Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Aira (Japan) Ongoing explosions with ejecta and ash plumes, along with summit incandescence, during July-December 2019

Suwanosejima (Japan) Explosions, ash emissions, and summit incandescence in July-December 2019

Whakaari/White Island (New Zealand) Explosion producing an ash plume and pyroclastic surge resulted in fatalities and injuries on 9 December 2019

Barren Island (India) Thermal anomalies and small ash plumes during February-April 2019 and September 2019-January 2020

Kadovar (Papua New Guinea) Frequent gas and some ash emissions during May-December 2019 with some hot avalanches

Nyiragongo (DR Congo) Lava lake persists during June-November 2019

Ebeko (Russia) Frequent moderate explosions, ash plumes, and ashfall continue through November 2019

Nevado del Ruiz (Colombia) Intermittent ash plumes with significant gas and steam emissions during January 2016-December 2017

Sabancaya (Peru) Explosions, ash and SO2 plumes, thermal anomalies, and lava dome growth during June-November 2019

Karangetang (Indonesia) Lava flows, strong thermal anomalies, gas-and-steam emissions, and ash plumes during May-November 2019

Ulawun (Papua New Guinea) New vent, lava fountaining, lava flow, and ash plumes in late September-October 2019

Nyamuragira (DR Congo) Strong thermal anomalies and fumaroles within the summit crater during June-November 2019



Aira (Japan) — January 2020 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Ongoing explosions with ejecta and ash plumes, along with summit incandescence, during July-December 2019

Sakurajima is a highly active stratovolcano situated in the Aira caldera in southern Kyushu, Japan. Common volcanism for this recent eruptive episode since March 2017 includes frequent explosions, ash plumes, and scattered ejecta. Much of this activity has been focused in the Minamidake crater since 1955; the Showa crater on the E flank has had intermittent activity since 2006. This report updates activity during July through December 2019 with the primary source information from monthly reports by the Japan Meteorological Agency (JMA) and various satellite data.

During July to December 2019, explosive eruptions and ash plumes were reported multiple times per week by JMA. November was the most active, with 137 eruptive events, seven of which were explosive while August was the least active with no eruptive events recorded (table 22). Ash plumes rose between 800 m to 5.5 km above the crater rim during this reporting period. Large blocks of incandescent ejecta traveled as far as 1.7 km from the Minamidake crater during explosions in September through December. The Kagoshima Regional Meteorological Observatory (11 km WSW) reported monthly amounts of ashfall during each month, with a high of 143 g/m2 during October. Occasionally at night throughout this reporting period, crater incandescence was observed with a highly sensitive surveillance camera. All explosive activity originated from the Minamidake crater; the adjacent Showa crater produced mild thermal anomalies and gas-and-steam plumes.

Table 22. Monthly summary of eruptive events recorded at Sakurajima's Minamidake crater in the Aira caldera, July through December 2019. The number of events that were explosive in nature are in parentheses. No events were recorded at the Showa crater during this time. Ashfall is measured at the Kagoshima Local Meteorological Observatory (KLMO), 10 km W of Showa crater. Data courtesy of JMA (July to December 2019 monthly reports).

Month Ash emissions (explosive) Max plume height above crater Max ejecta distance from crater Total amount of ashfall (g/m2)
Jul 2019 9 (5) 3.8 km 1.1 km --
Aug 2019 -- 800 m -- 2
Sep 2019 32 (11) 3.4 km 1.7 km 115
Oct 2019 62 (41) 3.0 km 1.7 km 143
Nov 2019 137 (77) 5.5 km 1.7 km 69
Dec 2019 71 (49) 3.3 km 1.7 km 54

An explosion that occurred at 1044 on 4 July 2019 produced an ash plume that rose up to 3.2 km above the Minamidake crater rim and ejected material 1.1 km from the vent. Field surveys conducted on 17 and 23 July measured SO2 emissions that were 1,200-1,800 tons/day. Additional explosions between 19-22 July generated smaller plumes that rose to 1.5 km above the crater and ejected material 1.1 km away. On 28 July explosions at 1725 and 1754 produced ash plumes 3.5-3.8 km above the crater rim, which resulted in ashfall in areas N and E of Sakurajima (figure 86), including Kirishima City (20 km NE), Kagoshima Prefecture (30 km SE), Yusui Town (40 km N), and parts of the Kumamoto Prefecture (140 km NE).

Figure (see Caption) Figure 86. Photo of the Sakurajima explosion at 1725 on 28 July 2019 resulting in an ash plume rising 3.8 km above the crater (left). An on-site field survey on 29 July observed ashfall on roads and vegetation on the N side of the island (right). Photo by Moto Higashi-gun (left), courtesy of JMA (July 2019 report).

The month of August 2019 showed the least activity and consisted of mainly small eruptive events occurring up to 800 m above the crater; summit incandescence was observed with a highly sensitive surveillance camera. SO2 emissions were measured on 8 and 13 August with 1,000-2,000 tons/day, which was slightly greater than the previous month. An extensometer at the Arimura Observation Tunnel and an inclinometer at the Amida River recorded slight inflation on 29 August, but continuous GNSS (Global Navigation Satellite System) observations showed no significant changes.

In September 2019 there were 32 eruptive events recorded, of which 11 were explosions, more than the previous two months. Seismicity also increased during this month. An extensometer and inclinometer recorded inflation at the Minamidake crater on 9 September, which stopped after the eruptive events. On 16 September, an eruption at 0746 produced an ash plume that rose 2.8 km above the crater rim and drifted SW; a series of eruptive events followed from 0830-1110 (figure 87). Explosions on 18 and 20 September produced ash plumes that rose 3.4 km above the crater rim and ejecting material as far as 1.7 km from the summit crater on the 18th and 700 m on the 20th. Field surveys measured an increased amount of SO2 emissions ranging from 1,100 to 2,300 tons/day during September.

Figure (see Caption) Figure 87. Webcam image of an ash plume rising 2.8 km from the Minamidake crater at Sakurajima on 16 September 2019. Courtesy of Weathernews Inc.

Seismicity, SO2 emissions, and the number of eruptions continued to increase in October 2019, 41 of which were explosive. Field surveys conducted on 1, 11, and 15 October reported that SO2 emissions were 2,000-2,800 tons/day. An explosion at 0050 on 12 October produced an ash plume that traveled 1.7 km from the Minamidake crater. Explosions between 16 and 19 October produced an ash plume that rose up to 3 km above the crater rim (figure 88). The Japan Maritime Self-Defense Force 1st Air group observed gas-and-steam plumes rising from both the Minamidake and Showa craters on 25 October. The inflation reported from 16 September began to slow in late October.

Figure (see Caption) Figure 88. Photos taken from the E side of Sakurajima showing gas-and-steam emissions with some amount of ash rising from the volcano on 16 October 2019 after an explosion around 1200 that day (top). At night, summit incandescence is observed (bottom). Courtesy of Bradley Pitcher, Vanderbilt University.

November 2019 was the most active month during this reporting period with increased seismicity, SO2 emissions, and 137 eruptive events, 77 of which were explosive. GNSS observations indicated that inflation began to slow during this month. On 8 November, an explosion at 1724 produced an ash plume up to a maximum of 5.5 km above the crater rim and drifted E. This explosion ejected large blocks as far as 500-800 m away from the crater (figure 89). The last time plumes rose above 5 km from the vents occurred on 26 July 2016 at the Showa crater and on 7 October 2000 at the Minamidake crater. Field surveys on 8, 21, and 29 November measured increased SO2 emissions ranging from 2,600 to 3,600 tons/day. Eruptions between 13-19 November produced ash plumes that rose up to 3.6 km above the crater and ejected large blocks up 1.7 km away. An onsite survey on 29 November used infrared thermal imaging equipment to observe incandescence and geothermal areas near the Showa crater and the SE flank of Minamidake (figure 90).

Figure (see Caption) Figure 89. Photos of an ash plume rising 5.5 km above Sakurajima on 8 November 2019 and drifting E. Photo by Moto Higashi-gun (top left), courtesy of JMA (November 2019 report) and the Geoscientific Network of Chile.
Figure (see Caption) Figure 90. Webcam image of nighttime incandescence and gas-and-steam emissions with some amount of ash at Sakurajima on 29 November 2019. Courtesy of JMA (November 2019 report).

Volcanism, which included seismicity, SO2 emissions, and eruptive events, decreased during December 2019. Explosions during 4-10 December produced ash plumes that rose up to 2.6 km above the crater rim and ejected material up to 1.7 km away. Field surveys conducted on 6, 16, and 23 December measured SO2 emissions around 1,000-3,000 tons/day. On 24 December, an explosion produced an ash plume that rose to 3.3 km above the crater rim, this high for this month.

Sentinel-2 natural color satellite imagery showed dense ash plumes in late August 2019, early November, and through December (figure 91). These plumes drifted in different directions and rose to a maximum 5.5 km above the crater rim on 8 November.

Figure (see Caption) Figure 91. Natural color Sentinel-2 satellite images of Sakurajima within the Aira caldera from late August through December 2019 showed dense ash plumes rising from the Minamidake crater. Courtesy of Sentinel Hub Playground.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed intermittent thermal anomalies beginning in mid-August to early September 2019 after a nearly two-month hiatus (figure 92). Activity increased by early November and continued through December. Three Sentinel-2 thermal satellite images between late July and early October showed distinct thermal hotspots within the Minamidake crater, in addition to faint gas-and-steam emissions in July and September (figure 93).

Figure (see Caption) Figure 92. Thermal anomalies at Sakurajima during January-December 2019 as recorded by the MIROVA system (Log Radiative Power) started up in mid-August to early September after a two-month break and continued through December. Courtesy of MIROVA.
Figure (see Caption) Figure 93. Sentinel-2 thermal satellite images showing small thermal anomalies and gas-and-steam emissions (left and middle) at Sakurajima within the Minamidake crater between late July and early October 2019. All images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Weathernews Inc. (Twitter: @wni_jp, https://twitter.com/wni_jp, URL: https://weathernews.jp/s/topics/201608/210085/, photo posted at https://twitter.com/wni_jp/status/1173382407216652289); Bradley Pitcher, Vanderbilt University, Nashville. TN, USA (URL: https://bradpitcher.weebly.com/, Twitter: @TieDyeSciGuy, photo posted at https://twitter.com/TieDyeSciGuy/status/1185191225101471744); Geoscientific Network of Chile (Twitter: @RedGeoChile, https://twitter.com/RedGeoChile, Facebook: https://www.facebook.com/RedGeoChile/, photo posted at https://twitter.com/RedGeoChile/status/1192921768186515456).


Suwanosejima (Japan) — January 2020 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Explosions, ash emissions, and summit incandescence in July-December 2019

Suwanosejima, located south of Japan in the northern Ryukyu Islands, is an active andesitic stratovolcano that has had continuous activity since October 2004, typically producing ash plumes and Strombolian explosions. Much of this activity is focused within the Otake crater. This report updates information during July through December 2019 using monthly reports from the Japan Meteorological Agency (JMA), the Tokyo Volcanic Ash Advisory Center (VAAC), and various satellite data.

White gas-and-steam plumes rose from Suwanosejima on 26 July 2019, 30-31 August, 1-6, 10, and 20-27 September, reaching a maximum altitude of 2.4 km on 10 September, according to Tokyo VAAC advisories. Intermittent gray-white plumes were observed rising from the summit during October through December (figure 40).

Figure (see Caption) Figure 40. Surveillance camera images of white gas-and-steam emissions rising from Suwanosejima on 10 December 2019 (left) and up to 1.8 km above the crater rim on 28 December (right). At night, summit incandescence was also observed on 10 December. Courtesy of JMA.

An explosion that occurred at 2331 on 1 August 2019 ejected material 400 m from the crater while other eruptions on 3-6 and 26 August produced ash plumes that rose up to a maximum altitude of 2.1 km and drifted generally NW according to the Tokyo VAAC report. JMA reported eruptions and summit incandescence in September accompanied by white gas-and-steam plumes, but no explosions were noted. Eruptions on 19 and 29 October produced ash plumes that rose 300 and 800 m above the crater rim, resulting in ashfall in Toshima (4 km SW), according to the Toshima Village Office, Suwanosejima Branch Office. Another eruption on 30 October produced a similar gray-white plume rising 800 m above the crater rim but did not result in ashfall. Similar activity continued in November with eruptions on 5-7 and 13-15 November producing grayish-white plumes rising 900 m and 1.5 km above the crater rim and frequent crater incandescence. Ashfall was reported in Toshima Village on 19 and 20 November; the 20 November eruption ejected material 200 m from the Otake crater.

Field surveys on 14 and 18 December using an infrared thermal imaging system to the E of Suwanose Island showed hotspots around the Otake crater, on the N slope of the crater, and on the upper part of the E coastline. GNSS (Global Navigation Satellite Systems) observations on 15 and 17 December showed a slight change in the baseline length. After 2122 on 25-26 and 31 December, 23 eruptions, nine of which were explosive were reported, producing gray-white plumes that rose 800-1,800 m above the crater rim and ejected material up to 600 m from the Otake crater. JMA reported volcanic tremors occurred intermittently throughout this reporting period.

Incandescence at the summit crater was occasionally visible at night during July through December 2019, as recorded by webcam images and reported by JMA (figure 41). MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed weak thermal anomalies that occurred dominantly in November with little to no activity recorded between July and October (figure 42). Two Sentinel-2 thermal satellite images in early November and late December showed thermal hotspots within the summit crater (figure 43).

Figure (see Caption) Figure 41. Surveillance camera image of summit incandescence at Suwanosejima on 31 October 2019. Courtesy of JMA.
Figure (see Caption) Figure 42. Weak thermal anomalies at Suwanosejima during January-December 2019 as recorded by the MIROVA system (Log Radiative Power) dominantly occurred in mid-March, late May to mid-June, and November, with two hotspots detected in late September and late December. Courtesy of MIROVA.
Figure (see Caption) Figure 43. Sentinel-2 thermal satellite images showing small thermal anomalies (bright yellow-orange) within the Otake crater at Suwanosejima on 8 November 2019 (left) and faintly on 23 December 2019 behind clouds (right). Both images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Whakaari/White Island (New Zealand) — February 2020 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Explosion producing an ash plume and pyroclastic surge resulted in fatalities and injuries on 9 December 2019

Whakaari/White Island has been New Zealand's most active volcano since 1976. Located 48 km offshore, the volcano is a popular tourism destination with tours leaving the town of Whakatane with approximately 17,500 people visiting the island in 2018. Ten lives were lost in 1914 when part of the crater wall collapsed, impacting sulfur miners. More recently, a brief explosion at 1411 on 9 December 2019 produced an ash plume and pyroclastic surge that impacted the entire crater area. With 47 people on the island at the time, the death toll stood at 21 on 3 February 2019. At that time more patients were still in hospitals within New Zealand or their home countries.

The island is the summit of a large underwater volcano, with around 70% of the edifice below the ocean and rising around 900 m above sea level (figure 70). A broad crater opens to the ocean to the SE, with steep crater walls and an active Main Crater area to the NW rear of the crater floor (figure 71). Although the island is privately owned, GeoNet continuously monitors activity both remotely and with visits to the volcano. This Bulletin covers activity from May 2017 through December 2019 and is based on reports by GeoNet, the New Zealand Civil Defence Bay of Plenty Emergency Management Group, satellite data, and footage taken by visitors to the island.

Figure (see Caption) Figure 70. The top of the Whakaari/White Island edifice forms the island in the Bay of Plenty area, New Zealand, while 70% of the volcano is below sea level. Courtesy of GeoNet.
Figure (see Caption) Figure 71. This photo from 2004 shows the Main Crater area of Whakaari/White Island with the vent area indicated. The crater is an amphitheater shape with the crater floor distance between the vent and the ocean entry being about 700 m. The sediment plume begins at the area where tour boats dock at the island. Photo by Karen Britten, graphic by Danielle Charlton at University of Auckland; courtesy of GeoNet (11 December 2019 report).

Nearly continuous activity occurred from December 1975 to September 2000, including the formation of collapse and explosion craters producing ash emissions and explosions that impacted all of the Main Crater area. More recently, it has been in a state of elevated unrest since 2011. Renewed activity commenced with an explosive eruption on 5 August 2012 that was followed by the extrusion of a lava dome and ongoing phreatic explosions and minor ash emissions through March 2013. An ash cone was seen on 4 March 2013, and over the next few months the crater lake reformed. Further significant explosions took place on 20 August and 4, 8, and 11 October 2013. A landslide occurred in November 2015 with material descending into the lake. More recent activity on 27 April 2016 produced a short-lived eruption that deposited material across the crater floor and walls. A short period of ash emission later that year, on 13 September 2016, originated from a vent on the recent lava dome. Explosive eruptions occur with little to no warning.

Since 19 September 2016 the Volcanic Alert Level (VAL) was set to 1 (minor volcanic unrest) (figure 72). During early 2017 background activity in the crater continued, including active fumaroles emitting volcanic gases and steam from the active geothermal system, boiling springs, volcanic tremor, and deformation. By April 2017 a new crater lake had begun to form, the first since the April 2016 explosion when the lake floor was excavated an additional 13 m. Before this, there were areas where water ponded in depressions within the Main Crater but no stable lake.

Figure (see Caption) Figure 72. The New Zealand Volcanic Alert Level system up to date in February 2020. Courtesy of GeoNet.

Activity from mid-2017 through 2018. In July-August 2017 GeoNet scientists carried out the first fieldwork at the crater area since late 2015 to sample the new crater lake and gas emissions. The crater lake was significantly cooler than the past lakes at 20°C, compared to 30-70°C that was typical previously. Chemical analysis of water samples collected in July showed the lowest concentrations of most "volcanic elements" in the lake for the past 10-15 years due to the reduced volcanic gases entering the lake. The acidity remained similar to that of battery acid. Gas emissions from the 2012 dome were 114°C, which were over 450°C in 2012 and 330°C in 2016. Fumarole 0 also had a reduced temperature of 152°C, reduced from over 190°C in late 2016 (figure 73). The observations and measurements indicated a decline in unrest. Further visits in December 2017 noted relatively low-level unrest including 149°C gas emissions from fumarole 0, a small crater lake, and loud gas vents nearby (figures 74 and 75). By 27 November the lake had risen to 10 m below overflow. Analysis of water samples led to an estimate of 75% of the lake water resulting from condensing steam vents below the lake and the rest from rainfall.

