Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Sarychev Peak (Russia) Ash eruption in March 2020; lava extrusion in August filled and then overflowed the crater in January 2021

Ol Doinyo Lengai (Tanzania) Small lava flows in the summit crater during September 2020-February 2021

Manam (Papua New Guinea) Ash plumes, SO2 plumes, and thermal anomalies continued during October 2020-March 2021

Dukono (Indonesia) Ash and sulfur dioxide plumes during October 2020-March 2021

Sinabung (Indonesia) Block avalanches, pyroclastic flows, and ash explosions continue through February 2021

Barren Island (India) Ash emissions in November and December 2020, then thermal anomalies through February 2021

Merapi (Indonesia) New domes appear in January and February 2021; large explosion on 27 January

Yasur (Vanuatu) Gas-and-ash emissions, SO2 plumes, and thermal anomalies during September 2020-February 2021

Rincon de la Vieja (Costa Rica) Frequent small phreatic explosions through 13 December 2020

Kilauea (United States) New eruption in December 2020 with an active lava lake, lava flows, spattering, and a dome fountain

Pacaya (Guatemala) Increasing activity with ash emissions, explosions, and lava flows on multiple flanks during December 2020-February 2021

Villarrica (Chile) Explosions, ash plumes, crater incandescence, and an active lava lake during September 2020-February 2021



Sarychev Peak (Russia) — May 2021 Citation iconCite this Report

Sarychev Peak

Russia

48.092°N, 153.2°E; summit elev. 1496 m

All times are local (unless otherwise noted)


Ash eruption in March 2020; lava extrusion in August filled and then overflowed the crater in January 2021

Sarychev Peak forms the surface of Matua Island in the Kurile Islands with reported activity dating back to around 1765. Recent activity that started in May 2019 included ash and gas emission and elevated temperatures within the summit crater detected by satellite sensors, with the last reported activity being an ash plume reaching 2.7 km altitude on 10 August and thermal anomalies present until 7 October 2019 (BGVN 44:11). This bulletin summarizes activity during November 2019-April 2021 using reports by the Sakhalin Volcanic Eruption Response Team (SVERT) and the Kamchatka Volcanic Eruptions Response Team (KVERT), along with satellite data.

No cloud-free satellite images were found of the summit in November 2019, but Sentinel-2 satellite images showed weak gas-and-steam emissions on 2 and 20 December. Cloud-free Sentinel-2 images showed gas-and-steam emission through January 2020, and a thermal anomaly was detected in the crater on the 29th (figure 30). No clear satellite images of the summit area were found, but there is evidence of gas emission in February. Evidence of a new eruption is seen in satellite imagery of thin linear ash deposits across the snow on 1, 19, and 30 March 2020, all extending SE from the crater (figure 31). The crater was obscured by gas emissions on the 19th and a clear view of the crater floor showed no thermal anomaly on the 31st.

Figure (see Caption) Figure 30. These thermal satellite images show the Sarychev Peak summit area in December 2019 and January 2020. The images from 2 December 2019, 6 January, and 19 January 2020 show gas emissions (solid arrows). The 29 January image shows a small area with an elevated temperature on the crater floor (dashed arrow). Sentinel-2 thermal satellite images with false color (urban) (bands 12, 11, 4) rendering. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 31. Three ashfall deposits are visible SW of the Sarychev Peak summit through March 2020. Based on satellite images, the deposit at the top was emplaced during an event that occurred during 28 February (ash-free image) and 1 March, the middle during 17 (ash-free image) and 19, and the bottom during 26 (ash-free image) and 29 March. Gas-and-steam emissions are obscuring the view into the crater. All images are at the same scale. Sentinel-2 satellite image with natural (bands 4, 3, 2) rendering. Courtesy of Planet Labs.

The MIROVA system began detecting elevated temperatures in early April 2020, which corresponded to the Sentinel-2 thermal sensor detecting high temperatures on the crater floor (figures 32 and 33). Satellite images also showed continued gas emissions, some days obscuring the view of the crater floor.

Figure (see Caption) Figure 32. This plot shows thermal energy detected at Sarychev Peak by the MIROVA system during March 2020-March 2021. there was an increase in energy detected in April 2020, which was intermittent through to October. After a few months the system detected thermal energy again in mid-January through to early February with a higher output. Courtesy of MIROVA.
Figure (see Caption) Figure 33. Satellite images showing the Sarychev Peak summit crater on 4, 5, 18, and 20 April 2020. The first (top left) PlanetScope image shows the snow-covered summit area with a darker snow-free area on the crater floor. The other three images are Sentinel-2 thermal satellite images with the yellow to red colors indicating high temperatures on the crater floor. There is gas and steam in the crater on the 18th. The high temperature areas correlate to the darker snow-free area in NW part of the crater in the first image; blue colors in the thermal images are snow. Sentinel-2 thermal satellite images have false color (urban) (bands 12, 11, 4) rendering. Courtesy of Planet Labs and Sentinel Hub Playground.

The thermal anomaly on the crater floor continued through May and June, with cloud-free images showing the same area of elevated temperature as the previous months. By 20 May 2019 data from Sentinel-1 Synthetic Aperture Radar (SAR) showed morphological change in the crater associated with the area of high temperature, and this change continued through June. The TROPOspheric Monitoring Instrument (TROPOMI) detected sulfur dioxide (SO2) content within the plume on 27 May (figure 34). Gas-and-steam emission also continued in June, with more substantial plumes visible on 22 and 27 June (figure 35). TROPOMI again detected SO2 on 24 and 25 June; the plume on 24 June was also visible in Sentinel-2 imagery (figure 36).

Figure (see Caption) Figure 34. This image shows a weak gas plume from Sarychev Peak dispersing to the SE on 27 May 2020, as well as other volcanoes in Kamchatka. TROPOspheric Monitoring Instrument (TROPOMI) data showing sulfur dioxide (SO2) in Dobson Units (DU). Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 35. These Planet Scope satellite scenes show gas-and-steam plumes emanating from the Sarychev Peak summit crater and dispersing SSW (left) and NW (right) on 22 and 27 June 2020, respectively. Courtesy of Planet Labs.
Figure (see Caption) Figure 36. Weak gas emission at Sarychev Peak detected by satellite sensors on 25 and 26 June 2020. The top image and the bottom-left images were acquired on the 25th and show the plume being redirected by a meteorological vortex northward before curving to the W and N. Top: Sentinel-2 satellite image with natural color (bands 4, 3, 2) rendering. Courtesy of Planet Labs. Bottom: TROPOspheric Monitoring Instrument (TROPOMI) data showing sulfur dioxide (SO2) in Dobson Units (DU). Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Throughout July satellite data show thermal emission and gas-and-steam emission, mostly within plumes dispersing from the summit crater in different directions and sometimes restricted to within the crater (figure 37). On 18 July a PlanetScope image showed lava extrusion in the crater, at the location of the elevated temperature. Sentinel-2 thermal satellite images showed weak thermal energy detected in the same location during August, and degassing continued (figure 38). By 12 August the deformation on the crater floor was clear in SAR data (figure 39), matching the PlanetScope and Sentinel-2 data. From 21 August through to 12 October there was a reduction in thermal energy detected in Sentinel-2 TIR data, with many days not having clear views of the crater floor. Plume emission continued throughout this time. There were no images showing elevated temperatures during November and December when clouds frequently covered the crater area, and there were also no anomalies detected by the MIROVA system.

Figure (see Caption) Figure 37. The PlanetScope natural color (top) and Sentinel-2 thermal (bottom) satellite images indicate lava in the crater during July 2020. Gas emission is also visible in the images. Sentinel-2 thermal satellite images have false color (urban) (bands 12, 11, 4) rendering. Courtesy of Planet Labs and Sentinel Hub Playground.
Figure (see Caption) Figure 38. PlanetScope and Sentinel-2 satellite images acquired during August 2020 show lava in the crater and gas-and-steam plumes being dispersed in different directions by winds. Sentinel-2 satellite image with natural color (bands 4, 3, 2) rendering. Courtesy of Planet Labs and Sentinel Hub Playground.
Figure (see Caption) Figure 39. These satellite images show the morphological change in the Sarychev Peak summit crater between 10 November 2019 and 12 August 2020. The three gray-scale images use Sentinel-1 Synthetic Aperture Radar (SAR) data acquired on 10 November 2019, 20 May, and 12 August 2020. The color image in the lower left is a Sentinel-2 thermal image acquired on 22 June 2020. The SAR images show morphological changes in the crater in the same location as the elevated temperatures in the thermal images, indicating lava extrusion. Sentinel-1 SAR images are VV, decibel gamma0, and orthorectified. Sentinel-2 thermal satellite images have false color (urban) (bands 12, 11, 4) rendering. Courtesy of Sentinel Hub Playground.

On 11 January 2021 KVERT released a Volcano Observatory Notice for Aviation (VONA) with an elevation of the Aviation Color Code from Green to Yellow. The temperature within the crater had increased above background levels by 79.8°?, indicating that renewed lava extrusion had begun in the crater on the 10th. A gas-and-steam plume extended 36 km NE on the 12th. On 15 January KVERT reported that moderate activity continued, including a gas-and-steam plume that extended 40 km NE. SAR data through January shows the lava volume increasing before flowing over the NW rim and down a preexisting channel on the flank (figure 40). KVERT reported that a lava flow on the northern flank had reached 400 m by the 20th. Lava extrusion with associated moderate gas and steam emission continued throughout the month.

Figure (see Caption) Figure 40. These SAR images of Sarychev Peak during 3 January to 20 February 2021 show lava extrusion filling the summit crater and descending a channel on the NW flank. Note that the 6 January image has a different look angle to the other images, and this alters how the surface appears. Sentinel-1 SAR images are VV, decibel gamma0, and orthorectified. Courtesy of Sentinel Hub Playground.

A 3 February satellite image of the NW flank showed that the lava flow front had reached approximately 1.9 km from the crater rim where it had overflowed (figure 41). The Aviation Color Code was lowered to Green on the 18th with KVERT reporting that the eruption had ended, though thermal anomalies and gas-and-steam emission continued.

Figure (see Caption) Figure 41. Satellite image scenes show the lava flow at Sarychev Peak on 3 and 14 February 2021. Top: PlanetScope image from 3 February showing the lobate lava flow front approximately 1.9 km from the NW crater rim. Bottom: Sentinel-2 satellite scenes from 14 February (thermal infrared to the left and natural color to the right) showing the summit crater area with lava extrusion and the lava flow overtopping the NW rim. Sentinel-2 satellite images have natural color (bands 4, 3, 2) rendering, and thermal false color (urban) (bands 12, 11, 4) rendering. Courtesy of Planet Labs and Sentinel Hub Playground.

Satellite images of the lava flow acquired during March and April show the narrow lava lobe with pressure ridges and levees (figure 42). A comparison between a September 2019 satellite image and a clear 29 April 2021 image shows the change to the crater after the lava emplacement. The last Sentinel-2 image acquired within this period showing elevated temperatures within the crater was on 19 March and there was no more thermal energy detected by the MIROVA system by early February.

Figure (see Caption) Figure 42. The PlanetScope satellite images across the top of this figure show the lava flow on the NW flank of Sarychev Peak during March-April 2021. The different degrees of snow cover show different surface morphological aspects like pressure ridges and levees. The bottom images show the crater on 7 September 2019 for comparison (left) and the lava within the summit crater on 29 April 2021 (right). Fumaroles are also visible around the crater walls in the 2019 image. The top images and bottom right image are PlanetScope satellite images and the lower left image is by CNES/Airbus through Google Earth. Courtesy of Planet Labs and U.S. Dept. of State Geographer Data via Google Earth, ©2019 Google.

Geologic Background. Sarychev Peak, one of the most active volcanoes of the Kuril Islands, occupies the NW end of Matua Island in the central Kuriles. The andesitic central cone was constructed within a 3-3.5-km-wide caldera, whose rim is exposed only on the SW side. A dramatic 250-m-wide, very steep-walled crater with a jagged rim caps the volcano. The substantially higher SE rim forms the 1496 m high point of the island. Fresh-looking lava flows, prior to activity in 2009, had descended in all directions, often forming capes along the coast. Much of the lower-angle outer flanks of the volcano are overlain by pyroclastic-flow deposits. Eruptions have been recorded since the 1760s and include both quiet lava effusion and violent explosions. Large eruptions in 1946 and 2009 produced pyroclastic flows that reached the sea.

Information Contacts: Sakhalin Volcanic Eruption Response Team (SVERT), Institute of Marine Geology and Geophysics, Far Eastern Branch, Russian Academy of Science, Nauki st., 1B, Yuzhno-Sakhalinsk, Russia, 693022 (URL: http://www.imgg.ru/en/, http://www.imgg.ru/ru/svert/reports); Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/); Google Earth (URL: https://www.google.com/earth/).


Ol Doinyo Lengai (Tanzania) — April 2021 Citation iconCite this Report

Ol Doinyo Lengai

Tanzania

2.764°S, 35.914°E; summit elev. 2962 m

All times are local (unless otherwise noted)


Small lava flows in the summit crater during September 2020-February 2021

Ol Doinyo Lengai is located near the southern end of the East African Rift in Tanzania. It is known for its unique low-temperature carbonatitic lava. Activity primarily occurs in the crater offset to the N about 100 m below the summit where hornitos (small cones) and pit craters produce lava flows and spattering. Eruptions have been recorded since the late 19th century; the current eruptive period began in April 2017 and has recently been characterized by small lava flows in the crater (BGVN 45:09). This report covers similar activity during September 2020 through February 2021 using information primarily from satellite data.

During September 2020 to February 2021 both thermal and natural color satellite imagery showed small lava flows in the summit crater. A total of six weak thermal anomalies were identified in MIROVA data during September (2), October (3), and November (1) 2020 (figure 211). No thermal anomalies were detected after late November, according to the MIROVA graph. Sentinel-2 satellite imagery showed small lava flows within the summit crater throughout the reporting period. On clear weather days, infrequent and faint thermal anomalies were observed in thermal satellite imagery within the crater; new lava flows were identified due to the change in shape, volume, and location of the thermal anomaly (figure 212). On 31 August a faint thermal anomaly was visible in the NW side of the summit crater. On 15 September fresh black lava was observed in the center of the summit crater spreading to the NW and E. Two small thermal anomalies were present on the W and E side of the crater on 20 September. On 24 December both thermal and Natural Color images showed the location of a lava flow as a thermal anomaly and as fresh lava in the center and W side of the crater. On 7 February a gas-and-steam plume was observed drifting E from the crater.

