, is a highly active volcano characterized by explosive eruptions with ash plumes and gas-and-steam emissions. The most recent eruptive episode began in April 2018 and included intermittent explosions with ash plumes. Volcanism continued from June-November 2019 with ongoing intermittent gas-and-steam and ash plumes. The primary source of information for this report comes from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), the Darwin Volcanic Ash Advisory Centre (VAAC), and MAGMA Indonesia.

Brown- to gray-colored ash clouds drifting in different directions were reported by PVMBG, the Darwin VAAC, and MAGMA Indonesia between June and early November 2019. Ground observations, satellite imagery, and weather models were used to monitor the plume, which ranged from 4.3 to 4.9 km altitude, or about 500-1,100 m above the summit. On 7 June 2019 at 0604 a gray ash emission rose 800 m above the summit, drifting E, according to a ground observer. An ash plume on 12 July rose to 4 km altitude and drifted SW, as determined by satellite imagery and weather models. An eruption produced a gray ash cloud on 31 July that rose to 4.6 km altitude and drifted NE and E, according to PVMBG and the Darwin VAAC (figure 17). Another ash cloud rose up to 4.3 km altitude on 3 August. On 2 September a possible ash plume rose to a maximum altitude of 4.9 km and drifted WSW, according to the Darwin VAAC advisory.

Figure (see Caption) Figure 17. A gray ash plume at Kerinci rose roughly 800 m above the summit on 31 July 2019 and drifted NE and E. Courtesy of MAGMA Indonesia.

Brown ash emissions rose to 4.4 km altitude at 1253 on 6 October, drifting WSW. Similar plumes reached 4.6 km altitude twice on 30 October and moved NE, SE, and E at 0614 and WSW at 1721, based on ground observations. On 1-2 November, ground observers saw brown ash emissions rising up to 4.3 km drifting ESE. Between 3 and 5 November the brown ash plumes rose 100-500 m above the summit, according to PVMBG.

Gas emissions continued to be observed through November, as reported by PVMBG and identified in satellite imagery (figure 18). Seismicity that included volcanic earthquakes also continued between June and early November, when the frequency decreased.

Figure (see Caption) Figure 18. Sentinel-2 thermal satellite imagery showing a typical white gas-and-steam plume at Kerinci on 9 August 2019. Sentinel-2 satellite image with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Bezymianny (Russia) — December 2019 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Lava dome growth, ongoing thermal anomalies, moderate gas-steam emissions, June-November 2019

The long-term activity at Bezymianny has been dominated by almost continuous thermal anomalies, moderate gas-steam emissions, dome growth, lava flows, and an occasional ash explosion (BGVN 44:06). The volcano is monitored by the Kamchatka Volcanic Eruptions Response Team (KVERT. Throughout the reporting period of June to November 2019, the Aviation Colour Code remained Yellow (second lowest of four levels).

According to KVERT weekly reports, lava dome growth continued in June through mid-July 2019. Thereafter the reports did not mention dome growth, but indicated that moderate gas-and-steam emissions (figure 32) continued through November. The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system, based on analysis of MODIS data, detected hotspots within 5 km of the summit almost every day. KVERT also reported a thermal anomaly over the volcano almost daily, except when it was obscured by clouds. Infrared satellite imagery often showed thermal anomalies generated by lava flows or dome growth (figure 33).

Figure (see Caption) Figure 32. Photo of Bezymianny showing fumarolic activity on 4 July 2019. Photo by O. Girina (IVS FEB RAS, KVERT); courtesy of KVERT.
Figure (see Caption) Figure 33. Typical infrared satellite images of Bezymianny showing thermal anomalies in the summit crater, including a lava flow to the WNW. Top: 21 August 2019 with SWIR filter (bands 12, 8A, 4). Bottom: 17 September 2019 with Atmospheric Penetration filter (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Geologic Background. Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Mayon (Philippines) — November 2019 Citation iconCite this Report

Mayon

Philippines

13.257°N, 123.685°E; summit elev. 2462 m

All times are local (unless otherwise noted)


Gas-and-steam plumes and summit incandescence during May-October 2019

Mayon, located in the Philippines, is a highly active stratovolcano with recorded historical eruptions dating back to 1616. The most recent eruptive episode began in early January 2018 that consisted of phreatic explosions, steam-and-ash plumes, lava fountaining, and pyroclastic flows (BGVN 43:04). The previous report noted small but distinct thermal anomalies, gas-and-steam plumes, and slight inflation (BGVN 44:05) that continued to occur from May into mid-October 2019. This report includes information based on daily bulletins from the Philippine Institute of Volcanology and Seismology (PHIVOLCS) and Sentinel-2 satellite imagery.

Between May and October 2019, white gas-and-steam plumes rose to a maximum altitude of 800 m on 17 May. PHIVOLCS reported that faint summit incandescence was frequently observed at night from May-July and Sentinel-2 thermal satellite imagery showed weaker thermal anomalies in September and October (figure 49); the last anomaly was identified on 12 October. Average SO2 emissions as measured by PHIVOLCS generally varied between 469-774 tons/day; the high value of the period was on 25 July, with 1,171 tons/day. Small SO2 plumes were detected by the TROPOMI satellite instrument a few times during May-September 2019 (figure 50).

Figure (see Caption) Figure 49. Sentinel-2 thermal satellite imagery of Mayon between May-October 2019. Small thermal anomalies were recorded in satellite imagery from the summit and some white gas-and-steam plumes are visible. Top left: 30 May 2019. Top right: 9 June 2019. Bottom left: 22 September 2019. Bottom right: 12 October 2019. Sentinel-2 satellite images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 50. Small SO2 plumes rising from Mayon during May-September 2019 recorded in DU (Dobson Units). Top left: 28 May 2019. Top right: 26 July 2019. Bottom left: 16 August 2019. Bottom right: 23 September 2019. Courtesy of NASA Goddard Space Flight Center.

Continuous GPS data has shown slight inflation since June 2018, corroborated by precise leveling data taken on 9-17 April, 16-25 July, and 23-30 October 2019. Elevated seismicity and occasional rockfall events were detected by the seismic monitoring network from PHIVOLCS from May to July; recorded activity decreased in August. Activity reported by PHIVOLCS in September-October 2019 consisted of frequent gas-and-steam emissions, two volcanic earthquakes, and no summit incandescence.

Geologic Background. Beautifully symmetrical Mayon, which rises above the Albay Gulf NW of Legazpi City, is the Philippines' most active volcano. The structurally simple edifice has steep upper slopes averaging 35-40 degrees that are capped by a small summit crater. Historical eruptions date back to 1616 and range from Strombolian to basaltic Plinian, with cyclical activity beginning with basaltic eruptions, followed by longer term andesitic lava flows. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic flows and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often devastated populated lowland areas. A violent eruption in 1814 killed more than 1,200 people and devastated several towns.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, University of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/).


Merapi (Indonesia) — October 2019 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Low-volume dome growth continues during April-September 2019 with rockfalls and small block-and-ash flows

Merapi is an active volcano north of the city of Yogyakarta (figure 79) that has a recent history of dome growth and collapse, resulting in block-and-ash flows that killed over 400 in 2010, while an estimated 10,000-20,000 lives were saved by evacuations. The edifice contains an active dome at the summit, above the Gendol drainage down the SE flank (figure 80). The current eruption episode began in May 2018 and dome growth was observed from 11 August 2018-onwards. This Bulletin summarizes activity during April through September 2019 and is based on information from Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG, the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG), Sutopo of Badan Nasional Penanggulangan Bencana (BNPB), MAGMA Indonesia, along with observations by Øystein Lund Andersen and Brett Carr of the Lamont-Doherty Earth Observatory.

Figure (see Caption) Figure 79. Merapi volcano is located north of Yogyakarta in Central Java. Photo courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 80. A view of the Gendol drainage where avalanches and block-and-ash flows are channeled from the active Merapi lava dome. The Gendol drainage is approximately 400 m wide at the summit. Courtesy of Brett Carr, Lamont-Doherty Earth Observatory.

At the beginning of April the rate of dome growth was relatively low, with little morphological change since January, but the overall activity of Merapi was considered high. Magma extrusion above the upper Gendol drainage resulted in rockfalls and block-and-ash flows out to 1.5 km from the dome, which were incandescent and visible at night. Five block-and-ash flows were recorded on 24 April, reaching as far as 1.2 km down the Gendol drainage. The volume of the dome was calculated to be 466,000 m3 on 9 April, a slight decrease from the previous week. Weak gas plumes reached a maximum of 500 m above the dome throughout April.

Six block-and-ash flows were generated on 5 May, lasting up to 77 seconds. Throughout May there were no significant changes to the dome morphology but the volume had decreased to 458,000 by 4 May according to drome imagery analysis. Lava extrusion continued above the Gendol drainage, producing rockfalls and small block-and-ash flows out to 1.2 km (figure 81). Gas plumes were observed to reach 400 m above the top of the crater.

Figure (see Caption) Figure 81. An avalanche from the Merapi summit dome on 17 May 2019. The incandescent blocks traveled down to 850 m away from the dome. Courtesy of Sutopo, BNPB.

There were a total of 72 avalanches and block-and-ash flows from 29 January to 1 June, with an average distance of 1 km and a maximum of 2 km down the Gendol drainage. Photographs taken by Øystein Lund Andersen show the morphological change to the lava dome due to the collapse of rock and extruding lava down the Gendol drainage (figures 82 and 83). Block-and-ash flows were recorded on 17 and 20 June to a distance of 1.2 km, and a webcam image showed an incandescent flow on 26 June (figure 84). Throughout June gas plumes reached a maximum of 250 m above the top of the crater

Figure (see Caption) Figure 82. The development of the Merapi summit dome from 2 June 2018 to 17 June 2019. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 83. Photos taken of the Merapi summit lava dome in June 2019. Top: This nighttime time-lapse photograph shows incandescence at the south-facing side of the dome on the 16 June. Middle: A closeup of a small rockfall from the dome on 17 June. Bottom: A gas plume accompanying a small rockfall on 17 June. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 84. Blocks from an incandescent rockfall off the Merapi dome reached out to 1 km down the Gendol drainage on 26 June 2019. Courtesy of MAGMA Indonesia.

Analysis of drone images taken on 4 July gave an updated dome volume of 475,000 m3, a slight increase but with little change in the morphology (figure 85). Block-and-ash flows traveled 1.1 km down the Gendol drainage on 1 July, 1 km on the 13th, and 1.1 km on the 14th, some of which were seen at night as incandescent blocks fell from the dome (figure 86). During the week of 19-25 July there were four recorded block-and-ash flows reaching 1.1 km, and flows traveled out to around 1 km on the 24th, 27th, and 31st. The morphology of the dome continued to be relatively stable due to the extruding lava falling into the Gendol drainage. Gas plumes reached 300 m above the top of the crater during July.

Figure (see Caption) Figure 85. The Merapi dome on 30 July 2019 producing a weak plume. Courtesy of MAGMA Indonesia.
Figure (see Caption) Figure 86. Incandescent rocks from the hot lava dome at the summit of Merapi form rockfalls down the Gendol drainage on 14 July 2019. Courtesy of Øystein Lund Andersen.

During the week of 5-11 August the dome volume was calculated to be 461,000 m3, a slight decrease from the week before with little morphological changes due to the continued lava extrusion collapsing into the Gendol drainage. There were five block-and-ash flows reaching a maximum of 1.2 km during 2-8 August. Two flows were observed on the 13th and 14th reaching 950 m, out to 1.9 km on the 20th and 22nd, and to 550 m on the 24th. There were 16 observed flows that reached 500-1,000 m on 25-27 August, with an additional flow out to 2 km at 1807 on the 27th (figure 87). Gas plumes reached a maximum of 350 m through the month.

Figure (see Caption) Figure 87. An incandescent rockfall from the Merapi dome that reached 2 km down the Gendol drainage on 27 August 2019. Courtesy of BPPTKG.

Brett Carr was conducting field work at Merapi during 12-26 September. During this time the lava extrusion was low (below 1 m3 per second). He observed small rockfalls with blocks a couple of meters in size, traveling about 50-200 m down the drainage every hour or so, producing small plumes as they descended and resulting in incandescence on the dome at night. Small dome collapse events produced block-and-ash flows down the drainage once or twice per day (figure 88) and slightly larger flows just over 1 km long a couple of times per week.

Figure (see Caption) Figure 88. A rockfall on the Merapi dome, towards the Gendol drainage at 0551 on 20 September 2019. Courtesy of Brett Carr, Lamont-Doherty Earth Observatory.

The dome volume was 468,000 m3 by 19 September, a slight increase from the previous calculation but again with little morphological change. Two block-and-ash flows were observed out to 600 m on 9 September and seven occurred on the 9th out to 500-1,100 m. Two occurred on the 14th down to 750-900 m, three occurred on 17, 20, and 21 September to a maximum distance of 1.2 km, and three more out to 1.5 km through the 26th. A VONA (Volcano Observatory Notice for Aviation) was issued on the 22nd due to a small explosion producing an ash plume up to approximately 3.8 km altitude (about 800 m above the summit) and minor ashfall to 15 km SW. This was followed by a block-and-ash flow reaching as far as 1.2 km and lasting for 125 seconds (figure 89). Preceding the explosion there was an increase in temperature at several locations on the dome. Weak gas plumes were observed up to 100 m above the crater throughout the month.