Figure (see Caption) Figure 73. A GeoNet scientists conducting field work near Fumarole 0, an accessible gas vent on Whakaari/White Island in August 2017. Courtesy of GeoNet (23 August 2017 report).
Figure (see Caption) Figure 74. GeoNet scientists sample gas emissions from vents on the 2012 Whakaari/White Island dome. The red circle in the left image indicates the location of the scientists. Courtesy of GeoNet (23 August 2017 report).
Figure (see Caption) Figure 75. Active fumaroles and vents in the Main Crater of Whakaari/White Island including Fumarole 0 (top left). The crater lake formed in mid-2017 and gas emissions rise from surrounding vents (right). Courtesy of GeoNet (22 December 2017 report).

Routine fieldwork by GeoNet monitoring teams in early March 2018 showed continued low-level unrest and no apparent changes after a recent nearby earthquake swarm. The most notable change was the increase in the crater lake size, likely a response from recent high rainfall (figure 76). The water remained a relatively cool 27°C. Temperatures continued to decline at the 2012 dome vent (128°C) and Fumarole 0 (138°C). Spring and stream flow had also declined. Deformation was observed towards the Active Crater of 2-5 mm per month and seismicity remained low. The increase in lake level drowned gas vents along the lake shore resulting in geyser-like activity (figure 77). GeoNet warned that a new eruption could occur at any time, often without any useful warning.

In mid-April 2018 visitors reported loud sounds from the crater area as a result of the rising lake level drowning vents on the 2012 dome (in the western side of the crater) and resulting in steam-driven activity. There was no notable change in volcanic activity. The sounds stopped by July 2018 as the geothermal system adjusted to the rising water, up to 17 m below overfill and filling at a rate of about 2,000 m3 per day, rising towards more active vents (figure 78). A gas monitoring flight taken on 12 September showed a steaming lake surrounded by active fumaroles along the crater wall (figure 79).

Figure (see Caption) Figure 76. The increase in the Whakaari/White Island crater lake size in early March 2018 with gas plumes rising from vents on the other side. Courtesy of GeoNet (19 March 2018 report).
Figure (see Caption) Figure 77. The increasing crater lake level at Whakaari/White Island produced geyser-like activity on the lake shore in March 2018. Courtesy of Brad Scott, GeoNet.
Figure (see Caption) Figure 78. Stills taken from a drone video of the Whakaari/White Island Main Crater lake and active vents producing gas emissions. Courtesy of GeoNet.
Figure (see Caption) Figure 79. Photos taken during a gas monitoring flight with GNS Science at Whakaari/White Island show gas and steam emissions, and a steaming crater lake on 12 September 2018. Note the people for scale on the lower-right crater rim in the bottom photograph. Copyright of Ben Clarke, University of Leicester, used with permission.

Activity during April to early December 2019. A GeoNet volcanic alert bulletin in April 2019 reported that steady low-level unrest continued. The level of the lake had been declining since late January and was back down to 13 m below overflow (figure 80). The water temperature had increased to over 60°C due to the fumarole activity below the lake. Fumarole 0 remained steady at around 120-130°C. During May-June a seismic swarm was reported offshore, unrelated to volcanic activity but increasing the risk of landslides within the crater due to the shallow locations.

Figure (see Caption) Figure 80. Planet Labs satellite images from March 2018 to April 2019 show fluctuations in the Whakaari/White Island crater lake level. Image copyright 2019 Planet Labs, Inc.

On 26 June the VAL was raised to level 2 (moderate to heightened volcanic unrest) due to increased SO2 flux rising to historically high levels. An overflight that day detected 1,886 tons/day, nearly three times the previous values of May 2019, the highest recorded value since 2013, and the second highest since measurements began in 2003. The VAL was subsequently lowered on 1 July due to a reduction in detected SO2 emissions of 880 tons/day on 28 June and 693 tons/day on 29 June.

GeoNet reported on 26 September that there was an increase in steam-driven activity within the active crater over the past three weeks. This included small geyser-like explosions of mud and steam with material reaching about 10 m above the lake. This was not attributed to an increase in volcanic activity, but to the crater lake level rising since early August.

On 30 October an increase in background activity was reported. An increasing trend in SO2 gas emissions and volcanic tremor had been ongoing for several months and had reached the highest levels since 2016. This indicated to GeoNet that Whakaari/White Island might be entering a period where eruptive activity was more likely. There were no significant changes in other monitoring parameters at this time and fumarole activity continued (figure 81).

Figure (see Caption) Figure 81. A webcam image taken at 1030 on 30 October 2019 from the crater rim shows the Whakaari/White Island crater lake to the right of the amphitheater-shaped crater and gas-and-steam plumes from active fumaroles. Courtesy of GeoNet.

On 18 November the VAL was raised to level 2 and the Aviation Colour Code was raised to Yellow due to further increase in SO2 emissions and volcanic tremor. Other monitoring parameters showed no significant changes. On 25 November GeoNet reported that moderate volcanic unrest continued but with no new changes. Gas emissions remained high and gas-driven ejecta regularly jetting material a few meters into the air above fumaroles in the crater lake (figure 82).

Figure (see Caption) Figure 82. A webcam image from the Whakaari/White Island crater rim shows gas-driven ejecta rising above a fumarole within the crater lake on 22 November 2019. Courtesy of GeoNet.

GeoNet reported on 3 December that moderate volcanic unrest continued, with increased but variable explosive gas and steam-driven jetting, with stronger events ejecting mud 20-30 m into the air and depositing mud around the vent area. Gas emissions and volcanic tremor remained elevated and occasional gas smells were reported on the North Island mainland depending on wind direction. The crater lake water level remained unchanged. Monitoring parameters were similar to those observed in 2011-2016 and remained within the expected range for moderate volcanic unrest.

Eruption on 9 December 2019. A short-lived eruption occurred at 1411 on 9 December 2019, generating a steam-and-ash plume to 3.6 km and covering the entire crater floor area with ash. Video taken by tourists on a nearby boat showed an eruption plume composed of a white steam-rich portion, and a black ash-rich ejecta (figure 83). A pyroclastic surge moved laterally across the crater floor and up the inner crater walls. Photos taken soon after the eruption showed sulfur-rich deposits across the crater floor and crater walls, and a helicopter that had been damaged and blown off the landing pad (figure 84). This activity caused the VAL to be raised to 4 (moderate volcanic eruption) and the Aviation Colour Code being raised to Orange.

Figure (see Caption) Figure 83. The beginning of the Whakaari/White Island 9 December 2019 eruption viewed from a boat that left the island about 20-30 minutes prior. Top: the steam-rich eruption plume rising above the volcano and a pyroclastic surge beginning to rise over the crater rim. Bottom: the expanded steam-and-ash plume of the pyroclastic surge that flowed over the crater floor to the ocean. Copyright of Michael Schade, used with permission.
Figure (see Caption) Figure 84. This photo of Whakaari/White Island taken after the 9 December 2019 eruption at around 1424 shows ash and sediment coating the crater floor and walls. The helicopter in this image was blown off the landing pad and damaged during the eruption. Copyright of Michael Schade, used with permission.

A steam plume was visible in a webcam image taken at 1430 from Whakatane, 21 minutes after the explosion (figure 85). Subsequent explosions occurred at 1630 and 1749. Search-and-Rescue teams reached the island after the eruption and noted a very strong sulfur smell that was experienced through respirators. They experienced severe stinging of any exposed skin that came in contact with the gas, and were left with sensitive skin and eyes, and sore throats. Later in the afternoon the gas-and-steam plume continued and a sediment plume was dispersing from the island (figure 86). The VAL was lowered to level 3 (minor volcanic eruption) at 1625 that day; the Aviation Colour Code remained at Orange.

Figure (see Caption) Figure 85. A view of Whakaari/White Island from Whakatane in the North Island of New Zealand. Left: there is no plume visible at 1410 on 9 December 2019, one minute before the eruption. Right: A gas-and-steam plume is visible 21 minutes after the eruption. Courtesy of GeoNet.
Figure (see Caption) Figure 86. A gas-and-steam plume rises from Whakaari/White Island on the afternoon of 9 December 2019 as rescue teams visit the island. A sediment plume in the ocean is dispersing from the island. Courtesy of Auckland Rescue Helicopter Trust.

During or immediately after the eruption an unstable portion of the SW inner crater wall, composed of 1914 landslide material, collapsed and was identified in satellite radar imagery acquired after the eruption. The material slid into the crater lake area and left a 12-m-high scarp. Movement in this area continued into early January.

Activity from late 2019 into early 2020. A significant increase in volcanic tremor began at around 0400 on 11 December (figure 87). The increase was accompanied by vigorous steaming and ejections of mud in several of the new vents. By the afternoon the tremor was at the highest level seen since the 2016 eruption, and monitoring data indicated that shallow magma was driving the increased unrest.

Figure (see Caption) Figure 87. This RSAM (Real-Time Seismic Amplitude) time series plot represents the energy produced at Whakaari/White Island from 11 November to 11 December 2019 with the Volcanic Activity Levels and the 9 December eruption indicated. The plot shows the sharp increase in seismic energy during 11 December. Courtesy of GeoNet (11 December 2019 report).

The VAL was lowered to 2 on the morning of 12 December to reflect moderate to heightened unrest as no further explosive activity had occurred since the event on the 9th. Volcanic tremor was occurring at very high levels by the time a bulletin was released at 1025 that day. Gas emissions increased since 10 January, steam and mud jetting continued, and the situation was interpreted to be highly volatile. The Aviation Colour Code remained at Orange. Risk assessment maps released that day show the high-risk areas as monitoring parameters continued to show an increased likelihood of another eruption (figure 88).

Figure (see Caption) Figure 88. Risk assessment maps of Whakaari/White Island show the increase in high-risk areas from 2 December to 12 December 2019. Courtesy of GeoNet (12 December 2019 report).

The volcanic activity bulletin for 13 December reported that volcanic tremor remained high, but had declined overnight. Vigorous steam and mud jetting continuing at the vent area. Brief ash emission was observed in the evening with ashfall restricted to the vent area. The 14 January bulletin reported that volcanic tremor had declined significantly over night, and nighttime webcam images showed a glow in the vent area due to high heat flow.

Aerial observations on 14 and 15 December revealed steam and gas emissions continuing from at least three open vents within a 100 m2 area (figure 89). One vent near the back of the crater area was emitting transparent, high-temperature gas that indicated that magma was near the surface, and produced a glow registered by low-light cameras (figure 90). The gas emissions had a blue tinge that indicated high SO2 content. The area that once contained the crater lake, 16 m below overflow before the eruption, was filled with debris and small isolated ponds mostly from rainfall, with different colors due to the water reacting with the eruption deposits. The gas-and-steam plume was white near the volcano but changed to a gray-brown color as it cooled and moved downwind due to the gas content (figure 91). On 15 December the tremor remained at low levels (figure 92).

Figure (see Caption) Figure 89. The Main Crater area of Whakaari/White Island showing the active vent area and gas-and-steam emissions on 15 December 2019. Gas emissions were high within the circled area. Before the eruption a few days earlier this area was partially filled by the crater lake. Courtesy of GeoNet (15 December 2019 report).
Figure (see Caption) Figure 90. A low-light nighttime camera at Whakaari/White Island imaged "a glow" at a vent within the active crater area on 13 December 2019. This glow is due to high-temperature gas emissions and light from external sources like the moon. Courtesy of GeoNet (15 December 2019 report).
Figure (see Caption) Figure 91. A gas-and-steam plume at Whakaari/White Island on 15 December 2019 is white near the crater and changes to a grey-brown color downwind due to the gas content. Courtesy of GeoNet (15 December 2019 report).
Figure (see Caption) Figure 92. The Whakaari/White Island seismic drum plot showing the difference in activity from 12 December (top) to 15 December (bottom). Courtesy of GeoNet (15 December 2019 report).

On 19 December tremor remained low (figure 93) and gas and steam emission continued. Overflight observations confirmed open vents with one producing temperatures over 650°C (figure 94). SO2 emissions remained high at around 15 kg/s, slightly lower than the 20 kg/s detected on 12 December. Small amounts of ash were produced on 23 and 26 December due to material entering the vents during erosion.

Figure (see Caption) Figure 93. This RSAM (Real-Time Seismic Amplitude) time series plot represents the energy produced at Whakaari/White Island from 1 November to mid-December 2019. The Volcanic Alert Levels and the 9 December eruption are indicated. Courtesy of GeoNet.
Figure (see Caption) Figure 94. A photograph and thermal infrared image of the Whakaari/White Island crater area on 19 December 2019. The thermal imaging registered temperatures up to 650°C at a vent emitting steam and gas. Courtesy of GeoNet.

The Aviation Colour Code was reduced to Yellow on 6 January 2020 and the VAL remained at 2. Strong gas and steam emissions continued from the vent area through early January and the glow persisted in nighttime webcam images. Short-lived episodes of volcanic tremor were recorded between 8-10 January and were accompanied by minor explosions. A 15 January bulletin reported that the temperature at the vent area remained very hot, up to 440°C, and SO2 emissions were within normal post-eruption levels.

High temperatures were detected within the vent area in Sentinel-2 thermal data on 6 and 16 January (figure 95). Lava extrusion was confirmed within the 9 December vents on 20 January. Airborne SO2 measurements on that day recorded continued high levels and the vent temperature was over 400°C. Observations on 4 February showed that no new lava extrusion had occurred, and gas fluxes were lower than two weeks ago, but still elevated. The temperatures measured in the crater were 550-570°C and no further changes to the area were observed.

Figure (see Caption) Figure 95. Sentinel-2 thermal infrared satellite images show elevated temperatures in the 9 December 2019 vent area on Whakaari/White Island. False color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: New Zealand GeoNet Project, a collaboration between the Earthquake Commission and GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.geonet.org.nz/); GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.gns.cri.nz/); Bay of Plenty Emergency Management Group Civil Defense, New Zealand (URL: http://www.bopcivildefence.govt.nz/); Auckland Rescue Helicopter Trust, Auckland, New Zealand (URL: https://www.rescuehelicopter.org.nz/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/); Ben Clarke, The University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom (URL: https://le.ac.uk/geology, Twitter: https://twitter.com/PyroclasticBen); Michael Schade, San Francisco, USA (URL: https://twitter.com/sch).


Barren Island (India) — February 2020 Citation iconCite this Report

Barren Island

India

12.278°N, 93.858°E; summit elev. 354 m

All times are local (unless otherwise noted)


Thermal anomalies and small ash plumes during February-April 2019 and September 2019-January 2020

Barren Island is a remote stratovolcano located east of India in the Andaman Islands. Its most recent eruptive episode began in September 2018 and has included lava flows, explosions, ash plumes, and lava fountaining (BGVN 44:02). This report updates information from February 2019 through January 2020 using various satellite data as a primary source of information.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed intermittent thermal anomalies within 5 km of the summit from mid-February 2019 through January 2020 (figure 41). There was a period of relatively low to no discernible activity between May to September 2019. The MODVOLC algorithm for MODIS thermal anomalies in comparison with Sentinel-2 thermal satellite imagery and Suomi NPP/VIIRS sensor data, registered elevated temperatures during late February 2019, early March, sparsely in April, late October, sparsely in November, early December, and intermittently in January 2020 (figure 42). Sentinel-2 thermal satellite imagery shows these thermal hotspots differing in strength from late February to late January 2020 (figure 43). The thermal anomalies in these satellite images are occasionally accompanied by ash plumes (25 February 2019, 23 October 2019, and 21 January 2020) and gas-and-steam emissions (26 April 2019).

Figure (see Caption) Figure 41. Intermittent thermal anomalies at Barren Island for 20 February 2019 through January 2020 occurred dominantly between late March to late April 2019 and late September 2019 through January 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 42. Timeline summary of observed activity at Barren Island from February 2019 through January 2020. For Sentinel-2, MODVOLC, and VIIRS data, the dates indicated are when thermal anomalies were detected. White areas indicated no activity was observed, which may also be due to meteoric clouds. Data courtesy of Darwin VAAC, Sentinel Hub Playground, HIGP, and NASA Worldview using the "Fire and Thermal Anomalies" layer.
Figure (see Caption) Figure 43. Sentinel-2 thermal images show ash plumes, gas-and-steam emissions, and thermal anomalies (bright yellow-orange) at Barren Island during February 2019-January 2020. The strongest thermal signature was observed on 23 October while the weakest one is observed on 26 January. Sentinel-2 False color (bands 12, 11, 4) images courtesy of Sentinel Hub Playground.

The Darwin Volcanic Ash Advisory Center (VAAC) reported ash plumes rising from the summit on 7, 14, and 16 March 2019. The maximum altitude of the ash plume occurred on 7 March, rising 1.8 km altitude, drifting W and NW and 1.2 km altitude, drifting E and ESE, based on observations from Himawari-8. The VAAC reports for 14 and 16 March reported the ash plumes rising 0.9 km and 1.2 km altitude, respectively drifting W and W.

Geologic Background. Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S volcanic arc extending between Sumatra and Burma (Myanmar). It is the emergent summit of a volcano that rises from a depth of about 2250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the west, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. Historical eruptions have changed the morphology of the pyroclastic cone in the center of the caldera, and lava flows that fill much of the caldera floor have reached the sea along the western coast.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/).


Kadovar (Papua New Guinea) — January 2020 Citation iconCite this Report

Kadovar

Papua New Guinea

3.608°S, 144.588°E; summit elev. 365 m

All times are local (unless otherwise noted)


Frequent gas and some ash emissions during May-December 2019 with some hot avalanches

Kadovar is an island volcano north of Papua New Guinea and northwest of Manam. The first confirmed historical activity began in January 2018 and resulted in the evacuation of residents from the island. Eruptive activity through 2018 changed the morphology of the SE side of the island and activity continued through 2019 (figure 36). This report summarizes activity from May through December 2019 and is based largely on various satellite data, tourist reports, and Darwin Volcanic Ash Advisory Center (VAAC) reports.

Figure (see Caption) Figure 36. The morphological changes to Kadovar from 2017 to June 2019. Top: the vegetated island has a horseshoe-shaped crater that opens towards the SE; the population of the island was around 600 people at this time. Middle: by May 2018 the eruption was well underway with an active summit crater and an active dome off the east flank. Much of the vegetation has been killed and ashfall covers a lot of the island. Bottom: the bay below the SE flank has filled in with volcanic debris. The E-flank coastal dome is no longer active, but activity continues at the summit. PlanetScope satellite images copyright Planet Labs 2019.