Figure (see Caption) Figure 211. Intermittent low-level thermal anomalies were recorded at Ol Doinyo Lengai, based on the MIROVA thermal data graph (Log Radiative Power) during late August through late November 2020; a total of six weak thermal anomalies were detected between September through November 2020. The black lines are distant anomalies (more than 5 km from the summit) not related to volcanism. Courtesy of MIROVA.
Figure (see Caption) Figure 212. Sentinel-2 thermal and natural color imagery of Ol Doinyo Lengai from 31 August 2020 to 7 February 2021. On clear weather days, thermal anomalies (bright yellow-orange) were faintly visible in the summit crater on 31 August (top left) on the NW side. On 15 September (top right) fresh black lava, which quickly cools to a whitish-brown color, was seen in the crater, reflecting the position of the anomalies visible in the thermal image. Two anomalies were visible on 20 September (middle left) on the W and E side. Two black dots which represent cooled lava and thermal anomalies on the W side of the crater were visible in both 24 December (bottom left) thermal and Natural Color images. A small lava flow was observed in the center of the crater on 7 February (bottom right) 2021. Images are marked with “Atmospheric penetration” rendering (bands 12, 11, 8A) and “Natural Color” rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Manam (Papua New Guinea) — April 2021 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Ash plumes, SO2 plumes, and thermal anomalies continued during October 2020-March 2021

Manam is located 13 km off the N coast of mainland Papua New Guinea and has had eruptions documented since 1616. It contains two active summit craters, Main and South, which have been characterized by occasional Strombolian activity, lava flows, pyroclastic avalanches, and ash plumes. The current eruption period has been ongoing since 2014 with more recent activity consisting of intermittent ash plumes, thermal anomalies, and sulfur dioxide emissions (BGVN 45:10). This report describes similar activity and covers October 2020 through March 2021 using information primarily from the Darwin Volcanic Ash Advisory Center (VAAC) and various satellite data.

Explosive and thermal activity was relatively low during this reporting period. Three ash plumes were reported by the Darwin VAAC based on imagery from the HIMIWARI-8 satellite. On 6 December 2020 an ash plume rose to 2.4 km altitude and drifted SW. The next VAAC notice was for ash detected on 23 January 2021 rising to 4.9 km and drifting SE and N. Then on 21 February an ash plume rose to a maximum altitude of 6 km and drifted W. Intermittent sulfur dioxide plumes were detected using the TROPOMI instrument on the Sentinel-5P satellite, some of which reached at least two Dobson Units (DU) and drifted in multiple directions (figure 79). On 6 December and 23 January, the ash plume that was described in the Darwin VAAC advisory was accompanied by an SO2 plume. SO2 plumes that reached a minimum of two DU were recorded for at least 12 days during October, 13 days during November, 15 days during December, 10 days during January, 3 days during February, and 6 days during March.

Figure (see Caption) Figure 79. Distinct sulfur dioxide plumes rising from Manam and drifting in different directions were detected using data from the TROPOMI instrument on the Sentinel-5P satellite on 9 October (top left), 3 November (top right), 6 December (middle left) 2020, 13 January (middle right), 18 February (bottom left), and 18 March (bottom right) 2021. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.

Thermal activity during October 2020 through March 2021 was relatively low in power and frequency compared to August and September, as recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system. Two brief pulses of activity were detected during mid-November and late December to mid-January (figure 80). A total of 14 low-power anomalies were recorded: one in early October, three in mid-November, two in December, a maximum number of six in January, one in late February, and one in late March. Some of this activity was captured in Sentinel-2 thermal satellite imagery on clear weather days in both the Main and South summit craters (figure 81).

Figure (see Caption) Figure 80. Thermal activity at Manam was low to moderate in power during October 2020 through March 2021, with notable brief pulses during mid-November and late December through mid-January, as shown on this MIROVA Log Radiative Power graph. One anomaly was detected in early October, three in mid-November, two in December, six in January, one in late February, and one in late March. Courtesy of MIROVA.
Figure (see Caption) Figure 81. Sentinel-2 thermal satellite images show a persistent thermal anomaly (bright yellow-orange) at both of Manam’s summit craters (Main and South) on clear weather days during November 2020 through March 2021. Occasional gas-and-steam emissions accompanied the thermal anomalies as seen on 25 November 2020 (top left), 29 January (top right), 8 February (bottom left), and 20 March (bottom right) 2021. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Dukono (Indonesia) — April 2021 Citation iconCite this Report

Dukono

Indonesia

1.693°N, 127.894°E; summit elev. 1229 m

All times are local (unless otherwise noted)


Ash and sulfur dioxide plumes during October 2020-March 2021

Dukono, located in northernmost Halmahera, Indonesia, has been erupting continuously since 1933. Volcanism has recently been characterized by frequent ash explosions, ash plumes, and sulfur dioxide plumes (BGVN 45:10). This report updates activity consisting of white-and-gray plumes and sulfur dioxide plumes during October 2020-March 2021 using information primarily from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), the Darwin Volcanic Ash Advisory Centre (VAAC), and satellite data.

Volcanism at Dukono has been characterized by dominantly white-and-gray plumes, accompanied by intermittent ash plumes that drifted in multiple directions. On clear weather days, the ash plumes rose to 1.5-2.4 km altitude, or about 270-1,200 m above the crater, according to PVMBG and the Darwin VAAC advisories (table 23).

Table 23. Monthly summary of reported ash plumes from Dukono during October 2020-March 2021. The direction of drift for the ash plumes was highly variable; notable plume drifts each month were only indicated in the table if at least two weekly reports were consistent. Data courtesy of PVMBG and the Darwin VAAC.

Month Plume altitude (km) Notable plume drift
Oct 2020 1.8-2.4 W, N, NE, E, SW
Nov 2020 1.5-2.1 Multiple directions
Dec 2020 1.5-2.4 SE, E
Jan 2021 1.5-2.1 SW, E
Feb 2021 1.5-2.1 Multiple directions
Mar 2021 1.5-2.4 Multiple directions

Activity during October 2020 primarily consisted of near daily white-and-gray plumes that rose 100-700 m above the crater and drifted in multiple directions (figure 19). Ash plumes during this month rose between 1.8 and 2.4 km altitude and drifted W, N, NE, E, SW, according to PVMBG VONA notices and the Darwin VAAC advisories. Frequent white gas-and-steam emissions were also observed in webcam images. Similar activity continued in November, with almost daily white-and-gray plumes rising 100-800 m above the crater and drifting in multiple directions. On clear weather days ash plumes were observed up to 2.1 km altitude; on 12 November the ash plume rose up to 2.1 km altitude and drifted SW (figure 19).

Figure (see Caption) Figure 19. Webcam images of white-and-gray plumes rising from Dukono on 8 October (left) and an ash plume on 12 November (right) 2020. Courtesy of MAGMA Indonesia.

In December and January 2021, white-and-gray plumes were 100-700 m above the crater and drifted in multiple directions, dominantly E and W in December and SW in January. According to Darwin VAAC advisories during these two months, ash plumes were seen rising to 2.4 km altitude and drifted notably SE, E, and SW.

Activity in February persisted with white-and gray plumes rising 100-600 m above the crater and drifting dominantly SW and E (figure 20). Intermittent ash plumes rose to 2.1 km altitude during February and 2.4 km altitude during March, drifting in multiple directions. Gas-and-steam plumes were also frequent. During March, almost daily white-and-gray plumes rose 100-800 m above the crater and drifted in multiple directions (figure 20).

Figure (see Caption) Figure 20. Webcam images of white-and-gray plumes rising from Dukono on 25 February (left) and 22 March (right) 2021. Courtesy of MAGMA Indonesia.

The NASA Global Sulfur Dioxide page, using data from the TROPOMI instrument on the Sentinel-5P satellite, showed strong SO2 plumes rising from Dukono and drifting in various directions (figure 21). In addition to SO2 plumes, Sentinel-2 thermal satellite imagery showed thermal anomalies of variable intensities on clear weather days (figure 22). Intermittent thermal anomalies recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system during early December 2020 through mid-March 2021 were low in power (figure 23). A brief break in thermal activity occurred during mid- to late-February.

Figure (see Caption) Figure 21. Strong sulfur dioxide emissions rose from Dukono and drifted in multiple directions were detected using the TROPOMI instrument on the Sentinel-5P satellite. SO2 plumes drifted N on 10 October (top left), generally E on 28 November (top right), 13 December (middle left) 2020, and 11 February 2021 (bottom left), SE on 9 January (middle right) 2021, and W on 4 March (bottom right) 2021. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 22. Sentinel-2 thermal satellite imagery showing a thermal anomaly in the summit crater on 1 November (top left) 2020, 10 January (middle right), 1 March (bottom left), and 16 March (bottom right) 2021, frequently accompanied by gas-and-steam and ash plumes. On 11 November (top right) and 6 December (middle left) 2020 a Natural Color image showed a grayish white ash plume drifting SW and SE, respectively. Sentinel-2 satellite images with “Natural Color” rendering (bands 4, 3, 2) on 11 November and 6 December 2020, all other images use “Atmospheric penetration” (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 23. MIROVA (Log Radiative Power) thermal data for Dukono from 3 June 2020 through March 2021 showed intermittent low power thermal activity during early December 2020 through mid-March 2020. A brief break in activity occurred during mid- to late-February. Courtesy of MIROVA.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sinabung (Indonesia) — March 2021 Citation iconCite this Report

Sinabung

Indonesia

3.17°N, 98.392°E; summit elev. 2460 m

All times are local (unless otherwise noted)


Block avalanches, pyroclastic flows, and ash explosions continue through February 2021

Indonesia’s Sinabung volcano in north Sumatra had its first confirmed Holocene eruption during August and September 2010. It remained quiet until September 2013 when a new eruptive phase began that continued through mid-2018. Dome growth and destruction resulted in block avalanches, multiple explosions with ash plumes, and deadly pyroclastic flows during the period. After a pause in activity from September 2018 through April 2019, explosions resumed during May and June 2019. Dome growth began again with an explosion on 8 August 2020, and similar activity continued through October 2020. This report covers ongoing activity from November 2020 through February 2021 with information provided by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), referred to by some agencies as CVGHM or the Indonesian Center of Volcanology and Geological Hazard Mitigation, and the Darwin Volcanic Ash Advisory Centre (VAAC). Additional information comes from satellite instruments and local news reports.

Activity at Sinabung during November 2020-February 2021 was characterized by tens of daily rock avalanches, periodic pyroclastic flows, and ash-bearing explosions. The rock avalanches traveled up to 1,000 m down the E and SE flanks. The pyroclastic flows also traveled down the E and SE flanks, and the largest reached 2.5 km from the summit. Periodic explosions produced ash plumes that rose up to 2 km above the summit and drifted in multiple directions. Although cloudy much of the time, intermittent satellite images showing two thermal anomalies at the summit suggested that the dome remained active (figure 85).

Figure (see Caption) Figure 85. Two thermal anomalies were present at the summit of Sinabung several times during the report period from November 2020-February 2021, including on 2 December 2020 and 10 February 2021, suggesting ongoing dome activity. In addition, frequent pyroclastic flows produced incandescent anomalies on the E flank multiple times including on 10 February 2021. Sentinel-2 images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

White steam emissions rose 50-500 m above the summit of Sinabung during most days in November 2020. Block avalanches were frequent during the first half of the month, traveling 200-1,000 m down the S and SE flanks. The Darwin VAAC reported small ash plumes from block avalanches on 1 and 2 November that rose to 3 km altitude and quickly dissipated. Clouds prevented observations during the last week of the month, but tens of seismic events interpreted by PVMBG as block avalanches were detected. Pyroclastic flows were either observed visually or measured seismically on 2-7, 10, 12, 16, 18 and 19 November (figure 86). They most often occurred on the E or SE flanks and traveled 1,500-2,500 m. Seismic signals indicating lahars were recorded on 26, 27, and 30 November.

Figure (see Caption) Figure 86. A pyroclastic flow descended the S flank of Sinabung on 7 November 2020. Courtesy of Rizal.

Nine explosions with ash plumes were reported during November 2020. On 2 November a gray ash plume rose 1,500 m above the summit, to about 3.9 km altitude, and drifted E. The next day the Darwin VAAC reported an explosion to 3.7 km altitude that drifted E. An ash explosion on 4 November was recorded seismically for 117 seconds but was not seen due to fog. An explosion on 10 November produced an ash plume that rose 2 km above the summit and drifted E, along with pyroclastic flows that traveled 1,500-2,500 m down the E and SE flanks. On 18 November an explosion created an ash plume that rose to 3.7 km altitude and drifted SW; it was measured seismically as a continuous volcanic tremor that lasted for 160 seconds. Seismic activity confirmed an explosion on 21 November, but meteoric clouds obscured observations of ash. An ash plume drifting SW at 3 km altitude, about 500 m above the summit, was reported on 25 November. On 29 November an explosion produced an ash plume to the same altitude that drifted E (figure 87). The next day seismic activity indicated another explosion, but it was not observed due to cloudy weather.

Figure (see Caption) Figure 87. An ash plume at Sinabung rose to 3 km altitude and drifted E on 29 November 2020. Courtesy of PVMBG and MAGMA Indonesia.

Explosive activity decreased during December 2020. Steam plumes rose 50-500 m and tens of rock avalanches were recorded seismically every day. On 6 December block avalanches rolled 300-500 m down the E and SE flanks; they traveled 500-1,000 m down the SE flank on 8 December. During 12-14 December they traveled 1,000-1,500 m down the E and S flanks. On 30 and 31 December they were seen moving 500-1,000 m down the same flanks. Lahars were measured seismically on 4 and 5 December with no reports of damage.

An explosion on 2 December produced an ash plume that rose about 500 m above the summit and drifted ESE. Clouds and rain prevented views of the summit on 5 December, but the seismogram recorded an explosive event that lasted for 168 seconds (figure 88). The Darwin VAAC reported an ash plume moving ESE at 3 km altitude on 13 December. Sentinel-2 satellite imagery captured a thermal anomaly on the E flank on 17 December that was likely from a pyroclastic flow (figure 89). Two explosions were recorded each day on 28 and 29 December. On the first day the ash plume from the first explosion rose to 500 m and drifted S. The second explosion was not observed due to weather, but a thermal anomaly was intermittently visible. The explosions on 29 December were only recorded seismically, as was one explosion on 30 December.