Figure (see Caption) Figure 89. An explosion at Merapi on 22 September 2019 was followed by a block-and-ash flow that reached 1.2 km down the Gendol drainage. Courtesy of BPPTKG.

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, Twitter: @BPPTKG); Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/, Twitter: https://twitter.com/BNPB_Indonesia); Øystein Lund Andersen? (Twitter: @OysteinLAnderse, URL: http://www.oysteinlundandersen.com); Sutopo Purwo Nugroho, BNPB (Twitter: @Sutopo_PN, URL: https://twitter.com/Sutopo_PN); Brett Carr, Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY, USA (URL: https://www.ldeo.columbia.edu/user/bcarr).


Manam (Papua New Guinea) — October 2019 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Significant eruption on 28 June produced an ash plume up to 15.2 km and pyroclastic flows

Manam is a frequently active volcano forming an island approximately 10 km wide, located 13 km north of the main island of Papua New Guinea. At the summit are the Main Crater and South Crater, with four valleys down the NE, SE, SW, and NW flanks (figure 57). Recent activity has occurred at both summit craters and has included gas and ash plumes, lava flows, and pyroclastic flows. Activity in December 2018 prompted the evacuation of nearby villages and the last reported activity for 2018 was ashfall on 8 December. Activity from January through September 2019 summarized below is based on information from the Rabaul Volcano Observatory (RVO), the Darwin Volcanic Ash Advisory Center (VAAC), the University of Hawai'i's MODVOLC thermal alert system, Sentinel-5P/TROPOMI and NASA Aqua/AIRS SO2 data, MIROVA thermal data, Sentinel-2 satellite images, and observations by visiting scientists. A significant eruption in June resulted in evacuations, airport closure, and damage to local crops and infrastructure.

Figure (see Caption) Figure 57. A PlanetScope image of Manam showing the two active craters with a plume emanating from the South Crater and the four valleys at the summit on 29 August 2019. Image copyright 2019 Planet Labs, Inc.

Activity during January-May 2019. Several explosive eruptions occurred during January 2019 according to Darwin VAAC reports, including an ash plume that rose to around 15 km and dispersed to the W on the 7th. RVO reported that an increase in seismic activity triggered the warning system shortly before the eruption commenced (figure 58). Small explosions were observed through to the next day with ongoing activity from the Main Crater and a lava flow in the NE valley observed from around 0400. Intermittent explosions ejected scoria after 0600, depositing ejecta up to 2 cm in diameter in two villages on the SE side of the island. Incandescence at both summit craters and hot deposits at the terminus of the NE valley are visible in Sentinel-2 TIR data acquired on the 10th (figure 59).

Figure (see Caption) Figure 58. Real-Time Seismic-Amplitude Measurement graph representing seismicity at Manam over 7-9 January 2019, showing the increase during the 7-8 January event. Courtesy of RVO.
Figure (see Caption) Figure 59. Sentinel-2 thermal infrared (TIR) imagery shows incandescence in the two Manam summit craters and at the terminus of the NE valley near the shoreline on 10 January 2019. Courtesy of Sentinel-Hub Playground.

Another explosion generated an ash plume to around 15 km on the 11th that dispersed to the SW. An explosive eruption occurred around 4 pm on the 23rd with the Darwin VAAC reporting an ash plume to around 16.5 km altitude, dispersing to the E. Activity continued into the following day, with satellites detecting SO2 plumes on both 23 and 24 January (figure 60). Activity declined by February with one ash plume reported up to 4.9 km altitude on 15 February.

Figure (see Caption) Figure 60. SO2 plumes originating from Manam detected by NASA Aqua/AIRS (top) on 23 January 2019 and by Sentinel-5P/TROPOMI on 24 January (bottom). Images courtesy of Simon Carn, Michigan Technological University.

Ash plumes rose up to 3 km between 1 and 5 March, and dispersed to the SE, ESE, and E. During 5-6 March the plumes moved E, and the events were accompanied by elevated seismicity and significant thermal anomalies detected in satellite data. During 19-22 March explosions produced ash plumes up to 4.6 km altitude, which dispersed to the E and SE. Simon Carn of the Michigan Technological University noted a plume in Aqua/AIRS data at around 15 km altitude at 0400 UTC on 23 January with approximately 13 kt measured, similar to other recent eruptions. Additional ash plumes were detected on 29 March, reaching 2.4-3 km and drifting to the E, NE, and N. Multiple SO2 plumes were detected throughout April (figure 61).

Figure (see Caption) Figure 61. Examples of elevated SO2 (sulfur dioxide) emissions from Manam during April 2019, on 9 April (top left), 21 April (top right), 22 April (bottom left), 28 April (bottom right). Courtesy of the NASA Space Goddard Flight Center.

During 19-28 May the Deep Carbon Observatory ABOVE (Aerial-based Observations of Volcanic Emissions) scientific team observed activity at Manam and collected gas data using drone technology. They recorded degassing from the South Crater and Main Crater (figure 63 and 64), which was also detected in Sentinel-5P/TROPOMI data (figure 65). Later in the day the plumes rose vertically up to 3-4 km above sea level and appeared stronger due to condensation. Incandescence was observed each night at the South Crater (figure 66). The Darwin VAAC reported an ash plume on 10 May, reaching 5.5 km altitude and drifting to the NE. Smaller plumes up to 2.4 km were noted on the 11th.

Figure (see Caption) Figure 62. Degassing plumes from the South Crater of Manam, seen from Baliau village on the northern coast on 24 May 2019. Courtesy of Emma Liu, University College London.
Figure (see Caption) Figure 63. A strong gas-and-steam plume from Manam was observed moving tens of kilometers downwind on 19 May 2019, viewed here form the SSW at dusk. Photo courtesy of Julian Rüdiger, Johannes Gutenberg University Mainz.
Figure (see Caption) Figure 64. Sentinel-5P/TROPOMI SO2 data acquired on 22 May 2019 during the field observations of the Deep Carbon Observatory ABOVE team. Image courtesy of Simon Carn, Michigan Technological University.
Figure (see Caption) Figure 65. Incandescence at the South Crater of Manam was visible during 19-21 May 2019 from the Baliau village on the northern coast of the island. Photos courtesy of Tobias Fischer, University of New Mexico (top) and Matthew Wordell (bottom).

Activity during June 2019. Ash plumes rose to 4.3 km and drifted SW on 7-8 June, and up to 3-3.7 km and towards the E and NE on 18 June. Sentinel-2 thermal satellite data show hot material around the Main Crater on 24 June (figure 66). On 27 June RVO reported that RSAM (Real-time Seismic Amplitude Measurement, a measure of seismic activity through time) increased from 540 to over 1,400 in 30 minutes. "Thundering noise" was noted by locals at around 0100 on the 28th. An ash plume drifting SW was visible in satellite images acquired after 0620, coinciding with reported sightings by nearby residents (figure 67). The Darwin VAAC noted that by 0910 the ash plume had reached 15.2 km altitude and was drifting SW. When seen in satellite imagery at 1700 that day the large ash plume had detached and remained visible extending SW. There were 267 lightning strokes detected within 75 km during the event (figure 68) and pyroclastic flows were generated down the NE and W flanks. At 0745 on 29 June an ash plume reached up to 4.8 km.

Villages including Dugulava, Yassa, Budua, Madauri, Waia, Dangale, and Bokure were impacted by ashfall and approximately 3,775 people had evacuated to care centers. Homes and crops were reportedly damaged due to falling ash and scoria. Flights through Madang airport were also disrupted due to the ash until they resumed on the 30th. The Office of the Resident Coordinator in Papua New Guinea reported that as many as 455 homes and gardens were destroyed. Humanitarian resources were strained due to another significant eruption at nearby Ulawun that began on 26 June.

Figure (see Caption) Figure 66. Sentinel-2 thermal satellite data show hot material around the Main Crater and a plume dispersing SE through light cloud cover on 24 June 2019. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 67. Himawari-8 satellite image showing the ash plume rising above Manam and drifting SW at 0840 on 28 June. Satellite image courtesy of NCIT ScienceCloud.
Figure (see Caption) Figure 68. There were 267 lightning strokes detected within 75 km of Manam between 0729 on 27 June and 0100 on 29 June 2019. Sixty of these occurred within the final two hours of this observation period, reflecting increased activity. Red dots are cloud to ground lightning strokes and black dots are in-cloud strokes. Courtesy of Chris Vagasky, Vaisala Inc.

Activity during July-September 2019. Activity was reduced through July and September. The Darwin VAAC reported an ash plume to approximately 6 km altitude on 6 July that drifted W and NW, another plume that day to 3.7 km that drifted N, and a plume on the 21st that rose to 4.3 km and drifted SW and W. Diffuse plumes rose to 2.4-2.7 km and drifted towards the W on 29 September. Thermal anomalies in the South Crater persisted through September.

Fresh deposits from recent events are visible in satellite deposits, notably in the NE after the January activity (figure 69). Satellite TIR data reflected elevated activity with increased energy detected in March and June-July in MODVOLC and MIROVA data (figure 70).

Figure (see Caption) Figure 69. Sentinel-2 thermal infrared images acquired on 12 October 2018, 20 May 2019, and 12 September 2019 show the eruption deposits that accumulated during this time. A thermal anomaly is visible in the South Crater in the May and September images. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 70. MIROVA log radiative power plot of MODIS thermal infrared at Manam during February through September 2019. Increases in activity were detected in March and June-July. Courtesy of MIROVA.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Office of the Resident Coordinator, United Nations, Port Moresby, National Capital District, Papua New Guinea (URL: https://papuanewguinea.un.org/en/about/about-the-resident-coordinator-office, https://reliefweb.int/report/papua-new-guinea/papua-new-guinea-volcanic-activity-office-resident-coordinator-flash-2); Himawari-8 Real-time Web, developed by the NICT Science Cloud project in NICT (National Institute of Information and Communications Technology), Japan, in collaboration with JMA (Japan Meteorological Agency) and CEReS (Center of Environmental Remote Sensing, Chiba University) (URL: https://himawari8.nict.go.jp/); Simon Carn, Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: http://www.volcarno.com/, Twitter: @simoncarn); Chris Vagasky, Vaisala Inc., Louisville, Colorado, USA (URL: https://www.vaisala.com/en?type=1, Twitter: @COweatherman, URL: https://twitter.com/COweatherman); Emma Liu, University College London Earth Sciences, London WC1E 6BS (URL: https://www.ucl.ac.uk/earth-sciences/people/academic/dr-emma-liu); Matthew Wordell, Boise, ID, USA (URL: https://www.matthhew.com/biocontact); Julian Rüdiger, Johannes Gutenberg University Mainz, Saarstr. 21, 55122 Mainz, Germany (URL: https://www.uni-mainz.de/).


Tangkuban Parahu (Indonesia) — October 2019 Citation iconCite this Report

Tangkuban Parahu

Indonesia

6.77°S, 107.6°E; summit elev. 2084 m

All times are local (unless otherwise noted)


Phreatic eruption on 27 July followed by intermittent explosions through to 17 September 2019

Tangkuban is located in the West Bandung and Subang Regencies in the West Java Province and has two main summit craters, Ratu and Upas (figure 3). Recent activity has largely consisted of phreatic explosions and gas-and-steam plumes at the Ratu crater. Prior to July 2019, the most recent activity occurred in 2012-2013, ending with a phreatic eruption on 5 October 2013 (BGVN 40:04). Background activity includes geothermal activity in the Ratu crater consisting of gas and steam emission (figure 4). This area is a tourist destination with infrastructure, and often people, overlooking the active crater. This report summarizes activity during 2014 through September 2019 and is based on official agency reports. Monitoring is the responsibility of Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM).

Figure (see Caption) Figure 3. Map of Tangkuban Parahu showing the Sunda Caldera rim and the Ratu, Upas, and Domas craters. Basemap is the August 2019 mosaic, copyright 2019 Planet Labs, Inc.
Figure (see Caption) Figure 4. Background activity at the Ratu crater of Tangkuban Parahu is shown in these images from 1 May 2012. The top image is an overview of the crater and the bottom four images show typical geothermal activity. Copyrighted photos by Øystein Lund Andersen, used with permission.

The first reported activity in 2014 consisted of gas-and-steam plumes during October-December, prompting PVMBG to increase the alert level from I to II on 31 December 2014. These white plumes reached a maximum of 50 m above the Ratu crater (figure 5) and were accompanied by elevated seismicity and deformation. This prompted the implementation of an exclusion zone with a radius of 1.5 km around the crater. The activity decreased and the alert level was lowered back to I on 8 January 2015. There was no further reported activity from January 2015 through mid-2019.

Figure (see Caption) Figure 5. Changes at the Ratu crater of Tangkuban Parahu during 25 December 2014 to 8 January 2015. Rain water accumulated in the crater in December and intermittent gas-and-steam plumes were observed. Courtesy of PVMBG (8 January 2015 report).