Since this eruptive episode began a large part of the island has been deforested and has undergone erosion (figure 37). Activity in early 2019 included regular gas and steam emissions, ash plumes, and thermal anomalies at the summit (BGVN 44:05). On 15 May an ash plume originated from two vents at the summit area and dispersed to the east. A MODVOLC thermal alert was also issued on this day, and again on 17 May. Elevated temperatures were detected in Sentinel-2 thermal satellite data on 20, 21, and 30 May (figure 38), with accompanying gas-and-steam plumes dispersing to the NNW and NW. On 30 May the area of elevated temperature extended to the SE shoreline, indicating an avalanche of hot material reaching the water.

Figure (see Caption) Figure 37. The southern flank of Kadovar seen here on 13 November 2019 had been deforested by eruptive activity and erosion had produced gullies down the flanks. Copyrighted photo by Chrissie Goldrick, used with permission.
Figure (see Caption) Figure 38. Sentinel-2 thermal satellite images show elevated temperatures at the summit area, and down to the coast in the top image. Gas-and-steam plumes are visible dispersing towards the NW. Sentinel-2 false color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel-Hub Playground.

Throughout June cloud-free Sentinel-2 thermal satellite images showed elevated temperatures at the summit area and extending down the upper SE flank (figure 38). Gas-and-steam plumes were persistent in every Sentinel-2 and NASA Suomi NPP / VIIRS (Visible Infrared Imaging Radiometer Suite) image. MODVOLC thermal alerts were issued on 4 and 9 June. Similar activity continued through July with gas-and-steam emissions visible in every cloud-free satellite image. Thermal anomalies appeared weaker in late-July but remained at the summit area. An ash plume was imaged on 17 July by Landsat 8 with a gas-and-ash plume dispersing to the west (figure 39). Thermal anomalies continued through August with a MODVOLC thermal alert issued on the 14th. Gas emissions also continued and a Volcano Observatory Notice for Aviation (VONA) was issued on the 19th reporting an ash plume to an altitude of 1.5 km and drifting NW.

Figure (see Caption) Figure 39. An ash plume rising above Kadovar and a gas plume dispersing to the NW on 17 July 2019. Truecolor pansharpened Landsat 8 satellite image courtesy of Sentinel Hub Playground.

An elongate area extending from the summit area to the E-flank coastal dome appears lighter in color in a 7 September Sentinel-2 natural color satellite image, and as a higher temperature area in the correlating thermal bands, indicating a hot avalanche deposit. These observations along with the previous avalanche, persistent elevated summit temperatures, and persistent gas and steam emissions from varying vent locations (figure 40) suggests that the summit dome has remained active through 2019.

Figure (see Caption) Figure 40. Sentinel-2 visible and thermal satellite images acquired on 7 September 2019 show fresh deposits down the east flank of Kadovar. They appear as a lighter colored area in visible, and show as a hot area (orange) in thermal data. Sentinel-2 natural color (bands 4, 3, 2) and false color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel-Hub Playground.

Thermal anomalies and emissions continued through to the end of 2019 (figure 41). A tour group witnessed an explosion producing an ash plume at around 1800 on 13 November (figure 42). While the ash plume erupted near-vertically above the island, a more diffuse gas plume rose from multiple vents on the summit dome and dispersed at a lower altitude.

Figure (see Caption) Figure 41. The summit area of Kadovar emitting gas-and-steam plumes in August, September, and November 2019. The plumes are persistent in satellite images throughout May through December and there is variation in the number and locations of the source vents. PlanetScope satellite images copyright Planet Labs 2019.
Figure (see Caption) Figure 42. An ash plume and a lower gas plume rise during an eruption of Kadovar on 13 November 2019. The summit lava dome is visibly degassing to produce the white gas plume. Copyrighted photos by Chrissie Goldrick, used with permission.

While gas plumes were visible throughout May-December 2019 (figure 43), SO2 plumes were difficult to detect in NASA SO2 images due to the activity of nearby Manam volcano. The MIROVA thermal detection system shows continued elevated temperatures through to early December, with an increase during May-June (figure 44). Sentinel-2 thermal images showed elevated temperatures through to the end of December but at a lower intensity than previous months.

Figure (see Caption) Figure 43. This photo of the southeast side Kadovar on 13 November 2019 shows a persistent low-level gas plume blowing towards the left and a more vigorous plume is visible near the crater. This is an example of the persistent plume visible in satellite imagery throughout July-December 2019. Copyrighted photo by Chrissie Goldrick, used with permission.
Figure (see Caption) Figure 44. The MIROVA plot of radiative power at Kadovar shows thermal anomalies throughout 2019 with some variations in frequency. Note that while the black lines indicate that the thermal anomalies are greater than 5 km from the vent, the designated summit location is inaccurate so these are actually a the summit crater and on the E flank. Courtesy of MIROVA.

Geologic Background. The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the andesitic volcano, filling an arcuate landslide scarp open to the south; submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. A period of heightened thermal phenomena took place in 1976. An eruption began in January 2018 that included lava effusion from vents at the summit and at the E coast.

Information Contacts: Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Planet Labs, Inc. (URL: https://www.planet.com/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Worldview (URL: https://worldview.earthdata.nasa.gov); Chrissie Goldrick, Australian Geographic, Level 7, 54 Park Street, Sydney, NSW 2000, Australia (URL: https://www.australiangeographic.com.au/).


Nyiragongo (DR Congo) — December 2019 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Lava lake persists during June-November 2019

Nyiragongo is a stratovolcano with a 1.2 km-wide summit crater containing an active lava lake that has been present since at least 1971. It is located the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo, part of the western branch of the East African Rift System. Typical volcanism includes strong and frequent thermal anomalies, primarily due to the lava lake, incandescence, gas-and-steam plumes, and seismicity. This report updates activity during June through November 2019 with the primary source information from monthly reports by the Observatoire Volcanologique de Goma (OVG) and satellite data.

In the July 2019 monthly report, OVG stated that the lava lake level had dropped during the month, with incandescence only visible at night (figure 68). In addition, the small eruptive cone within the crater, which has been active since 2014, decreased in activity during this timeframe. A MONUSCO (United Nations Stabilization Mission in the Democratic Republic of the Congo) helicopter overflight took photos of the lava lake and observed that the level had begun to rise on 27 July. Seismicity was relatively moderate throughout this reporting period; however, on 9-16 July and 21 August strong seismic swarms were recorded.

Figure (see Caption) Figure 68. Webcam images of Nyiragongo on 20 July 2019 where incandescence is not visible during the day (left) but is observed at night (right). Incandescence is accompanied by gas-and-steam emissions. Courtesy of OVG.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data continued to show frequent and strong thermal anomalies within 5 km of the crater summit through November 2019 (figure 69). Similarly, the MODVOLC algorithm reported almost daily thermal hotspots (more than 600) within the summit crater between June 2019 through November. These data are corroborated with Sentinel-2 thermal satellite imagery and a photo from OVG on 19 December 2019 showing the active lava lake (figures 70 and 71).

Figure (see Caption) Figure 69. Thermal anomalies at Nyiragongo from 3 January through November 2019 as recorded by the MIROVA system (Log Radiative Power) were frequent and strong. Courtesy of MIROVA.
Figure (see Caption) Figure 70. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) showed ongoing thermal activity (bright yellow-orange) at Nyiragongo during June through November 2019. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 71. Photo of the active lava lake in the summit crater at Nyiragongo on 19 December 2019. Incandescence is accompanied by a gas-and-steam plume. Courtesy of OVG via Charles Balagizi.

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Charles Balagizi (Twitter: @CharlesBalagizi, https://twitter.com/CharlesBalagizi).


Ebeko (Russia) — December 2019 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Frequent moderate explosions, ash plumes, and ashfall continue through November 2019

Activity at Ebeko includes frequent explosions that have generated ash plumes reaching altitudes of 1.5-6 km over the last several years, with the higher altitudes occurring since mid-2018 (BGVN 43:03, 43:06, 43:12, 44:07). Ash frequently falls in Severo-Kurilsk (7 km ESE), which is monitored by the Kamchatka Volcanic Eruptions Response Team (KVERT). This activity continued during June through November 2019; the Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Explosive activity during December 2018 through November 2019 often sent ash plumes to altitudes between 2.2 to 4.5 km, or heights of 1.1 to 3.4 km above the crater (table 8). Eruptions since 1967 have originated from the northern crater of the summit area (figure 20). Webcams occasionally captured ash explosions, as seen on 27 July 2019(figure 21). KVERT often reported the presence of thermal anomalies; particularly on 23 September 2019, a Sentinel-2 thermal satellite image showed a strong thermal signature at the crater summit accompanied by an ash plume (figure 22). Ashfall is relatively frequent in Severo-Kurilsk (7 km ESE) and can drift in different direction based on the wind pattern, which can be seen in satellite imagery on 30 October 2019 deposited NE and SE from the crater(figure 23).

Table 8. Summary of activity at Ebeko, December 2018-November 2019. S-K is Severo-Kurilsk (7 km ESE of the volcano). TA is thermal anomaly in satellite images. Data courtesy of KVERT.

Date Plume Altitude (km) Plume Distance Plume Directions Other Observations
30 Nov-07 Dec 2018 3.6 -- E Explosions. Ashfall in S-K on 1, 4 Dec.
07-14 Dec 2018 3.5 -- E Explosions.
25 Jan-01 Feb 2019 2.3 -- -- Explosions. Ashfall in S-K on 27 Jan.
02-08 Feb 2019 2.3 -- -- Explosions. Ashfall in S-K on 4 Feb.
08-15 Feb 2019 2.5 -- -- Explosions. Ashfall in S-K on 11 Feb.
15-22 Feb 2019 3.6 -- -- Explosions.
22-26 Feb 2019 2.5 -- -- Explosions. Ashfall in S-K on 23-26 Feb.
01-02, 05 Mar 2019 -- -- -- Explosions. Ashfall in S-K on 1, 5 Mar.
08-10 Mar 2019 4 30 km ENE Explosions. Ashfall in S-K on 9-10 Mar.
15-19, 21 Mar 2019 4.5 -- -- Explosions. Ashfall in S-K on 15-16, 21 Mar.
22, 24-25, 27-28 Mar 2019 4.2 -- -- Explosions. Ashfall in S-K on 24-25, 27 Mar.
29-31 Mar, 01, 04 Apr 2019 3.2 -- -- Explosions. Ashfall in S-K on 31 Mar. TA on 31 Mar.
09 Apr 2019 2.2 -- -- Explosions.
12-15 Apr 2019 3.2 -- -- Explosions. TA on 13 Apr.
21-22, 24 Apr 2019 -- -- -- Explosions.
26 Apr-03 May 2019 3 -- -- Explosions.
04, 06-07 May 2019 3.5 -- -- Explosions. TA on 6 May.
12-13 May 2019 2.5 -- -- Explosions. TA 12-13 May.
16-20 May 2019 2.5 -- -- Explosions. TA on 16-17 May.
25-28 May 2019 3 -- -- Explosions. TA on 27-28 May.
03 Jun 2019 3 -- E Explosions.
12 Jun 2019 -- -- -- TA.
14-15 Jun 2019 2.5 -- NW, NE Explosions.
21-28 Jun 2019 -- -- -- TA on 23 June.
28 Jun-05 Jul 2019 4.5 -- Multiple Explosions. TA on 29 Jun, 1 Jul.
05-12 Jul 2019 3.5 -- S Explosions. TA on 11 Jul.
15-16 Jul 2019 2 -- S, SE Explosions. TA on 13-16, 18 Jul.
20-26 Jul 2019 4 -- Multiple Explosions. TA on 18, 20, 25 Jul
25-26, 29 Jul, 01 Aug 2019 2.5 -- Multiple Explosions.
02, 04 Aug 2019 3 -- SE Explosions. TA on 2, 4 Aug.
10-16 Aug 2019 3 -- SE Explosions. TA on 10, 12 Aug.
17-23 Aug 2019 3 -- SE Explosions. TA on 16 Aug.
23, 27-28 Aug 2019 3 -- E Explosions. TA on 23 Aug.
30-31 Aug, 03-05 Sep 2019 3 -- E, SE Explosions on 30 Aug, 3-5 Sep. TA on 30-31 Aug.
07-13 Sep 2019 3 -- S, SE, N Explosions. Ashfall in S-K on 6 Sep. TA on 8 Sep.
13-15, 18 Sep 2019 2.5 -- E Explosions. TA on 15 Sep.
22-23 Sep 2019 3 -- E, NE Explosions. Ashfall in S-K.
27 Sep-04 Oct 2019 4 -- SE, E, NE Explosions.
07-08, 10 Oct 2019 2.5 -- E, NE Explosions. Ashfall in S-K on 4-5 Oct. Weak TA on 8 Oct.
11-18 Oct 2019 4 -- NE Explosions. Ashfall in S-K on 15 Oct. Weak TA on 12 Oct.
18, 20-21, 23 Oct 2019 3 -- N, E, SE Explosions. Weak TA on 20 Oct.
25-26, 29-30 Oct 2019 2.5 -- E, NE Explosions. Weak TA on 29 Oct.
02-06 Nov 2019 3 -- N, E, SE Explosions.
11-12, 14 Nov 2019 3 -- E, NE Explosions.
15-17, 20 Nov 2019 3 -- SE, NE Explosions.
22-23, 28 Nov 2019 2.5 -- SE, E Explosions. Ashfall in S-K on 23 Nov.
Figure (see Caption) Figure 20. Satellite image showing the summit crater complex at Ebeko, July 2019. Monthly mosaic image for July 2019, copyright 2019 Planet Labs, Inc.
Figure (see Caption) Figure 21. Webcam photo of an explosion and ash plume at Ebeko on 27 July 2019. Videodata by IMGG FEB RAS and KB GS RAS (color adjusted and cropped); courtesy of Institute of Volcanology and Seismology FEB RAS, KVERT.
Figure (see Caption) Figure 22. Satellite images showing an ash explosion from Ebeko on 23 September 2019. Top image is in natural color (bands 4, 3, 2). Bottom image is using "Atmospheric Penetration" rendering (bands 12, 11, 8A) to show a thermal anomaly in the northern crater visible around the rising plume. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 23. A satellite image of Ebeko from Sentinel-2 (LC1 natural color, bands 4, 3, 2) on 30 October 2019 showing previous ashfall deposits on the snow going in multiple directions. Courtesy of Sentinel Hub Playground.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data detected four low-power thermal anomalies during the second half of July, and one each in the months of June, August, and October; no activity was recorded in September or November MODVOLC thermal alerts observed only one thermal anomaly between June through November 2019.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Nevado del Ruiz (Colombia) — December 2019 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Intermittent ash plumes with significant gas and steam emissions during January 2016-December 2017

Nevado del Ruiz is a glaciated volcano in Colombia (figure 86). It is known for the 13 November 1985 eruption that produced an ash plume and associated pyroclastic flows onto the glacier, triggering a lahar that approximately 25,000 people in the towns of Armero (46 km west) and Chinchiná (34 km east). Since 1985 activity has intermittently occurred at the Arenas crater. The eruption that began on 18 November 2014 included ash plumes dominantly dispersed to the NW of Arenas crater (BGVN 42:06). This bulletin summarizes activity during January 2016 through December 2017 and is based on reports by Servicio Geologico Colombiano and Observatorio Vulcanológico y Sismológico de Manizales, Washington Volcanic Ash Advisory Center (VAAC) notices, and satellite data.

Figure (see Caption) Figure 86. A satellite image of Nevado del Ruiz showing the location of the active Arenas crater. September 2019 Monthly Mosaic image copyright Planet Labs 2019.

Activity during 2016. Throughout January 2016 ash and steam plumes were observed reaching up to a few kilometers. Significant water vapor and volcanic gases, especially SO2, were detected throughout the month. Thermal anomalies were detected in the crater on the 27th and 31st. Significant water vapor and volcanic gas plumes, in particular SO2, were frequently detected by the SCAN DOAS (Differential Optical Absorption Spectroscopy) station and satellite data (figure 87). A M3.2 earthquake was felt in the area on 18 January. Similar activity continued through February with notable ash plumes up to 1 km, and a M3.6 earthquake was felt on the 6th. Ash and gas-and-steam plumes were reported throughout March with a maximum of 3.5 km on the 31st (figure 88). Significant water vapor and gas plumes continued from the Arenas crater throughout the month, and a thermal anomaly was noted on the 28th. An increase in seismicity was reported on the 29th.

Figure (see Caption) Figure 87. Examples of SO2 plumes from Nevado del Ruiz detected by the Aura/OMI instrument on 10, 26, and 31 January 2019. Courtesy of Goddard Space Flight Center.
Figure (see Caption) Figure 88. Ash plumes at Nevado del Ruiz during March. Webcam images courtesy of Servicio Geologico Colombiano, various 2016 reports.

The activity continued into April with a M 3.0 earthquake felt by nearby inhabitants on the 8th, an increase in seismicity reported in the week of 12-18, and another significant increase on the 28th with earthquakes felt around Manizales. Thermal anomalies were noted during 12-18 April with the largest on the 16th. Ash plumes continued through the month as well as significant steam-and-gas plumes. Ashfall was reported in Murillo on the 29th.

The elevated activity continued through May with significant steam plumes up to 1.7 km above the crater during the week of 10-16. Thermal anomalies were reported on the 11th and 12th. Steam, gas, and ash plumes reached 2.5 km above the crater and dispersed to the W and NW. Ashfall was reported in La Florida on the 20th (figure 89) and multiple ash plumes on the 22nd reached 2.5 km and resulted in the closure of the La Nubia airport in Manizales. Ash and gas-and-steam emission continued during June (figure 90).

Figure (see Caption) Figure 89. Ash plumes at Nevado del Ruiz on 17, 18, and 20 May 2016 with fine ash deposited on a car in La Florida, Manizales on the 20th. Webcams located in the NE Guali sector of the volcano, courtesy of Servicio Geologico Colombiano 20 May 2016 report.
Figure (see Caption) Figure 90. Examples of gas-and-steam and ash plumes at Nevado del Ruiz during June and July 2016. Courtesy of Servicio Geologico Colombiano (7 July 2016 report).

Similar activity was reported in July with gas-and-steam and ash plumes often dispersing to the NW and W. Ashfall was reported to the NW on 16 July (figure 91). Drumbeat seismicity was detected on 13, 15, 16, and 17 July, with two hours on the 16th being the longest duration episode do far. Drumbeat seismicity was noted by SGC as indicating dome growth. Significant water vapor and gas emissions continued through August. Ash plumes were reported through the month with plumes up to 1.3 km above the crater on 28 and 2.3 km on 29. Similar activity was reported through September as well as a thermal anomaly and ash deposition apparent in satellite data (figure 92). Drumbeat seismicity was noted again on the 17th.