Figure (see Caption) Figure 88. The KESDM seismogram at Sinabung recorded an explosive event on 5 December 2020 that lasted for 168 seconds. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 89. A thermal anomaly on the E flank of Sinabung on 17 December 2020 was likely from a pyroclastic flow. The summit is obscured by clouds. Sentinel-2 image with Atmospheric penetration rendering (bands 12, 11, and 8a). Courtesy of Sentinel Hub Playground.

Tens of daily rock avalanches continued to be recorded during January 2021, although most were not observed. During 2-5 January they traveled 500-1,200 m down the E and SE flanks, and on 14 January they fell 700-1,000 m down the SE flank. The number of explosions with ash plumes increased significantly from December. On 3 January two explosions were recorded seismically; an ash plume from the first rose 1,000 m above the summit and drifted NW in the morning. A few hours later a second explosion was recorded but not observed due to clouds. Three explosions were recorded each day on 4 and 5 January. The first on 4 January produced a 700-m-high ash plume, the second and third sent ash 1,000 m above the summit to the W and NW (figure 90). The next day, the first explosion sent an ash plume 800 m above the summit that drifted E and SE; the other two were recorded seismically but not observed due to weather. One or two explosions were recorded daily during 6-10 January; most were obscured by clouds. One of the explosions on 8 January produced an ash plume that rose to 700 m and drifted N, and the explosion on 9 January rose to 1,000 m and drifted N and NE. Two explosions were recorded on 12 January, and two or three explosions were reported daily during 16-18 January. Explosions were also recorded on 20-21, 23, 25-27, and 29 January. The three ash plumes on 17 January all rose 500 m above the summit and drifted E, NE, or SE; the plumes on 21 and 27 January rose 500 m and drifted E and SE.

Figure (see Caption) Figure 90. An explosion at Sinabung on 4 January 2021 produced an ash emission that rose 1,000 m above the summit and drifted W and NW. Courtesy of PVMBG and MAGMA Indonesia.

Steam emissions rose 50-700 m above the summit throughout February 2021. Over 100 seismic events from rock avalanches were reported daily; on 6 February a maximum of 231 events were recorded. Numerous explosions, many with pyroclastic flows, were only detected seismically on 5-12, 14, 17, 22, 25, and 28 February. On 6 February the Darwin VAAC reported a continuous ash eruption identified in satellite imagery at 3.1 km altitude drifting NW. PVMBG also reported a pyroclastic flow that traveled 2,500 m down the S flank that day. The Antara News Agency reported an ash plume rising 1,000 m above the summit from a pyroclastic flow and drifting E, SE, and S on 7 February, and another pyroclastic flow on 9 February that traveled 1,000 m down the SE flank (figure 91). Cloudy weather obscured views on most days, but during 12-14 February blocks traveled 500-1,500 m down the S, SE, and E flanks.

Figure (see Caption) Figure 91. A pyroclastic flow traveled 1,000 m down the SE flank of Sinabung on 9 February 2021. Courtesy of Anadolu Agency.

The Darwin VAAC received a report on 10 February of an ash plume at 4.6 km altitude moving E; it was not identifiable in satellite imagery due to meteoric clouds. Two pyroclastic flows on 12 February moved as far as 2,000 m down the E and SE flanks. On 17 February an ash plume rose 1,000 m above the summit and drifted S and W and a pyroclastic flow was reported. A lahar was reported on 21 February. A pyroclastic flow on 22 February traveled 2,000 m down the E and SE flanks. The ash plume from the 25 February event rose to 1,500 m above the summit to about 3.9 km altitude and drifted E and SE (figure 92) and was accompanied by four pyroclastic flows that traveled 500-1,000 m down the E and SE flanks. A discrete ash plume was reported by the Darwin VAAC on 28 February that rose to 3.1 km altitude and drifted SW, dissipating withing six hours. Pyroclastic flow were observed that day moving 1,000-1,250 m down the S, SE, and E flanks.

Figure (see Caption) Figure 92. The ash plume at Sinabung from a 25 February 2021 explosion rose to 1,500 m above the summit and drifted E and SE. Courtesy of PVMBG and MAGMA Indonesia.

Geologic Background. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. The youngest deposit is a SE-flank pyroclastic flow 14C dated by Hendrasto et al. (2012) at 740-880 CE. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Rizal (URL: https://twitter.com/Rizal06691023/status/1324972883634917376); Antara News Agency (URL: https://www.antaranews.com/berita/1986704/guguran-abu-gunung-sinabung-teramati-setinggi-1000-meter); Anadolu Agency (URL: https://www.aa.com.tr/ba/svijet/indonezija-u-vulkanu-sinabung-odjeknula-eksplozija/2138389).


Barren Island (India) — March 2021 Citation iconCite this Report

Barren Island

India

12.278°N, 93.858°E; summit elev. 354 m

All times are local (unless otherwise noted)


Ash emissions in November and December 2020, then thermal anomalies through February 2021

Barren Island, an uninhabited possession of India in the Andaman Sea, had numerous historical eruptions observed during 1787-1832. No further evidence of activity was found until 1991 when ash plumes, Strombolian explosions, and lava flows that reached the ocean were observed. Intermittent similar eruptions since 2005 have lasted for months to years. Its remoteness makes ground observations rare, but satellite data and reports from the Darwin VAAC (Volcanic Ash Advisory Center) suggest that the most recent eruption which began in September 2018 with lava fountaining, lava flows, and ash emissions has continued with intermittent thermal anomalies at the summit and minor ash emissions since early 2019. This report covers activity from July 2020-February 2021.

The MIROVA thermal anomaly data from April 2020 through February 2021 indicate low levels of thermal activity from April through October 2020. Pulses of activity in early November and late January-early February 2021 correspond to increased thermal activity seen in satellite images during that time (figure 47). Ash emissions were reported by the Darwin VAAC in early November and early December 2020. A strong thermal anomaly was present in satellite imagery on 11 November, and moderate anomalies appeared during February 2021. In addition, during November-February faint thermal anomalies and/or small ash emissions were present in one or more satellite images each month.

Figure (see Caption) Figure 47. The MIROVA thermal anomaly data from April 2020 through February 2021 indicate low levels of thermal activity from April through October 2020. Pulses of activity in early November and late January-early February 2021 corresponded to increased thermal activity seen in satellite images. Courtesy of MIROVA.

After a small ash plume was observed on 24 June 2020 in Sentinel-2 satellite imagery (BGVN 45:08), the only evidence of further activity was a very weak thermal anomaly present inside the summit crater of the pyroclastic cone on 19 July 2020. Satellite images were mostly cloudy during August-October 2020, although the few clear images each month showed no sign of thermal anomalies or ash emissions. Single MODVOLC thermal alerts were issued for Barren Island on 2 and 4 November 2020. The Darwin VAAC reported continuous ash emissions drifting SW at 1.5 km altitude on 5 November. A very faint thermal anomaly was present inside the summit of the pyroclastic cone the next day. A large thermal anomaly and small ash plume were captured in satellite images on 11 November (figure 48). The bright anomaly at the center of the cone was surrounded by a weaker anomaly suggesting incandescent ejecta on the flanks of the cone. A smaller thermal anomaly and similar ash plume were visible in the 16 November 2020 Sentinel-2 satellite images (figure 49).

Figure (see Caption) Figure 48. A large thermal anomaly and small ash plume at Barren Island were captured in Sentinel-2 satellite images on 11 November 2020. In the left image the bright anomaly at the center of the cone was surrounded by a weaker anomaly suggesting incandescent ejecta on the flanks of the cone. Image uses Atmospheric penetration rendering (bands 12, 11, 8a). The ash emission immediately W of the summit crater is more visible in the Natural color rendering (right, bands 4,3,2). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 49. A thermal anomaly at the summit and a discrete ash emission slightly W of the summit of Barren Island were captured in Sentinel-2 satellite imagery on 16 November 2020. Left image uses Atmospheric penetration rendering (bands 12, 11, 8a) and right image shows a closeup of the summit and ash plume in Natural color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

The Darwin VAAC issued an ash advisory on 8 December 2020 of an ash plume drifting W at 1.8 km altitude. It was only visible in satellite imagery for about two hours before dissipating. A small thermal anomaly appeared at the summit on 21 December. During January 2021 faint thermal anomalies were visible on 5, 20, and 25 January, and ash plumes could be seen on 15 and 25 January in Sentinel-2 images (figure 50). The strength of the thermal activity increased during February 2021, with satellite evidence recorded on 4, 9, 19, and 24 February; an ash emission was visible on 9 February (figure 51).

Figure (see Caption) Figure 50. Ash plumes and thermal anomalies at Barren Island were present in Sentinel-2 satellite images several times during January 2021. The left image from 15 January shows an ash plume drifting W from the summit using Natural color rendering (bands 4, 3, 2). The right image shows a weak thermal anomaly at the summit on 25 January with an ash plume drifting S using Atmospheric penetration rendering (bands 12, 11, and 8A). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 51. Sentinel-2 satellite images showed thermal anomalies at Barren Island several times during February 2020 including on 4 (left) and 9 (right) February. An ash emission drifted S from the summit on 9 February. Images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Geologic Background. Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S volcanic arc extending between Sumatra and Burma (Myanmar). It is the emergent summit of a volcano that rises from a depth of about 2250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the west, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. Historical eruptions have changed the morphology of the pyroclastic cone in the center of the caldera, and lava flows that fill much of the caldera floor have reached the sea along the western coast.

Information Contacts: Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Merapi (Indonesia) — March 2021 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


New domes appear in January and February 2021; large explosion on 27 January

Merapi volcano in central Java, Indonesia, has a lengthy history of major eruptive episodes. Activity has included lava flows, pyroclastic flows, lahars, Plinian explosions with heavy ashfall, incandescent block avalanches, block-and-ash flows, and dome growth and destruction. Fatalities from these events were reported in 1994, 2006, and in 2010 when hundreds of thousands of people were evacuated. Renewed phreatic explosions in May 2018 cancelled airline fights and generated significant SO2 plumes. A new lava dome appeared in early August 2018; gradual dome growth and then destruction was accompanied by rockfalls, block-and-ash flows, periodic explosions, and pyroclastic flows through June 2020. The period from October 2020 through February 2021 is covered in this report and includes the growth of two new domes in early 2021. Information is provided primarily by Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG, which monitors activity specifically at Merapi, the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), and the Darwin Volcanic Ash Advisory Centre (VAAC).

Measurements in late July 2020 showed no change in the dome (BGVN 45:10), though satellite evidence for weak thermal activity near the NW crater rim persisted during August-October 2020 (figure 98). A significant increase in the deformation rate and the appearance of numerous rock avalanches at the end of October led PVMBG to raise the Alert Level from II to III and evacuate hundreds of local residents. During November and December 2020 the deformation rate continued to increase and numerous rock avalanches were reported. Incandescent block avalanches were first reported on 4 January 2021. Block-and-ash flows began on 7 January and increased in frequency throughout the month; a new dome was confirmed that day. The deformation rate decreased significantly as the dome grew in size during January. Hundreds of incandescent block avalanches were recorded through the end of the month. A large explosion on 27 January produced a 12.2-km-high ash plume and a large pyroclastic flow; ashfall was reported in numerous communities. Incandescent block avalanches and block-and-ash flows continued frequently during February 2021; a second dome was reported growing near the center of the summit crater on 17 February.

Figure (see Caption) Figure 98. A very small thermal anomaly was recorded in Sentinel-2 satellite data near the NW crater rim at the summit of Merapi during August-October 2020, along with gas emissions. Images are from 21 August 2020 (top left), 15 September 2020 (top right), 20 October 2020 (bottom left), and 13 January 2021 (bottom right). The January anomaly was much larger, noticeable even through cloud cover, six days after PBBTKG scientists confirmed the presence of a new dome growing near the SW crater rim. Courtesy of Sentinel Hub Playground.

The deformation rate at the summit, shortening determined by Electronic Distance Measurements (EDM) interpreted by PBBTK as inflation related to magma moving towards the surface, remained between 1-2 cm per week during August through early -October with just steam-and-gas plumes rising 150-250 m. During the week of 9-15 October PBBTKG reported a deformation rate of 1 cm/day. Drone photographs confirmed no change in the size or shape of the dome on 18 October 2020. The shortening rate increased to 2 cm/day during 16-22 October and the steam-and-gas plumes rose up to 500 m above the summit; the shortening rate increased to 4 cm/day during 23-29 October. PVMBG reported on 28 October that rock avalanches were heard twice in Babadan and Jrakah over the previous 24 hours, but fog prevented observations.

PVMBG raised the Alert Level from II to III on 5 November 2020 based on an increase in both seismicity and the deformation rate. Rock avalanches were heard that day from Babadan. Analyses of the crater area based on photographs from 30 October and 3 November did not show any morphological changes at the dome. The shortening rate, however, increased to 9-10 cm/day during the first three weeks of the month. Rock avalanches were observed on 8 November on the W flank moving as far as 3 km downslope and moving 2 km on 14 November. Photos comparing the SE flank on 11 and 19 November showed that part of the 2018 lava dome had collapsed. Drone images on 16 November also showed a collapse of part of the crater wall. On 22 November rock avalanches from the crater rim moved 1 km down the W flank. Steam and gas emissions were observed from the Babadan Observation Post rising 200-750 m above the summit during the second half of November (figure 99. A photo analysis on 26 November indicated that part of the 1954 lava dome had collapsed since 19 November. The deformation rate had increased to 11 cm/day by the last week of the month. During overflights on 26 and 27 November BNPB and BPPTKG observers noted many new avalanche deposits on the NW, W, and SW flanks. As of 27 November, there were 2,318 people who had been evacuated from the area around the volcano.

Figure (see Caption) Figure 99. Steam and gas emissions at Merapi were observed from the Babadan Observation Post rising 200-750 m above the summit during the second half of November, including on 25 November 2020 shown here. Courtesy of MAGMA Indonesia Volcano Photo Gallery.

Steam and gas plumes rose 150-400 m above the summit throughout December 2020. Rock avalanches were heard but not seen due to foggy weather during the first few days of the month. On 8 December they were seen falling 200 m upstream of Kali Lamat on the W flank and on 14 December they were observed moving downslope 1.5 km on the NW flank upstream of the Senowo River. Rock avalanches were also observed on 23 December moving 1.5 km down the W flank above Kali Sat ravine and on 31 December moving the same distance above the Senowo River. The deformation rate remained high during December, ranging from 9-11 cm/day through 24 December; it rose to 14 cm/day during the last week. Minor changes were seen in photographs of the summit area, but drone data on 5 and 14 December showed no new lava dome. No lava dome was visible in a clear view of the upper part of the SW flank on 20 December (figure 100); the head of BPPTKG-PVMBG noted that the first observed incandescence in that area was on 31 December.