From 27 June 2019 an increase in activity was recorded in seismicity, deformation, gas chemistry, and visual observations. By 24 July the responsible government agencies had communicated that the volcano could erupt at any time. At 1548 on 26 July a phreatic (steam-driven) explosion ejected an ash plume that reached 200 m; a steam-rich plume rose to 600 m above the Ratu crater (figures 6, and 7). People were on the crater rim at the time and videos show a white plume rising from the crater followed by rapid jets of ash and sediment erupting through the first plume. Deposition of eruption material was 5-7 cm thick and concentrated within a 500 m radius from the point between the Rata and Upas craters, and wider deposition occurred within 2 km of the crater (figures 8 and 9). According to seismic data, the eruption lasted around 5 minutes and 30 seconds (figure 10). Videos show several pulses of ash that fell back into the crater, followed by an ash plume moving laterally towards the viewers.

Figure (see Caption) Figure 6. These screenshots are from a video taken from the Ratu crater rim at Tangkuban Parahu on 26 July 2019. Initially there is a white gas-and-steam plume rising from the crater, then a high-velocity black jet of ash and sediment rises through the plume. This video was widely shared across multiple social media platforms, but the original source could not be identified.
Figure (see Caption) Figure 7. The ash plume at Tangkuban Parahu on 26 July 2019. Courtesy of BNPB.
Figure (see Caption) Figure 8. Volcanic ash and lapilli was deposited around the Ratu crater of Tangkuban Parahu during a phreatic eruption on 26 July 2019. Note that the deposits have slumped down the window and are thicker than the actual ashfall. Courtesy of BNPB.
Figure (see Caption) Figure 9. Ash was deposited on buildings that line the Ratu crater at Tangkuban Parahu during a phreatic eruption on 26 July 2019. Photo courtesy of Novrian Arbi/via Reuters.
Figure (see Caption) Figure 10. A seismogram showing the onset of the 26 July 2019 eruption of Tangkuban Parahu and the elevated seismicity following the event. Courtesy of PVMBG via Øystein Lund Andersen.

On 27 July, the day after the eruption, Øystein Lund Andersen observed the volcano using a drone camera, operated from outside the restricted zone. Over a period of two hours the crater produced a small steam plume; ashfall and small blocks from the initial eruption are visible in and around the crater (figure 11). The ashfall is also visible in satellite imagery, which shows that deposition was restricted to the immediate vicinity to the SW of the crater (figure 12).

Figure (see Caption) Figure 11. Photos of the Ratu crater of Tangkuban Parahu on 27 July 2019, the day after a phreatic eruption. A small steam plume continued through the day. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 12. PlanetScope satellite images showing the Ratu crater of Tangkuban Parahu before (17 July 2019) and after (28 July 2019) the explosion that took place on 26 July 2019. Natural color PlanetScope Imagery, copyright 2019 Planet Labs, Inc.

Another eruption occurred at 2046 on 1 August 2019 and lasted around 11 minutes, producing a plume up to 180 m above the vent. Additional explosions occurred at 0043 on 2 August, lasting around 3 minutes according to seismic data, but were not observed. Explosions continued to be recorded at 0145, 0357, and 0406 at the time of the PVMBG report when the last explosion was ongoing, and a photo shows an explosion at 0608 (figure 13). The explosions produced plumes that reached between 20 and 200 m above the vent. Due to elevated activity the Alert Level was increased to II on 2 August. Ash emission continued through the 4th. During 5-11 August events ejecting ash continued to produce plumes up to 80 m, and gas-and-steam plumes up to 200 m above the vent. Ashfall was localized around Ratu crater. The following week, 12-18 August, activity continued with ash and gas-and-steam plumes reaching 100-200 m above the vent. During 19-25 August, similar activity sent ash to 50-180 m, and gas-and-steam plumes to 200 m. A larger phreatic explosion occurred at 0930 on 31 August with an ash plume reaching 300 m, and a gas-and-steam plume reaching 600 m above the vent, depositing ash and sediment around the crater.

Figure (see Caption) Figure 13. A small ash plume below a white gas-and-steam plume erupting from the Ratu crater of Tangkuban Parahu on 2 August 2019 at 0608. Courtesy of PVBMG (2 August 2019 report).

In early September activity consisted of gas-and-steam plumes up to 100-180 m above the vent with some ash plumes observed (figure 14). Two larger explosions occurred at 1657 and 1709 on 7 September with ash reaching 180 m, and gas-and-steam up to 200 m above the vent. Ash and sediment deposited around the crater. Due to strong winds to the SSW, the smell of sulfur was reported around Cimahi City in West Bandung, although there was no detected increase in sulfur emissions. A phreatic explosion on 17 September produced an ash plume to 40 m and a steam plume to 200 m above the crater. Weak gas-and-steam emissions reaching 200 m above the vent continued through to the end of September.

Figure (see Caption) Figure 14. A phreatic explosion at Tangkuban Parahu in the Ratu crater at 0724 on 4 September 2019, lasting nearly one minute. The darker ash plume reached around 100 m above the vent. Courtesy of PVGHM (4 September 2019 report).

Geologic Background. Gunung Tangkuban Parahu is a broad shield-like stratovolcano overlooking Indonesia's former capital city of Bandung. The volcano was constructed within the 6 x 8 km Pleistocene Sunda caldera, which formed about 190,000 years ago. The volcano's low profile is the subject of legends referring to the mountain of the "upturned boat." The Sunda caldera rim forms a prominent ridge on the western side; elsewhere the rim is largely buried by deposits of the current volcano. The dominantly small phreatic eruptions recorded since the 19th century have originated from several nested craters within an elliptical 1 x 1.5 km summit depression.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: https://www.oysteinlundandersen.com/tangkuban-prahu/tangkuban-prahu-volcano-west-java-one-day-after-the-26th-july-phreatic-eruption/); Reuters (URL: https://www.reuters.com/news/picture/editors-choice-pictures-idUSRTX71F3E).


Sheveluch (Russia) — November 2019 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Frequent ash explosions and lava dome growth continue through October 2019

After a lull in activity at Sheveluch, levels intensified again in mid-December 2018 and remained high through April 2019, with lava dome growth, strong explosions that produced ash plumes, incandescent lava flows, hot avalanches, numerous thermal anomalies, and strong fumarolic activity (BGVN 44:05). This report summarizes activity between May and October 2019. The volcano is monitored by the Kamchatka Volcanic Eruptions Response Team (KVERT).

According to KVERT, explosive activity continued to generate ash plumes during May-October 2019 (table 13). Strong fumarolic activity, incandescence and growth of the lava dome, and hot avalanches accompanied this process. There were also reports of plumes caused by re-suspended ash rather than new explosions. Plumes frequently extended a few hundred kilometers downwind, with the longest ones remaining visible in imagery as much as 1,000-1,400 km away. One of the larger explosions, on 1 October (figure 52), also generated a pyroclastic flow. Some of the stronger explosions sent the plume to an altitude of 10-11 km, or more than 7 km above the summit. The Aviation Color Code remained at Orange (the second highest level on a four-color scale) throughout the reporting period, except for several hours on 6 October when it was raised to Red (the highest level).

Table 13. Explosions and ash plumes at Sheveluch during May-October 2019. Dates and times are UTC, not local. Data courtesy of KVERT.

Dates Plume altitude (km) Drift Distance and Direction Remarks
30 Apr-02 May 2019 -- 200 km SE Resuspended ash.
03-10 May 2019 -- 50 km SE, SW Gas-and-steam plumes containing some ash.
13 May 2019 -- 16 km SE Resuspended ash.
11-12 Jun 2019 -- 60 km WNW Explosions and hot avalanches seen in video and satellite images.
24, 27 Jun 2019 4.5 E, W Ash plumes.
05 Aug 2019 2.5 40 km NW Diffuse ash plume.
25 Aug 2019 4.5-5 500 km NW Ash plumes.
29 Aug 2019 10 Various; 550 km N Explosions at 1510 produced ash plumes.
30 Aug 2019 7-7.5 50 km SSE Explosions at 1957 produced ash plumes.
03 Sep 2019 5.5 SE --
02-03, 05 Sep 2019 10 660 km SE Ash plumes seen in satellite images.
05 Sep 2019 -- -- Resuspended ash.
11-12 Sep 2019 -- 250 km ESE Resuspended ash plumes. Satellite and webcam data recorded ash emissions and a gas-and-steam plume with some ash drifting 50 km ESE on 12 Sep.
12-15, 17, 19 Sep 2019 -- 200 km SW, SE, NE Ash plumes.
20-21, 23, 26 Sep 2019 7 580 km ESE Explosions produced ash plumes.
29 Sep, 01-02 Oct 2019 9 1,400 km SE, E Explosions produced ash plumes. Notable pyroclastic flow traveled SE on 1 Oct.
04 Oct 2019 -- 170 km E Resuspended ash.
06 Oct 2019 10 430 km NE; 1,080 km ENE Ash plumes. Aviation Color Code raised to Red for several hours.
08 Oct 2019 -- 170 km E Resuspended ash.
06, 09 Oct 2019 6.5-11 1,100 km E --
11-13, 15 Oct 2019 6.5-7 620 km E, SE Explosions produced ash plumes.
16-17 Oct 2019 -- 125 km E Resuspended ash.
19-20 Oct 2019 -- 110 km SE Resuspended ash.
21 Oct 2019 10-11 1,300 km SE Explosions produced ash plumes.
Figure (see Caption) Figure 52. An explosion of Sheveluch on 1 October 2019. A pyroclastic flow was also reported by KVERT this day. Courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.

Numerous thermal anomalies, based on MODIS satellite instruments analyzed using the MODVOLC algorithm, were observed every month. Consistent with this, the MIROVA (Middle InfraRed Observation of Volcanic Activity) system recorded thermal anomalies almost daily. According to KVERT, a thermal anomaly over Sheveluch was identified in satellite images during the entire reporting period, although cloudy weather sometimes obscured observations.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 43, Number 11 (November 2018)

Managing Editor: Edward Venzke

Gamalama (Indonesia)

Weak explosion on 4 October 2018

Langila (Papua New Guinea)

Several weak ash plumes during June, September, and October 2018

Masaya (Nicaragua)

Lava lake activity continued from May through October 2018; lava lake lower than recent months

Pacaya (Guatemala)

Frequent lava flows and Strombolian activity from April through September 2018

Popocatepetl (Mexico)

Gas, steam, and ash plumes continue through August 2018 with occasional explosions ejecting incandescent blocks onto the slopes

Reventador (Ecuador)

Ash plumes and explosions with ballistic ejecta continue during April-September 2018 with several lava flows and pyroclastic flows; five new vents after partial flank collapse

Sangeang Api (Indonesia)

Ongoing crater activity and thermal anomalies during September 2017-October 2018

Sarychev Peak (Russia)

Thermal anomalies, surface activity, and ash explosions during October-November 2017 and September-October 2018

Sheveluch (Russia)

Thermal anomalies along with minor gas and steam emissions continue through October 2018

Ulawun (Papua New Guinea)

Ash plumes on 8 June, 21 September, and 5 October 2018



Gamalama (Indonesia) — November 2018 Citation iconCite this Report

Gamalama

Indonesia

0.8°N, 127.33°E; summit elev. 1715 m

All times are local (unless otherwise noted)


Weak explosion on 4 October 2018

The most recent of the previous intermittent weak explosions on Gamalama was on 3 August 2016, which produced an ash plume and ashfall that closed a nearby airport for a day (BGVN 42:03). This report discusses eruptive activity in October 2018. The volcano is monitored by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM).

PVMBG reported that an explosion at 1152 on 4 October 2018, likely phreatic, generated an ash plume that rose about 250 m above the summit and drifted NW. Eight volcanic earthquakes were recorded about an hour before the event. Based on satellite data and information from PVMBG, the Darwin Volcanic Ash Advisory Centre (VAAC) reported that during 5-6 October ash plumes rose to an altitude of 2.1 km and drifted W and NW. The Alert Level remained at 2 (on a scale of 1-4); visitors and residents were warned not to approach the crater within a 1.5-km radius. On 10 October PVMBG reported only gas emissions (mostly water vapor), and the Aviation Color Code was lowered from Orange to Yellow.

No significant SO2 levels near the volcano were recorded by NASA's satellite-borne ozone instruments (Suomi NPP/OMPS and Aura/OMI) during early October. However, Simon Carn reported that the newer TropOMI instrument aboard the Copernicus Sentinel-5P satellite showed significant SO2 levels as high as 12 TRM/DU (levels in middle troposphere layer, as measured in Dobson Units) on 4 October 2018 (figure 7).

Figure (see Caption) Figure 7. Weak SO2 emissions from Gamalama on 4 October 2018 were detected by the Sentinel-5P TROPOMI instrument. Courtesy of Simon Carn.

Geologic Background. Gamalama is a near-conical stratovolcano that comprises the entire island of Ternate off the western coast of Halmahera, and is one of Indonesia's most active volcanoes. The island was a major regional center in the Portuguese and Dutch spice trade for several centuries, which contributed to the thorough documentation of Gamalama's historical activity. Three cones, progressively younger to the north, form the summit. Several maars and vents define a rift zone, parallel to the Halmahera island arc, that cuts the volcano. Eruptions, recorded frequently since the 16th century, typically originated from the summit craters, although flank eruptions have occurred in 1763, 1770, 1775, and 1962-63.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Center of Volcanology and Geological Hazard Mitigation (CVGHM), Jalan Diponegoro 5+7, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL:http://www.bom.gov.au/info/vaac/); Simon Carn, Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: http://www.volcarno.com/, Twitter: @simoncarn).