Figure (see Caption) Figure 91. The location of ashfall resulting from an explosion at Nevado del Ruiz on 16 July 2016 and a sample of the ash under a microscope. The ash is composed of lithics, plagioclase and pyroxene crystals, and minor volcanic glass. Courtesy of Servicio Geologico Colombiano (16 July 2016 report).
Figure (see Caption) Figure 92. This Sentinel-2 thermal infrared satellite image shows elevated temperatures in the Nevado del Ruiz Arenas crater (yellow and orange) on 16 September 2016. Ash deposits are also visible to the NW of the crater. In this image blue is snow and ice. False color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

During the week of 4-10 October it was noted that activity consisting of regular ash plumes had been ongoing for 22 months. Ash plumes continued with reported plumes reaching 2.5 above the crater throughout October (figure 93), accompanied by significant steam and water vapor emissions. A M 4.4 earthquake was felt nearby on the 7th. Similar activity continued through November and December 2016 with plumes consisting of gas and steam, and sometimes ash reaching 2 km above the crater.

Figure (see Caption) Figure 93. An ash plume rising above Nevado del Ruiz on 27 October 2016. Courtesy of Servicio Geologico Colombiano.

Activity during 2017. Significant steam and gas emissions, especially SO2, continued into early 2017. Ash plumes detected through seismicity were confirmed in webcam images and through local reports; the plumes reached a maximum height of 2.5 km above the volcano on the 6th (figure 94). Drumbeat seismicity was recorded during 3-9, and on 22 January. Inflation was detected early in the month and several thermal anomalies were noted.

Intermittent deformation continued into February. Significant steam-and-gas emissions continued with intermittent ash plumes reaching 1.5-2 km above the volcano. Thermal anomalies were noted throughout the month and there was a significant increase in seismicity during 23-26 February.

Figure (see Caption) Figure 94. Ash plumes at Nevado del Ruiz on 6 January 2017. Courtesy of Servicio Geologico Colombiano.

Thermal anomalies continued to be detected through March. Ash plumes continued to be observed and recorded in seismicity and maximum heights of 2 km above the volcano were noted. Deflation continued after the intermittent inflation the previous month. On 10-11 April a period of short-duration and very low-energy drumbeat seismicity was recorded. Significant gas and steam emission continued through April with intermittent ash plumes reaching 1.5 km above the volcano. Thermal anomalies were detected early in the month.

Unrest continued through May with elevated seismicity, significant steam-and-gas emissions, and ash plumes reaching 1.7 km above the crater. Five episodes of drumbeat seismicity were recorded on 29 May and intermittent deformation continued. There were no available reports for June and July.

Variable seismicity was recorded during August and deflation was measured in the first week. Gas-and-steam plumes were observed rising to 850 m above the crater on the 3rd, and 450 m later in the month. A thermal anomaly was noted on the 14th. There were no available reports for September through December.

On 18 December 2017 the Washington VAAC issued an advisory for an ash plume to 6 km that was moving west and dispersing. The plume was described as a "thin veil of volcanic ash and gasses" that was seen in visible satellite imagery, NOAA/CIMSS, and supported by webcam imagery.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: Servicio Geologico Colombiano (SGC), Diagonal 53 No. 34-53 - Bogotá D.C., Colombia (URL: https://www2.sgc.gov.co/volcanes/index.html); Observatorio Vulcanológico y Sismológico de Manizales (URL: https://www.facebook.com/ovsmanizales); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sabancaya (Peru) — December 2019 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Explosions, ash and SO2 plumes, thermal anomalies, and lava dome growth during June-November 2019

Sabancaya is an andesitic stratovolcano located in Peru. The most recent eruptive episode began in early November 2016, which is characterized by gas-and-steam and ash emissions, seismicity, and explosive events (BGVN 44:06). The ash plumes are dispersed by wind with a typical radius of 30 km, which occasionally results in ashfall. Current volcanism includes high seismicity, gas-and-steam emissions, ash and SO2 plumes, numerous thermal anomalies, and explosive events. This report updates information from June through November 2019 using information primarily from the Instituto Geofisico del Peru (IGP) and Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico) (OVI-INGEMMET).

Table 5. Summary of eruptive activity at Sabancaya during June-November 2019 based on IGP weekly reports, the Buenos Aires VAAC advisories, the HIGP MODVOLC hotspot monitoring algorithm, and Sentinel-5P/TROPOMI satellite data.

Month Avg. Daily Explosions by week Max plume Heights (km above crater) Plume drift MODVOLC Alerts Min Days with SO2 over 2 DU
Jun 2019 12, 13, 16, 17 2.6-3.8 30 km S, SW, E, SE, NW, NE 15 20
Jul 2019 23, 22, 16, 13 2.3-3.7 E, SE, S, NE 7 25
Aug 2019 12, 30, 25, 26 2-4.5 30 km NW, W S, NE, SE, SW 7 25
Sep 2019 29, 32, 24, 15 1.5-2.5 S, SE, E, W, NW, SW 14 26
Oct 2019 32, 36, 44, 48, 28 2.5-3.5 S, SE, SW, W 11 25
Nov 2019 58, 50, 47, 17 2-4 W, SW, S, NE, E 13 22

Explosions, ash emissions, thermal signatures, and high concentrations of SO2 were reported each week during June-November 2019 by IGP, the Buenos Aires Volcanic Ash Advisory Centre (VAAC), HIGP MODVOLC, and Sentinel-2 and Sentinel-5P/TROPOMI satellite data (table 5). Thermal anomalies were visible in the summit crater, even in the presence of meteoric clouds and ash plumes were occasionally visible rising from the summit in clear weather (figure 68). The maximum plume height reached 4.5 km above the crater drifting NW, W, and S the week of 29 July-4 August, according to IGP who used surveillance cameras to visually monitor the plume (figure 69). This ash plume had a radius of 30 km, which resulted in ashfall in Colca (NW) and Huambo (W). On 27 July the SO2 levels reached a high of 12,814 tons/day, according to INGEMMET. An average of 58 daily explosions occurred in early November, which is the largest average of this reporting period.

Figure (see Caption) Figure 68. Sentinel-2 satellite imagery detected ash plumes, gas-and-steam emissions, and multiple thermal signatures (bright yellow-orange) in the crater at Sabancaya during June-November 2019. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 69. A webcam image of an ash plume rising from Sabancaya on 1 August 2019 at least 4 km above the crater. Courtesy of IGP.

Seismicity was also particularly high between August and September 2019, according to INGEMMET. On 14 August, roughly 850 earthquakes were detected. There were 280 earthquakes reported on 15 September, located 6 km NE of the crater. Both seismic events were characterized as seismic swarms. Seismicity decreased afterward but continued through the reporting period.

In February 2017, a lava dome was established inside the crater. Since then, it has been growing slowly, filling the N area of the crater and producing thermal anomalies. On 26 October 2019, OVI-INGEMMET conducted a drone overflight and captured video of the lava dome (figure 70). According to IGP, this lava dome is approximately 4.6 million cubic meters with a growth rate of 0.05 m3/s.

Figure (see Caption) Figure 70. Drone images of the lava dome and degassing inside the crater at Sabancaya on 26 (top) and 27 (bottom) October 2019. Courtesy of INGEMMET (Informe Ténico No A6969).

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows strong, consistent thermal anomalies occurring all throughout June through November 2019 (figure 71). In conjunction with these thermal anomalies, the October 2019 special issue report by INGEMMET showed new hotspots forming along the crater rim in July 2018 and August 2019 (figure 72).

Figure (see Caption) Figure 71. Thermal anomalies at Sabancaya for 3 January through November 2019 as recorded by the MIROVA system (Log Radiative Power) were frequent, strong, and consistent. Courtesy of MIROVA.
Figure (see Caption) Figure 72. Thermal hotspots on the NW section of the crater at Sabancaya using MIROVA images. These images show the progression of the formation of at least two new hotspots between February 2017 to August 2019. Courtesy of INGEMMET, Informe Técnico No A6969.

Sulfur dioxide emissions also persisted at significant levels from June through November 2019, as detected by Sentinel-5P/TROPOMI satellite data (figure 73). The satellite measurements of the SO2 emissions exceeded 2 DU (Dobson Units) at least 20 days each month during this time. These SO2 plumes sometimes occurred for multiple consecutive days (figure 74).

Figure (see Caption) Figure 73. Consistent, large SO2 plumes from Sabancaya were seen in TROPOMI instrument satellite data throughout June-November 2019, many of which drifted in different directions based on the prevailing winds. Courtesy of NASA Goddard Space Flight Center.
Figure (see Caption) Figure 74. Persistent SO2 plumes from Sabancaya appeared daily during 13-16 September 2019 in the TROPOMI instrument satellite data. Courtesy of NASA Goddard Space Flight Center.

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Instituto Geofisico del Peru (IGP), Calle Badajoz N° 169 Urb. Mayorazgo IV Etapa, Ate, Lima 15012, Perú (URL: https://www.gob.pe/igp); Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Karangetang (Indonesia) — December 2019 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Lava flows, strong thermal anomalies, gas-and-steam emissions, and ash plumes during May-November 2019

Karangetang (also known as Api Siau), located on the island of Siau in the Sitaro Regency, North Sulawesi, Indonesia, has experienced more than 40 recorded eruptions since 1675 in addition to many smaller undocumented eruptions. In early February 2019, a lava flow originated from the N crater (Kawah Dua) traveling NNW and reaching a distance over 3 km. Recent monitoring showed a lava flow from the S crater (Kawah Utama, also considered the "Main Crater") traveling toward the Kahetang and Batuawang River drainages on 15 April 2019. Gas-and-steam emissions, ash plumes, moderate seismicity, and thermal anomalies including lava flow activity define this current reporting period for May through November 2019. The primary source of information for this report comes from daily and weekly reports by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), the Darwin Volcanic Ash Advisory Center (VAAC), and satellite data.

PVMBG reported that white gas-and-steam emissions were visible rising above both craters consistently between May through November 2019 (figures 30 and 31). The maximum altitude for these emissions was 400 m above the Dua Crater on 27 May and 700 m above the Main Crater on 12 June. Throughout the reporting period PVMBG noted that moderate seismicity occurred, which included both shallow and deep volcanic earthquakes.

Figure (see Caption) Figure 30. A Sentinel-2 image of Karangetang showing two active craters producing gas-and-steam emissions with a small amount of ash on 7 August 2019. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 31. Webcam images of gas-and-steam emissions rising from the summit of Karangetang on 14 (top) and 25 (bottom) October 2019. Courtesy of PVMBG via Øystein Lund Andersen.

Activity was relatively low between May and June 2019, consisting mostly of gas-and-steam emissions. On 26-27 May 2019 crater incandescence was observed above the Main Crater; white gas-and-steam emissions were rising from both craters (figures 32 and 33). At 1858 on 20 July, incandescent avalanches of material originating from the Main Crater traveled as far as 1 km W toward the Pangi and Kinali River drainages. By 22 July the incandescent material had traveled another 500 m in the same direction as well as 1 km in the direction of the Nanitu and Beha River drainages. According to a Darwin VAAC report, discreet, intermittent ash eruptions on 30 July resulted in plumes drifting W at 7.6 km altitude and SE at 3 km, as observed in HIMAWARI-8 satellite imagery.

Figure (see Caption) Figure 32. Photograph of summit crater incandescence at Karangetang on 12 May 2019. Courtesy of Dominik Derek.
Figure (see Caption) Figure 33. Photograph of both summit crater incandescence at Karangetang on 12 May 2019 accompanied by gas-and-steam emissions. Courtesy of Dominik Derek.

On 5 August 2019 a minor eruption produced an ash cloud that rose 3 km and drifted E. PVMBG reported in the weekly report for 5-11 August that an incandescent lava flow from the Main Crater was traveling W and SW on the slopes of Karangetang and producing incandescent avalanches (figure 34). During 12 August through 1 September lava continued to effuse from both the Main and Dua craters. Avalanches of material traveled as far as 1.5 km SW toward the Nanitu and Pangi River drainages, 1.4-2 km to the W of Pangi, and 1.8 km down the Sense River drainage. Lava fountaining was observed occurring up to 10 m above the summit on 14-20 August.

Figure (see Caption) Figure 34. Photograph of summit crater incandescence and a lava flow from Karangetang on 7 August 2019. Courtesy of MAGMA Indonesia.

PVMBG reported that during 2-22 September lava continued to effuse from both craters, traveling SW toward the Nanitu, Pangi, and Sense River drainages as far as 1.5 km. On 24 September the lava flow occasionally traveled 0.8-1.5 km toward the West Beha River drainage. The lava flow from the Main Crater continued through at least the end of November, moving SW and W as far as 1.5 km toward the Nanitu, Pangi, and Sense River drainages. In late October and onwards, incandescence from both summit craters was observed at night. The lava flow often traveled as far as 1 km toward the Batang and East Beha River drainage on 12 November, the West Beha River drainage on 15, 22, 24, and 29 November, and the Batang and West Beha River drainages on 25-27 November (figure 35). On 30 November a Strombolian eruption occurred in the Main Crater accompanied by gas-and-steam emissions rising 100 m above the Main Crater and 50 m above the Dua Crater. Lava flows traveled SW and W toward the Nanitu, Sense, and Pangi River drainages as far as 1.5 km, the West Beha and Batang River drainages as far as 1 km, and occasionally the Batu Awang and Kahetang River drainages as far as 2 km. Lava fountaining was reported occurring 10-25 m above the Main Crater and 10 m above the Dua Crater on 6, 8-12, 15, 21-30 November.

Figure (see Caption) Figure 35. Webcam image of gas-and-steam emissions rising from the summit of Karangetang accompanied by incandescence and lava flows at night on 27 November 2019. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed consistent and strong thermal anomalies within 5 km of the summit craters from late July through November 2019 (figure 36). Satellite imagery from Sentinel-2 corroborated this data, showing strong thermal anomalies and lava flows originating from both craters during this same timeframe (figure 37). In addition to these lava flows, satellite imagery also captured intermittent gas-and-steam emissions from May through November (figure 38). MODVOLC thermal alerts registered 165 thermal hotspots near Karangetang's summit between May and November.

Figure (see Caption) Figure 36. Frequent and strong thermal anomalies at Karangetang between 3 January through November 2019 as recorded by the MIROVA system (Log Radiative Power) began in late July and were recorded within 5 km of the summit craters. Courtesy of MIROVA.
Figure (see Caption) Figure 37. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed ongoing thermal activity (bright orange) at Karangetang from July into November 2019. The lava flows traveled dominantly in the W direction from the Main Crater. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 38. Sentinel-2 satellite imagery showing gas-and-steam emissions with a small amount of ash (middle and right) rising from both craters of Karangetang during May through November 2019. Courtesy of Sentinel Hub Playground.

Sentinel-5P/TROPOMI satellite data detected multiple sulfur dioxide plumes between May and November 2019 (figure 39). These emissions occasionally exceeded 2 Dobson Units (DU) and drifted in different directions based on the dominant wind pattern.

Figure (see Caption) Figure 39. SO2 emissions from Karangetang (indicated by the red box) were seen in TROPOMI instrument satellite data during May through November 2019, many of which drifted in different directions based on the prevailing winds. Top left: 27 May 2019. Top middle: 26 July 2019. Top right: 17 August 2019. Bottom left: 27 September 2019. Bottom middle: 3 October 2019. Bottom right: 21 November 2019. Courtesy of NASA Goddard Space Flight Center.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: https://www.oysteinlundandersen.com); Dominik Derek (URL: https://www.facebook.com/07dominikderek/).


Ulawun (Papua New Guinea) — December 2019 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


New vent, lava fountaining, lava flow, and ash plumes in late September-October 2019

Ulawun is a basaltic-to-andesitic stratovolcano located in West New Britain, Papua New Guinea, with typical activity consisting of seismicity, gas-and-steam plumes, and ash emissions. The most recent eruption began in late June 2019 involving ash and gas-and-steam emissions, increased seismicity, and a pyroclastic flow (BGVN 44:09). This report includes volcanism from September to October 2019 with primary source information from the Rabaul Volcano Observatory (RVO) and the Darwin Volcanic Ash Advisory Centre (VAAC).

Activity remained low through 26 September 2019, mainly consisting of variable amounts of gas-and-steam emissions and low seismicity. Between 26 and 29 September RVO reported that the seismicity increased slightly and included low-level volcanic tremors and Real-Time Seismic Amplitude Measurement (RSAM) values in the 200-400 range on 19, 20, and 22 September. On 30 September small volcanic earthquakes began around 1000 and continued to increase in frequency; by 1220, they were characterized as a seismic swarm. The Darwin VAAC advisory noted that an ash plume rose to 4.6-6 km altitude, drifting SW and W, based on ground reports.

On 1 October 2019 the seismicity increased, reaching RSAM values up to 10,000 units between 0130 and 0200, according to RVO. These events preceded an eruption which originated from a new vent that opened on the SW flank at 700 m elevation, about three-quarters of the way down the flank from the summit. The eruption started between 0430 and 0500 and was defined by incandescence and lava fountaining to less than 100 m. In addition to lava fountaining, light- to dark-gray ash plumes were visible rising several kilometers above the vent and drifting NW and W (figure 21). On 2 October, as the lava fountaining continued, ash-and-steam plumes rose to variable heights between 2 and 5.2 km (figures 22 and 23), resulting in ashfall to the W in Navo. Seismicity remained high, with RSAM values passing 12,000. A lava flow also emerged during the night which traveled 1-2 km NW. The main summit crater produced white gas-and-steam emissions, but no incandescence or other signs of activity were observed.

Figure (see Caption) Figure 21. Photographs of incandescence and lava fountaining from Ulawun during 1-2 October 2019. A) Lava fountains along with ash plumes that rose several kilometers above the vent. B) Incandescence and lava fountaining seen from offshore. Courtesy of Christopher Lagisa.
Figure (see Caption) Figure 22. Photographs of an ash plume rising from Ulawun on 1 October 2019. In the right photo, lava fountaining is visible. Courtesy of Christopher Lagisa.
Figure (see Caption) Figure 23. Photograph of lava fountaining and an ash plume rising from Ulawun on 1 October 2019. Courtesy of Joe Metto, WNB Provincial Disaster Office (RVO Report 2019100101).