Figure (see Caption) Figure 100. No lava dome was visible in a clear view of the upper part of the SW flank of Merapi on 20 December 2020, although rock avalanches had occurred a number of times during the month; the head of BPPTKG-PVMBG noted that the first observed incandescence in that area was on 31 December. Courtesy of BPPTKG and MAGMA Indonesia Volcano Photo Gallery.

The deformation rate remained very high at 15 cm/day during the first week of January 2021. Rock avalanches were observed on 1 and 3 January that moved 1.5 km from the summit towards Kali Lamat and Kali Senowo on the W and NW flanks. On 4 January incandescent material was observed with a thermal webcam, and rock avalanches were heard at the Babadan Observation Post (figure 101). Incandescent block avalanches were observed 19 times during 4-7 January, traveling 800 m to the upper reaches of Kali Krasak (figure 102). Four block-and-ash flows occurred on 7 January, moving less than 1 km downslope. Comparison of images between 24 December and 7 January revealed a new lava dome. Hanik Humaida, the head of BPPTKG-PVMBG concluded that incandescent lava had appeared at the bottom of the 1997 dome and noted that incandescence had first been observed late on 31 December. PVMBG issued VONAs on 7 and 9 January reporting block-and-ash flows that produced ash plumes which rose to 3.2 km altitude and drifted SW and NW.

Figure (see Caption) Figure 101. Incandescence from the growth of a new dome at Merapi on the SW flank appeared in a thermal webcam image on 4 January 20201. Courtesy of BPPTKG (Terjadi Peningkatan Aktivitas Vulkanik, Teramati Guguran Lava Pijar di Gunung Merapi, 5 January 2021).
Figure (see Caption) Figure 102. Numerous incandescent blocks fell down the SW flank of Merapi from the new lava dome, seen here on 6 January 2021. Courtesy of BPPTKG and MAGMA Indonesia Volcano Photo Gallery.

Incandescent block avalanches were observed 128 times during the second week of January moving as far as 900 m down the SW flank to the upper reaches of Kali Krasak. Two block-and-ash flows were also reported. On 14 January 2021, the measured volume of the new dome was 46,766 m3 with a growth rate of about 8,500 m3/day. Deformation decreased significantly to a shortening rate of 6 cm/day during the second week of the month. Incandescent avalanches continued at a high rate and were reported 282 times during the third week of January (figure 103); they traveled as far as 1,000 m to the upper reaches of the Kali Krasak and Kali Boyong. Block-and-ash flows were recorded 19 times during 15-21 January moving 1,800 m downslope to the SW (figure 104). Compared to the previous week, as measured on 21 January, the new dome had more than doubled in size to 104,000 m3 with an average growth rate of 8,600 m3/day.

Figure (see Caption) Figure 103. There were 20 incandescent block avalanches that fell up to 1,000 m down the SW flank of Merapi from the new dome on 16 January 2021. Courtesy of BPPTKG.
Figure (see Caption) Figure 104. PVMBG reported a block-and-ash flow (referred to as Awan Panas Guguran or APG) at Merapi that traveled approximately 1,000 m down the SW flank towards Kali Krasak on 18 January 2021. Courtesy of BPPTKG and BNPB (Gunung Merapi Kembali Keluarkan Awan Panas Guguran Sejauh 1.000 Meter, 18 January 2021).

The deformation rate decreased further to less than 1 cm/day by the end of the third week of January. A substantial block-and-ash flow on 19 January that moved 1,800 m down the Krasak and Boyong rivers produced a 500-m-high ash plume that drifted E. According to detikNews, ash fell on 19 January in several villages in Musuk and Tamansari Districts in the Boyolali Regency, and in the Kemalang District in the Klaten Regency (figure 105). The Darwin VAAC reported ash visible in the webcam on 20 and 26 January that drifted downwind close to the summit. Over 200 incandescent block avalanches were observed during the last week of January; the maximum distance traveled was 1,500 m down the SW flank. Block-and-ash flow activity increased significantly during 25-27 January with four flows on 25 January and 13 flows on 26 January which produced ash plumes that rose 300-400 m above the summit and traveled 600-1,500 m down the SW flank. PVMBG reported 31 block-and-ash flows on 27 January that traveled as far as 3 km down the SW flank (figure 106).

Figure (see Caption) Figure 105. Ash from Merapi covered plants in Tegalmulyo Village, in the Klaten Regency on 19 January 2021. Photo by Achmad Syauqi, courtesy of detik.com.
Figure (see Caption) Figure 106. A block-and-ash flow at Merapi with it’s associated ash plume seen here on 27 January 2021 was one of 36 such events reported by BPPTKG that day; they traveled up to 3 km from the summit down the SW flank. Courtesy of BNPB (Gunung Merapi Erupsi Besar, Begini Penjelasan BPPTKG, 27 January 2021).

The volume of the 2021 lava dome on 25 January 2021 was 157,000 m3, but by 28 January it was only 62,000 m3 as a result of block-and-ash flows, explosions, and pyroclastic flows that occurred on 26-27 January. An explosion on 27 January was reported by the Darwin VAAC, based on multiple ground reports of a significant eruption, although meteoric clouds obscured most ground observations. The ash plume rose to 12.2 km altitude, drifted NW, and was visible in satellite images. Ash emissions from a superheated pyroclastic flow rose to 6.1 km altitude and drifted NE (figure 107). Satellite imagery and pilot reports indicated that the 12.2 km ash plume dissipated after about five hours, while the plumes generated by the pyroclastic flow continued moving E at 3.7 km altitude for several more hours. Sand-sized ash was reported in several villages in the Tamansari District in Boyolali Regency on the E flank including the Dukuh Beling area, Sudimoro (Sangup Village), Lanjaran Village, Mriyan and in Boyolali City, Central Java on 27 January. Dense ash was also reported in Tegalmulyo Village; Sruni Village and Cluntang in the Musuk District also reported ashfall.

Figure (see Caption) Figure 107. A significant explosion at Merapi on 27 January 2021 produced an ash plume to 12.2 km altitude that drifted NW and a pyroclastic flow that sent ash to 6.1 km altitude and drifted NE. The pyroclastic flow is seen here from Ngrangkah, Umbulharjo, Cangkringan, Sleman Regency. Photo by Jauh Hari Wawan S, courtesy of detik.com.

Multiple incandescent rock avalanches were observed during the first week of February 2021. They traveled 500-1,200 m down the SW flank. On 4 February the volume of the 2021 lava dome on the SW flank was measured at 117,400 m3; the growth rate since 28 January was 12,600 m3/day. On 8 February, 23 incandescent block avalanches were reported that traveled as far as 1,500 m from the summit down the SW flank upstream of Kali Krasak and Kali Boyong. Six incandescent avalanches were reported on 9 February; webcams indicated multiple daily incandescent block avalanches for the rest of the month. When measured on 11 February, the dome had grown significantly to 295,000 m3 at a growth rate of 48,900 m3/day (figure 108).

Figure (see Caption) Figure 108. The 2021 lava dome at Merapi was located at the head of the SW flank, and was almost 300,000 m3 in size on 11 February, two days before this image taken on 13 February 2021. Courtesy of PVMBG and Rizal.

A drone observation on 17 February noted two lava domes at the summit. The first (the 2021 lava dome) was located on the SW flank and was attached to the 1997 lava dome, and a second new dome had appeared more in the center of the summit crater. Based on calculations from aerial photographs, the dome on the SW flank was 258 m long, 133 m wide, and 30 m high, with a volume of 397,500 m3 and growth rate of 25,200 m3/day. The lava dome in the center of the summit crater was 160 m long, 120 m wide, and 50 m high, with a volume of 426,000 m3 and an average growth rate of 10,000 m3/day. Deformation data showed no changes during February. During 24-27 February one or two block-and-ash flows occurred each day, the largest travelled 1,900 m SW (figure 109). The block-and-ash flow on 25 February 2021 at 1652 local time (WIB) produced traces of ashfall in Kali Tengah Lor, Kali Tengah Kidul, Deles, and Tlukan. The volume of the lava dome on the SW flank on 25 February was 618,700 m3 with a growth rate of 13,600 m3/day.

Figure (see Caption) Figure 109. A block-and-ash flow at Merapi on 27 February 2021 descended hundreds of meters down the SW flank and sent ash drifting E mostly below the level of the summit. Courtesy of BPPTKG and MAGMA Indonesia Volcano Photo Gallery.

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2,000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequent growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1, https://magma.esdm.go.id/v1/gunung-api/gallery); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, https://twitter.com/BPPTKG/status/1350508928740675584); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Detik news (URL: https://news.detik.com/, https://news.detik.com/berita-jawa-tengah/d-5339832/hujan-abu-gunung-merapi-jangkau-desa-di-wilayah-krb-ii-klaten, https://news.detik.com/berita-jawa-tengah/d-5350542/gunung-merapi-erupsi-sirene-bahaya-meraung-warga-turun-ke-tempat-aman, https://news.detik.com/berita-jawa-tengah/d-5350625/gunung-merapi-erupsi-besar-boyolali-diguyur-hujan-abu-campur-pasir?_ga=2.230047007.2076450499.1612195171-14950811.1611700211); Rizal (URL: https://twitter.com/Rizal06691023/status/1360488059649757191).


Yasur (Vanuatu) — April 2021 Citation iconCite this Report

Yasur

Vanuatu

19.532°S, 169.447°E; summit elev. 361 m

All times are local (unless otherwise noted)


Gas-and-ash emissions, SO2 plumes, and thermal anomalies during September 2020-February 2021

Yasur, located at the SE tip of Tanna Island, contains a 400-m-wide summit crater within the small Yenkahe caldera. Its current eruption has been ongoing since at least 1774 and has consisted of Strombolian and Vulcanian activity. More recently, Strombolian activity and gas-and-ash explosions have been reported (BGVN 45:03 and 45:09). This report covers activity from September 2020 through February 2021 that is characterized by ongoing explosions, gas-and-ash emissions, SO2 plumes, and thermal anomalies. Information primarily comes from monthly bulletins of the Vanuatu Meteorology and Geo-Hazards Department (VMGD) and various satellite data.

VMGD reported that ongoing explosions and gas-and-ash emissions continued at an elevated level throughout this reporting period, based on ground observations and seismic data. On clear weather days these emissions were captured by Sentinel-2 satellite imagery (figure 75). Some of the more intense explosions may result in larger ejecta falling in or around the summit crater. On 18 January 2021 a webcam image captured a gas-and-ash emission rising above the crater rim at 1500 (figure 76).

Figure (see Caption) Figure 75. Sentinel-2 satellite images showing gas-and-ash emissions rising from the summit crater of Yasur on clear weather days. Ash is visible during 17 October (left) and 21 December 2020 (middle), while white gas-and-steam emissions are observed on 14 February 2021 (right). Sentinel-2 satellite images with “Natural Color” (bands 4, 3, 2) rendering. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 76. Webcam photo of a gas-and-ash emission rising from Yasur on 18 January 2021 taken at 1500. Courtesy of VMGD.

Sulfur dioxide emissions were measured using the Sentinel-5P/TROPOMI satellite instrument for multiple days each month from September through February 2021 (figure 77). The density and drift direction of these SO2 plumes varied. During 17-19 January relatively dense SO2 plumes were detected consecutively, and drifted SE (figure 78).

Figure (see Caption) Figure 77. Occasional SO2 plumes of varying densities were observed from Yasur during each month of September 2020 through February 2021. Plumes drifted generally W on 28 September (top left), 29 October (top right), 6 December (middle right), 25 December 2020 (bottom left), slightly N on 14 November (middle left), and SW on 19 February 2021 (bottom right). Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 78. Relatively high-density SO2 plumes from Yasur during 17 (left), 18 (middle), and 19 (right) January 2021 were observed consecutively using the TROPOMI imaging spectrometer on the Sentinel-5P satellite. The plumes drifted SE on each of the days. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Intermittent thermal anomalies recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system during September 2020 through February 2021 were low to moderate in power (figure 79). Brief noticeable break in activity occurred during early December 2020 and for much of January 2021. The MODVOLC thermal alert data recorded 41 thermal signatures primarily within the summit crater over a total of 25 different days during September 2020-February 2021. Some of these thermal anomalies were also captured in Sentinel-2 thermal satellite imagery; thermal anomalies were visible in the N and S vents in the summit crater (figure 80).

Figure (see Caption) Figure 79. MIROVA (Log Radiative Power) thermal data for Yasur from 26 May 2020 through February 2021 showed persistent low to moderate thermal activity. A brief but noticeable break in activity occurred during early December, early January, and late January. Courtesy of MIROVA.
Figure (see Caption) Figure 80. Sentinel-2 thermal satellite images showing strong thermal anomalies (yellow-orange) in the N and S vents of the summit crater at Yasur each month from September 2020 through February 2021. During 22 September (top left), 17 October (top right), and 26 November (middle left), the two thermal anomalies in the crater were roughly the same intensity. On 21 December (middle right) the anomaly was accompanied by a small, gray ash plume. On 15 January (bottom left) and 24 February (bottom right) the intensity of the anomaly in the N vent and then the S vent had decreased slightly. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.

Geologic Background. Yasur, the best-known and most frequently visited of the Vanuatu volcanoes, has been in more-or-less continuous Strombolian and Vulcanian activity since Captain Cook observed ash eruptions in 1774. This style of activity may have continued for the past 800 years. Located at the SE tip of Tanna Island, this mostly unvegetated pyroclastic cone has a nearly circular, 400-m-wide summit crater. The active cone is largely contained within the small Yenkahe caldera, and is the youngest of a group of Holocene volcanic centers constructed over the down-dropped NE flank of the Pleistocene Tukosmeru volcano. The Yenkahe horst is located within the Siwi ring fracture, a 4-km-wide, horseshoe-shaped caldera associated with eruption of the andesitic Siwi pyroclastic sequence. Active tectonism along the Yenkahe horst accompanying eruptions has raised Port Resolution harbor more than 20 m during the past century.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Rincon de la Vieja (Costa Rica) — March 2021 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Frequent small phreatic explosions through 13 December 2020

Recent activity at Rincón de la Vieja has been dominated by frequent weak phreatic explosions, with an occasional ash plume, along with gas-and-steam emissions. Sporadic lahars have also been recently reported (BGVN 45:10). The volcano has a hot, churning, acid lake in its main crater. The current report describes activity during October 2020-February 2021, a continuation of the most recent eruptive period that began in January 2020. The primary information source for this report is weekly bulletin from the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA).