Langila (Papua New Guinea) — November 2018 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Several weak ash plumes during June, September, and October 2018

After Vulcanian activity in the latter part of 2009, activity at Langila subsided, with infrequent activity until 2016, when activity increased somewhat through May 2018 (BGVN 34:11, 35:02, 42:01, and 42:09). This pattern of intermittent activity continued through October 2018. No reports were available from the Rabaul Volcano Observatory during the current reporting period (June-October 2018), but volcanic ash warnings were issued by the Darwin Volcanic Ash Advisory Centre (VAAC).

Four explosions were reported by the Darwin VAAC in June 2018, generating ash plumes that rose 2.1-3.4 km (table 6). There were no reports of an explosion in July or August 2018. Additional ash plumes were detected on 29 September and 30 October 2018

Table 6. Reports of ash plumes from Langila during 1 June-30 October 2018 based on analyses of satellite imagery and wind model data. Courtesy of the Darwin VAAC.

Date Ash plume altitude (km) Ash plume drift Observations
07 Jun 2018 3.4 SW Detached from the summit.
10 Jun 2018 2.1 -- Dissipated.
17 Jun 2018 2.4 W --
20-21 Jun 2018 2.4 W, NW --
29 Sep 2018 2.4 NE --
30 Oct 2018 2.7 SE --

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL:http://www.bom.gov.au/info/vaac/).


Masaya (Nicaragua) — November 2018 Citation iconCite this Report

Masaya

Nicaragua

11.984°N, 86.161°W; summit elev. 635 m

All times are local (unless otherwise noted)


Lava lake activity continued from May through October 2018; lava lake lower than recent months

Masaya is one of the most active volcanoes in Nicaragua and one of the few volcanoes on Earth to contain an active lava lake. The edifice has a caldera that contains the Masaya (also known as San Fernando), Nindirí, San Pedro, San Juan, and Santiago (currently active) craters. In recent years, activity has largely consisted of lava lake activity along with dilute plumes of gas with little ash. In 2012 an explosive event ejected ash and blocks. This report summarizes activity during May through October 2018 and is based on Instituto Nicaragüense de Estudios Territoriales (INETER) reports and satellite data.

Reports issued from May through July 2018 noted that Masaya remained relatively calm. Sentinel-2 thermal satellite images show consistently high temperatures in the Santiago crater with the active lava lake present (figure 65).

Figure (see Caption) Figure 65. Sentinel-2 thermal satellite images showing the detected heat signature from the active lava lake at Masaya during May-July 2018. The lava lake is visible (bright yellow-orange) and a gas-and-steam plume is visible traveling towards the W to SW. Thermal (urban) satellite images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

Reports from August through October 2018 indicated relatively low levels of activity. On 28 September the lava lake within the Santiago crater was observed with a lower surface than previous months. Fumarole temperatures up to 340°C were recorded (figure 66). Sentinel-2 thermal images show the large amount of heat consistently emanating from the active lava lake (figure 67). Sulfur dioxide was measured on 28 and 30 August with an average of 1,462 tons per day, a higher value than the average of 858 tons per day detected in February. Sulfur dioxide levels ranged from 967 to 1,708 tons per day on 11 September.

Figure (see Caption) Figure 66. FLIR (forward-looking infrared) and visible images of the Santiago crater at Masaya showing fumarole temperatures. The scale in the center shows the range of temperatures in the FLIR images. Courtesy of INETER (September 2018 report).
Figure (see Caption) Figure 67. Sentinel-2 thermal satellite images showing the heat signature from the active lava lake at Masaya during August-October 2018. The lava lake is visible (bright yellow-orange) and a gas-and-steam plume is visible traveling towards the SW. Thermal (urban) satellite images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

Overall, activity from May through October 2018 was relatively quiet with continued lava lake activity. The thermal energy detected by the MIROVA algorithm showed fluctuations but were consistent (figure 68). The MODVOLC algorithm for near-real-time thermal monitoring of global hotspots detected 4-8 anomalies per month for this period, which is lower than previous years (figure 69).

Figure (see Caption) Figure 68. Middle infrared MODIS thermal anomalies at Masaya for April through October 2018. The data show relatively constant thermal activity related to the persistent lava lake. Courtesy of MIROVA.
Figure (see Caption) Figure 69. Thermal alerts for Masaya in May through October 2018. Courtesy of HIGP - MODVOLC Thermal Alerts System.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras pyroclastic shield volcano and is a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The twin volcanoes of Nindirí and Masaya, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6500 years ago. Historical lava flows cover much of the caldera floor and have confined a lake to the far eastern end of the caldera. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals cause health hazards and crop damage.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://webserver2.ineter.gob.ni/vol/dep-vol.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Pacaya (Guatemala) — November 2018 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Frequent lava flows and Strombolian activity from April through September 2018

Pacaya is one of the most active volcanoes in Guatemala and is located 30 km south of the capital city. It has produced nearly continuous Strombolian eruptions, lava flows, and ash plumes for decades. The current activity is centered at the Mackenney cone and is largely directed towards the N due to the trough that developed during increased activity in 2010.

This report summarizes activity from April through September 2018, and is based on reports by Instituto Nacional de Sismología, Vulcanologia, Meteorología E Hidrologia (INSIVUMEH), Sistema de la Coordinadora Nacional para la Reducción de Desastres (CONRED), and satellite data. During this period, activity was dominated by gas plumes, Strombolian explosions, and numerous short lava flows that traveled mainly to the N to NW (see details below, table 6).

Activity remained constant through April (figure 94), with a significant increase at the end of the month. White and blue-white gas-and-steam plumes were frequently observed up to 800 m above the Mackenney crater with the dispersal depending on wind direction. There was a partial collapse of the cone within the Mackenney crater during the week of 7-13 April. Strombolian activity was constant, with explosions ejecting material up to 50 m above the crater, until 21 April when activity decreased due to a small collapse that occurred in the cone and temporarily sealed the conduit. After elevated seismicity that was the highest since 2014, activity increased again on 26 April when Strombolian explosions ejected material up to 150 m above the crater. On 28 April there were 25-50 explosions recorded per hour, reaching 200 m above the cone and generating shock waves observed by communities 4 km away. A lava flow reached 600 m in length, the longest lava flow since the 2010 eruption. This lava flow continued through to the end of the month. Throughout the month, between one and four lava flows were frequently active, with lengths varying from 50 to 500 m from the vent. Lava flows were distributed to the NW, W, SW, and S, and were sometimes accompanied by avalanches with blocks reaching 1 m in diameter.

Figure (see Caption) Figure 94. Typical activity at Pacaya in April 2018. Top left: Degassing at the Mackenney cone. Top right: lava flows moving S, SW, and W with incandescent avalanches from the lava flow fronts; photo by Jorge Mejicanos. Bottom left: Strombolian activity erupting incandescent material to 150 m above the crater prior to the formation of the lava flow; photo by William Chigna. Bottom right: Descent of lava flows accompanied by Strombolian activity; photo by Byron Castillo. Images courtesy of INSIVUMEH (April 2018 monthly report).

Two new lava flows were seen moving down the NW flank on 3 May (figure 95). Activity in the first few days of May also included white and bluish white gas-and-steam plumes rising up to 900 m above the crater and frequent Strombolian explosions ejecting material to a maximum of 100 m above the crater. Increased weak-to-moderate explosions on 4 May ejected material 50-80 m above the crater and fed the NW-flank lava flows (figures 96 and 97). A slight increase in activity was noted 15-16 May, when constant explosions ejected material up to 50-70 m above the crater that were occasionally heard out to 3 km away. On 20 May approximately 50 explosions per hour were recorded, with material reaching 50-100 m above the crater. Elevated activity on 16 May produced a lava flow towards the W. Lava flows were observed on 1-3, 6, 12, and 16 May, with recorded lengths reaching 200-600 m on the NE, NW, and W flanks.

Figure (see Caption) Figure 95. Two new lava flows were observed traveling down the NW flank of Pacaya on 3 May 2018. Top: A thermal image of the lava flows and the Strombolian activity at the crater visible at the top of the image. Bottom: the location of the lava flows (April 28 to May 4, 2018 Weekly Monitoring Report). Right: The active lava flows on 5 May. Courtesy of INSIVUMEH
Figure (see Caption) Figure 96. Two lava flows and the active crater of Pacaya on 4 May 2018. This figure also shows the location of Cerro Chino and the directions of La Corona and Centro de Visitantes. Courtesy of INSIVUMEH (April 2018 monthly report).
Figure (see Caption) Figure 97. Incandescent lava flows on Pacaya visible at night on 4 May 2018. The lava flows are approximately 500 m in length. Photo courtesy of CONRED (Bulletin 762018, 4 May).

White, blue-white, and gray-white plumes were frequently noted throughout June with heights above the crater ranging from 15 to 800 m. Strombolian activity continued, ejecting material up to maximum heights of 150 m, but more commonly 15-50 m above the crater. During 12-14 June ejecta reached 100-150 m above the crater, with explosions heard up to 10 km away on the 12th. An ash plume on the 13th reached 3.5 km above sea level and dispersed 10 km N and NW. A new lava flow was observed on 6-7 June accompanied by Strombolian explosions ejecting material up to 50 m above the crater (figure 98). No additional lava flows were reported this month.

Figure (see Caption) Figure 98. June 2018 activity of Pacaya. Top left: Lava flow on 6 June that was 50 m long by approximately 20 m wide; courtesy of CONRED (Bulletin no. 1112018). Top left: Lava flow on 7 June, photo by Pedro Morales, via CONRED. Bottom: Lava flow on 7 June, photo by Berner Villea via CONRED.

Throughout July activity consisted of gas-and-steam plumes, Strombolian activity, and lava flows. White and blue-white plumes were low earlier in the month, but reached 300-450 m above the crater from 25 July to the end of the month. Strombolian explosions continued, ejecting material up to 5 to 50 m above the crater. Lava flows were frequently produced through July, with lengths ranging from 40-500 m from the vent, towards the SE, N, NW, and W. A decrease in activity was recorded on 4 July, which then increased again on 7 July. This increase produced a lava flow down to 400 m on the N flank, with an average width of 40 m.

Similar activity continued through August. White and blue-white plumes rose 50-600 m above the crater throughout the month. Strombolian activity continued, with explosions ejecting material 10-30 m above the crater, often reported as reaching low levels throughout August. One to two active lava flows were frequently described in daily reports, with lengths ranging from 75 to 500 m and traveling towards the NE, N, NW, and W. A slight increase in Strombolian activity occurred on the 27 August, generating 3-5 explosions per hour with some explosions heard up to 10 km away.

Frequent lava flows continued through September, with one to four active flows noted in daily reports (figure 99). Lava flow lengths ranged from 150 to 300 m and moved towards the N, NW, and W. White and blue-white plumes were observed reaching up to 800 m above the crater. Strombolian activity continued, ejecting material up to 10-30 m above the crater.

Figure (see Caption) Figure 99. Lava flows on Pacaya in September 2018. Top: two new lava flows observed from San Vincente; photo by Wotzbely Suarez via CONRED. Bottom: A fumarole plume to a height of 300-400 m above the crater and a 200-m-long lava flow on the NW flank. Courtesy of INSIVUMEH.

Overall, Pacaya produced numerous short (up to 600 m long) lava flows from April through September 2018 (figure 100), along with frequent degassing and fumarolic plumes, and Strombolian activity. Lava emissions and Strombolian activity were centered at the active Mackenney cone and vents on the NW flank. There was a significant reduction in lava flow extrusion in June, evident by the lack of MODVOLC thermal alerts (figure 101) and the reduction in MIROVA thermal energy detected (figure 102). Activity then remained frequent from July through September.

Figure (see Caption) Figure 100. Examples of active vents and lava flows (bright yellow-orange) at Pacaya from July through October 2018. The lava flows are traveling towards the NE, N, and NW. These images demonstrate how the lava flows mostly originate on the flank due to weaknesses on the cone, it is rare that lava flows originate in the crater. False color (urban) images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 101. There were 79 MODVOLC thermal alerts for Pacaya from April through September 2018, based around the active crater and lava flows on the flanks. Courtesy of HIGP – MODVOLC Thermal Alerts System.
Figure (see Caption) Figure 102. MIROVA thermal data showing detected energy for the period ending in October 2018. Activity was high from February through May, with a significant drop in activity in June and early July, then increased activity resumed in October. Courtesy of MIROVA.

Table 6. Summary of activity at Pacaya during April-September 2018. Information compiled from INSIVUMEH and CONRED reports.