Ash emissions began to decrease by 3 October 2019; satellite imagery and ground observations showed an ash cloud rising to 3 km altitude and drifting N, according to the Darwin VAAC report. RVO reported that the fissure eruption on the SW flank stopped on 4 October, but gas-and-steam emissions and weak incandescence were still visible. The lava flow slowed, advancing 3-5 m/day, while declining seismicity was reflected in RSAM values fluctuating around 1,000. RVO reported that between 23 and 31 October the main summit crater continued to produce variable amounts of white gas-and-steam emissions (figure 24) and that no incandescence was observed after 5 October. Gas-and-steam emissions were also observed around the new SW vent and along the lava flow. Seismicity remained low until 27-29 October; it increased again and peaked on 30 October, reaching an RSAM value of 1,700 before dropping and fluctuating around 1,200-1,500.

Figure (see Caption) Figure 24. Webcam photo of a gas-and-steam plume rising from Ulawun on 30 October 2019. Courtesy of the Rabaul Volcano Observatory (RVO).

In addition to ash plumes, SO2 plumes were also detected between September and October 2019. Sentinel-5P/TROPOMI data showed SO2 plumes, some of which exceeded 2 Dobson Units (DU) drifting in different directions (figure 25). MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed strong, frequent thermal anomalies within 5 km of the summit beginning in early October 2019 and throughout the rest of the month (figure 26). Only one thermal anomaly was detected in early December.

Figure (see Caption) Figure 25. Sentinel-5P/TROPOMI data showing a high concentration of SO2 plumes rising from Ulawun between late September-early October 2019. Top left: 11 September 2019. Top right: 1 October 2019. Bottom left: 2 October 2019. Bottom right: 3 October 2019. Courtesy of the NASA Space Goddard Flight Center.
Figure (see Caption) Figure 26. Frequent and strong thermal anomalies at Ulawun for February through December 2019 as recorded by the MIROVA system (Log Radiative Power) began in early October and continued throughout the month. Courtesy of MIROVA.

Activity in November was relatively low, with only a variable amount of white gas-and-steam emissions visible and low (less than 200 RSAM units) seismicity with sporadic volcanic earthquakes. Between 9-22 December, a webcam showed intermittent white gas-and-steam emissions were observed at the main crater, accompanied by some incandescence at night. Some gas-and-steam emissions were also observed rising from the new SW vent along the lava flow.

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Christopher Lagisa, West New Britain Province, Papua New Guinea (URL: https://www.facebook.com/christopher.lagisa, images posted at https://www.facebook.com/christopher.lagisa/posts/730662937360239 and https://www.facebook.com/christopher.lagisa/posts/730215604071639).


Nyamuragira (DR Congo) — December 2019 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Strong thermal anomalies and fumaroles within the summit crater during June-November 2019

Nyamuragira (also known as Nyamulagira) is a high-potassium basaltic shield volcano located in the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo. Previous volcanism consisted of the reappearance of a lava lake in the summit crater in mid-April 2018, lava emissions, and high seismicity (BGVN 44:05). Current activity includes strong thermal signatures, continued inner crater wall collapses, and continued moderate seismicity. The primary source of information for this June-November 2019 report comes from the Observatoire Volcanologique de Goma (OVG) and satellite data and imagery from multiple sources.

OVG reported in the July 2019 monthly that the inner crater wall collapses that were observed in May continued to occur. During this month, there was a sharp decrease in the lava lake level, and it is no longer visible. However, the report stated that lava fountaining was visible from a small cone within this crater, though its activity has also decreased since 2014. In late July, a thermal anomaly and fumaroles were observed originating from this cone (figure 85). Seismicity remained moderate throughout this reporting period.

Figure (see Caption) Figure 85. Photograph showing the small active cone within the crater of Nyamuragira in late July 2019. Fumaroles are also observed within the crater originating from the small cone. Courtesy of Sergio Maguna.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows strong, frequent thermal anomalies within 5 km of the summit between June through November (figure 86). The strength of these thermal anomalies noticeably decreases briefly in September. MODVOLC thermal alerts registered 54 thermal hotspots dominantly near the N area of the crater during June through November 2019. Satellite imagery from Sentinel-2 corroborated this data, showing strong thermal anomalies within the summit crater during this same timeframe (figure 87).

Figure (see Caption) Figure 86. The MIROVA graph of thermal activity (log radiative power) at Nyamuragira during 30 January through November 2019 shows strong, frequent thermal anomalies through November with a brief decrease in activity in late April-early May and early September. Courtesy of MIROVA.
Figure (see Caption) Figure 87. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed ongoing thermal activity at Nyamuragira into November 2019. Courtesy of Sentinel Hub Playground.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sergio Maguna (Facebook: https://www.facebook.com/sergio.maguna.9, images posted at https://www.facebook.com/sergio.maguna.9/posts/1267625096730837).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 43, Number 11 (November 2018)

Managing Editor: Edward Venzke

Gamalama (Indonesia)

Weak explosion on 4 October 2018

Langila (Papua New Guinea)

Several weak ash plumes during June, September, and October 2018

Masaya (Nicaragua)

Lava lake activity continued from May through October 2018; lava lake lower than recent months

Pacaya (Guatemala)

Frequent lava flows and Strombolian activity from April through September 2018

Popocatepetl (Mexico)

Gas, steam, and ash plumes continue through August 2018 with occasional explosions ejecting incandescent blocks onto the slopes

Reventador (Ecuador)

Ash plumes and explosions with ballistic ejecta continue during April-September 2018 with several lava flows and pyroclastic flows; five new vents after partial flank collapse

Sangeang Api (Indonesia)

Ongoing crater activity and thermal anomalies during September 2017-October 2018

Sarychev Peak (Russia)

Thermal anomalies, surface activity, and ash explosions during October-November 2017 and September-October 2018

Sheveluch (Russia)

Thermal anomalies along with minor gas and steam emissions continue through October 2018

Ulawun (Papua New Guinea)

Ash plumes on 8 June, 21 September, and 5 October 2018



Gamalama (Indonesia) — November 2018 Citation iconCite this Report

Gamalama

Indonesia

0.8°N, 127.33°E; summit elev. 1715 m

All times are local (unless otherwise noted)


Weak explosion on 4 October 2018

The most recent of the previous intermittent weak explosions on Gamalama was on 3 August 2016, which produced an ash plume and ashfall that closed a nearby airport for a day (BGVN 42:03). This report discusses eruptive activity in October 2018. The volcano is monitored by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM).

PVMBG reported that an explosion at 1152 on 4 October 2018, likely phreatic, generated an ash plume that rose about 250 m above the summit and drifted NW. Eight volcanic earthquakes were recorded about an hour before the event. Based on satellite data and information from PVMBG, the Darwin Volcanic Ash Advisory Centre (VAAC) reported that during 5-6 October ash plumes rose to an altitude of 2.1 km and drifted W and NW. The Alert Level remained at 2 (on a scale of 1-4); visitors and residents were warned not to approach the crater within a 1.5-km radius. On 10 October PVMBG reported only gas emissions (mostly water vapor), and the Aviation Color Code was lowered from Orange to Yellow.

No significant SO2 levels near the volcano were recorded by NASA's satellite-borne ozone instruments (Suomi NPP/OMPS and Aura/OMI) during early October. However, Simon Carn reported that the newer TropOMI instrument aboard the Copernicus Sentinel-5P satellite showed significant SO2 levels as high as 12 TRM/DU (levels in middle troposphere layer, as measured in Dobson Units) on 4 October 2018 (figure 7).

Figure (see Caption) Figure 7. Weak SO2 emissions from Gamalama on 4 October 2018 were detected by the Sentinel-5P TROPOMI instrument. Courtesy of Simon Carn.

Geologic Background. Gamalama is a near-conical stratovolcano that comprises the entire island of Ternate off the western coast of Halmahera, and is one of Indonesia's most active volcanoes. The island was a major regional center in the Portuguese and Dutch spice trade for several centuries, which contributed to the thorough documentation of Gamalama's historical activity. Three cones, progressively younger to the north, form the summit. Several maars and vents define a rift zone, parallel to the Halmahera island arc, that cuts the volcano. Eruptions, recorded frequently since the 16th century, typically originated from the summit craters, although flank eruptions have occurred in 1763, 1770, 1775, and 1962-63.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Center of Volcanology and Geological Hazard Mitigation (CVGHM), Jalan Diponegoro 5+7, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL:http://www.bom.gov.au/info/vaac/); Simon Carn, Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: http://www.volcarno.com/, Twitter: @simoncarn).


Langila (Papua New Guinea) — November 2018 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Several weak ash plumes during June, September, and October 2018

After Vulcanian activity in the latter part of 2009, activity at Langila subsided, with infrequent activity until 2016, when activity increased somewhat through May 2018 (BGVN 34:11, 35:02, 42:01, and 42:09). This pattern of intermittent activity continued through October 2018. No reports were available from the Rabaul Volcano Observatory during the current reporting period (June-October 2018), but volcanic ash warnings were issued by the Darwin Volcanic Ash Advisory Centre (VAAC).

Four explosions were reported by the Darwin VAAC in June 2018, generating ash plumes that rose 2.1-3.4 km (table 6). There were no reports of an explosion in July or August 2018. Additional ash plumes were detected on 29 September and 30 October 2018

Table 6. Reports of ash plumes from Langila during 1 June-30 October 2018 based on analyses of satellite imagery and wind model data. Courtesy of the Darwin VAAC.

Date Ash plume altitude (km) Ash plume drift Observations
07 Jun 2018 3.4 SW Detached from the summit.
10 Jun 2018 2.1 -- Dissipated.
17 Jun 2018 2.4 W --
20-21 Jun 2018 2.4 W, NW --
29 Sep 2018 2.4 NE --
30 Oct 2018 2.7 SE --

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL:http://www.bom.gov.au/info/vaac/).


Masaya (Nicaragua) — November 2018 Citation iconCite this Report

Masaya

Nicaragua

11.985°N, 86.165°W; summit elev. 594 m

All times are local (unless otherwise noted)


Lava lake activity continued from May through October 2018; lava lake lower than recent months

Masaya is one of the most active volcanoes in Nicaragua and one of the few volcanoes on Earth to contain an active lava lake. The edifice has a caldera that contains the Masaya (also known as San Fernando), Nindirí, San Pedro, San Juan, and Santiago (currently active) craters. In recent years, activity has largely consisted of lava lake activity along with dilute plumes of gas with little ash. In 2012 an explosive event ejected ash and blocks. This report summarizes activity during May through October 2018 and is based on Instituto Nicaragüense de Estudios Territoriales (INETER) reports and satellite data.

Reports issued from May through July 2018 noted that Masaya remained relatively calm. Sentinel-2 thermal satellite images show consistently high temperatures in the Santiago crater with the active lava lake present (figure 65).

Figure (see Caption) Figure 65. Sentinel-2 thermal satellite images showing the detected heat signature from the active lava lake at Masaya during May-July 2018. The lava lake is visible (bright yellow-orange) and a gas-and-steam plume is visible traveling towards the W to SW. Thermal (urban) satellite images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

Reports from August through October 2018 indicated relatively low levels of activity. On 28 September the lava lake within the Santiago crater was observed with a lower surface than previous months. Fumarole temperatures up to 340°C were recorded (figure 66). Sentinel-2 thermal images show the large amount of heat consistently emanating from the active lava lake (figure 67). Sulfur dioxide was measured on 28 and 30 August with an average of 1,462 tons per day, a higher value than the average of 858 tons per day detected in February. Sulfur dioxide levels ranged from 967 to 1,708 tons per day on 11 September.

Figure (see Caption) Figure 66. FLIR (forward-looking infrared) and visible images of the Santiago crater at Masaya showing fumarole temperatures. The scale in the center shows the range of temperatures in the FLIR images. Courtesy of INETER (September 2018 report).
Figure (see Caption) Figure 67. Sentinel-2 thermal satellite images showing the heat signature from the active lava lake at Masaya during August-October 2018. The lava lake is visible (bright yellow-orange) and a gas-and-steam plume is visible traveling towards the SW. Thermal (urban) satellite images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

Overall, activity from May through October 2018 was relatively quiet with continued lava lake activity. The thermal energy detected by the MIROVA algorithm showed fluctuations but were consistent (figure 68). The MODVOLC algorithm for near-real-time thermal monitoring of global hotspots detected 4-8 anomalies per month for this period, which is lower than previous years (figure 69).

Figure (see Caption) Figure 68. Middle infrared MODIS thermal anomalies at Masaya for April through October 2018. The data show relatively constant thermal activity related to the persistent lava lake. Courtesy of MIROVA.
Figure (see Caption) Figure 69. Thermal alerts for Masaya in May through October 2018. Courtesy of HIGP - MODVOLC Thermal Alerts System.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Historical lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://webserver2.ineter.gob.ni/vol/dep-vol.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Pacaya (Guatemala) — November 2018 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Frequent lava flows and Strombolian activity from April through September 2018

Pacaya is one of the most active volcanoes in Guatemala and is located 30 km south of the capital city. It has produced nearly continuous Strombolian eruptions, lava flows, and ash plumes for decades. The current activity is centered at the Mackenney cone and is largely directed towards the N due to the trough that developed during increased activity in 2010.

This report summarizes activity from April through September 2018, and is based on reports by Instituto Nacional de Sismología, Vulcanologia, Meteorología E Hidrologia (INSIVUMEH), Sistema de la Coordinadora Nacional para la Reducción de Desastres (CONRED), and satellite data. During this period, activity was dominated by gas plumes, Strombolian explosions, and numerous short lava flows that traveled mainly to the N to NW (see details below, table 6).

Activity remained constant through April (figure 94), with a significant increase at the end of the month. White and blue-white gas-and-steam plumes were frequently observed up to 800 m above the Mackenney crater with the dispersal depending on wind direction. There was a partial collapse of the cone within the Mackenney crater during the week of 7-13 April. Strombolian activity was constant, with explosions ejecting material up to 50 m above the crater, until 21 April when activity decreased due to a small collapse that occurred in the cone and temporarily sealed the conduit. After elevated seismicity that was the highest since 2014, activity increased again on 26 April when Strombolian explosions ejected material up to 150 m above the crater. On 28 April there were 25-50 explosions recorded per hour, reaching 200 m above the cone and generating shock waves observed by communities 4 km away. A lava flow reached 600 m in length, the longest lava flow since the 2010 eruption. This lava flow continued through to the end of the month. Throughout the month, between one and four lava flows were frequently active, with lengths varying from 50 to 500 m from the vent. Lava flows were distributed to the NW, W, SW, and S, and were sometimes accompanied by avalanches with blocks reaching 1 m in diameter.

Figure (see Caption) Figure 94. Typical activity at Pacaya in April 2018. Top left: Degassing at the Mackenney cone. Top right: lava flows moving S, SW, and W with incandescent avalanches from the lava flow fronts; photo by Jorge Mejicanos. Bottom left: Strombolian activity erupting incandescent material to 150 m above the crater prior to the formation of the lava flow; photo by William Chigna. Bottom right: Descent of lava flows accompanied by Strombolian activity; photo by Byron Castillo. Images courtesy of INSIVUMEH (April 2018 monthly report).

Two new lava flows were seen moving down the NW flank on 3 May (figure 95). Activity in the first few days of May also included white and bluish white gas-and-steam plumes rising up to 900 m above the crater and frequent Strombolian explosions ejecting material to a maximum of 100 m above the crater. Increased weak-to-moderate explosions on 4 May ejected material 50-80 m above the crater and fed the NW-flank lava flows (figures 96 and 97). A slight increase in activity was noted 15-16 May, when constant explosions ejected material up to 50-70 m above the crater that were occasionally heard out to 3 km away. On 20 May approximately 50 explosions per hour were recorded, with material reaching 50-100 m above the crater. Elevated activity on 16 May produced a lava flow towards the W. Lava flows were observed on 1-3, 6, 12, and 16 May, with recorded lengths reaching 200-600 m on the NE, NW, and W flanks.

Figure (see Caption) Figure 95. Two new lava flows were observed traveling down the NW flank of Pacaya on 3 May 2018. Top: A thermal image of the lava flows and the Strombolian activity at the crater visible at the top of the image. Bottom: the location of the lava flows (April 28 to May 4, 2018 Weekly Monitoring Report). Right: The active lava flows on 5 May. Courtesy of INSIVUMEH
Figure (see Caption) Figure 96. Two lava flows and the active crater of Pacaya on 4 May 2018. This figure also shows the location of Cerro Chino and the directions of La Corona and Centro de Visitantes. Courtesy of INSIVUMEH (April 2018 monthly report).
Figure (see Caption) Figure 97. Incandescent lava flows on Pacaya visible at night on 4 May 2018. The lava flows are approximately 500 m in length. Photo courtesy of CONRED (Bulletin 762018, 4 May).

White, blue-white, and gray-white plumes were frequently noted throughout June with heights above the crater ranging from 15 to 800 m. Strombolian activity continued, ejecting material up to maximum heights of 150 m, but more commonly 15-50 m above the crater. During 12-14 June ejecta reached 100-150 m above the crater, with explosions heard up to 10 km away on the 12th. An ash plume on the 13th reached 3.5 km above sea level and dispersed 10 km N and NW. A new lava flow was observed on 6-7 June accompanied by Strombolian explosions ejecting material up to 50 m above the crater (figure 98). No additional lava flows were reported this month.

Figure (see Caption) Figure 98. June 2018 activity of Pacaya. Top left: Lava flow on 6 June that was 50 m long by approximately 20 m wide; courtesy of CONRED (Bulletin no. 1112018). Top left: Lava flow on 7 June, photo by Pedro Morales, via CONRED. Bottom: Lava flow on 7 June, photo by Berner Villea via CONRED.

Throughout July activity consisted of gas-and-steam plumes, Strombolian activity, and lava flows. White and blue-white plumes were low earlier in the month, but reached 300-450 m above the crater from 25 July to the end of the month. Strombolian explosions continued, ejecting material up to 5 to 50 m above the crater. Lava flows were frequently produced through July, with lengths ranging from 40-500 m from the vent, towards the SE, N, NW, and W. A decrease in activity was recorded on 4 July, which then increased again on 7 July. This increase produced a lava flow down to 400 m on the N flank, with an average width of 40 m.

Similar activity continued through August. White and blue-white plumes rose 50-600 m above the crater throughout the month. Strombolian activity continued, with explosions ejecting material 10-30 m above the crater, often reported as reaching low levels throughout August. One to two active lava flows were frequently described in daily reports, with lengths ranging from 75 to 500 m and traveling towards the NE, N, NW, and W. A slight increase in Strombolian activity occurred on the 27 August, generating 3-5 explosions per hour with some explosions heard up to 10 km away.