According to OVSICORI-UNA, small but frequent hydrothermal explosions continued in October through mid-December 2020, although less energetic than during previous months (figure 34). During the first half of October there were 1-2 daily small explosions. Plumes often rose 500-800 m above the crater rim, but on 1 and 6 October they rose 1 km. Then the number briefly increased to 5-7 small daily explosions before decreasing during the latter part of October; one explosion seen in webcam images on 24 October sent a plume to 1 km above the crater (figure 35).

Figure (see Caption) Figure 34. Graph showing the number of daily eruptions at Rincón de la Vieja during 2020. Following frequent phreatic explosions during April-June, weak intermittent explosions were detected again starting in late July and continuing through December 2020. Courtesy of OVSICORI-UNA.
Figure (see Caption) Figure 35. Webcam photo of Rincón de la Vieja taken on 24 October 2020 at 0808 local time. According to OVSICORI-UNA, the explosion lasted for about a minute and the resulting plume rose to 1 km above the crater. Courtesy of OVSICORI-UNA, as reported by The Nacion.

OVSICORI-UNA reported that in November small-to-moderate hydrothermal explosions increased in amplitude, but became more sporadic and by the end of the month had decreased to only one per day. An explosion at 0835 on 3 November produced a plume that rose 800 m above the crater rim. According to OVSICORI’s weekly bulletin for 23 November, there had been 1,437 explosions since the beginning of 2020. A large explosion on 13 December was the last through at least February 2021. During the week of 18 January OVSICORI changed the Alert Level from 3 to 2 due to the low level of activity.

Geodesic monitoring at the summit by GPS indicated no deformation trend in October, significant contraction in November, some extension in December, but then no significant changes through at least February 2021. Aerial observations on 13 February indicated that the crater lake was at a low water level and had sustained convection. The lake level had dropped 15-20 m since February 2020, and 5-10 m since May 2020. Gas monitoring during October 2020-February 2021 was carried out at the Ojo de Agua Santuarium (4 km N of the active crater); sulfur dioxide in the plume was not detected in significant quantities.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/, https://www.facebook.com/OVSICORI/); The Nacion (URL: https://www.nacion.com/).


Kilauea (United States) — March 2021 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


New eruption in December 2020 with an active lava lake, lava flows, spattering, and a dome fountain

Kilauea, which overlaps the E flank of the Mauna Loa shield volcano, is the southeastern-most volcano in Hawaii. It’s East Rift Zone (ERZ) has been intermittently active for at least 2,000 years; the most recent eruption period began in January 1983 and was characterized by open lava lakes and lava flows from the summit caldera and the East Rift Zone. During May 2018 lava migrated into the Lower East Rift Zone (LERZ) and opened 24 fissures along a 6-km-long NE-trending fracture zone that produced lava flows traveling in multiple directions. Lava fountaining was reported in these fissures and the lava lake in the Halema’uma’u crater drained (BGVN 43:10).

September 2018 marked the end of the previous eruption period after 36 years of continuous activity. A new eruption began during December 2020 in the Halema’uma’u crater, characterized by a new lava lake, lava flows, lava fountaining, and gas-and-steam emissions. This report covers the activity from December 2020 through January 2021 using information provided from the US Geological Survey's (USGS) Hawaiian Volcano Observatory (HVO) in the form of daily reports, volcanic activity notices, and abundant photo, map, and video data.

Monitoring through mid-December 2020. Monitoring data from HVO since the end of the previous eruption in September 2018 included variable rates of seismicity and ground deformation, low rates of sulfur dioxide emissions, and minor morphological changes. Areas of elevated ground temperatures and minor gas emissions persisted in the vicinity of the 2018 LERZ fissures. Since March 2019, GPS stations and tiltmeters at the summit had detected deformation consistent with slow magma accumulation approximately 1-2 km below ground level. In addition, GPS stations in the upper ERZ recorded increased rates of uplift beginning in September. The HVO seismic network recorded 1,450 earthquakes in September, a significant increase over previous months, followed by another increase to 2,100 events in October. The pond at the bottom of the Halema’uma’u crater, which appeared on 25 July 2019, continued to collect water over time, slowly expanding and deepening from 23 m in early January 2020 to 48 m by 3 November 2020 (figure 467).

Figure (see Caption) Figure 467. Photos comparing the growth of the water lake in the Halema’uma’u crater at Kilauea on 18 December 2019 (left) and 23 September 2020 (right). During this time, the lake had risen approximately 25 m and had a surface area of 0.033 km2, compared to December 2019 (0.011 km2). Photos taken from the E rim of Halema’uma’u by K. Mulliken and M. Patrick; courtesy of USGS HVO.

The number of earthquakes detected in November was 1,350, less than what was recorded in October. By late November seismic stations recorded an average of at least 480 shallow, small-magnitude, earthquakes per week underneath the summit and upper ERZ; during 29-30 November HVO recorded over 80 earthquakes beneath the summit, beginning at 2300 on 29 November and continuing for 11 hours. On 2 December, spikes in seismicity were reported, consistent with a small dike intrusion under the S part of the caldera; tiltmeters at the summit detected about 8 cm of caldera floor uplift. At 1745 earthquakes intensified and another spike occurred after 0000 to an average rate of 10-12 earthquakes per hour. Within 24 hours, up to 220 earthquakes were recorded, occurring in clusters under the caldera and upper ERZ, according to HVO. By the afternoon of 3 December, seismicity and ground deformation rates at the summit had decreased and returned to near background levels. On 17 December, the number and duration of long-period seismic signals increased.

Eruptive activity during 20-21 December 2020. On the evening of 20 December at 2030 an earthquake swarm was recorded, accompanied by ground deformation detected by tiltmeters. Shortly after 2130 HVO reported an orange glow within the Halema’uma’u crater at Kilauea’s summit caldera, observed on an infrared monitoring camera, as well as a vigorous gas-and-steam plume, which marked the beginning of the eruption. At 2236 an M 4.4 earthquake was detected below the S flank. The Volcano Alert Level (VAL) was raised to Warning and the Aviation Color Code was raised to Red.

An HVO Volcanic Activity Notice issued on 21 December at 1014 stated that the water lake in the summit crater had boiled away due to new effusive activity, producing a large gas-and-steam emission (figure 468). Three vents in the N, NW, and W walls of the Halema’uma’u crater generated lava flows that fed a growing lava lake at the base of the crater (figure 469). Minor lava fountaining at these vents rose 25 m high; the highest fountain reached 50 m high in the N fissure. The lava lake began rising several meters per hour since the start of the eruption and exhibited a circulating perimeter, but a stagnant center (figure 470). Occasional blasts originated from the ponded lava in the crater. The eruption was confined to the Halema’uma’u crater. On 21 December the VAL was lowered to Warning and the Aviation Color Code decreased to Orange. Sulfur dioxide emission rates remained high at around 30,000 tons/day. In comparison, the emission rates from the pre-2018 lava lake ranged between 3,000-6,500 tons/day.

Figure (see Caption) Figure 468. Webcam image of the summit of Kilauea at 0630 on 21 December 2020. The water lake had been replaced by a lava lake as fissure vents in the wall of Halema’uma’u effused lava into the crater. Strong gas-and-steam emissions were visible. Courtesy of HVO.
Figure (see Caption) Figure 469. Map of the Halema’uma’u crater at Kilauea showing the location of volcanic activity shortly after 2130 on 20 December 2020. The red spots are the approximate locations of the three initial fissure vents effusing lava into the bottom of the Halema’uma’u crater. The water lake at the base of the crater had been replaced with a growing lava lake. The lava is deeper by at least 10 m compared to the water lake in this base map. The base map is from imagery collected on 23 September 2020. The eastern-most vent was characterized by lava fountains up to 50 m high with minor fountaining on the W side. Courtesy of HVO.
Figure (see Caption) Figure 470. Aerial view of the summit of Kilauea during an overflight at 1120 on 21 December 2020 showing two active fissure vents that effused lava into the growing lava lake in the Halema’uma’u crater. The N fissure (right-most) is the dominant stream of lava. The fresh cooling lava appears black, surrounding the center of the lake, which was described as stagnant. Courtesy of HVO.

Activity during 22-25 December 2020. The effusive eruption continued on 22 December from at least two vents on the N and W sides of Halema’uma’u; the third vent between the N and W vents paused between 0730 and 0800. The middle and W vents became inundated by the growing lava lake, while the northern-most vent remained vigorous. As of 1151 the crater lake had grown to 487 m below the crater rim, which suggests that the lake had filled 134 m from the crater floor; the rate at which the lake rose was more than 1 m per hour. Measurements made on 22 December showed that approximately 10-12 million cubic meters of lava had been erupted to that point, with a surface area of about 0.13-0.22km2 (figure 471). Another measurement made during the afternoon showed that the volume of the lava lake grew an additional two million cubic meters. The dimensions of the lake were 690 m E-W and 410 m N-S. Overflights were made on 21 and 22 December to obtain natural color and thermal infrared images of the growing lava lake (figure 472).

Figure (see Caption) Figure 471. Location map showing the activity from the new eruption at the summit of Kilauea in the Halema’uma’u crater updated on 22 December 2020 at 1400. Two active fissure vents (orange dots) on the N and W side of the crater fed lava into the growing lava lake (red). The blue dashed line represents the extent of the former water lake (July 2019 to December 2020) that was present in the crater before the eruption and the black dashed line represents the extent of the lava lake that was present during 2008-2018. The current lava lake is larger than both the previous lakes and has formed slightly more N compared to the former lava lake. Map created by M. Zoeller; courtesy of USGS HVO.
Figure (see Caption) Figure 472. Comparison of thermal images taken on 21 December at 1120 (top) and 22 December 2020 at 1130 (bottom) showing the rise and infilling of the lava lake from wall vents in the Halema’uma’u crater at Kilauea’s summit. Images by M. Patrick; courtesy of HVO.

By 23 December the lava lake had deepened to 155 m (figure 473). Two fissure vents on the N and W walls remained active; the W vent fed two narrow channels into the lake and the N vent remained the most vigorous. An island of cooler, solidified, lava within the lava lake that measured 115 x 260 m was drifting slowly eastward, based on a thermal map. During an overflight made later in the day, the approximate surface area was 0.25 km2, with dimensions of 460 x 715 m. High SO2 emissions were an estimated 30,000-40,000 tons/day, based on measurements made on 21 and 23 December.

Figure (see Caption) Figure 473. Plot showing the increasing depth in Kilauea’s summit lava lake since the beginning of the eruption on 20 December 2020 at 2130. A laser rangefinder was used to take measurements of the lava lake surface about 2-3 times per day. The depth of the lake was about 155 m on 23 December at 0630 (top right) compared to 87 m on 21 December at 0630 (bottom right). In comparison, the water lake that was observed in Halema’uma’u before the start of the eruption was 51 m at its deepest. Plot by H. Dietterich; courtesy of HVO.

Measurements taken on 24 and 25 December showed a continuously growing lava lake that was 169 and 176 m deep, respectively, and the volume of the lake had reached 21 million cubic meters. By 25 December the vigorously erupting N fissure vent was starting to become inundated and the W vent displayed intermittent spattering (figure 474). Around 1400 the lake level had dropped by 2 m to reveal a narrow black ledge around the N edge of the crater. The rate of SO2 emissions decreased to 16,000-20,000 tons/day during 25 December.

Figure (see Caption) Figure 474. Photo of the Halema’uma’u crater at the summit of Kilauea at 0230 on 25 December 2020 showing lava flows and lava fountaining feeding the lake. The main N vent started to become inundated by the growing lava lake. Intermittent activity continued at the W vent. Photo taken from the S rim of the crater by J. Schmith and C. Parcheta; courtesy of HVO.

Activity during 26-31 December 2020. During the morning of 26 December, at 0240, the N vent continued to erupt lava into the lake while the W vent began to effuse more vigorously with up to three narrow lava flows feeding the lake (figure 475). The depth and volume of the lake remained the same as on 25 December: 176 m deep and 21 million cubic meters. Lava fountaining was visible up to 10 m high above the W vent. After 0300, the N vent declined in activity and started to drain lava from the lake. Summit tiltmeters continued to record some deformation. Effusive activity remained confined to Halema’uma’u; the lava lake was 177 m deep as of 0700 m on 27 December. The SO2 emissions continued to decrease to about 3,300-5,500 tons/day during 27-28 December. Summit tiltmeters continued to record weak inflation.

Figure (see Caption) Figure 475. Photo of the W vent in Halema’uma’u at Kilauea’s summit shows the effusive activity increased on 26 December 2020. Some lava fountaining in this vent was visible while lava flows continued to feed the lake from the N vent. The lava fountaining in the W vent rose at least 10 m high. Photo was taken at 0515 by H. Dietterich; courtesy of HVO.

On 28 December the volume of the lava lake had grown to 21.5 million cubic meters and a thermal map updated on 26 December showed the new dimensions of the lava lake were 520 x 790 m, covering a surface area of 0.29 km2. The narrow black ledge visible above the N edge of the crater was about 1-2 m above the lake surface. During 27-28 December the main central island of cooler, solidified, lava drifted slowly W and measured about 110 x 225 m. The island surface was about 6 m above the lake surface and was covered in tephra, possibly remnants of explosive activity generated when lava first reached the water lake. Reduced, but still elevated, SO2 emissions were 3,300 tons/day; the emission plume carried Pele’s Hair and Pele’s Tears SW, depositing the tephra in areas downwind.

Effusive activity continued, with the lava lake measuring 179-180 m deep with a narrow black ledge around it as of 0400 on 29 December. Multiple narrow lava channels from the W vent fed into the crater. The lava lake volume was slightly more than 22 million cubic meters. The central 135 x 250 m island of solidified lava had drifted slowly W until 2200 on 28 December, then during the morning of 29 December it stalled and began rotating. There were about 10 smaller islands to the E.

On the morning of 30 December, at 0345, the lava lake was 181 m deep with the narrow black ledge around it; the lava lake was an estimated volume of 23 million cubic meters. A spatter cone built around the W vent, while lava effused through crusted-over channels. The main central island was about 6-8 m above the surface of the lake. The rate of SO2 emissions were 3,800 tons/day.