Date Summary of Observations (all heights are above the crater unless specified)
01 Apr 2018 Moderate white/blue plume dispersed to the S. Strombolian explosions ejected material up to 5-25 m. Two lava flows to the W and NW to 200 m.
02 Apr 2018 White/blue plume towards the S. Strombolian explosions ejected material up to 35 m. A lava flow continues on the NW flank to 250 m.
04 Apr 2018 White/blue plume up to 50 m, towards the N. Strombolian explosions ejected material up to 5-15 m. Two lava flows towards the NW to 150 m, and SW to 150 m.
05 Apr 2018 Moderate white/blue plume dispersed to the S. Strombolian explosions ejected material up to 5-25 m. Two lava flows to the W and NW to 200 m.
06 Apr 2018 White/blue plume towards the S. Strombolian explosions ejected material up to 40 m. Two lava flows to the S and SW to 200 m.
08 Apr 2018 White/blue plume up to 250 m towards the S. Strombolian explosions ejected material up to 5-15 m. Three lava flows to the NW, W, and SW, to 250, 200, and 150 m.
09 Apr 2018 Moderate white/blue plume up to 50 m, towards the S. Strombolian explosions ejected material up to 5-25 m. Two lava flows to the NW and SW to 150 and 50 m.
07-13 Apr 2018 Partial collapse of the cone forming in the Mackenney crater.
10 Apr 2018 Fumarole plume towards the S. Weak Strombolian explosions ejected material to 40 m. One lava flow to the SW and S to 250 m.
11 Apr 2018 Moderate steam plume. Strombolian explosions ejected material up to 30 m. Two lava flows to the SW and S to 200 and 350 m, with accompanied avalanches.
13 Apr 2018 Two Lava flows to the S and SW to 250 and 200 m.
14 Apr 2018 White plume to 400 m, dispersed to the NE. Strombolian explosions continue. Two lava flows to the NW to 200 and 250 m.
15 Apr 2018 White/blue plume towards the SE. One lava flow to the NW to 250 m.
16 Apr 2018 White plume dispersed towards the S. Strombolian explosions continue. Two lava flows to the NW and W to 150 and 200 m.
17 Apr 2018 White/blue plume to the S. Two lava flows to the NW and SW to ~250 m. Strombolian explosions eject incandescent material up to 40 m.
18 Apr 2018 White plume up to 200 m, dispersed towards the N. Strombolian explosions continue. Four lava flows, two to the NW to 100 and 150 m, and two to the W to 50 and 150 m.
19 Apr 2018 Increased lava effusion in recent days. Since 18 April, four new lava flows on the SW, W, and NW flanks to 200-500 m, accompanied by constant avalanches. Strombolian explosions ejected material up to 40-50 m.
20 Apr 2018 Incandescence from lava flows observed at night.
21 Apr 2018 White plume up to 50 m, dispersed towards the S. Strombolian explosions continue. The four lava flows have ceased.
22 Apr 2018 Degassing plume up to 50 m, towards the N. Some Strombolian explosions.
23 Apr 2018 Some Strombolian explosions.
24 Apr 2018 White/blue plume up to 50 m. Some Strombolian explosions.
25 Apr 2018 White/blue plume up to 25 m, dispersed to the S. Strombolian explosions eject material up to 5-50 m.
26 Apr 2018 White/blue plume up to ~800 m. Strombolian explosions eject material up to 25-50 m.
27 Apr 2018 Low white/blue plume to the S. Strombolian explosions eject material up to 5-50 m.
28 Apr 2018 Lava flow 500 m to the NW. Two to four weak Strombolian explosions per day with incandescent material reaching 50 m.
29 Apr 2018 White/blue degassing to low altitude. Lava flow 500 m to the NW.
01 May 2018 Over the past few days a new eruptive phase began. White/blue plume up to 150-200 m. Strombolian explosions ejected material up to 20 m. One lava flow towards Cerro Chino to 200-300 m.
02 May 2018 White/blue plume from the NW flank. Lava flow 500 m to the NW.
03 May 2018 Moderate white/blue plume up to 150-200 m. Strombolian explosions ejected material up to 20 m. One lava flow towards Cerro Chino to ~500 m. Incandescence observed.
04 May 2018 Change in eruptive behavior, generating constant weak-moderate explosions ejecting material up to 50-80 m above the Mackenney cone.
06 May 2018 Weak-moderate white/blue plume up to 100 m. Strombolian explosions ejected material up to 15 m. One 600 m lava flow to the NE.
07 May 2018 Strombolian explosions continue.
09 May 2018 White/blue plume up to 300 m, dispersed to the S. Strombolian explosions ejected material up to 50 m. Incandescence observed.
10 May 2018 Moderate white/blue plume up to 700 m. Strombolian explosions ejected material up to 25-100 m.
11 May 2018 White/blue plume up to 600 m. Strombolian explosions ejected material up to 15-50 m.
12 May 2018 Strombolian explosions sent material up to 50-75 m. Lava flow to the W.
13 May 2018 White/blue plume up to ~200 m, dispersed to the SW. Strombolian explosions eject material up to 25 m. Incandescence observed.
14 May 2018 Moderate white/blue plume to ~800 m, dispersed to the W. Strombolian explosions ejected material to 7-50 m.
15 May 2018 White plume to 600-700 m, dispersed towards the W. Strombolian explosions ejected material up to 10-50 m.
16 May 2018 Constant Strombolian explosions ejected material up to 50-70 m, explosions occasionally heard 3 km away. Activity increased and produced a lava flow on the W flank.
17 May 2018 White/blue plume up to 300-400 m, dispersed to the S. Strombolian explosions ejected material up to 25 m. Incandescence observed.
18 May 2018 White/blue plume up to 400 m, dispersed to the W. Strombolian explosions ejected material up to 5-15 m.
19 May 2018 White/blue plume up to 200 m, dispersed to the N. Strombolian explosions ejected material up to 10-50 m.
20 May 2018 Strombolian explosions at Mackenney crater ejected material up to 50 m. Small avalanches on W flank.
21 May 2018 White/blue degassing plume up to 100 m, dispersed towards the S. Strombolian explosions ejected material up to 25 m. Incandescence observed in the evening.
22 May 2018 Moderate white/blue degassing plume up to 900 m, dispersed towards the S. Strombolian explosions ejected material up to 5-10 m.
23 May 2018 White plume up to ~50 m, dispersed towards the S. Strombolian explosions ejected material up to 25 m. Incandescence observed.
24 May 2018 Moderate white/blue plume up to 500-600 m, dispersed towards the W. Strombolian explosions ejected material up to 5-10 m. Incandescence observed.
25 May 2018 White/blue plume up to 300 m, dispersed towards the N. Strombolian explosions ejected material up to 25 m. Incandescence observed.
26 May 2018 White plume up to 800 m, dispersed towards the E. Strombolian explosions ejected material up to 10-50 m.
28 May 2018 White/blue degassing plume up to 50 m, dispersed towards the S. Strombolian explosions ejected material up to 50-100 m. Incandescence observed.
29 May 2018 White/blue degassing plume up to 200 m, dispersed towards the S. Strombolian explosions ejected material up to 50-100 m, with ~50 explosions per hour. Incandescence observed.
31 May 2018 White/blue degassing plume up to 250 m, dispersed towards the S.
01 Jun 2018 White plume up to 500 m towards the N and NE. Strombolian explosions ejected material up to 15-50 m.
02 Jun 2018 White plume up to 200 m, dispersed towards the W. Strombolian explosions ejected material up to 15-50 m.
03 Jun 2018 White plume towards the W. Strombolian explosions ejected material up to 25-50 m.
05 Jun 2018 White/blue plume up to 400-600 m towards the W. Occasional weak explosions.
06 Jun 2018 New lava flow 50 m long by 20 m wide. Strombolian explosions eject material up to 50 m. White plume up to 200 m.
07 Jun 2018 White plume to up 200-300 m towards the N. The lava flow continues.
08 Jun 2018 Low white/blue plume towards the W. Strombolian explosions ejected material up to 15-50 m.
09 Jun 2018 White/blue degassing plume up to 400 m, dispersed towards the W.
10 Jun 2018 White/blue plume up to 300-400 m towards the SW. Strombolian explosions ejected material up to 15-50 m.
11 Jun 2018 White plume towards the W. Strombolian explosions increased and ejected material up to 20-40 m.
12 June 2018 Strombolian explosions eject material up to 150 m, generating sounds heard ~10 km away.
13 June 2018 White/blue degassing plume up to 150-300 m, dispersed towards the N. Strombolian explosions eject material up to 15-100 m. Ash plume up to 3.5 km above sea level, dispersed to the N and NE to 10 km.
14 Jun 2018 Gray/white plume up to 600-800 m, dispersed to the NE. Strombolian explosions eject material up to 15-100 m.
16 Jun 2018 Abundant white/blue plume up to 50 m, dispersed to the N and NW. Increased Strombolian explosions eject material up to 25-40 m.
17 Jun 2018 Some Strombolian explosions at the Mackenney crater.
18 Jun 2018 Abundant white/blue plumes up to 25 m towards the W. Increased Strombolian explosions ejected material up to 25-50 m.
19 Jun 2018 White plume up to 15 m towards the N. Strombolian explosions ejected material up to 5-25 m above the Mackenney crater.
20 Jun 2018 White/blue degassing plume up to 25 m, dispersed towards the N. Strombolian explosions ejected material up to 5-30 m.
21 Jun 2018 Moderate white/blue degassing plume up to 15 m, dispersed towards the N. Strombolian explosions ejected material up to 5-25 m.
22 Jun 2018 White/blue plume up to 25 m towards the S. Strombolian explosions ejected material up to 25-50 m.
23 Jun 2018 White/blue degassing plume up to 150 m, dispersed towards the W. Strombolian explosions ejected material up to 15, 50, and 70 m.
24 Jun 2018 Low white/blue degassing plume, dispersed towards the W. Strombolian explosions ejected material up to 25 m.
25 Jun 2018 Degassing plume from Mackenney crater up to 30 m towards the W. Small Strombolian explosions occurred.
26 Jun 2018 Strombolian explosions ejected material up to 15-30 m.
27 Jun 2018 Low white/blue degassing plume, dispersed towards the S. Strombolian explosions ejected material up to 5-25 m.
28 Jun 2018 Low white/blue degassing plume, dispersed towards the S. Strombolian explosions ejected material up to 5-25 m.
29 Jun 2018 White/blue plume up to 50 m. Strombolian explosions ejected material up to 25 m.
30 Jun 2018 Low white/blue degassing plume, dispersed towards the S. Strombolian explosions ejected material up to 15-25 m.
01 Jul 2018 White/blue plume up to 200 m towards the SW. Strombolian explosions ejected material up to 15-50 m.
02 Jul 2018 Low white/blue plume, dispersed towards the S. Strombolian explosions ejected material up to 15-25 m.
03 Jul 2018 Low white/blue plume, dispersed towards the S. Strombolian explosions ejected material up to 5-30 m. Increase in activity generated two lava flows, one 5 x 40 m flow towards the N, one 30 x 50 m towards the SE.
04 Jul 2018 Activity and lava flows decreasing.
05 Jul 2018 Strombolian explosions eject material up to 25 m. A lava flow 60 x 400 m continues.
06 Jul 2018 Strombolian explosions eject material up to 5-25 m.
07 Jul 2018 Lava flow from the Mackenney crater, 400 m long with an average width of 30 m, moving towards the N.
08 Jul 2018 Lava flow continues, now 500 m long. Strombolian explosions ejected material up to 30 m. Degassing plume to 30 m towards the SW.
09 Jul 2018 Strombolian explosions ejected material up to 5-25 m. Incandescence observed.
10 Jul 2018 Strombolian explosions ejected material up to 5-25 m. Incandescence observed. Lava flow continues towards the N.
11 Jul 2018 Strombolian explosions ejected material up to 25-50 m. Incandescence observed. Lava flow continues towards the N to ~350 m.
12 Jul 2018 Small Strombolian explosions continue. Lava flow continues towards the N to ~100 m.
13 Jul 2018 Small white plume dispersed to the S. Strombolian explosions ejected material up to 5-25 m. A Lava flow continues towards the N to 200 m.
14 Jul 2018 Incandescence observed. Strombolian explosions ejected material up to 15-40 m. A ~150 m lava flow moved towards the N.
15 Jul 2018 Lava flow on the N to NW flank down to ~400 m, accompanied by small avalanches. Strombolian explosions ejected material up to 15-75 m.
16 Jul 2018 Strombolian explosions ejected material up to 5-25 m. Incandescence observed. A lava flow descended towards the NW to ~400 m.
17 Jul 2018 Incandescence observed. Strombolian explosions eject material up to 25-50 m. A new lava flow moved towards the N.
18 Jul 2018 Degassing and Strombolian explosions produced material up to 25-30 m. A 500 m lava flow continued towards the N.
19 Jul 2018 Strombolian explosions ejected material to a low level. A 300 m lava flow descended towards the N.
20 Jul 2018 Low white/blue plume towards the S. Incandescence observed during the night/morning. Strombolian explosions ejected material up to 5-25 m. A 200 m lava flow moving towards Cerro Chino.
21 Jul 2018 White/blue plume displaced towards the W. Lava flow continues 300 m towards the N.
22 Jul 2018 White/blue plume dispersed towards the S. Strombolian explosions ejected material to a low level. A lava flow moved towards the NW to ~500 m.
23 Jul 2018 Strombolian explosions ejected material to a low level. A lava flow moved towards the NW to ~250 m.
24 Jul 2018 Low white/blue plume towards the S. Strombolian explosions ejected material up to 10-30 m. Lava flow to ~200 m towards Cerro Chino.
25 Jul 2018 White/blue plume up to 450 m, dispersed towards the S. Strombolian explosions ejected material to a low level. A 75 x 250 m lava flow moved towards the NW.
26 Jul 2018 White/blue plume up to 300 m, dispersed towards the W. Strombolian explosions ejected material to a low level. A lava flow moved towards the NW to 200 m.
27 Jul 2018 White plume up to 300 m, dispersed towards the W. Strombolian explosions ejected material to a low level. A lava flow moved towards the NW to 200 m.
28 Jul 2018 Moderate white/blue degassing plume dispersed towards the S. Strombolian explosions ejected material to a low level. A lava flow moved towards Cerro Chino to 150 m.
29 Jul 2018 White plume up to 300 m, dispersed towards the S. Strombolian explosions ejected material to a low level. Two lava flows moved towards the W to 50 and 150 m.
30 Jul 2018 Moderate white/blue degassing plume dispersed towards the S. Strombolian explosions ejected material to a low level. A lava flow moved towards Cerro Chino to 200 m.
31 Jul 2018 White plume up to 200 m, dispersed towards the S. Strombolian explosions ejected material to a low level. A lava flow moved 150 m towards the NW.
01 Aug 2018 White/blue plume up to 600 m, dispersed towards the W. Strombolian explosions ejected material to a low level. A lava flow moved towards Cerro Chino to 500 m.
02 Aug 2018 White/blue plume dispersed towards the N. Strombolian explosions ejected material to a low level. A lava flow moved towards Cerro Chino to 300 m.
03 Aug 2018 White/blue plume up to 50 m, dispersed towards the SW. Strombolian explosions ejected material to a low level. A lava flow moved towards Cerro Chino to 150 m.
04 Aug 2018 White plume dispersed towards the SE. Strombolian explosions ejected material up to 30 m. A lava flow moved towards the N to 300 m.
05 Aug 2018 Moderate white plume up to 100 m, dispersed towards the S. Strombolian explosions ejected material to a low level. A lava flow moved towards Cerro Chino to 300 m.
06 Aug 2018 White plume dispersed towards the SE. Strombolian explosions ejected material up to 30 m. Lava flow continues 300 m towards the N.
07 Aug 2018 Low white/blue plume dispersed towards the S. Strombolian explosions ejected material up to 10-50 m. Two lava flows to the NE to 200 and 400 m.
08 Aug 2018 Moderate white plume dispersed towards the S. Strombolian explosions ejected material to a low level. A lava flow moved towards Cerro Chino to 150 m.
09 Aug 2018 Moderate white/blue plume up to 250 m, dispersed towards the W. Strombolian explosions ejected material to a low level. A lava flow moved towards the W to 150 m.
10 Aug 2018 Moderate white/blue plume dispersed towards the S. Strombolian explosions ejected material to a low level. Two lava flows moved towards Cerro Chino to 75 and 300 m.
11 Aug 2018 Low white/blue plume, dispersed towards the S. Strombolian explosions ejected material up to 10-25 m. A lava flow moved towards Cerro Chino to 250 m.
12 Aug 2018 Moderate white/blue plume up to 500 m, dispersed towards the NW. Strombolian explosions ejected material to a low level. A lava flow moved towards Cerro Chino to 300 m.
13 Aug 2018 Small Strombolian explosions. Weak white/blue plume up to ~100 m. Lava flow ~300 m towards Cerro Chino.
14 Aug 2018 Strombolian explosions ejected material up to 25-30 m. Lava flow on the NW flank continues down to 300 m.
15 Aug 2018 Moderate white plume up to ~100 m, dispersed to the S. Strombolian explosions ejected material up to 5-20 m. Two lava flows moved towards Cerro Chino to 75 and 300 m.
16 Aug 2018 Low white/blue plume dispersed towards the S. Strombolian explosions ejected material low above the crater. 200 m lava flow on the N flank.
17 Aug 2018 Moderate white plume reached ~50 m and dispersed to the S. Two lava flows traveled towards Cerro Chino to ~75 to 300 m.
18 Aug 2018 Faint white/blue plume up to 300-400 m and dispersed to the SW. Strombolian explosions ejected material to a low height. One lava flow to the N to ~300 m.
19 Aug 2018 Moderate white/blue plume up to ~100 and 150 m and dispersed to the NW. Two lava flows active on the NW flank towards Cerro Chino to ~75 and 300 m.
20 Aug 2018 White plume up to 600 m, dispersed to the SW. Strombolian explosions ejected material up to 5-25 m. One lava flow to the N to ~300 m.
21 Aug 2018 White plume up to 600 m, dispersed to the W. One lava flow continues towards the N to ~300 m.
22 Aug 2018 Strombolian explosions ejected material to 25-30 m. The lava flow continues to 400 m on the N flank.
23 Aug 2018 White/blue moderate plume towards the S. Two lava flows traveled towards Cerro Chino to the NW.
24 Aug 2018 Strombolian explosions ejected material to a low height. Two lava flows traveled towards Cerro Chino to 200 and 300 m.
25 Aug 2018 Abundant degassing and explosions ejected material up to 30 m and deposited in the same crater. One 400 m lava flow on the N flank.
26 Aug 2018 Low white plume dispersing towards the S. Strombolian explosions ejected material to 5-30 m. One lava flow 350 m to the N.
27 Aug 2018 Slight increase of explosive activity, generating 3-5 explosions per hour.
31 Aug 2018 Degassing plume up to ~200 m, dispersed to the S. Strombolian explosions ejected material to a little above the crater. A lava flow moved towards the N to NW.
01 Sep 2018 White plume up to 800 m, dispersed towards the W. Strombolian explosions continue. A lava flow moved towards the N to 200 m.
02 Sep 2018 A 200-300 m lava flow was observed.
03 Sep 2018 Moderate white/blue plume up to 600 m, dispersed towards the NW. Incandescence was observed. A lava flow moved towards the NW to 200 m.
04 Sep 2018 White/blue plume up to 100 m, dispersed towards the W. Incandescence was observed. Two lava flows moved towards Cerro Chino.
05 Sep 2018 White/blue plume up to 800 m, dispersed towards the SW. Incandescence was observed. Two lava flows moved towards the NW to 100-200 m.
06 Sep 2018 Moderate white/blue plume dispersed towards the SW. Incandescence observed. Two lava flows moved towards the NW to 100-200 m.
07 Sep 2018 Moderate white/blue plume up to 50 m, dispersed towards the S. Incandescence observed. Two lava flows moved towards the NW to 200 m.
08 Sep 2018 Two lava flows observed from San Vicente.
09 Sep 2018 White/blue plume up to ~600 m towards the SW. Three lava flows 50, 150 and 300 m long.
10 Sep 2018 White/blue plume up to ~100 m, towards the N. Lava flow 300 m towards the NW.
11 Sep 2018 White/blue plume up to ~600 m, towards the N. Two lava flows ~150 and 200 m long towards Cerro Chino.
12 Sep 2018 White/blue plume up to ~300 m towards the S. Lava flow ~300 m towards Cerro Chino. Strombolian explosions ejected material up to 10-40 m.
13 Sep 2018 White/blue plume up to 50 m towards the N. During night/early morning incandescence was observed. Lava flow 200-300 m towards the NW-W.
14 Sep 2018 Strombolian explosions ejected material up to 5-25 m. Three lava flows to 150, 250, and 300 m towards Cerro Chino.
15 Sep 2018 Fumarole gases up to 500 m due to low winds. Three lava flows to 150, 250, and 300 m on the W flank. Strombolian explosions ejected material to 25 m.
16 Sep 2018 Fumarole degassing up to 300-400 m. Lava flow in the direction of Cerro Chino, 200 m in length.
17 Sep 2018 White/blue fumarole plume towards the S. Incandescence observed at night. Lava flow to 200 m towards the NW.
18 Sep 2018 Moderate blue/white degassing plume to low altitude. Strombolian explosions ejected material up to 5-25 m. Lava flow 200 m towards Cerro Chino.
19 Sep 2018 Moderate white/blue plume up to 50 m, dispersed towards the SW. Strombolian explosions ejected material up to 10-25 m. A lava flow moved towards the W.
20 Sep 2018 Degassing plume up to 500-600 m towards the W. Two lava flows towards Cerro Chino on NW flank down to 150 and 300 m. Strombolian explosions ejected material up to 15-30 m.
21 Sep 2018 Incandescence observed at the crater at night/early morning. Four lava flows down to 40, 150, and 200 m to the NW.
22 Sep 2018 Strombolian explosions ejected material up to 25-25 m. A lava flow moved towards Cerro Chino.
23 Sep 2018 Strombolian explosions ejected material up to 25-30 m. A lava flow moved towards Cerro Chino to 250-300 m.
24 Sep 2018 White/blue plume up to 100 m, dispersed towards the S. Two lava flows moved towards Cerro Chino to 75 and 150 m.
25 Sep 2018 Strombolian explosions ejected material up to 5-25 m. A lava flow moved 100-200 m to the NW.
26 Sep 2018 White plume dispersed towards the S. Incandescence observed. A lava flow moved towards Cerro Chino.
27 Sep 2018 Strombolian explosions ejected material up to 20 m. Two lava flows moved towards Cerro Chino to 250 and 300 m.
28 Sep 2018 A lava flow continued towards Cerro Chino. Incandescence was observed.
28 Sep 2018 Incandescence was observed. Strombolian activity continued. A lava flow moved towards Cerro Chino.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); Coordinadora Nacional para la Reducción de Desastres (CONRED), Av. Hincapié 21-72, Zona 13, Guatemala City, Guatemala (URL: http://conred.gob.gt/www/index.php); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Popocatepetl (Mexico) — November 2018 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Gas, steam, and ash plumes continue through August 2018 with occasional explosions ejecting incandescent blocks onto the slopes