Frequent lava flows continued through September, with one to four active flows noted in daily reports (figure 99). Lava flow lengths ranged from 150 to 300 m and moved towards the N, NW, and W. White and blue-white plumes were observed reaching up to 800 m above the crater. Strombolian activity continued, ejecting material up to 10-30 m above the crater.

Figure (see Caption) Figure 99. Lava flows on Pacaya in September 2018. Top: two new lava flows observed from San Vincente; photo by Wotzbely Suarez via CONRED. Bottom: A fumarole plume to a height of 300-400 m above the crater and a 200-m-long lava flow on the NW flank. Courtesy of INSIVUMEH.

Overall, Pacaya produced numerous short (up to 600 m long) lava flows from April through September 2018 (figure 100), along with frequent degassing and fumarolic plumes, and Strombolian activity. Lava emissions and Strombolian activity were centered at the active Mackenney cone and vents on the NW flank. There was a significant reduction in lava flow extrusion in June, evident by the lack of MODVOLC thermal alerts (figure 101) and the reduction in MIROVA thermal energy detected (figure 102). Activity then remained frequent from July through September.

Figure (see Caption) Figure 100. Examples of active vents and lava flows (bright yellow-orange) at Pacaya from July through October 2018. The lava flows are traveling towards the NE, N, and NW. These images demonstrate how the lava flows mostly originate on the flank due to weaknesses on the cone, it is rare that lava flows originate in the crater. False color (urban) images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 101. There were 79 MODVOLC thermal alerts for Pacaya from April through September 2018, based around the active crater and lava flows on the flanks. Courtesy of HIGP – MODVOLC Thermal Alerts System.
Figure (see Caption) Figure 102. MIROVA thermal data showing detected energy for the period ending in October 2018. Activity was high from February through May, with a significant drop in activity in June and early July, then increased activity resumed in October. Courtesy of MIROVA.

Table 6. Summary of activity at Pacaya during April-September 2018. Information compiled from INSIVUMEH and CONRED reports.

Date Summary of Observations (all heights are above the crater unless specified)
01 Apr 2018 Moderate white/blue plume dispersed to the S. Strombolian explosions ejected material up to 5-25 m. Two lava flows to the W and NW to 200 m.
02 Apr 2018 White/blue plume towards the S. Strombolian explosions ejected material up to 35 m. A lava flow continues on the NW flank to 250 m.
04 Apr 2018 White/blue plume up to 50 m, towards the N. Strombolian explosions ejected material up to 5-15 m. Two lava flows towards the NW to 150 m, and SW to 150 m.
05 Apr 2018 Moderate white/blue plume dispersed to the S. Strombolian explosions ejected material up to 5-25 m. Two lava flows to the W and NW to 200 m.
06 Apr 2018 White/blue plume towards the S. Strombolian explosions ejected material up to 40 m. Two lava flows to the S and SW to 200 m.
08 Apr 2018 White/blue plume up to 250 m towards the S. Strombolian explosions ejected material up to 5-15 m. Three lava flows to the NW, W, and SW, to 250, 200, and 150 m.
09 Apr 2018 Moderate white/blue plume up to 50 m, towards the S. Strombolian explosions ejected material up to 5-25 m. Two lava flows to the NW and SW to 150 and 50 m.
07-13 Apr 2018 Partial collapse of the cone forming in the Mackenney crater.
10 Apr 2018 Fumarole plume towards the S. Weak Strombolian explosions ejected material to 40 m. One lava flow to the SW and S to 250 m.
11 Apr 2018 Moderate steam plume. Strombolian explosions ejected material up to 30 m. Two lava flows to the SW and S to 200 and 350 m, with accompanied avalanches.
13 Apr 2018 Two Lava flows to the S and SW to 250 and 200 m.
14 Apr 2018 White plume to 400 m, dispersed to the NE. Strombolian explosions continue. Two lava flows to the NW to 200 and 250 m.
15 Apr 2018 White/blue plume towards the SE. One lava flow to the NW to 250 m.
16 Apr 2018 White plume dispersed towards the S. Strombolian explosions continue. Two lava flows to the NW and W to 150 and 200 m.
17 Apr 2018 White/blue plume to the S. Two lava flows to the NW and SW to ~250 m. Strombolian explosions eject incandescent material up to 40 m.
18 Apr 2018 White plume up to 200 m, dispersed towards the N. Strombolian explosions continue. Four lava flows, two to the NW to 100 and 150 m, and two to the W to 50 and 150 m.
19 Apr 2018 Increased lava effusion in recent days. Since 18 April, four new lava flows on the SW, W, and NW flanks to 200-500 m, accompanied by constant avalanches. Strombolian explosions ejected material up to 40-50 m.
20 Apr 2018 Incandescence from lava flows observed at night.
21 Apr 2018 White plume up to 50 m, dispersed towards the S. Strombolian explosions continue. The four lava flows have ceased.
22 Apr 2018 Degassing plume up to 50 m, towards the N. Some Strombolian explosions.
23 Apr 2018 Some Strombolian explosions.
24 Apr 2018 White/blue plume up to 50 m. Some Strombolian explosions.
25 Apr 2018 White/blue plume up to 25 m, dispersed to the S. Strombolian explosions eject material up to 5-50 m.
26 Apr 2018 White/blue plume up to ~800 m. Strombolian explosions eject material up to 25-50 m.
27 Apr 2018 Low white/blue plume to the S. Strombolian explosions eject material up to 5-50 m.
28 Apr 2018 Lava flow 500 m to the NW. Two to four weak Strombolian explosions per day with incandescent material reaching 50 m.
29 Apr 2018 White/blue degassing to low altitude. Lava flow 500 m to the NW.
01 May 2018 Over the past few days a new eruptive phase began. White/blue plume up to 150-200 m. Strombolian explosions ejected material up to 20 m. One lava flow towards Cerro Chino to 200-300 m.
02 May 2018 White/blue plume from the NW flank. Lava flow 500 m to the NW.
03 May 2018 Moderate white/blue plume up to 150-200 m. Strombolian explosions ejected material up to 20 m. One lava flow towards Cerro Chino to ~500 m. Incandescence observed.
04 May 2018 Change in eruptive behavior, generating constant weak-moderate explosions ejecting material up to 50-80 m above the Mackenney cone.
06 May 2018 Weak-moderate white/blue plume up to 100 m. Strombolian explosions ejected material up to 15 m. One 600 m lava flow to the NE.
07 May 2018 Strombolian explosions continue.
09 May 2018 White/blue plume up to 300 m, dispersed to the S. Strombolian explosions ejected material up to 50 m. Incandescence observed.
10 May 2018 Moderate white/blue plume up to 700 m. Strombolian explosions ejected material up to 25-100 m.
11 May 2018 White/blue plume up to 600 m. Strombolian explosions ejected material up to 15-50 m.
12 May 2018 Strombolian explosions sent material up to 50-75 m. Lava flow to the W.
13 May 2018 White/blue plume up to ~200 m, dispersed to the SW. Strombolian explosions eject material up to 25 m. Incandescence observed.
14 May 2018 Moderate white/blue plume to ~800 m, dispersed to the W. Strombolian explosions ejected material to 7-50 m.
15 May 2018 White plume to 600-700 m, dispersed towards the W. Strombolian explosions ejected material up to 10-50 m.
16 May 2018 Constant Strombolian explosions ejected material up to 50-70 m, explosions occasionally heard 3 km away. Activity increased and produced a lava flow on the W flank.
17 May 2018 White/blue plume up to 300-400 m, dispersed to the S. Strombolian explosions ejected material up to 25 m. Incandescence observed.
18 May 2018 White/blue plume up to 400 m, dispersed to the W. Strombolian explosions ejected material up to 5-15 m.
19 May 2018 White/blue plume up to 200 m, dispersed to the N. Strombolian explosions ejected material up to 10-50 m.
20 May 2018 Strombolian explosions at Mackenney crater ejected material up to 50 m. Small avalanches on W flank.
21 May 2018 White/blue degassing plume up to 100 m, dispersed towards the S. Strombolian explosions ejected material up to 25 m. Incandescence observed in the evening.
22 May 2018 Moderate white/blue degassing plume up to 900 m, dispersed towards the S. Strombolian explosions ejected material up to 5-10 m.
23 May 2018 White plume up to ~50 m, dispersed towards the S. Strombolian explosions ejected material up to 25 m. Incandescence observed.
24 May 2018 Moderate white/blue plume up to 500-600 m, dispersed towards the W. Strombolian explosions ejected material up to 5-10 m. Incandescence observed.
25 May 2018 White/blue plume up to 300 m, dispersed towards the N. Strombolian explosions ejected material up to 25 m. Incandescence observed.
26 May 2018 White plume up to 800 m, dispersed towards the E. Strombolian explosions ejected material up to 10-50 m.
28 May 2018 White/blue degassing plume up to 50 m, dispersed towards the S. Strombolian explosions ejected material up to 50-100 m. Incandescence observed.
29 May 2018 White/blue degassing plume up to 200 m, dispersed towards the S. Strombolian explosions ejected material up to 50-100 m, with ~50 explosions per hour. Incandescence observed.
31 May 2018 White/blue degassing plume up to 250 m, dispersed towards the S.
01 Jun 2018 White plume up to 500 m towards the N and NE. Strombolian explosions ejected material up to 15-50 m.
02 Jun 2018 White plume up to 200 m, dispersed towards the W. Strombolian explosions ejected material up to 15-50 m.
03 Jun 2018 White plume towards the W. Strombolian explosions ejected material up to 25-50 m.
05 Jun 2018 White/blue plume up to 400-600 m towards the W. Occasional weak explosions.
06 Jun 2018 New lava flow 50 m long by 20 m wide. Strombolian explosions eject material up to 50 m. White plume up to 200 m.
07 Jun 2018 White plume to up 200-300 m towards the N. The lava flow continues.
08 Jun 2018 Low white/blue plume towards the W. Strombolian explosions ejected material up to 15-50 m.
09 Jun 2018 White/blue degassing plume up to 400 m, dispersed towards the W.
10 Jun 2018 White/blue plume up to 300-400 m towards the SW. Strombolian explosions ejected material up to 15-50 m.
11 Jun 2018 White plume towards the W. Strombolian explosions increased and ejected material up to 20-40 m.
12 June 2018 Strombolian explosions eject material up to 150 m, generating sounds heard ~10 km away.
13 June 2018 White/blue degassing plume up to 150-300 m, dispersed towards the N. Strombolian explosions eject material up to 15-100 m. Ash plume up to 3.5 km above sea level, dispersed to the N and NE to 10 km.
14 Jun 2018 Gray/white plume up to 600-800 m, dispersed to the NE. Strombolian explosions eject material up to 15-100 m.
16 Jun 2018 Abundant white/blue plume up to 50 m, dispersed to the N and NW. Increased Strombolian explosions eject material up to 25-40 m.
17 Jun 2018 Some Strombolian explosions at the Mackenney crater.
18 Jun 2018 Abundant white/blue plumes up to 25 m towards the W. Increased Strombolian explosions ejected material up to 25-50 m.
19 Jun 2018 White plume up to 15 m towards the N. Strombolian explosions ejected material up to 5-25 m above the Mackenney crater.
20 Jun 2018 White/blue degassing plume up to 25 m, dispersed towards the N. Strombolian explosions ejected material up to 5-30 m.
21 Jun 2018 Moderate white/blue degassing plume up to 15 m, dispersed towards the N. Strombolian explosions ejected material up to 5-25 m.
22 Jun 2018 White/blue plume up to 25 m towards the S. Strombolian explosions ejected material up to 25-50 m.
23 Jun 2018 White/blue degassing plume up to 150 m, dispersed towards the W. Strombolian explosions ejected material up to 15, 50, and 70 m.
24 Jun 2018 Low white/blue degassing plume, dispersed towards the W. Strombolian explosions ejected material up to 25 m.
25 Jun 2018 Degassing plume from Mackenney crater up to 30 m towards the W. Small Strombolian explosions occurred.
26 Jun 2018 Strombolian explosions ejected material up to 15-30 m.
27 Jun 2018 Low white/blue degassing plume, dispersed towards the S. Strombolian explosions ejected material up to 5-25 m.
28 Jun 2018 Low white/blue degassing plume, dispersed towards the S. Strombolian explosions ejected material up to 5-25 m.
29 Jun 2018 White/blue plume up to 50 m. Strombolian explosions ejected material up to 25 m.
30 Jun 2018 Low white/blue degassing plume, dispersed towards the S. Strombolian explosions ejected material up to 15-25 m.
01 Jul 2018 White/blue plume up to 200 m towards the SW. Strombolian explosions ejected material up to 15-50 m.
02 Jul 2018 Low white/blue plume, dispersed towards the S. Strombolian explosions ejected material up to 15-25 m.
03 Jul 2018 Low white/blue plume, dispersed towards the S. Strombolian explosions ejected material up to 5-30 m. Increase in activity generated two lava flows, one 5 x 40 m flow towards the N, one 30 x 50 m towards the SE.
04 Jul 2018 Activity and lava flows decreasing.
05 Jul 2018 Strombolian explosions eject material up to 25 m. A lava flow 60 x 400 m continues.
06 Jul 2018 Strombolian explosions eject material up to 5-25 m.
07 Jul 2018 Lava flow from the Mackenney crater, 400 m long with an average width of 30 m, moving towards the N.
08 Jul 2018 Lava flow continues, now 500 m long. Strombolian explosions ejected material up to 30 m. Degassing plume to 30 m towards the SW.
09 Jul 2018 Strombolian explosions ejected material up to 5-25 m. Incandescence observed.
10 Jul 2018 Strombolian explosions ejected material up to 5-25 m. Incandescence observed. Lava flow continues towards the N.
11 Jul 2018 Strombolian explosions ejected material up to 25-50 m. Incandescence observed. Lava flow continues towards the N to ~350 m.
12 Jul 2018 Small Strombolian explosions continue. Lava flow continues towards the N to ~100 m.
13 Jul 2018 Small white plume dispersed to the S. Strombolian explosions ejected material up to 5-25 m. A Lava flow continues towards the N to 200 m.
14 Jul 2018 Incandescence observed. Strombolian explosions ejected material up to 15-40 m. A ~150 m lava flow moved towards the N.
15 Jul 2018 Lava flow on the N to NW flank down to ~400 m, accompanied by small avalanches. Strombolian explosions ejected material up to 15-75 m.
16 Jul 2018 Strombolian explosions ejected material up to 5-25 m. Incandescence observed. A lava flow descended towards the NW to ~400 m.
17 Jul 2018 Incandescence observed. Strombolian explosions eject material up to 25-50 m. A new lava flow moved towards the N.
18 Jul 2018 Degassing and Strombolian explosions produced material up to 25-30 m. A 500 m lava flow continued towards the N.
19 Jul 2018 Strombolian explosions ejected material to a low level. A 300 m lava flow descended towards the N.
20 Jul 2018 Low white/blue plume towards the S. Incandescence observed during the night/morning. Strombolian explosions ejected material up to 5-25 m. A 200 m lava flow moving towards Cerro Chino.
21 Jul 2018 White/blue plume displaced towards the W. Lava flow continues 300 m towards the N.
22 Jul 2018 White/blue plume dispersed towards the S. Strombolian explosions ejected material to a low level. A lava flow moved towards the NW to ~500 m.
23 Jul 2018 Strombolian explosions ejected material to a low level. A lava flow moved towards the NW to ~250 m.
24 Jul 2018 Low white/blue plume towards the S. Strombolian explosions ejected material up to 10-30 m. Lava flow to ~200 m towards Cerro Chino.
25 Jul 2018 White/blue plume up to 450 m, dispersed towards the S. Strombolian explosions ejected material to a low level. A 75 x 250 m lava flow moved towards the NW.
26 Jul 2018 White/blue plume up to 300 m, dispersed towards the W. Strombolian explosions ejected material to a low level. A lava flow moved towards the NW to 200 m.
27 Jul 2018 White plume up to 300 m, dispersed towards the W. Strombolian explosions ejected material to a low level. A lava flow moved towards the NW to 200 m.
28 Jul 2018 Moderate white/blue degassing plume dispersed towards the S. Strombolian explosions ejected material to a low level. A lava flow moved towards Cerro Chino to 150 m.
29 Jul 2018 White plume up to 300 m, dispersed towards the S. Strombolian explosions ejected material to a low level. Two lava flows moved towards the W to 50 and 150 m.
30 Jul 2018 Moderate white/blue degassing plume dispersed towards the S. Strombolian explosions ejected material to a low level. A lava flow moved towards Cerro Chino to 200 m.
31 Jul 2018 White plume up to 200 m, dispersed towards the S. Strombolian explosions ejected material to a low level. A lava flow moved 150 m towards the NW.
01 Aug 2018 White/blue plume up to 600 m, dispersed towards the W. Strombolian explosions ejected material to a low level. A lava flow moved towards Cerro Chino to 500 m.
02 Aug 2018 White/blue plume dispersed towards the N. Strombolian explosions ejected material to a low level. A lava flow moved towards Cerro Chino to 300 m.
03 Aug 2018 White/blue plume up to 50 m, dispersed towards the SW. Strombolian explosions ejected material to a low level. A lava flow moved towards Cerro Chino to 150 m.
04 Aug 2018 White plume dispersed towards the SE. Strombolian explosions ejected material up to 30 m. A lava flow moved towards the N to 300 m.
05 Aug 2018 Moderate white plume up to 100 m, dispersed towards the S. Strombolian explosions ejected material to a low level. A lava flow moved towards Cerro Chino to 300 m.
06 Aug 2018 White plume dispersed towards the SE. Strombolian explosions ejected material up to 30 m. Lava flow continues 300 m towards the N.
07 Aug 2018 Low white/blue plume dispersed towards the S. Strombolian explosions ejected material up to 10-50 m. Two lava flows to the NE to 200 and 400 m.
08 Aug 2018 Moderate white plume dispersed towards the S. Strombolian explosions ejected material to a low level. A lava flow moved towards Cerro Chino to 150 m.
09 Aug 2018 Moderate white/blue plume up to 250 m, dispersed towards the W. Strombolian explosions ejected material to a low level. A lava flow moved towards the W to 150 m.
10 Aug 2018 Moderate white/blue plume dispersed towards the S. Strombolian explosions ejected material to a low level. Two lava flows moved towards Cerro Chino to 75 and 300 m.
11 Aug 2018 Low white/blue plume, dispersed towards the S. Strombolian explosions ejected material up to 10-25 m. A lava flow moved towards Cerro Chino to 250 m.
12 Aug 2018 Moderate white/blue plume up to 500 m, dispersed towards the NW. Strombolian explosions ejected material to a low level. A lava flow moved towards Cerro Chino to 300 m.
13 Aug 2018 Small Strombolian explosions. Weak white/blue plume up to ~100 m. Lava flow ~300 m towards Cerro Chino.
14 Aug 2018 Strombolian explosions ejected material up to 25-30 m. Lava flow on the NW flank continues down to 300 m.
15 Aug 2018 Moderate white plume up to ~100 m, dispersed to the S. Strombolian explosions ejected material up to 5-20 m. Two lava flows moved towards Cerro Chino to 75 and 300 m.
16 Aug 2018 Low white/blue plume dispersed towards the S. Strombolian explosions ejected material low above the crater. 200 m lava flow on the N flank.
17 Aug 2018 Moderate white plume reached ~50 m and dispersed to the S. Two lava flows traveled towards Cerro Chino to ~75 to 300 m.
18 Aug 2018 Faint white/blue plume up to 300-400 m and dispersed to the SW. Strombolian explosions ejected material to a low height. One lava flow to the N to ~300 m.
19 Aug 2018 Moderate white/blue plume up to ~100 and 150 m and dispersed to the NW. Two lava flows active on the NW flank towards Cerro Chino to ~75 and 300 m.
20 Aug 2018 White plume up to 600 m, dispersed to the SW. Strombolian explosions ejected material up to 5-25 m. One lava flow to the N to ~300 m.
21 Aug 2018 White plume up to 600 m, dispersed to the W. One lava flow continues towards the N to ~300 m.
22 Aug 2018 Strombolian explosions ejected material to 25-30 m. The lava flow continues to 400 m on the N flank.
23 Aug 2018 White/blue moderate plume towards the S. Two lava flows traveled towards Cerro Chino to the NW.
24 Aug 2018 Strombolian explosions ejected material to a low height. Two lava flows traveled towards Cerro Chino to 200 and 300 m.
25 Aug 2018 Abundant degassing and explosions ejected material up to 30 m and deposited in the same crater. One 400 m lava flow on the N flank.
26 Aug 2018 Low white plume dispersing towards the S. Strombolian explosions ejected material to 5-30 m. One lava flow 350 m to the N.
27 Aug 2018 Slight increase of explosive activity, generating 3-5 explosions per hour.
31 Aug 2018 Degassing plume up to ~200 m, dispersed to the S. Strombolian explosions ejected material to a little above the crater. A lava flow moved towards the N to NW.
01 Sep 2018 White plume up to 800 m, dispersed towards the W. Strombolian explosions continue. A lava flow moved towards the N to 200 m.
02 Sep 2018 A 200-300 m lava flow was observed.
03 Sep 2018 Moderate white/blue plume up to 600 m, dispersed towards the NW. Incandescence was observed. A lava flow moved towards the NW to 200 m.
04 Sep 2018 White/blue plume up to 100 m, dispersed towards the W. Incandescence was observed. Two lava flows moved towards Cerro Chino.
05 Sep 2018 White/blue plume up to 800 m, dispersed towards the SW. Incandescence was observed. Two lava flows moved towards the NW to 100-200 m.
06 Sep 2018 Moderate white/blue plume dispersed towards the SW. Incandescence observed. Two lava flows moved towards the NW to 100-200 m.
07 Sep 2018 Moderate white/blue plume up to 50 m, dispersed towards the S. Incandescence observed. Two lava flows moved towards the NW to 200 m.
08 Sep 2018 Two lava flows observed from San Vicente.
09 Sep 2018 White/blue plume up to ~600 m towards the SW. Three lava flows 50, 150 and 300 m long.
10 Sep 2018 White/blue plume up to ~100 m, towards the N. Lava flow 300 m towards the NW.
11 Sep 2018 White/blue plume up to ~600 m, towards the N. Two lava flows ~150 and 200 m long towards Cerro Chino.
12 Sep 2018 White/blue plume up to ~300 m towards the S. Lava flow ~300 m towards Cerro Chino. Strombolian explosions ejected material up to 10-40 m.
13 Sep 2018 White/blue plume up to 50 m towards the N. During night/early morning incandescence was observed. Lava flow 200-300 m towards the NW-W.
14 Sep 2018 Strombolian explosions ejected material up to 5-25 m. Three lava flows to 150, 250, and 300 m towards Cerro Chino.
15 Sep 2018 Fumarole gases up to 500 m due to low winds. Three lava flows to 150, 250, and 300 m on the W flank. Strombolian explosions ejected material to 25 m.
16 Sep 2018 Fumarole degassing up to 300-400 m. Lava flow in the direction of Cerro Chino, 200 m in length.
17 Sep 2018 White/blue fumarole plume towards the S. Incandescence observed at night. Lava flow to 200 m towards the NW.
18 Sep 2018 Moderate blue/white degassing plume to low altitude. Strombolian explosions ejected material up to 5-25 m. Lava flow 200 m towards Cerro Chino.
19 Sep 2018 Moderate white/blue plume up to 50 m, dispersed towards the SW. Strombolian explosions ejected material up to 10-25 m. A lava flow moved towards the W.
20 Sep 2018 Degassing plume up to 500-600 m towards the W. Two lava flows towards Cerro Chino on NW flank down to 150 and 300 m. Strombolian explosions ejected material up to 15-30 m.
21 Sep 2018 Incandescence observed at the crater at night/early morning. Four lava flows down to 40, 150, and 200 m to the NW.
22 Sep 2018 Strombolian explosions ejected material up to 25-25 m. A lava flow moved towards Cerro Chino.
23 Sep 2018 Strombolian explosions ejected material up to 25-30 m. A lava flow moved towards Cerro Chino to 250-300 m.
24 Sep 2018 White/blue plume up to 100 m, dispersed towards the S. Two lava flows moved towards Cerro Chino to 75 and 150 m.
25 Sep 2018 Strombolian explosions ejected material up to 5-25 m. A lava flow moved 100-200 m to the NW.
26 Sep 2018 White plume dispersed towards the S. Incandescence observed. A lava flow moved towards Cerro Chino.
27 Sep 2018 Strombolian explosions ejected material up to 20 m. Two lava flows moved towards Cerro Chino to 250 and 300 m.
28 Sep 2018 A lava flow continued towards Cerro Chino. Incandescence was observed.
28 Sep 2018 Incandescence was observed. Strombolian activity continued. A lava flow moved towards Cerro Chino.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); Coordinadora Nacional para la Reducción de Desastres (CONRED), Av. Hincapié 21-72, Zona 13, Guatemala City, Guatemala (URL: http://conred.gob.gt/www/index.php); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Popocatepetl (Mexico) — November 2018 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Gas, steam, and ash plumes continue through August 2018 with occasional explosions ejecting incandescent blocks onto the slopes