Similar observations were made during 31 December; the lava lake continued to grow, with the depth of the lake measuring 181-186 m and dimensions of 530 x 800 m, based on thermal mapping. The total surface area was 0.33 km2. Spattering continued in the W vent while lava flowed through crusted-over channels into the lake (figure 476). The main island in the lake continued to drift slowly W while roughly 10 smaller islands were observed around the E end of the crater (figure 477). The SO2 emission rate increased to 4,500-6,300 tons/day, compared to the previous day.

Figure (see Caption) Figure 476. Photo of the active W vent in Halema’uma’u at the summit of Kilauea, viewed from the W crater rim on 31 December 2020 with incandescence, spattering, and a prominent spatter cone; the lava lake is visible in the right background. Photo by B. Carr; courtesy of HVO.
Figure (see Caption) Figure 477. Annotated photo taken from the S rim of Halema’uma’u at the summit of Kilauea at 1700 on 30 December 2020 showing the location of the main central island and the smaller islands located on the eastern part of the crater. The W vent continued to effuse lava, as well as some spattering, while the N vent was inactive. Photo by K. Lynn; courtesy of HVO.

Activity during January 2021. Effusive activity continued within Halema’uma’u during January 2021. Lava originated from the NW side of the crater, with the W vents exhibiting spattering and lava effusions through crusted-over channels into the lava lake. A levee had also begun to develop around the perimeter of the lake (figure 478), creating what is known as a “perched” lake. According to HVO, this is common in lava lakes at Kilauea, and is due to repeated small overflows and the rafting and piling of surface crust that fuses together to form a barrier. During 31 December and 1 January the main island of solidified lava (135 x 250 m) had moved W while the other 10 smaller islands remained near the E side of the lake. Summit tiltmeters recorded weak deflation during 1-2 January. Both SO2 emission rates and seismicity remained elevated; the SO2 emission rate was 4,400 tons/day on 1 January.

Figure (see Caption) Figure 478. Photo of the lava lake in Halema’uma’u at Kilauea on 1 January 2021 that has developed a levee (darker black) around the perimeter, allowing the lake to be slightly perched above its base. Photo by M. Patrick; courtesy of HVO.

During 2-3 January the depth of the lake had grown to 189-190 m, had a volume of 26 million cubic meters, and still maintained the narrow black ledge around its perimeter. Measurements on 3 January showed that the lake was perched about a meter above its E and W edges, and discontinuously on the N edge. A thermal webcam showed spatter originating from two places in the W vents and a small dome fountain above the lake crust in front of the W vents (figure 479). The dome fountain had formed where lava was entering the lake from a submerged inlet at the base of the W vent. The height of the dome fountain reached 5 m and the width was an estimated 10 m. The main island, about 6 m above the lake surface, continued to drift W in front of the W vents while the 10 smaller islands remained relatively stationary near the E end of the lake.

Figure (see Caption) Figure 479. Video data showed the lava at Kilauea’s summit crater formed a dome fountain at the inlet to the lava lake in Halema’uma’u during 2-3 January 2021. The fountain is located near the base of the W vents where the inlet had become partially submerged. The 5-m-high dome fountain was about 10 m wide. Video by H. Dietterich; courtesy of HVO.

Lava effusion continued during 4-5 January from vents on the NW side of the crater. The lava lake was perched 1-2 m above its edge and had deepened to 191-192 m (figure 480). A thermal map from 5 January showed the perched lake dimensions had slightly decreased in size to 520 x 760 m, with a volume of about 27 million cubic meters. Summit tiltmeters continued to record weak deflation. Spatter in the W vents was visible from the top of a small cone on the NW wall of Halema’uma’u; the dome fountain persisted in front of the W vents (figure 481). The main island was rotating counterclockwise in front of the W vent while the now 11 smaller islands had generally stayed in the E side of the crater. Measurements on 4 January showed that the island was 7-8 m above the lake surface.

Figure (see Caption) Figure 480. A comparison of the Digital Elevation Model (DEM) and topographic profiles of the Halema’uma’u crater at Kilauea created from aerial imagery collected during helicopter overflights, showing the change in depth and elevation of the lava lake between 26 December 2020 (left) and 5 January 2021 (right). The N vent remained inactive as it became inundated by the rising lava. The central island had migrated W and rotated by 5 January. The depth of the lava lake was 192 m on 5 January. DEMs created by B. Carr, graphic created by K. Mulliken; courtesy of USGS HVO.
Figure (see Caption) Figure 481. Photo of the Halema’uma’u crater at Kilauea at 0545 on 5 January 2021 showing ongoing activity at the W vent, generating a lava flow that feeds both the lake and the dome fountain. Photo by K. Lynn; courtesy of USGS HVO.

HVO continued to monitor the changes in the active lava lake on 6 January, which was 194 m deep and remained perched 1-2 m above its edge. At 1500 rapid deflationary tilt was recorded overnight into 7 January. Lava from the W vents continued to feed the dome fountain through crusted-over channels on the W side of the crater. During the morning of 7 January the dome fountain weakened giving way to spattering at the top of the vent and the formation of a second cone. A thermal map on 7 January showed that the lake size had decreased to 470 x 760 m, covering 0.28 km2; more of the E part appeared to be stagnant while solidified lava was being progressively pulled beneath the molten surface (figure 482). SO2 emissions were still elevated at 3,400 tons/day on 6 January, but had decreased to 2,700 tons/day the next day. During 7-8 January incandescence was visible from two small cones on the NW wall of Halema’uma’u while lava flowed into the lake through a crusted channel. The main island remained 135 x 250 m; it had moved slightly E while the 11 smaller islands remained stationary.

Figure (see Caption) Figure 482. Thermal image (top) and photo (bottom) of the lava lake at Kilauea showing the larger central island on the W side of the Halema’uma’u crater and 11 smaller islands on the E side of the crater, taken on 7 and 9 January 2021, respectively. The lake is slightly perched and surrounded by a lower ledge of cooler lava along the perimeter (appears pink-purple in the thermal image along the perimeter). The lava effusion at the W vent has become less intense and much of the E half of the lake has stagnated completely, likely because the lake level has not changed significantly in the last three days. Image by M. Patrick (top) and photo by H. Dietterich (bottom); courtesy of HVO.

Incandescence and spatter continued on 9 January at the two W vents as lava descended through a crusted channel into the lake. Summit tiltmeters recorded weak deflation since 1 January, but on the evening of 9 January weak inflation was detected. A newly installed instrument during 9-10 January showed that the lake had risen about a meter since the switch to inflationary tilt. The depth of the lake slightly increased to 196 m below the W vents on the morning of 10 January. The W vents exhibited strong lava flows during the afternoon with spattering and spatter-fed lava flows from the top of the small cones on the NW wall of Halema’uma’u; lava also flowed through crusted-over channels into the lake. Low lava fountaining was also visible during 10-11 January. The SO2 emission rates were 2,300 tons/day and 2,500 tons/day on 10 and 11 January, respectively.

During the morning of 12 January the lava lake remained at a depth of 196 m below the W vents; the stagnant E half of the lake was about 4 m shallower and had subsided below its perched rims. Low lava fountaining and flows through channels from the top of the small cones were visible. Measurements of the main island on 12 January showed that it was 8 m above the surface, with the highest point at 23 m. By 13 January, the depth of the lake had increased to 198 m. On 13 January a small portion of the active cone had collapsed, causing a second vent to open adjacent to the main vent and effuse lava for less than 20 minutes.

Activity continued in Halema’uma’u with low fountaining, lava flows, and spattering from the W vent through 22 January (figure 483). The depth of the lake continued to increase slowly to 204 m on 22 January. The entire lake was perched 1-2 m above the crust between the levees along the perimeter and the crater wall. All of the islands of solidified lava within the lake were stagnant; the dimensions of the main island were unchanged since 10 January. On 14 January the SO2 emissions increased to 4,700 tons/day, then decreased to 2,500 tons/day on 16 January. On 19 January at 1746 field crews observed a minor collapse event from the spatter cone on its N rim and open channel margins at the W vent (figure 484). Summit tiltmeters began to detect some deflation on 20 January; the rate of which began to slow by 21 January. Measurements on 22 January showed that the S end of the main island was 12 m above the lava lake surface, with the highest point still around 23 m.

Figure (see Caption) Figure 483. Photo of low fountaining and an accompanying lava flow at the W vent of Halema’uma’u at Kilauea on 15 January 2021. The vent formed a spatter cone around the fountaining as the flow moved through an open channel into the lake. Photo by M. Patrick; courtesy of HVO.
Figure (see Caption) Figure 484. Series of photos showing the W vent at Kilauea (seen from the S rim looking NW) that continued to feed the growing lava lake in Halema’uma’u through an open channel. At 1746 on 19 January field crews observed a minor collapse on the N rim of the spatter cone and channel margins. The photo at 1731 (top left) shows the vent just before the collapse; the photo at 1746 (top right) shows just after the collapse; the photos at 1749 (bottom left) and at 1811 (bottom right) show the destabilization and movement of the portion of the remaining cone flank surrounded by incandescence. Photos by H. Dietterich; courtesy of HVO.

During the morning of 23-25 January the lava lake was about 205 m deep; the W half remained active with low fountaining and a lava flow while the E half was stagnant (figure 485). The E side of the lake was elevated about 1-2 m and the W half was elevated about 4 m above the solidified lava adjacent to the crater wall. HVO reported that summit tiltmeters continued to record variable inflation and deflation. On 23 January SO2 emission rates were 2,200 tons/day.

Figure (see Caption) Figure 485. Map of the Halema’uma’u crater at the summit of Kilauea on 25 January 2021 showing the locations of the active lava lake (red), the extent of the lava lake (light red), the major islands of solidified lava (yellow), the active W vent (orange), and the inactive N vent (maroon). The depth of the lake is 205 m, the size of the lake is 0.1 km2, and the total lake volume is 31 million cubic meters. In comparison, the dashed blue line represents the final extent of the water lake that evaporated on 20 December 2020 and the dashed black line represents the extent of the 2008-2018 lava lake. Courtesy of USGS HVO.

The depth of the lava lake continued to deepen, and by the evening of 27 January it was 209 m, while the stagnant E half remained up to 5 m lower. The active lake surface no longer extended around the E side of the central island; surface circulation was limited to the W, N, and S sides of the island. Activity in the W vents consisted of slow surface movements at the base of the lava flow and overturning of the crust near its margins. The E side of the lake was elevated approximately 1 m while the W was 3 m above the solidified lava adjacent to the crater wall. All the islands within the lake were stationary. By 28 January only the W part of the lava lake was active. On 29 January, measurements made on the main island showed its edges were 7-8 m above the lake surface.

On the morning of 30 and 31 January, the active W part of the lava lake was 211 and 212 m deep, respectively; the W vent had crusted over except for a single (possibly two) openings that were mostly obscured by degassing, though several incandescent areas on the cone were visible. Surface lava continued to effuse into the central part of Halema’uma’u from the base of the cone (figure 486). A series of surface cracks separated the active and stagnant parts of the lake. During 30-31 January tiltmeters recorded inflation at the summit.

Figure (see Caption) Figure 486. Photo showing the leading edge of an active lava lobe moving S into the central part of Halema’uma’u at Kilauea on 31 January 2021. Photo by M. Patrick; courtesy of HVO.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI 96718, USA (URL: http://hvo.wr.usgs.gov/).


Pacaya (Guatemala) — March 2021 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Increasing activity with ash emissions, explosions, and lava flows on multiple flanks during December 2020-February 2021

Extensive lava flows, bomb-laden Strombolian explosions, and ash plumes emerging from Mackenney crater have characterized the persistent activity at Pacaya since 1961. The latest eruptive episode began with intermittent ash plumes and incandescence in June 2015; the growth of a new pyroclastic cone inside the summit crater was confirmed later that year. The cone has continued to grow, producing frequent loud Strombolian explosions rising above the crater rim and ongoing ash emissions. In addition, fissures on the flanks of the summit crater have been the source of an increasing number of lava flows traveling distances of over one kilometer down multiple flanks during 2019 and into 2021. Increasing explosive and effusive activity during December 2020-February 2021 is covered in this report with information provided by Guatemala's Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), multiple sources of satellite data, and numerous photographs from observers on the ground.

Eruptive activity increased substantially during December 2020-February 2021. During December, ash emissions were reported fewer than half the days of the month; by February, dense ash emissions drifted many kilometers most days, and ashfall was reported numerous times in the surrounding communities. Strombolian explosions in December generally rose 50-125 m above the summit of the pyroclastic cone; by February they were commonly rising 300 m or more and sending ejecta 500 m from the summit. Numerous lava flows were reported on the NW, W, and S flanks during the period; a flow that emerged on the SSW flank on 7 January 2021 persisted through the end of February and was 800-1,200 m long. Strombolian activity also occurred at the fissure where the flow emerged, and incandescent blocks rolled hundreds of meters beyond the front of the flow. A steady increase in thermal activity was recorded with the MIROVA Log Radiative Power graph during December 2020 – February 2021 (figure 145). This corresponded to the persistent lava flows on multiple flanks and constant Strombolian activity. Multiple MODVOLC thermal alerts were issued many days each month during the period.

Figure (see Caption) Figure 145. The MIROVA graph of thermal anomalies at Pacaya from 13 May 2020 through February 2021 shows activity increasing in frequency and intensity beginning in late August 2020. Multiple lava flows from fissures on the flanks and Strombolian activity from the pyroclastic cone inside Mackenney crater were reported throughout the period. Courtesy of MIROVA.

The Washington VAAC reported an ash emission at Pacaya that rose to 3.0 km altitude and drifted WSW on 3 December 2020; it dissipated within a few hours. INSIVUMEH reported daily gas and steam plumes that rose a few hundred meters and sometimes drifted as far as 10 km. They also reported ash emissions along with the gas and steam on 10, 12-14, 16-18, 24-25, and 28 December. The ash plumes usually rose 300-400 m and drifted a few kilometers with the wind. On the evening of 28 December ash reached populated places including San José El Rodeo. Strombolian explosions at the summit occurred daily and rose 50-125 m above the Mackenney crater rim (figure 146). Ejecta was reported to heights of 250 m on 13 December and 200 m on 21 December.

Figure (see Caption) Figure 146. Explosions sent ejecta up to 125 meters above the Mackenney cone crater at Pacaya on 29 December 2020. In addition, lava flows with multiple branches were active on the W flank. Courtesy of CONRED (LAVA FLOWS IN PACAYA VOLCANO CONTINUE ACTIVE, 29 December 2020, Informative Bulletin No. 582-2020).