Popocatépetl volcano is one of Mexico's most active volcanoes, located near the capitol Mexico City. It has been persistently active since 2005 and frequently active for centuries before that. Activity frequently consists of gas-and-steam and ash plumes, incandescent blocks that scatter across the flanks, and frequent growth of domes in the summit crater. This report summarizes activity from March through August 2018 using information issued by CENAPRED (Centro Nacional de Prevención de Desastres) along with various satellite and webcam data.

Throughout the reporting period, typical activity continued, consisting of frequent low-intensity activity and larger explosive events (figure 106), visible incandescence on cloud-free nights, elevated thermal energy in the crater, and sulfur dioxide measurements.

Figure (see Caption) Figure 106. Graph showing the number of low-intensity events (producing gas-and-steam and dilute ash plumes), and explosive events at Popocatépetl from March through August 2018. Data courtesy of CENAPRED.

Activity during March 2018. Activity through March involved intermittent to continuous gas-and-steam emissions. For the entire month, there were 2,812 low-intensity gas-and-steam events reported, sometimes with minor ash content; 36 explosive events also occurred. Explosions produced ash plumes up to a maximum height of 1.5 km above the crater. Incandescence was frequently observed at nighttime and showed greater intensity during periods of increased emissions from the crater. Emissions were directed towards the N, NE, SE, SSW, and NW. Volcano-tectonic (VT) earthquakes were common, with the largest being a magnitude 3 under the SE flank on 24 March, and a magnitude 3.2 located 18 km NE of the volcano on 31 March. On 16 March an overflight of the summit by CENAPRED and the Federal Police determined that the internal summit crater was 320 m in diameter and about 100 m deep (figure 107). A small 30 x 50 m dome (number 78 since March 1996) was present in the crater and producing gas emissions. On the walls of the crater the remnants of older domes could be seen.

Figure (see Caption) Figure 107. Photos of Popocatépetl volcano showing degassing and a small dome within the summit crater. Photos taken during an overflight on 16 March 2018 courtesy of Luis Felipe Puente at Protección Civil del Estado de México.

Activity during April 2018. Throughout April the frequency of gas-and-steam emissions was variable. Over the month, 1,986 low-intensity plumes and minor ash rose up to 1 km above the crater, and 53 larger explosive events that produced ash plumes up to 1 km (figure 108). On 10 and 11 April explosive events generated ash plumes to 1 km above the crater and ejected incandescent blocks out to 500 m from the crater. Another explosive event on 27 April produced an ash plume to 1 km above the crater. Harmonic tremor and frequent incandescence indicated that dome growth continued. Plumes were largely directed towards the NE, SE, or SSW. On 23 April three events ejected incandescent blocks to the E and SE of the crater. VT events were common with the largest reaching M 3.2 on 11 April.

Figure (see Caption) Figure 108. Gas-and-steam and ash plumes at Popocatépetl in April 2018. Webcam images courtesy of Webcams de Mexico.

Activity during May 2018. Throughout May, intermittent to continuous gas-and-steam emissions continued with the plumes reaching 1.2 km above the crater (figure 109). A total of 2,029 low-intensity events and 19 explosive events were produced. An explosive event on 3 May generated an ash plume up to 2 km above the crater, dispersing towards the NNE, and was followed by continuous emissions of gas-and-steam up to 1.2 km. On 17 and 18 May three explosions produced ash plumes up to 2.5 km above the crater. On 25 May an explosion launched incandescent blocks up to 400 m above the crater, most of which landed back into the crater, and produced an ash plume up to 3 km that then drifted towards the S. Wind directions largely directed plumes towards the S, SE, and SW. A second explosion that day ejected incandescent blocks up to 300 m above the crater. Incandescence was frequently noted above the crater at nighttime throughout the month. VT events were common, with the largest event being a M 3.4 on 24 May.

Figure (see Caption) Figure 109. Ash plumes (upper images), an explosive event producing an ash plume and ejecting incandescent blocks onto the slopes (lower left), and a gas-and-steam plume (lower right) at Popocatépetl in May 2018. Webcam images courtesy of Webcams de Mexico.