Popocatépetl volcano is one of Mexico's most active volcanoes, located near the capitol Mexico City. It has been persistently active since 2005 and frequently active for centuries before that. Activity frequently consists of gas-and-steam and ash plumes, incandescent blocks that scatter across the flanks, and frequent growth of domes in the summit crater. This report summarizes activity from March through August 2018 using information issued by CENAPRED (Centro Nacional de Prevención de Desastres) along with various satellite and webcam data.

Throughout the reporting period, typical activity continued, consisting of frequent low-intensity activity and larger explosive events (figure 106), visible incandescence on cloud-free nights, elevated thermal energy in the crater, and sulfur dioxide measurements.

Figure (see Caption) Figure 106. Graph showing the number of low-intensity events (producing gas-and-steam and dilute ash plumes), and explosive events at Popocatépetl from March through August 2018. Data courtesy of CENAPRED.

Activity during March 2018. Activity through March involved intermittent to continuous gas-and-steam emissions. For the entire month, there were 2,812 low-intensity gas-and-steam events reported, sometimes with minor ash content; 36 explosive events also occurred. Explosions produced ash plumes up to a maximum height of 1.5 km above the crater. Incandescence was frequently observed at nighttime and showed greater intensity during periods of increased emissions from the crater. Emissions were directed towards the N, NE, SE, SSW, and NW. Volcano-tectonic (VT) earthquakes were common, with the largest being a magnitude 3 under the SE flank on 24 March, and a magnitude 3.2 located 18 km NE of the volcano on 31 March. On 16 March an overflight of the summit by CENAPRED and the Federal Police determined that the internal summit crater was 320 m in diameter and about 100 m deep (figure 107). A small 30 x 50 m dome (number 78 since March 1996) was present in the crater and producing gas emissions. On the walls of the crater the remnants of older domes could be seen.

Figure (see Caption) Figure 107. Photos of Popocatépetl volcano showing degassing and a small dome within the summit crater. Photos taken during an overflight on 16 March 2018 courtesy of Luis Felipe Puente at Protección Civil del Estado de México.

Activity during April 2018. Throughout April the frequency of gas-and-steam emissions was variable. Over the month, 1,986 low-intensity plumes and minor ash rose up to 1 km above the crater, and 53 larger explosive events that produced ash plumes up to 1 km (figure 108). On 10 and 11 April explosive events generated ash plumes to 1 km above the crater and ejected incandescent blocks out to 500 m from the crater. Another explosive event on 27 April produced an ash plume to 1 km above the crater. Harmonic tremor and frequent incandescence indicated that dome growth continued. Plumes were largely directed towards the NE, SE, or SSW. On 23 April three events ejected incandescent blocks to the E and SE of the crater. VT events were common with the largest reaching M 3.2 on 11 April.

Figure (see Caption) Figure 108. Gas-and-steam and ash plumes at Popocatépetl in April 2018. Webcam images courtesy of Webcams de Mexico.

Activity during May 2018. Throughout May, intermittent to continuous gas-and-steam emissions continued with the plumes reaching 1.2 km above the crater (figure 109). A total of 2,029 low-intensity events and 19 explosive events were produced. An explosive event on 3 May generated an ash plume up to 2 km above the crater, dispersing towards the NNE, and was followed by continuous emissions of gas-and-steam up to 1.2 km. On 17 and 18 May three explosions produced ash plumes up to 2.5 km above the crater. On 25 May an explosion launched incandescent blocks up to 400 m above the crater, most of which landed back into the crater, and produced an ash plume up to 3 km that then drifted towards the S. Wind directions largely directed plumes towards the S, SE, and SW. A second explosion that day ejected incandescent blocks up to 300 m above the crater. Incandescence was frequently noted above the crater at nighttime throughout the month. VT events were common, with the largest event being a M 3.4 on 24 May.

Figure (see Caption) Figure 109. Ash plumes (upper images), an explosive event producing an ash plume and ejecting incandescent blocks onto the slopes (lower left), and a gas-and-steam plume (lower right) at Popocatépetl in May 2018. Webcam images courtesy of Webcams de Mexico.

Activity during June 2018. During the month of June a total of 1,425 low-intensity and 45 explosive events occurred (figure 110). Gas-and-steam emissions were variable, reaching less than 1 km above the crater. Explosive events generated ash plumes up to 2 km on 1-2 June (figure 111), 2.5 km on 15 June, 2 km on 16 June, and 1 km on 23 June. Ash plumes were largely directed towards the SSW, NE, and W. Volcano-tectonic (VT) events were common, with the largest event being a M 3.4 on 24 June. Incandescence was common at nighttime when clouds did not obscure the summit.

Figure (see Caption) Figure 110. Gas-and-steam and ash plumes at Popocatépetl through the month of June 2018. Webcam images courtesy of Webcams de Mexico.
Figure (see Caption) Figure 111. Ash emission from the Popocatépetl summit crater on 1 June 2018. Top: Thermal image showing the elevated temperature of the crater. Bottom: Natural color image showing the brown ash plume. Thermal (urban) satellite image (bands 12, 11, 4) and natural color satellite image (bands 4, 3, 2) courtesy of Sentinel Hub Playground.

Activity during July 2018. Through the month of July, Popocatépetl produced 959 low-intensity events, sometimes with dilute ash, and 55 larger explosive events (figure 112). A series of events on 19-20 June produced a small amount of ashfall on the town of Amecameca to the west and explosive events ejected incandescent blocks out to 600 m from the crater. An increase in activity on 31 July ejected incandescent material onto the flanks and a 2-km-high ash plume that resulted in ashfall in the municipalities of Tetela del Volcán, Yecapixtla, Tlalnepantla, Totolapan, Cuernavaca, Tepoztlan, Huitzilac, and Tlayacapan in the state of Morelos, as well as in Amecameca, Acuautla, Ecatzingo , Ozumba, and Tepetlixpa, in the state of Mexico. VT events were common, with the largest being a M 3 event on 4 July. Incandescence was commonly visible above the crater.

Figure (see Caption) Figure 112. Webcam images showing activity at Popocatépetl during July 2018. Top left: a gas-and-steam plume with incandescence from the crater visible at the base of the plume. Top right: a nighttime explosion producing incandescence in the plume above the crater and incandescent blocks that have landed on the flanks of the volcano. Bottom left and right: dilute ash plumes. Webcam images courtesy of Webcams de Mexico.

Activity during August 2018. Throughout August there was a total of 2,262 low-intensity events and 70 larger explosive events at Popocatépetl. Gas-and-steam and some ash emissions reached 1 km above the crater (figure 113). Incandescence was common throughout the month when the crater was visible at night. VT events continued with the largest on 14 August with a magnitude of 3.

Figure (see Caption) Figure 113. Examples of gas-and-steam plumes, nighttime incandescence (upper right), and an ash plume (lower left) at Popocatépetl through August 2018. Webcam images courtesy of Webcams de Mexico.

Satellite data. In agreement with frequent visible incandescence at the summit, elevated thermal energy was detected by satellites (figure 114). The MIROVA (Middle InfraRed Observation of Volcanic Activity) algorithm also detected frequent elevated thermal activity at the summit. Sulfur dioxide emissions were sporadically large enough throughout the reporting period to be measured by the satellite Ozone Monitoring Instrument (OMI) (figure 115).

Figure (see Caption) Figure 114. The Popocatépetl crater had persistently elevated temperatures (bright yellow-orange) in the crater from March through August 2018. Bright blue colors are snow on the volcano. Thermal (urban) satellite images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 115. Sulfur dioxide measurements in Dobson Units (DU) by the Ozone Monitoring Instrument (OMI) on the AURA spacecraft over Mexico with Popocatépetl indicated in the upper left image. Sulfur dioxide is commonly detected over Popocatépetl and these images show some examples of the higher SO2 days on 24 March 2018 (upper left), 15 April 2018 (upper right), 11 May 2018 (bottom left), and 30 July 2018 (lower right). Date, time, and measurements are given at the top of each image. Courtesy of NASA Goddard Flight Center.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Centro Nacional de Prevención de Desastres (CENAPRED), Av. Delfín Madrigal No.665. Coyoacan, México D.F. 04360, México (URL: http://www.cenapred.unam.mx/), Daily Report Archive http://www.cenapred.unam.mx:8080/reportesVolcanGobMX/BuscarReportesVolcan); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Webcams de Mexico (URL: http://www.webcamsdemexico.com/); Luis Felipe Puente, Protección Civil del Estado de México, Lic. Adolfo López Mateos s/n, Primer Piso, Las Culturas, 51355 San Miguel Zinacantepec, Méx., Mexico (URL: http://cgproteccioncivil.edomex.gob.mx/, Twitter: https://twitter.com/LUISFELIPE_P, Twitter: @LUISFELIPE_P).


Reventador (Ecuador) — November 2018 Citation iconCite this Report

Reventador

Ecuador

0.077°S, 77.656°W; summit elev. 3562 m

All times are local (unless otherwise noted)


Ash plumes and explosions with ballistic ejecta continue during April-September 2018 with several lava flows and pyroclastic flows; five new vents after partial flank collapse

Reventador is one of the most active volcanoes in Ecuador. The active cone is situated in a horseshoe-shaped collapse crater that opens to the E. Typical activity consists of explosions that eject blocks onto the slopes and ash plumes, as well as occasional lava flows and pyroclastic flows. Activity has been elevated since 2002, with several breaks between eruptions during this time. Since 2002 there have been 637 volcanic ash activity reports indicating ash plumes, and 36 ash plumes have exceeded 3.1 km above the crater. This report summarizes eruptive activity for April through September 2018 and is based on Instituto Geofisico (IG-EPN) reports, Washington Volcano Ash Advisory Center (VAAC) reports, and various satellite data.

The activity at Reventador has had several broad levels of activity during this time: 'very explosive' during January to 21 April with up to 45 explosions per day; a period of reduced explosive activity from 22 April to 16 August with fewer than five explosive events per day; and 'very explosive' activity continued after 17 August. The activity produced frequent plumes, several lava flows out to 3 km from the vent, and pyroclastic flows. Incandescence was frequently observed at the crater throughout this period. A partial flank collapse occurred in April, resulting in five new vents within the new scarp on the W side. Incandescent blocks were frequently observed on the flanks, reaching down to 1 km from the crater and ash plumes were frequently observed with maximum heights of 1-3 km (table 10). The area was often concealed by cloud cover but incandescence was frequently noted when the summit was visible. Near-continuous activity was reported when the volcano was visible (figure 89).

Table 10. High levels of activity at Reventador during April-September 2018 were evident from the numbers of MODVOLC thermal alerts, days with reported ash emissions, and block avalanches. Clouds covering the volcano impacted observations of activity during most months. Compiled from IG-EPN daily reports, VAAC reports, and MODVOLC data.

Date MODVOLC alerts Cloudy days Days with ash emissions Plume heights above summit (m) Days with block avalanches Block avalanche runout distances (m)
Apr 2018 0 14 18 Less than 200 - over 1,000 10 200 - 800
May 2018 4 21 22 300 - 3,100 1 800
Jun 2018 0 21 22 300 - over 1,000 5 300 - 800
Jul 2018 0 30 20 200 - 2,500 7 100 - 1,000
Aug 2018 2 28 14 100 - over 1,000 4 600 - 1,000
Sep 2018 1 26 27 400 - over 1,000 4 300 - 600
Figure (see Caption) Figure 89. Chart summarizing monthly activity at Reventador during January 2017-September 2018 showing MODVOLC alerts (red), ash emissions (gray), and block avalanches (blue). The number of cloudy days (yellow) reduced the number of observed events during most months. Data courtesy of IG-EPN, compiled from daily reports and MODVOLC.