Lava flow activity continued on the SW flank throughout December 2020 and high winds remobilized ash on the flanks a number of times during the month. On 1 December the flow was about 675 m long and moving to the SW. Two branches were active the next day and three were reported on 6 December. A second flow appeared on the NW flank on 9 December on the plateau near Cerro Chino and grew to 250 m long (figure 147). Both flows had incandescent block avalanches spalling off their fronts and rolling at least 100 m. The SW-flank flow remained 450-550 m long through 11 December, and then grew to around 700 m the next day. Branches from both flows extended 700-1,000 m by 15 December and were moving NW, W, and SW. The NW-flank flow was growing through 16 December. Three 600-m-long branches were active on the SW-flank flow on 21 December. In a special bulletin released on 23 December, INSIVUMEH noted that the SW-flank flow was still active from the same mid-flank fissure where it originated on 20 October 2020, and consisted of 5-7 branches with lengths varying from 600-750 m (figure 148). For the remainder of December, multiple branches of the active SW-flank flow were between 525 and 650 m long, with block avalanches falling off the front that generated ash clouds.

Figure (see Caption) Figure 147. Sentinel 2 satellite imagery of Pacaya from 10 December 2020 revealed a thermal anomaly at the summit (lower right of center image), a multi-branch flow 550 meters long on the W flank (left of center image), and a small anomaly from the beginning of a new flow on the NW flank. Courtesy of INSIVUMEH (BOLETÍN VULCANOLÓGICO ESPECIAL BEPAC # 119-2020, Guatemala, 10 de diciembre de 2020, 19:30 horas (Hora Local), “ACTUALIZACIÓN DE LA ACTIVIDAD VOLCÁNICA”).
Figure (see Caption) Figure 148. Sentinel 2 satellite imagery of Pacaya on 20 (left) and 30 (right) December 2020 indicated thermal activity at the summit and on the NW and W flanks. The NW-flank lava flow was active from 9-16 December, and still cooling in the 20 December image. The WSW-flank lava flow had multiple branches between 525 and 650 m long for the last half of the month. Images use Atmospheric Penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

In a special bulletin issued on 1 January 2021 INSIVUMEH reported an increase in eruptive activity that produced Strombolian explosions which sent ejecta 300 m high and up to 100 m from the summit. Constant rumblings like a train and shock waves were heard and felt in nearby communities. Strombolian explosions continued to rise 75-200 m above the rim throughout the month, and numerous gas emissions rose 100-300 m and drifted as far as 10 km (figure 149). Ash emissions were noted on 1, 6, 7, 11, 13, 18, 19, 21-23, 25, 27, and 31 January. On 7 January ash drifted SW at 3 km altitude and ejecta was reported 300 m from the summit. INSIVUMEH noted that the columns of ash reached 300-500 m above the crater that day, generating loud rumbling and shock waves that vibrated roofs and windows in nearby villages. On 12 January explosions sent material 300 m high. A VAAC report on 22 January noted an ash plume drifting NW from the summit at 3.4 km altitude. INSIVUMEH remarked in a special report that day that ash fell in San Vicente Pacaya and in San Francisco de Sales. The ash emissions on 25 January were brown to gray, sporadic overnight and more continuous in the early morning, drifting 1-4 km W. On 27 and 31 January ash drifted 10 km W.

Figure (see Caption) Figure 149. Strombolian explosions rose 75-200 m above the summit of the pyroclastic cone inside Pacaya’s Mackenney crater on 7 January 2020 and throughout the month. On the NW flank, multiple branches of lava appeared as red to white areas in this thermal image. Thermal image courtesy of INSIVUMEH (BOLETÍN VULCANOLÓGICO ESPECIAL BEPAC002-2021, 12:00 horas (Hora Local), EXPLOSIONES CON CENIZA).

Multiple lava flows emerged from the flanks of Pacaya during January 2021. The lava flow that began on 20 October 2020 on the W flank continued to be active through about 8 January with branches flowing 400-600 m W and SW. A flow on the SSW flank began on 2 January from a vent 200 m below the rim of Mackenney crater. By 6 January it was feeding 3-4 flows from the same point, each 400 m long with block avalanches falling off the fronts and moving W, SW, and S down the flanks (figure 150). In the morning of 7 January two flows were seen on the N flank, 200 and 50 m long. Later that night another flow appeared on the SSW flank that lengthened rapidly, reaching 425 m the next day, and was 1,200 m long on 9 January (figure 151). High temperatures were still present on the W and SW flanks from the earlier flows. The SSW flow reached 1,500 m in length on 10 January and fluctuated between 1,200 and 1,600 m through 17 January when Strombolian activity ejecting material 5-10 m high was reported from the fissure. More Strombolian activity at the fissure was noted on 22 January, and the flow remained 800-1,150 m long through the 23rd. The flow reached 1,700 m in length on 25 January; for the rest of the month, it was reported as 800-1,000 m long, with block avalanches traveling an additional 200-400 m from the flow front. Strombolian activity reached 65 m high from the fissure at the head of the flow on 28 January. On 30 January multiple branches of the SSW flow were visible from a vantage point south of the volcano (figure 152).

Figure (see Caption) Figure 150. Multiple flows emerged from a single vent at Pacaya on 5 January 2021. The fissure was located about 300 m below the rim of Mackenney crater on the SSW flank. Incandescent debris falls from the front of the flow generated an ash plume seen at the bottom center of the image. Copyrighted photo by Deybin Fotografia, used with permission.
Figure (see Caption) Figure 151. A lava flow at Pacaya that first emerged on 7 January 2021 on the SSW flank grew quickly to over a kilometer long by 9 January and remained 800-1,000 m long for the rest of the month, often with incandescent blocks falling several hundred meters beyond the front of the flow. A thermal anomaly persisted at the summit of the pyroclastic cone inside Mackenney crater as well from constant Strombolian activity. A weak anomaly was also visible on the NW flank from earlier activity. Atmospheric penetration rendering (bands 12, 11, 8a) of Sentinel 2 images. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 152. Multiple branches of Pacaya’s SSW-flank-flow that began on 7 January 2021 were visible from a vantage point S of the volcano on 30 January. The branches were at least 700 m long with incandescent blocks falling several hundred meters farther down the flanks. The white lights below the flow are from people approaching the flow. Courtesy of David Rojas, used with permission.

Increased Strombolian activity during February 2021 was accompanied by frequent ash emissions that rose to 3.0-3.5 km altitude. The explosions often reached 225 m above the crater rim, and higher during pulses of increased activity. On 5 February ash drifted W, NW, and SW about 4 km and ashfall was reported in San Francisco de Sales, Concepcion el Cedro, and Calderas. A pulse of increased Strombolian activity on 6 February sent ejecta 400-500 m around the pyroclastic cone and columns of ash drifted 6 km NW and N. Ashfall was reported in the same areas as the day before, plus in El Bejucal, Mesías Altas and other communities in that region. Abundant ash emissions were reported by INSIVUMEH overnight on 7-8 February; variable winds dispersed the ash 30 km to the NW and W and 10 km N (figure 153). The ash emissions were accompanied by ejecta that landed 300 m from the summit. By the next day, ash had drifted as far as 66 km W and NW and ashfall was reported in El Patrocinio, El Rodeo, and El Caracol. Prolonged rumbling as loud as an airplane engine was reported from strong degassing. The Washington VAAC reported ash emissions in satellite imagery on 9 February at 3.8 km altitude drifting NW about 65 km from the summit.

Figure (see Caption) Figure 153. Dense ash emissions increased in frequency at Pacaya during February 2021. Ash emissions on 6 (left) and 8 (right) February resulted in ashfall in multiple communities around the volcano and were accompanied by incandescent ejecta falling hundreds of meters from the summit. Courtesy of INSIVUMEH (BOLETÍN VULCANOLÓGICO ESPECIAL BEPAC 006-2021, 009-2021).

High levels of similar activity continued through 10 February when 500-m-high ejecta was observed inside Mackenney crater. An increase in the seismic amplitude on 11 February was accompanied by ash plumes rising to 3.0-3.2 km altitude and drifting 15-20 km W and SW. Ashfall was reported in Patrocinio and El Rodeo. The next day ashfall was reported in San Francisco de Sales, San Jose Calderas, and Concepción el Cedro. On 13 February the Washington VAAC reported ash plumes visible in satellite imagery at 4.3 km altitude moving ENE, and ash fell in Santa Elena Barillas, Mesillas Bajas, and Mesillas Altas as the wind carried ash 6 km W, N, and NE; ash on 14 February drifted 5 km E. A new pulse of activity late on 16 February, the third in a week, produced incandescent material 400 m high; high-pressure gas also created plane engine noises, with roofs and windows rattled in nearby communities. Ashfall from the event was reported in Los Llanos, Los Pocitos, El Cedro, and other communities within 4 km. Another pulse on 18 February sent ejecta 200 m high, variable winds sent ash primarily NE and S. Two more pulses of activity on the morning of 19 February were recorded as increases in seismic amplitude by the PCG5 seismic station (figure 154). The first pulse was accompanied by a new lava flow appearing on the NW flank. The second pulse coincided with ash emissions that rose 500 m above the crater and drifted 8 km S, producing ashfall in Los Pocitos and plantations in that vicinity.

Figure (see Caption) Figure 154. Two increases in seismic amplitude at Pacaya were recorded during the morning of 19 February 2021 at seismic station PCG5. The first corresponded to the effusion of a new lava flow on the NW flank (left), and the second coincided with a pulse of ash plumes that drifted S (right). Courtesy of INSIVUMEH (BOLETÍN VULCANOLÓGICO ESPECIAL BEPAC 31-2021, Incremento de actividad por emission de ceniza y surgimiento de nuevo flujo de lava).

Ash emissions from explosions on 20 February drifted 10-25 km S and SW, resulting in ashfall in El Rodeo and El Patrocinio. That evening incandescent material rose 300-400 m above the summit and ejecta reached 500 m down the flanks of the cone (figure 155). The next day ash plumes rose to 2.8-3.2 km altitude and drifted SW with ashfall reported in San Francisco de Sales, El Cedro, and other plantations in the area (figure 156). During 22-24 February ash emissions rose as high as 800 m above the summit and drifted 3-5 km W, SW, and S. Ashfall drifted over 30 km S and SW on 24 February with ashfall reported in the villages of Los Pocitos, Pacaya, El Rodeo, and El Patrocinio. Pulses of increased activity on 26 February produced an ash plume 2.5 km above the summit. With variable wind directions at different altitudes, the ash drifted both N and S. The Washington VAAC reported the plume drifting N at 3.9 km altitude. This activity was accompanied by incandescent explosions that rose 500 m above the Mackenney crater, and noises as loud as an airplane engine. Similar pulses of activity continued through the end of the month, producing ash plumes that rose to 3.5 km altitude and drifted W and SW; ashfall was reported in El Patrocinio on 28 February.

Figure (see Caption) Figure 155. During the weekend of 20-21 February 2021 when this photo was taken, Strombolian explosions at Pacaya sent ejecta 400 m above the summit of the cone and 500 m down the flanks, while a lava flow remained active on the SSW flank. Copyrighted photo by David Rojas, used with permission.
Figure (see Caption) Figure 156. On 21 February 2021, ash plumes at Pacaya rose to 2.8-3.2 km altitude and drifted SW with ashfall reported in San Francisco de Sales, El Cedro, and other plantations in the area. Courtesy of Luis Figueroa.

The lava flow on the SSW flank was about 900 m long at the beginning of February with block avalanches falling about 100 m from the front of the flow, and Strombolian explosions active at the fissure at the head of the flow. Two distinct branches of the flow were visible on 6 February, one 1,200 and one 800 m long; multiple branches were active throughout the month (figure 157). High levels of activity continued; during 10-12 February the flow was 1,200-1,300 m long and loose blocks were descending an additional 200 m. During 13-18 February high temperature zones were still present on the N and NW flanks from earlier flows. From 14-18 February the S-flank flow was 900-1,100 m long with multiple branches and Strombolian activity at the vent (figure 158). A new flow appeared briefly on the NW flank during 19-20 February. High-temperature zones remained on the NW flank during 22-24 February. The S-flank flow remained active throughout the rest of February and was 800-1,100 m long, with incandescent blocks traveling up to 600 m beyond the flow fronts (figure 159).

Figure (see Caption) Figure 157. Multiple branches of the S-flank lava flow at Pacaya were active throughout February 2021. Strombolian activity was observed at the fissure where the flow emerged, and incandescent blocks rolled hundreds of meters beyond the flow front. The fissure was located about 300 m below the crater rim. The thermal anomaly from the Strombolian activity at the summit of the pyroclastic cone inside Mackenney crater was also visible in most satellite images. Atmospheric penetration rendering of Sentinel 2 image uses bands 12, 11, 8a. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 158. A lava flow about 1 km long on the S flank of Pacaya was active throughout the month; on 16 February 2021 Strombolian activity at the summit and at the head of the flow were visible. Multiple branches of the flow sent incandescent blocks hundreds of meters beyond the flow front. Copyrighted image by Berner Villela, used with permission.
Figure (see Caption) Figure 159. The lava flow on the S flank of Pacaya had several active branches as seen in this thermal image on 21 February 2021. The source fissure vent was about 300 m below the rim of Mackenney crater. Incandescent blocks fell hundreds of meters beyond the fronts of the flows. Courtesy of INSIVUMEH and Roberto Iboy.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Deybin Fotografía (URL: https://www.facebook.com/Deybin-fotografía-2316704905277353, https://twitter.com/UniversoNews1/status/1347037016324792327); David Rojas (URL: https://twitter.com/DavidRojasGt/status/1360789438545149957); Luis Figueroa (URL: https://twitter.com/luisficarpediem/status/1363664541318598657); Berner Villela (URL: https://bernervillela.com/galerias/naturaleza, https://twitter.com/soy_502/status/1362846917743366146); Roberto Iboy (URL: https://twitter.com/IboyRoberto/status/1363688900401709057).