Activity during June 2018. During the month of June a total of 1,425 low-intensity and 45 explosive events occurred (figure 110). Gas-and-steam emissions were variable, reaching less than 1 km above the crater. Explosive events generated ash plumes up to 2 km on 1-2 June (figure 111), 2.5 km on 15 June, 2 km on 16 June, and 1 km on 23 June. Ash plumes were largely directed towards the SSW, NE, and W. Volcano-tectonic (VT) events were common, with the largest event being a M 3.4 on 24 June. Incandescence was common at nighttime when clouds did not obscure the summit.

Figure (see Caption) Figure 110. Gas-and-steam and ash plumes at Popocatépetl through the month of June 2018. Webcam images courtesy of Webcams de Mexico.
Figure (see Caption) Figure 111. Ash emission from the Popocatépetl summit crater on 1 June 2018. Top: Thermal image showing the elevated temperature of the crater. Bottom: Natural color image showing the brown ash plume. Thermal (urban) satellite image (bands 12, 11, 4) and natural color satellite image (bands 4, 3, 2) courtesy of Sentinel Hub Playground.

Activity during July 2018. Through the month of July, Popocatépetl produced 959 low-intensity events, sometimes with dilute ash, and 55 larger explosive events (figure 112). A series of events on 19-20 June produced a small amount of ashfall on the town of Amecameca to the west and explosive events ejected incandescent blocks out to 600 m from the crater. An increase in activity on 31 July ejected incandescent material onto the flanks and a 2-km-high ash plume that resulted in ashfall in the municipalities of Tetela del Volcán, Yecapixtla, Tlalnepantla, Totolapan, Cuernavaca, Tepoztlan, Huitzilac, and Tlayacapan in the state of Morelos, as well as in Amecameca, Acuautla, Ecatzingo , Ozumba, and Tepetlixpa, in the state of Mexico. VT events were common, with the largest being a M 3 event on 4 July. Incandescence was commonly visible above the crater.

Figure (see Caption) Figure 112. Webcam images showing activity at Popocatépetl during July 2018. Top left: a gas-and-steam plume with incandescence from the crater visible at the base of the plume. Top right: a nighttime explosion producing incandescence in the plume above the crater and incandescent blocks that have landed on the flanks of the volcano. Bottom left and right: dilute ash plumes. Webcam images courtesy of Webcams de Mexico.

Activity during August 2018. Throughout August there was a total of 2,262 low-intensity events and 70 larger explosive events at Popocatépetl. Gas-and-steam and some ash emissions reached 1 km above the crater (figure 113). Incandescence was common throughout the month when the crater was visible at night. VT events continued with the largest on 14 August with a magnitude of 3.

Figure (see Caption) Figure 113. Examples of gas-and-steam plumes, nighttime incandescence (upper right), and an ash plume (lower left) at Popocatépetl through August 2018. Webcam images courtesy of Webcams de Mexico.

Satellite data. In agreement with frequent visible incandescence at the summit, elevated thermal energy was detected by satellites (figure 114). The MIROVA (Middle InfraRed Observation of Volcanic Activity) algorithm also detected frequent elevated thermal activity at the summit. Sulfur dioxide emissions were sporadically large enough throughout the reporting period to be measured by the satellite Ozone Monitoring Instrument (OMI) (figure 115).

Figure (see Caption) Figure 114. The Popocatépetl crater had persistently elevated temperatures (bright yellow-orange) in the crater from March through August 2018. Bright blue colors are snow on the volcano. Thermal (urban) satellite images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 115. Sulfur dioxide measurements in Dobson Units (DU) by the Ozone Monitoring Instrument (OMI) on the AURA spacecraft over Mexico with Popocatépetl indicated in the upper left image. Sulfur dioxide is commonly detected over Popocatépetl and these images show some examples of the higher SO2 days on 24 March 2018 (upper left), 15 April 2018 (upper right), 11 May 2018 (bottom left), and 30 July 2018 (lower right). Date, time, and measurements are given at the top of each image. Courtesy of NASA Goddard Flight Center.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Centro Nacional de Prevención de Desastres (CENAPRED), Av. Delfín Madrigal No.665. Coyoacan, México D.F. 04360, México (URL: http://www.cenapred.unam.mx/), Daily Report Archive http://www.cenapred.unam.mx:8080/reportesVolcanGobMX/BuscarReportesVolcan); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Webcams de Mexico (URL: http://www.webcamsdemexico.com/); Luis Felipe Puente, Protección Civil del Estado de México, Lic. Adolfo López Mateos s/n, Primer Piso, Las Culturas, 51355 San Miguel Zinacantepec, Méx., Mexico (URL: http://cgproteccioncivil.edomex.gob.mx/, Twitter: https://twitter.com/LUISFELIPE_P, Twitter: @LUISFELIPE_P).


Reventador (Ecuador) — November 2018 Citation iconCite this Report

Reventador

Ecuador

0.077°S, 77.656°W; summit elev. 3562 m

All times are local (unless otherwise noted)


Ash plumes and explosions with ballistic ejecta continue during April-September 2018 with several lava flows and pyroclastic flows; five new vents after partial flank collapse

Reventador is one of the most active volcanoes in Ecuador. The active cone is situated in a horseshoe-shaped collapse crater that opens to the E. Typical activity consists of explosions that eject blocks onto the slopes and ash plumes, as well as occasional lava flows and pyroclastic flows. Activity has been elevated since 2002, with several breaks between eruptions during this time. Since 2002 there have been 637 volcanic ash activity reports indicating ash plumes, and 36 ash plumes have exceeded 3.1 km above the crater. This report summarizes eruptive activity for April through September 2018 and is based on Instituto Geofisico (IG-EPN) reports, Washington Volcano Ash Advisory Center (VAAC) reports, and various satellite data.

The activity at Reventador has had several broad levels of activity during this time: 'very explosive' during January to 21 April with up to 45 explosions per day; a period of reduced explosive activity from 22 April to 16 August with fewer than five explosive events per day; and 'very explosive' activity continued after 17 August. The activity produced frequent plumes, several lava flows out to 3 km from the vent, and pyroclastic flows. Incandescence was frequently observed at the crater throughout this period. A partial flank collapse occurred in April, resulting in five new vents within the new scarp on the W side. Incandescent blocks were frequently observed on the flanks, reaching down to 1 km from the crater and ash plumes were frequently observed with maximum heights of 1-3 km (table 10). The area was often concealed by cloud cover but incandescence was frequently noted when the summit was visible. Near-continuous activity was reported when the volcano was visible (figure 89).

Table 10. High levels of activity at Reventador during April-September 2018 were evident from the numbers of MODVOLC thermal alerts, days with reported ash emissions, and block avalanches. Clouds covering the volcano impacted observations of activity during most months. Compiled from IG-EPN daily reports, VAAC reports, and MODVOLC data.

Date MODVOLC alerts Cloudy days Days with ash emissions Plume heights above summit (m) Days with block avalanches Block avalanche runout distances (m)
Apr 2018 0 14 18 Less than 200 - over 1,000 10 200 - 800
May 2018 4 21 22 300 - 3,100 1 800
Jun 2018 0 21 22 300 - over 1,000 5 300 - 800
Jul 2018 0 30 20 200 - 2,500 7 100 - 1,000
Aug 2018 2 28 14 100 - over 1,000 4 600 - 1,000
Sep 2018 1 26 27 400 - over 1,000 4 300 - 600
Figure (see Caption) Figure 89. Chart summarizing monthly activity at Reventador during January 2017-September 2018 showing MODVOLC alerts (red), ash emissions (gray), and block avalanches (blue). The number of cloudy days (yellow) reduced the number of observed events during most months. Data courtesy of IG-EPN, compiled from daily reports and MODVOLC.

Near-continuous activity continued through April, with ash or gas-and-steam plumes observed on most days when weather permitted (figure 90). On 6 April a 600-m-high ash plume was accompanied by pyroclastic flows that traveled down multiple flanks (figure 91). Light ashfall was reported to the NE of Reventador on the night of 9 April after a 600-m-high ash plume and incandescent blocks were ejected. An overflight on 12 April observed short ash plumes up to 1.5 km above the crater accompanied by "cannon-shot" booms (figure 92), a pyroclastic flow, and hot avalanche deposits radiating from the crater out to 1.6 km (figures 93 and 94). Temperatures in the vent reached 355°C and the maximum detected pyroclastic flow deposit temperature was 150°C.

Figure (see Caption) Figure 90. Examples of plumes at Reventador with various concentrations of ash, and explosions ejecting incandescent blocks onto the flanks during April 2018. Webcam images courtesy of IG-EPN (April 2018 daily reports).
Figure (see Caption) Figure 91. Pyroclastic flows traveling down multiple flanks during an explosive event at Reventador on 6 April 2018. Courtesy if IG-EPN (6 April 2018 daily report).
Figure (see Caption) Figure 92. An ash plume at Reventador on 12 April 2018. Multiple Vulcanian ash plumes were observed during the monitoring overflight on this day. Courtesy of F. Naranjo, IG-EPN (10 May 2018 report).
Figure (see Caption) Figure 93. An aerial photograph of Reventador on 12 April 2018 showing fresh lighter-gray pyroclastic flow and ballistic-projectile deposits on most sides of the volcano. The deposits extended down to 800 m from the crater. Courtesy of F. Naranjo, IG-EPN (10 May 2018 report).
Figure (see Caption) Figure 94. Photographs and thermal images of hot pyroclastic flow deposits on Reventador. When these images were taken on 26 April 2018, temperatures of the deposits were up to 150°C. Beyond the pyroclastic flow deposits hot ballistic blocks are visible in the thermal images, and the 2017 lava flow is visible in the top photograph. Courtesy of S Vallejo, P Ramón, IR Image: M Almeida, IG-EPN (10 May 2018 report).

Continuous explosive activity in the second and third weeks of April caused a partial collapse of the western flank, including part of the summit (figure 95). The length and width of the resulting scarp was 400 x 200 m, and the maximum depth was 200 m. Within this collapse scarp, five vents had formed that were producing both effusive and explosive activity. A lava flow and pyroclastic flow deposits were observed below the collapse area. On 26 April an active lava flow was observed descending the W flank that was redirected towards the E once it reached the older collapse scarp wall (figure 96). The lava flow was active for around one month and had ceased by the time the flow was observed again during an overflight on 20 June. A thermal survey on 20 June detected temperatures within the vents ranging from 60-155°C. At the time of the survey, three out of five vents were active with either effusive or explosive activity.

Figure (see Caption) Figure 95. Photograph and thermal images of the western flank of the Reventador cone on 12 April 2018 (left images) and 20 June 2018 (right images). These images show the cone before and after the sector collapse that occurred mid-April as a result of continuous explosive activity. Five vents formed within this scarp, indicated in the 20 June images, which went on to produce explosive and effusive activity. Pyroclastic flow deposits and a lava flow are visible below the scarp in the 20 June images. Courtesy of M.F. Naranjo, S. Vallejo; thermal images: M. Almeida, S. Vallejo, IG-EPN (2018 Reventador annual report).
Figure (see Caption) Figure 96. Digital Elevation Model (DEM) of Reventador showing the distribution of the lava flows generated during April and May 2018. The northern flow (purple) has three dates showing the progress of the flow that correspond to the colored thermal images below. The NE-directed flow (orange) was generated in June 2017. Translated captions for the thermal images are as follows. 2018 04 26: The lava flow descended to the NW then it was directed towards the E by the crater wall. The maximum recorded temperature was 470°; thermal image by M. Almedia, IG-EPN. 2018 05 21: The lava flow front was advancing with four lobes; thermal image by S. Vallejo, IG-EPN. 2018 06 20: An aerial view of the NE flank with the flow inactive at the time of observation. The flow had bifurcated into two flow fronts; image by S. Vallejo Vargas, IG-EPN. Image courtesy of IG-EPN (2018 Reventador annual report).

Ash and gas-and-steam plumes continued through May with plumes reaching 3.1 km above the crater, accompanied by ballistic projectiles and hot avalanches that reached 800 m away from the crater on the flanks of the volcano. There were 12 reports of ashfall on 27 May in the provinces of Imbabura, Napo and Pichincha. On 27 May there were 12 reports of ashfall in the provinces of Imbabura (Antonio Ante, Otavalo), Napo (Quijos), and Pichincha (Cayambe, Pedro Moncayo, Quito), originating from a 3.1-km-high ash plume (figure 97).

Figure (see Caption) Figure 97. Volcanic ash samples from the 27 May 2018 Reventador ashfall event in Cayambe and Pomasqui. Top: Binocular microscope images of the ash samples showing finer ash in the Cayambe sample. The scales for these two images are 0.2 mm. Bottom: Scanning Electron Microscope (SEM) images of ash particles from the Pomasqui sample above. The images show crystals (cristal), vesicular scoria clasts (escoria), dense lava clasts (lava densa), glass (vidrio), and aggregates of fine ash that clumped together because of the humidity in the atmosphere (agregado). The scales for these four images are 50 microns. Courtesy of E. Gaunt, IG-EPN.