Near-continuous activity continued through April, with ash or gas-and-steam plumes observed on most days when weather permitted (figure 90). On 6 April a 600-m-high ash plume was accompanied by pyroclastic flows that traveled down multiple flanks (figure 91). Light ashfall was reported to the NE of Reventador on the night of 9 April after a 600-m-high ash plume and incandescent blocks were ejected. An overflight on 12 April observed short ash plumes up to 1.5 km above the crater accompanied by "cannon-shot" booms (figure 92), a pyroclastic flow, and hot avalanche deposits radiating from the crater out to 1.6 km (figures 93 and 94). Temperatures in the vent reached 355°C and the maximum detected pyroclastic flow deposit temperature was 150°C.

Figure (see Caption) Figure 90. Examples of plumes at Reventador with various concentrations of ash, and explosions ejecting incandescent blocks onto the flanks during April 2018. Webcam images courtesy of IG-EPN (April 2018 daily reports).
Figure (see Caption) Figure 91. Pyroclastic flows traveling down multiple flanks during an explosive event at Reventador on 6 April 2018. Courtesy if IG-EPN (6 April 2018 daily report).
Figure (see Caption) Figure 92. An ash plume at Reventador on 12 April 2018. Multiple Vulcanian ash plumes were observed during the monitoring overflight on this day. Courtesy of F. Naranjo, IG-EPN (10 May 2018 report).
Figure (see Caption) Figure 93. An aerial photograph of Reventador on 12 April 2018 showing fresh lighter-gray pyroclastic flow and ballistic-projectile deposits on most sides of the volcano. The deposits extended down to 800 m from the crater. Courtesy of F. Naranjo, IG-EPN (10 May 2018 report).
Figure (see Caption) Figure 94. Photographs and thermal images of hot pyroclastic flow deposits on Reventador. When these images were taken on 26 April 2018, temperatures of the deposits were up to 150°C. Beyond the pyroclastic flow deposits hot ballistic blocks are visible in the thermal images, and the 2017 lava flow is visible in the top photograph. Courtesy of S Vallejo, P Ramón, IR Image: M Almeida, IG-EPN (10 May 2018 report).

Continuous explosive activity in the second and third weeks of April caused a partial collapse of the western flank, including part of the summit (figure 95). The length and width of the resulting scarp was 400 x 200 m, and the maximum depth was 200 m. Within this collapse scarp, five vents had formed that were producing both effusive and explosive activity. A lava flow and pyroclastic flow deposits were observed below the collapse area. On 26 April an active lava flow was observed descending the W flank that was redirected towards the E once it reached the older collapse scarp wall (figure 96). The lava flow was active for around one month and had ceased by the time the flow was observed again during an overflight on 20 June. A thermal survey on 20 June detected temperatures within the vents ranging from 60-155°C. At the time of the survey, three out of five vents were active with either effusive or explosive activity.

Figure (see Caption) Figure 95. Photograph and thermal images of the western flank of the Reventador cone on 12 April 2018 (left images) and 20 June 2018 (right images). These images show the cone before and after the sector collapse that occurred mid-April as a result of continuous explosive activity. Five vents formed within this scarp, indicated in the 20 June images, which went on to produce explosive and effusive activity. Pyroclastic flow deposits and a lava flow are visible below the scarp in the 20 June images. Courtesy of M.F. Naranjo, S. Vallejo; thermal images: M. Almeida, S. Vallejo, IG-EPN (2018 Reventador annual report).
Figure (see Caption) Figure 96. Digital Elevation Model (DEM) of Reventador showing the distribution of the lava flows generated during April and May 2018. The northern flow (purple) has three dates showing the progress of the flow that correspond to the colored thermal images below. The NE-directed flow (orange) was generated in June 2017. Translated captions for the thermal images are as follows. 2018 04 26: The lava flow descended to the NW then it was directed towards the E by the crater wall. The maximum recorded temperature was 470°; thermal image by M. Almedia, IG-EPN. 2018 05 21: The lava flow front was advancing with four lobes; thermal image by S. Vallejo, IG-EPN. 2018 06 20: An aerial view of the NE flank with the flow inactive at the time of observation. The flow had bifurcated into two flow fronts; image by S. Vallejo Vargas, IG-EPN. Image courtesy of IG-EPN (2018 Reventador annual report).

Ash and gas-and-steam plumes continued through May with plumes reaching 3.1 km above the crater, accompanied by ballistic projectiles and hot avalanches that reached 800 m away from the crater on the flanks of the volcano. There were 12 reports of ashfall on 27 May in the provinces of Imbabura, Napo and Pichincha. On 27 May there were 12 reports of ashfall in the provinces of Imbabura (Antonio Ante, Otavalo), Napo (Quijos), and Pichincha (Cayambe, Pedro Moncayo, Quito), originating from a 3.1-km-high ash plume (figure 97).

Figure (see Caption) Figure 97. Volcanic ash samples from the 27 May 2018 Reventador ashfall event in Cayambe and Pomasqui. Top: Binocular microscope images of the ash samples showing finer ash in the Cayambe sample. The scales for these two images are 0.2 mm. Bottom: Scanning Electron Microscope (SEM) images of ash particles from the Pomasqui sample above. The images show crystals (cristal), vesicular scoria clasts (escoria), dense lava clasts (lava densa), glass (vidrio), and aggregates of fine ash that clumped together because of the humidity in the atmosphere (agregado). The scales for these four images are 50 microns. Courtesy of E. Gaunt, IG-EPN.

Detected thermal anomalies were less frequent from June through September (figure 98). Ash and gas-and-steam plumes continued through June, reaching over 1 km above the crater (figure 99). Light ashfall was reported in Azcásubi on 28 June. Five avalanches of incandescent blocks were recorded, extending 800 m from the crater. Through July, ash and gas-and-steam plumes reached a maximum height above the crater of 2.5 km. Four incandescent block avalanches were observed down to 1 km below the crater. Ashfall was reported on 2 July in the Cayambe sector and in the town of Juan Montalvo (figure 100). Light ashfall was also reported in Tababela and Puembo on 19 July.

Figure (see Caption) Figure 98. Log radiative power MIROVA plot of MODIS infrared data for the year ending 1 October 2018 showing a decrease in energy and frequency of anomalies detected at Reventador after June 2018. Courtesy of MIROVA.
Figure (see Caption) Figure 99. Examples of ash plumes and explosions ejecting incandescent blocks on to the flanks of Reventador during June 2018. Courtesy of IG-EPN (June 2018 daily activity reports).
Figure (see Caption) Figure 100. An ash plume at Reventador reached 3 km above the crater at 1130 local time on 2 July 2018. Ashfall from this plume was reported in the Cayambe sector and in the town of Juan Montalvo. Courtesy of ECU 911 Nueva Loja via IG-EPN (2 July 2018 report).

Similar activity continued through August and September, with ash and gas-and-steam plumes reaching over 1 km from the crater (figures 101 and 102). Four avalanches were noted in both August and September, with material reaching 1 km and 600 m, respectively. A Sentinel-2 thermal satellite image acquired on 25 August showed the new morphology of the crater after the April collapse, with two active vents at that time (figure 103).

Figure (see Caption) Figure 101. Examples of ash plumes and incandescent ballistic blocks on the flanks at Reventador during August 2018. Courtesy of IG-EPN (August 2018 daily activity reports).
Figure (see Caption) Figure 102. Examples of ash plumes with varying ash content and incandescent ballistic blocks on the flanks at Reventador during September 2018. Courtesy of IG-EPN (September 2018 daily activity reports).
Figure (see Caption) Figure 103. Sentinel-2 thermal satellite images of Reventador comparing the thermal signatures before and after the formation of the collapse scarp in April. These images show the central summit crater in April and August 2018 with two of the recently-formed vents. Courtesy of Sentinel-Hub Playground.

Geologic Background. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Information Contacts: Instituto Geofísico (IG-EPN), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec ); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sangeang Api (Indonesia) — November 2018 Citation iconCite this Report

Sangeang Api

Indonesia

8.2°S, 119.07°E; summit elev. 1912 m

All times are local (unless otherwise noted)


Ongoing crater activity and thermal anomalies during September 2017-October 2018

A significant increase in the number of thermal anomalies at Sangeang Api was recorded during February and June through mid-August 2017, along with a small Strombolian eruption in mid-July that generated an ash plume (BGVN 42:09). The high number of thermal anomalies continued through at least 20 October 2018. The current report summarizes activity between 1 September 2017 and 20 October 2018. The volcano is monitored by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and Darwin Volcanic Ash Advisory Centre (VAAC).

Based on a Volcano Observatory Notice for Aviation (VONA) from PVMBG, on 9 May 2018 a gas emission was observed at 1807 that rose to an altitude of 4,150 m and drifted W. Consequently, the Aviation Color Code was raised from unassigned to Yellow. Clear thermal satellite imagery the next day showed hot material traveling about 500 m SE out of the summit crater and continuing another 500 m down the E flank (figure 18).

Figure (see Caption) Figure 18. Sentinel-2 satellite image of Sangeang Api on 10 May 2018. This "Atmospheric penetration" view (bands 12, 11, and 8A) highlights hot material extending more than a kilometer from the vent in the summit crater to the SE and onto the E flank. Courtesy of Sentinel Hub.

Based on another VONA from PVMBG, an ash emission at 1338 on 15 October 2018 rose 250 m above the summit and drifted SW, W, and NW. The VONA noted that the ash emission possibly rose higher than what a ground observer had estimated. Seismic data was dominated by signals indicating emissions as well as local tectonic earthquakes. The Aviation Color Code was raised from Yellow to Orange.

During the reporting period, MODIS satellite instruments using the MODVOLC algorithm recorded thermal anomalies between 3 and 12 days per month, many of which had multiple pixels. October 2017 had the greatest number of days with hotspots (12), while the lowest number was recorded during December 2017 through February 2018 (3-4 days per month). The vast majority of anomalies issued from the summit; a few were along the E flanks. The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system, also based on analysis of MODIS data, recorded numerous hotspots during the previous 12 months through mid-October 2018, except for the second half of January 2018 (figure 19). Almost all recorded MIROVA anomalies were within 5 km of the volcano and of low to moderate radiative power.

Figure (see Caption) Figure 19. Thermal anomalies identified by the MIROVA system (Log Radiative Power) at Sangeang Api for the year ending 19 October 2018. Courtesy of MIROVA.

Geologic Background. Sangeang Api volcano, one of the most active in the Lesser Sunda Islands, forms a small 13-km-wide island off the NE coast of Sumbawa Island. Two large trachybasaltic-to-tranchyandesitic volcanic cones, Doro Api and Doro Mantoi, were constructed in the center and on the eastern rim, respectively, of an older, largely obscured caldera. Flank vents occur on the south side of Doro Mantoi and near the northern coast. Intermittent historical eruptions have been recorded since 1512, most of them during in the 20th century.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sarychev Peak (Russia) — November 2018 Citation iconCite this Report

Sarychev Peak

Russia

48.092°N, 153.2°E; summit elev. 1496 m

All times are local (unless otherwise noted)


Thermal anomalies, surface activity, and ash explosions during October-November 2017 and September-October 2018

Located on Matua Island in the central Kurile Islands, Russia, Sarychev Peak (figures 19 and 20) had a significant eruption in June-July 2009 (BGVN 34:06, 35:09). Prior to this, a 1946 eruption resulted in the crater with a diameter and depth of approximately 250 m, with steep, sometimes overhanging crater walls. The N crater wall may have collapsed after a 1960 eruption, based on eyewitness accounts. A 1976 eruption included strong emissions and lava flows which resulted in a crater diameter of approximately 200 m and a floor 50-70 m below the rim. The eruption on 11-16 June 2009 encompassed more than ten large explosions, resulting in pyroclastic flows and ash plumes. The area of island covered by the June 2009 pyroclastic flows was more than 8 km2 (BGVN 34:06). Monitoring reports come from the Kamchatkan Volcanic Eruption Response Team (KVERT) and the Sakhalin Island Volcanic Eruption Response Team (SVERT).

Figure (see Caption) Figure 19. Photo looking into the crater of Sarychev Peak from the crater rim on 27 June 2017. Courtesy of V. Gurianov, Institute of Volcanology and Seismology FEB, RAS, KVERT.
Figure (see Caption) Figure 20. Sentinel-2 satellite image (natural color, bands 4, 3, 2) of Sarychev Peak on 8 September 2017. Courtesy of Sentinel Hub Playground.

Thermal anomalies were noted by the NOAA Cooperative Institute for Meteorological Satellite Studies over a period of five hours on 14 October 2017 in satellite data from Terra MODIS, S-NPP VIIRS, and Himawari-8; a plume of unknown composition accompanied the anomaly. A smaller thermal anomaly was present on 12 October, but not seen the following day during favorable viewing conditions. Another thermal anomaly was reported by SVERT on 21 October; views on other days that week of 17-23 October were obscured by clouds. On 7 November gas emissions and an elongated area of snow melt and potential thermal signature was visible on the N flank of the volcano (figure 21). On 8 and 13 November steam emissions were reported by SVERT and cloud cover prevented additional observations.

Figure (see Caption) Figure 21. Sentinel-2 satellite images of Sarychev Peak on 7 November 2017. Top image (natural color, bands 4, 3, 2) shows a white plume rising from the summit crater and a dark area extending about 1.25 km NW on the snow-covered slopes. Bottom image (atmospheric penetration, bands 12, 11, 8A) shows hot areas (in orange) of volcano material near the summit within the dark area seen in visible imagery. Courtesy of Sentinel Hub Playground.

The volcano was usually cloud-covered after mid-November 2017 through mid-February 2018. A small white plume seen in Sentinel-2 imagery on 20 February 2018 was not accompanied by a noticeable thermal anomaly, and the island appeared completely snow-covered. No activity of any kind was seen on the next cloud-free images taken on 4 and 11 May 2018, when the summit crater was filled with snow.

KVERT noted in a September report that there had been a thermal anomaly periodically observed after 7 May 2018. Fumarolic plumes were visible on 5 and 18 June 2018 (figure 22). Thermal anomalies were present on 8 and 11-12 September. Moderate explosions were reported during 11-15 September 2018, with ash emissions rising 3-4 km. On 14 September ash plumes drifted as far as 120 km NNE and the Aviation Color Code was raised to Orange. Explosions on 17 September generated ash plumes that rose as high as 4.5 km and drifted 21 km NE. Additional ash plumes identified in satellite images drifted 265 km E during 17-18 September. The eruption continued through 21 September, and a thermal anomaly was again visible on 22 September.

Figure (see Caption) Figure 22. Fumarolic activity at Sarychev Peak on 18 June 2018. Courtesy of FEC SRC Planeta, Institute of Volcanology and Seismology FEB RAS, KVERT.

Based on Tokyo VAAC data and satellite images, KVERT reported that at 1330 on 10 October 2018 an ash plume reached 1.7-2 km altitude and drifted 95 km E. SVERT reported that on 15 October an ash plume rose to 2.1 km altitude and drifted 65-70 km E. KVERT reported that a thermal anomaly was also identified in satellite images on 15 October. No further activity was seen through the end of October.

Thermal anomalies identified in MODIS data by the MIROVA system during October 2016-October 2018 occurred intermittently during the summer months each year (figure 23). However, most of those events were low-power and located several kilometers from the crater, so the heat source is unclear.

Figure (see Caption) Figure 23. Thermal anomalies detected by the MIROVA system using MODIS data at Sarychev Peak for the year ending 18 October 2017 (top) and ending 24 October 2018 (bottom), plotted as log radiative power. Most of the events shown were located several kilometers from the summit crater. Courtesy of MIROVA.

Geologic Background. Sarychev Peak, one of the most active volcanoes of the Kuril Islands, occupies the NW end of Matua Island in the central Kuriles. The andesitic central cone was constructed within a 3-3.5-km-wide caldera, whose rim is exposed only on the SW side. A dramatic 250-m-wide, very steep-walled crater with a jagged rim caps the volcano. The substantially higher SE rim forms the 1496 m high point of the island. Fresh-looking lava flows, prior to activity in 2009, had descended in all directions, often forming capes along the coast. Much of the lower-angle outer flanks of the volcano are overlain by pyroclastic-flow deposits. Eruptions have been recorded since the 1760s and include both quiet lava effusion and violent explosions. Large eruptions in 1946 and 2009 produced pyroclastic flows that reached the sea.

Information Contacts: Sakhalin Volcanic Eruptions Response Team (SVERT), Institute of Marine Geology and Geophysics (IMG&G) Far East Division Russian Academy of Sciences (FED RAS), 1B Science St., Yuzhno-Sakhalinsk, 693022, Russia (URL: http://www.imgg.ru/); Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); NOAA, Cooperative Institute for Meteorological Satellite Studies (CIMSS), Space Science and Engineering Center (SSEC), University of Wisconsin-Madison, 1225 W. Dayton St. Madison, WI 53706, (URL: http://cimss.ssec.wisc.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sheveluch (Russia) — November 2018 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Thermal anomalies along with minor gas and steam emissions continue through October 2018

Volcanic activity at Sheveluch declined during the period of May through October 2018. This decline followed a lengthy cycle of eruptive activities which began in 1999, including pyroclastic flows, explosions, and lava dome growth, as previously reported through April 2018 (BGVN 43:05). According to the Kamchatka Volcanic Eruption Response Team (KVERT), during this time a thermal anomaly was detected in satellite imagery and two gas-and-steam events were reported in July and October 2018. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

KVERT reported that satellite data showed a plume of re-suspended ash up to 62 km to the SE of the volcano on 18 July 2018. Moderate gas and steam emissions rose from the volcano on 19-26 October 2018. Thermal anomalies were frequently reported by KVERT during May through October 2018. The MIROVA system detected intermittent low-power thermal anomalies during this time.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far East Division, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Ulawun (Papua New Guinea) — November 2018 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Ash plumes on 8 June, 21 September, and 5 October 2018

Typical activity at Ulawun consists of sporadic explosions with weak ash plumes. During 2017, sporadic explosions occurred between late June through early November with ash plumes rising no more than 3 km in altitude (BGVN 42:12). This report describes activity between January and September 2018.

According to the Darwin Volcanic Ash Advisory Centre (VAAC), a NOTAM (Notice to Airmen) stated that on 8 June 2018 an ash plume rose to an altitude of 2.1 km and drifted W. The Darwin VAAC also reported that a pilot observed an ash plume on 21 September 2018 rising to an altitude of 3.7 km and drifting W. Ash was not confirmed in satellite images, though weather clouds obscured views.

On 5 October 2018 the Darwin VAAC identified a steam-and-ash emission in satellite images rising to an altitude of 4.6 km and drifting WSW. It was also reported by ground observers. The Rabaul Volcano Observatory reported that during 1-12 October white, and sometimes light gray, emissions rose from the summit crater; seismicity was low.

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).