Detected thermal anomalies were less frequent from June through September (figure 98). Ash and gas-and-steam plumes continued through June, reaching over 1 km above the crater (figure 99). Light ashfall was reported in Azcásubi on 28 June. Five avalanches of incandescent blocks were recorded, extending 800 m from the crater. Through July, ash and gas-and-steam plumes reached a maximum height above the crater of 2.5 km. Four incandescent block avalanches were observed down to 1 km below the crater. Ashfall was reported on 2 July in the Cayambe sector and in the town of Juan Montalvo (figure 100). Light ashfall was also reported in Tababela and Puembo on 19 July.

Figure (see Caption) Figure 98. Log radiative power MIROVA plot of MODIS infrared data for the year ending 1 October 2018 showing a decrease in energy and frequency of anomalies detected at Reventador after June 2018. Courtesy of MIROVA.
Figure (see Caption) Figure 99. Examples of ash plumes and explosions ejecting incandescent blocks on to the flanks of Reventador during June 2018. Courtesy of IG-EPN (June 2018 daily activity reports).
Figure (see Caption) Figure 100. An ash plume at Reventador reached 3 km above the crater at 1130 local time on 2 July 2018. Ashfall from this plume was reported in the Cayambe sector and in the town of Juan Montalvo. Courtesy of ECU 911 Nueva Loja via IG-EPN (2 July 2018 report).

Similar activity continued through August and September, with ash and gas-and-steam plumes reaching over 1 km from the crater (figures 101 and 102). Four avalanches were noted in both August and September, with material reaching 1 km and 600 m, respectively. A Sentinel-2 thermal satellite image acquired on 25 August showed the new morphology of the crater after the April collapse, with two active vents at that time (figure 103).

Figure (see Caption) Figure 101. Examples of ash plumes and incandescent ballistic blocks on the flanks at Reventador during August 2018. Courtesy of IG-EPN (August 2018 daily activity reports).
Figure (see Caption) Figure 102. Examples of ash plumes with varying ash content and incandescent ballistic blocks on the flanks at Reventador during September 2018. Courtesy of IG-EPN (September 2018 daily activity reports).
Figure (see Caption) Figure 103. Sentinel-2 thermal satellite images of Reventador comparing the thermal signatures before and after the formation of the collapse scarp in April. These images show the central summit crater in April and August 2018 with two of the recently-formed vents. Courtesy of Sentinel-Hub Playground.

Geologic Background. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Information Contacts: Instituto Geofísico (IG-EPN), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec ); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sangeang Api (Indonesia) — November 2018 Citation iconCite this Report

Sangeang Api

Indonesia

8.2°S, 119.07°E; summit elev. 1912 m

All times are local (unless otherwise noted)


Ongoing crater activity and thermal anomalies during September 2017-October 2018

A significant increase in the number of thermal anomalies at Sangeang Api was recorded during February and June through mid-August 2017, along with a small Strombolian eruption in mid-July that generated an ash plume (BGVN 42:09). The high number of thermal anomalies continued through at least 20 October 2018. The current report summarizes activity between 1 September 2017 and 20 October 2018. The volcano is monitored by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and Darwin Volcanic Ash Advisory Centre (VAAC).

Based on a Volcano Observatory Notice for Aviation (VONA) from PVMBG, on 9 May 2018 a gas emission was observed at 1807 that rose to an altitude of 4,150 m and drifted W. Consequently, the Aviation Color Code was raised from unassigned to Yellow. Clear thermal satellite imagery the next day showed hot material traveling about 500 m SE out of the summit crater and continuing another 500 m down the E flank (figure 18).

Figure (see Caption) Figure 18. Sentinel-2 satellite image of Sangeang Api on 10 May 2018. This "Atmospheric penetration" view (bands 12, 11, and 8A) highlights hot material extending more than a kilometer from the vent in the summit crater to the SE and onto the E flank. Courtesy of Sentinel Hub.

Based on another VONA from PVMBG, an ash emission at 1338 on 15 October 2018 rose 250 m above the summit and drifted SW, W, and NW. The VONA noted that the ash emission possibly rose higher than what a ground observer had estimated. Seismic data was dominated by signals indicating emissions as well as local tectonic earthquakes. The Aviation Color Code was raised from Yellow to Orange.

During the reporting period, MODIS satellite instruments using the MODVOLC algorithm recorded thermal anomalies between 3 and 12 days per month, many of which had multiple pixels. October 2017 had the greatest number of days with hotspots (12), while the lowest number was recorded during December 2017 through February 2018 (3-4 days per month). The vast majority of anomalies issued from the summit; a few were along the E flanks. The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system, also based on analysis of MODIS data, recorded numerous hotspots during the previous 12 months through mid-October 2018, except for the second half of January 2018 (figure 19). Almost all recorded MIROVA anomalies were within 5 km of the volcano and of low to moderate radiative power.

Figure (see Caption) Figure 19. Thermal anomalies identified by the MIROVA system (Log Radiative Power) at Sangeang Api for the year ending 19 October 2018. Courtesy of MIROVA.

Geologic Background. Sangeang Api volcano, one of the most active in the Lesser Sunda Islands, forms a small 13-km-wide island off the NE coast of Sumbawa Island. Two large trachybasaltic-to-tranchyandesitic volcanic cones, Doro Api and Doro Mantoi, were constructed in the center and on the eastern rim, respectively, of an older, largely obscured caldera. Flank vents occur on the south side of Doro Mantoi and near the northern coast. Intermittent historical eruptions have been recorded since 1512, most of them during in the 20th century.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sarychev Peak (Russia) — November 2018 Citation iconCite this Report

Sarychev Peak

Russia

48.092°N, 153.2°E; summit elev. 1496 m

All times are local (unless otherwise noted)


Thermal anomalies, surface activity, and ash explosions during October-November 2017 and September-October 2018

Located on Matua Island in the central Kurile Islands, Russia, Sarychev Peak (figures 19 and 20) had a significant eruption in June-July 2009 (BGVN 34:06, 35:09). Prior to this, a 1946 eruption resulted in the crater with a diameter and depth of approximately 250 m, with steep, sometimes overhanging crater walls. The N crater wall may have collapsed after a 1960 eruption, based on eyewitness accounts. A 1976 eruption included strong emissions and lava flows which resulted in a crater diameter of approximately 200 m and a floor 50-70 m below the rim. The eruption on 11-16 June 2009 encompassed more than ten large explosions, resulting in pyroclastic flows and ash plumes. The area of island covered by the June 2009 pyroclastic flows was more than 8 km2 (BGVN 34:06). Monitoring reports come from the Kamchatkan Volcanic Eruption Response Team (KVERT) and the Sakhalin Island Volcanic Eruption Response Team (SVERT).

Figure (see Caption) Figure 19. Photo looking into the crater of Sarychev Peak from the crater rim on 27 June 2017. Courtesy of V. Gurianov, Institute of Volcanology and Seismology FEB, RAS, KVERT.
Figure (see Caption) Figure 20. Sentinel-2 satellite image (natural color, bands 4, 3, 2) of Sarychev Peak on 8 September 2017. Courtesy of Sentinel Hub Playground.

Thermal anomalies were noted by the NOAA Cooperative Institute for Meteorological Satellite Studies over a period of five hours on 14 October 2017 in satellite data from Terra MODIS, S-NPP VIIRS, and Himawari-8; a plume of unknown composition accompanied the anomaly. A smaller thermal anomaly was present on 12 October, but not seen the following day during favorable viewing conditions. Another thermal anomaly was reported by SVERT on 21 October; views on other days that week of 17-23 October were obscured by clouds. On 7 November gas emissions and an elongated area of snow melt and potential thermal signature was visible on the N flank of the volcano (figure 21). On 8 and 13 November steam emissions were reported by SVERT and cloud cover prevented additional observations.

Figure (see Caption) Figure 21. Sentinel-2 satellite images of Sarychev Peak on 7 November 2017. Top image (natural color, bands 4, 3, 2) shows a white plume rising from the summit crater and a dark area extending about 1.25 km NW on the snow-covered slopes. Bottom image (atmospheric penetration, bands 12, 11, 8A) shows hot areas (in orange) of volcano material near the summit within the dark area seen in visible imagery. Courtesy of Sentinel Hub Playground.

The volcano was usually cloud-covered after mid-November 2017 through mid-February 2018. A small white plume seen in Sentinel-2 imagery on 20 February 2018 was not accompanied by a noticeable thermal anomaly, and the island appeared completely snow-covered. No activity of any kind was seen on the next cloud-free images taken on 4 and 11 May 2018, when the summit crater was filled with snow.

KVERT noted in a September report that there had been a thermal anomaly periodically observed after 7 May 2018. Fumarolic plumes were visible on 5 and 18 June 2018 (figure 22). Thermal anomalies were present on 8 and 11-12 September. Moderate explosions were reported during 11-15 September 2018, with ash emissions rising 3-4 km. On 14 September ash plumes drifted as far as 120 km NNE and the Aviation Color Code was raised to Orange. Explosions on 17 September generated ash plumes that rose as high as 4.5 km and drifted 21 km NE. Additional ash plumes identified in satellite images drifted 265 km E during 17-18 September. The eruption continued through 21 September, and a thermal anomaly was again visible on 22 September.

Figure (see Caption) Figure 22. Fumarolic activity at Sarychev Peak on 18 June 2018. Courtesy of FEC SRC Planeta, Institute of Volcanology and Seismology FEB RAS, KVERT.

Based on Tokyo VAAC data and satellite images, KVERT reported that at 1330 on 10 October 2018 an ash plume reached 1.7-2 km altitude and drifted 95 km E. SVERT reported that on 15 October an ash plume rose to 2.1 km altitude and drifted 65-70 km E. KVERT reported that a thermal anomaly was also identified in satellite images on 15 October. No further activity was seen through the end of October.

Thermal anomalies identified in MODIS data by the MIROVA system during October 2016-October 2018 occurred intermittently during the summer months each year (figure 23). However, most of those events were low-power and located several kilometers from the crater, so the heat source is unclear.

Figure (see Caption) Figure 23. Thermal anomalies detected by the MIROVA system using MODIS data at Sarychev Peak for the year ending 18 October 2017 (top) and ending 24 October 2018 (bottom), plotted as log radiative power. Most of the events shown were located several kilometers from the summit crater. Courtesy of MIROVA.

Geologic Background. Sarychev Peak, one of the most active volcanoes of the Kuril Islands, occupies the NW end of Matua Island in the central Kuriles. The andesitic central cone was constructed within a 3-3.5-km-wide caldera, whose rim is exposed only on the SW side. A dramatic 250-m-wide, very steep-walled crater with a jagged rim caps the volcano. The substantially higher SE rim forms the 1496 m high point of the island. Fresh-looking lava flows, prior to activity in 2009, had descended in all directions, often forming capes along the coast. Much of the lower-angle outer flanks of the volcano are overlain by pyroclastic-flow deposits. Eruptions have been recorded since the 1760s and include both quiet lava effusion and violent explosions. Large eruptions in 1946 and 2009 produced pyroclastic flows that reached the sea.

Information Contacts: Sakhalin Volcanic Eruptions Response Team (SVERT), Institute of Marine Geology and Geophysics (IMG&G) Far East Division Russian Academy of Sciences (FED RAS), 1B Science St., Yuzhno-Sakhalinsk, 693022, Russia (URL: http://www.imgg.ru/); Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); NOAA, Cooperative Institute for Meteorological Satellite Studies (CIMSS), Space Science and Engineering Center (SSEC), University of Wisconsin-Madison, 1225 W. Dayton St. Madison, WI 53706, (URL: http://cimss.ssec.wisc.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sheveluch (Russia) — November 2018 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Thermal anomalies along with minor gas and steam emissions continue through October 2018

Volcanic activity at Sheveluch declined during the period of May through October 2018. This decline followed a lengthy cycle of eruptive activities which began in 1999, including pyroclastic flows, explosions, and lava dome growth, as previously reported through April 2018 (BGVN 43:05). According to the Kamchatka Volcanic Eruption Response Team (KVERT), during this time a thermal anomaly was detected in satellite imagery and two gas-and-steam events were reported in July and October 2018. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

KVERT reported that satellite data showed a plume of re-suspended ash up to 62 km to the SE of the volcano on 18 July 2018. Moderate gas and steam emissions rose from the volcano on 19-26 October 2018. Thermal anomalies were frequently reported by KVERT during May through October 2018. The MIROVA system detected intermittent low-power thermal anomalies during this time.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far East Division, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Ulawun (Papua New Guinea) — November 2018 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Ash plumes on 8 June, 21 September, and 5 October 2018

Typical activity at Ulawun consists of sporadic explosions with weak ash plumes. During 2017, sporadic explosions occurred between late June through early November with ash plumes rising no more than 3 km in altitude (BGVN 42:12). This report describes activity between January and September 2018.

According to the Darwin Volcanic Ash Advisory Centre (VAAC), a NOTAM (Notice to Airmen) stated that on 8 June 2018 an ash plume rose to an altitude of 2.1 km and drifted W. The Darwin VAAC also reported that a pilot observed an ash plume on 21 September 2018 rising to an altitude of 3.7 km and drifting W. Ash was not confirmed in satellite images, though weather clouds obscured views.

On 5 October 2018 the Darwin VAAC identified a steam-and-ash emission in satellite images rising to an altitude of 4.6 km and drifting WSW. It was also reported by ground observers. The Rabaul Volcano Observatory reported that during 1-12 October white, and sometimes light gray, emissions rose from the summit crater; seismicity was low.

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).