Villarrica (Chile) — March 2021 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Explosions, ash plumes, crater incandescence, and an active lava lake during September 2020-February 2021

Villarrica, located in Chile, has had historical eruptions dating back to 1558. The current eruption period began in December 2014 and more recently has been characterized by summit crater incandescence, Strombolian explosions, and ash emissions (BGVN 45:09). This report covers activity during September 2020 through February 2021, which consists of an active lava lake, explosions, ash plumes, and nighttime crater incandescence. Information is provided by the Southern Andes Volcano Observatory (Observatorio Volcanológico de Los Andes del Sur, OVDAS), part of Chile's National Service of Geology and Mining (Servicio Nacional de Geología y Minería, SERNAGEOMIN), the Projecto Observación Villarrica Internet (POVI), part of the Fundacion Volcanes de Chile, a private research group that studies volcanoes across Chile, the Buenos Aires Volcanic Ash Advisory Center (VAAC), and various satellite data.

Activity during September 2020 was characterized by an active lava lake, white gas-and-steam plumes that rose 500 m above the crater, nighttime crater incandescence that could be observed on clear days, and sporadic ash emissions produced by minor explosions. During 5 and 7 September tephra deposits extended up to 36 m on the E and SE flanks, according to satellite data. On 25 September the seismic network recorded a long-period earthquake associated with a moderate explosion at 1350, which produced an ash plume that rose 800 m above the crater and drifted ENE (figure 104); blocks of ejecta were deposited around the crater. A second explosion was recorded at 1829 in conjunction with another long-period event, which generated an ash plume that rose 450 m above the crater (figure 104). Sentinel L2 A satellite images were used to determine that ashfall extended 3.8 km SSE, 865 m SE, and 275 m N as a result of the explosions during the day. The POVI webcam captured incandescent ejecta at night on 27 September (figure 105).

Figure (see Caption) Figure 104. Explosions at Villarrica on 25 September 2020 at 1350 (top) and 1829 (bottom) produced a long-period seismic signal and ash plumes that rose 800 m and 450 m above the crater, respectively and drifted ENE. Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, Volcan Villarrica, 25 de septiembre de 2020, 14:35 Hora local y 25 de septiembre de 2020, 19:20 Hora local).
Figure (see Caption) Figure 105. Incandescent ejecta up to 100 m above the summit of Villarrica was captured in the POVI webcam at night on 27 September 2020. Courtesy of POVI.

Intermittent white gas-and-steam plumes, ash explosions, and nighttime crater incandescence continued during October. On 4 October SERNAGEOMIN reported a long-period event accompanied by a moderate explosion at 1130, generating an ash plume that rose 450 m above the crater and drifted NE. The next day on 5 October two long-period events were recorded at 1343 and 1347 associated with explosions, resulting in ash plumes that rose to 400 m above the crater and drifted SE (figure 106). On 12 October a satellite image showed an ash plume drifting 2.5 km NE and a strip of tephra deposits measuring 200 m wide and 3 km long on the NE flank, as a result of two eruptive events on 9 October, according to POVI and Sentinel-2 satellite imagery.

Figure (see Caption) Figure 106. Explosions at Villarrica on 5 October 2020 produced a long-period seismic signal and an ash plume that rose 400 m above the crater and drifted SE. Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, Volcan Villarrica, 5 de octubre de 2020, 14:20 Hora local).

Moderate explosions were detected at 0534 and 0804 on 15 October, associated with two long-period earthquakes. As a result, ash plumes rose as high as 900 m above the crater and gas-and-steam plumes rose to 450 m, according to SERNAGEOMIN. The explosion at 0534 was accompanied by crater incandescence and incandescent ejecta that were deposited on the E flank as far as 3 km. An analysis of Planet Scope and Sentinel-2 satellite images showed that ash deposits extended 4.4 km NE. On 20 October an explosion and long-period event were recorded at 1722 that resulted in an ash plume 240 m above the crater that drifted S (figure 107). Explosions recorded during 22-23 October produced ash plumes that rose 780 m and 180 m above the crater, respectively, according to a Buenos Aires VAAC report and SERNAGEOMIN. The event on 22 October deposited tephra up to 3.8 km on the E flank.

Figure (see Caption) Figure 107. An explosion at Villarrica on 20 October 2020 at 1722 was characterized by a long-period earthquake and a dense, gray ash plume that rose 240 m above the crater and drifted S. Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, Volcan Villarrica, 20 de octubre de 2020, 18:00 Hora local).

Ash explosions continued in November, accompanied by intermittent nighttime crater incandescence and white gas-and-steam plumes. On 5 November a pulse of ash was observed at 1442 that rose 350 m above the crater and drifted NW. Similar activity was noted on 6 November at 0757 and 0808 when ash rose 350 m above the crater and at 1412 when ash rose 250 m above the crater, both of which drifted NW (figure 108). According to a Buenos Aires VAAC report on 7 November, an isolated ash plume was detected in satellite images up to 4.3 km altitude, drifted ESE. A Differential Absorption Optical Spectroscopy Unit (DOAS) showed average values of SO2 totaling 140 tons/day during 7-8 and 15 November with a maximum daily value of 168 tons/day on 7 November. An explosive event at 0051 on 8 November ejected incandescent material and produced an ash plume that rose 220 m above the crater (figure 108). On 10 November OVDAS reported an ash plume rose 320 m above the crater and drifted SSW, accompanied by continuous seismic tremor at 1514. Ash continued to be reported during 16-17 November rising 160 m above the crater and to 3.7 km altitude, respectively. Data from the DOAS showed that SO2 emissions had slightly increased to an average of 166 tons/day during 16-30 November, with a maximum daily value of 549 tons/day on 22 November.

Figure (see Caption) Figure 108. Explosions that generated ash and incandescent ejecta at the summit of Villarrica were captured by the POVI webcam during 6-8 November 2020 (left to right). Courtesy of POVI.

The number of ash events decreased in December compared to the previous months, though similar activity persisted. On clear nights, crater incandescence was visible, accompanied by white gas-and-steam emissions. SERNAGEOMIN reported a single long-period earthquake associated with a moderate explosion at 1844 on 5 December with a resulting ash plume that rose 160 m above the crater and drifted SSE; some ashfall was detected within 500 m of the crater, based on Sentinel-2, Pleiades, and SkySat data, and incandescent material was deposited on the SSE flanks (figure 109). According to POVI, during an overflight on 9 December scientists observed a lava lake 10-15 m in diameter that was partially covered by solidified floating black lava. Small pulses of gas and ash were observed in the lava lake. Additionally, ballistic blocks and pyroclasts that measured a maximum of 20 cm in diameter had been ejected up to 800 m from the crater during previous eruptive events. The average SO2 value was 178 tons/day with a maximum daily value of 353 tons/day on 7 December 2020, according to DOAS data.

Figure (see Caption) Figure 109. An explosion at Villarrica on 5 December 2020 at 1844 produced a long-period seismic signal along with an ash plume that rose 160 m crater and drifted SSE. Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, Volcan Villarrica, 5 de diciembre de 2020, 19:50 Hora local).

On 16 December at both 1146 and 1156 SERNAGEOMIN reported two ash pulses associated with long-period events. The first ash emission rose 160 m above the crater and drifted NW; the second rose 280 m above the crater and drifted 500 m NE. On 17 December at 1716 another ash plume associated with a long-period event rose 720 m above the crater and drifted ESE (figure 110). Pyroclastic deposits were reported up to 1.3 km N, 3.3 km E, 5 km SE, and 1.8 km SW from the crater, according to data obtained from Sentinel-2 and SkySat. During 18-19 December seismicity increased, intense crater incandescence was visible, and a notable sulfur odor was noted, according to POVI reports. Minor ash emissions rose to low heights on 22 December.

Figure (see Caption) Figure 110. An explosion at Villarrica on 17 December 2020 at 1716 produced an ash plume that rose 720 m above the crater and drifted ESE. Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, Volcan Villarrica, 17 de diciembre de 2020, 17:50 Hora local).

During January 2021, the number of explosions with ash plumes continued to decrease compared to the previous months. On clear weather days, occasional nighttime crater incandescence was observed, as well as white gas-and-steam emissions of variable intensities. During an overflight on 2 January scientists observed an incandescent vent at the bottom of the crater that had a solidified lava bridge connecting across a partially crusted-over top (figure 111). DOAS data showed that the average mass of SO2 plumes had increased compared to November and December to 318 tons/day with a maximum daily value of 789 tons/day on 12 January. During 1-15 January, the highest ash plume reported rose 700 m above the crater, though it was mostly composed of gas-and-steam emissions. During 16-31 January gas-and-steam emissions continued, rising to 1.3 km above the crater on 20 January. The average value of SO2 plumes increased again to 430 tons/day with a maximum daily value of 789 tons/day on 22 January.

Figure (see Caption) Figure 111. Webcam image of two incandescent vents at Villarrica on 2 January 2021. A bridge of solidified lava separates the two sections and extends across the active lava lake. Courtesy of POVI.

Activity during February continued to decrease compared to the previous months and consisted of primarily white gas-and-steam plumes, nighttime crater incandescence, and SO2 plumes. On 10 February dense, white gas-and-steam plumes rose 700 m above the crater. During 1-15 February, the average value of SO2 plumes was 181 tons/day with a maximum daily value of 369 tons/day on 2 February. Long-period earthquakes were recorded by the seismic network at 1146 and 1156 on 16 February with an associated explosion that generated ash plumes 160 m above the crater that drifted NW and 280 m that drifted NE, respectively. During 16-28 February white gas-and-steam plumes rose to a high of 780 m above the crater; SO2 plumes were an average value of 402 tons/day with a maximum daily value of 1,026 tons/day on 21 February.

Low-power thermal activity was detected during September 2020 through January 2021, according to the MIROVA Log Radiative Power graph using MODIS infrared satellite information (figure 112). Three thermal anomalies were recorded in September, one in October, and four in November; a single stronger anomaly was observed in early November. The number of anomalies increased in late December through late January 2021, though they remained low in power. On clear weather days, a strong thermal anomaly in the summit crater was visible in Sentinel-2 thermal satellite imagery during each month of the reporting period; in February, the strength of the anomaly had slightly decreased compared to previous months (figure 113).

Figure (see Caption) Figure 112. Low-power thermal anomalies were detected in the MIROVA graph (Log Radiative Power) at Villarrica during September 2020 through late January 2021. A pulse of thermal anomalies was recorded during late December 2020 through late January 2021 compared to the previous month but remained low in power. Courtesy of MIROVA.
Figure (see Caption) Figure 113. Sentinel-2 thermal satellite images showing strong thermal anomalies on clear weather days in the summit crater of Villarrica each month from September 2020 through February 2021. The strength of the thermal anomaly in February decreased slightly compared to previous months. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.

Geologic Background. Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); Proyecto Observación Villarrica Internet (POVI) (URL: http://www.povi.cl/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Scientific Event Alert Network Bulletin - Volume 09, Number 01 (January 1984)

Managing Editor: Lindsay McClelland

Aira (Japan)

Lapilli damage car windshields; air shock breaks windows; 1983 explosions and ashfalls tabulated

Atmospheric Effects (1980-1989) (Unknown)

El Chichón cloud persists; lidar data to N Pole

Bagana (Papua New Guinea)

Two active lava flows

Campi Flegrei (Italy)

Uplift and seismicity in the caldera since mid-1982

Erebus (Antarctica)

Dimensions of active lava lake from photo data; seismicity normal; SO2 flux measured

Etna (Italy)

Incandescent tephra from central crater; seismicity

Fournaise, Piton de la (France)

Second phase of lava emission

Kilauea (United States)

13th-15th major episodes of East Rift Zone eruption include lava fountains to 300 m and temperatures to 1,147°C

Kusatsu-Shiranesan (Japan)

1983 activity summarized

Langila (Papua New Guinea)

Vulcanian explosions; ashfalls on coast

Manam (Papua New Guinea)

Strombolian activity; explosion cloud to 3.5 km

Pavlof (United States)

Plumes on satellite imagery; harmonic tremor

Rabaul (Papua New Guinea)

Earthquakes, tilt indicate magma intrusion; eruption more likely within next few months

St. Helens (United States)

Deformation and seismicity then new lobe

Veniaminof (United States)

Lava fountains and flow continue



Aira (Japan) — January 1984 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Lapilli damage car windshields; air shock breaks windows; 1983 explosions and ashfalls tabulated

Recorded explosive eruptions were fewer in October (21) and November (16), but about as frequent in December (37) as in August [33] and September (36). About 1/4 of October's explosions were accompanied by large quantities of ejecta. On 10 October, the last and strongest of explosions at 1001, 1131 and 1351 sent an eruption column to 2.5 km above the summit. A large amount of lapilli broke windshields on two cars at Nojiri and Mochiki, at the SW foot of the volcano about 4 km from the summit. Activity remained at a relatively low level from late October to mid November. In late November stronger explosions were again frequently observed. During the first 12 explosions in December, observers at the Kagoshima Observatory witnessed lapilli ejection. Ejecta from an explosion at 1702 on 7 December broke a windshield at Usine in Tarumizu City (10 km SSE). 0n 13 December an explosion at 1028 generated an air shock that broke five windows in a hotel and one in a house. There were 413 recorded explosions in 1983, the second largest annual total since the current eruption began in 1955.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: JMA, Tokyo.


Atmospheric Effects (1980-1989) (Unknown) — January 1984 Citation iconCite this Report

Atmospheric Effects (1980-1989)

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


El Chichón cloud persists; lidar data to N Pole

NASA Airborne Lidar Mission, 37°N-North Pole. The following is a report from M. P. McCormick. "An airborne lidar mission was flown 19-28 January on the NASA Electra aircraft from 37°N to the North Pole, via Goose Bay, Labrador, and Söndre Strömfjord and Thule airbases, Greenland. The primary objective of the mission was to provide correlative stratosperic aerosol measurements for the SAM II (Stratospheric Aerosol Measurement) satellite, successfully accomplished on 3 separate satellite underflights.

"The El Chichón cloud was very consistent from 37°N-76°N, generally as a single broad layer with very little structure. From Thule a flight was conducted 24 January to the North Pole along the 60° W meridian to determine the northerly extent of the El Chichón material and to search for polar stratospheric clouds (PSC's, see below). As the aircraft proceeded north from Thule, considerable structure and varied intensity were observed in the El Chichón cloud, with an increase in peak scattering ratio.

"First detected by the SAM II satellite, PSC's are thought to be ice clouds that form during the Arctic and Antarctic winter by freezing of diluted sulfuric acid-water aerosol droplets at temperatures less than about -80° to -85°C, followed by rapid growth by sublimation (McCormick et al., 1982, and Steele et al., 1983). Nacreous or mother-of-pearl clouds are thought to be subsets of PSC's. From 85°N to the Pole, PSC's were detected for the first time by a remote sensor other than SAM II. They occurred at 19-21 km altitude, above the main El Chichón layer.

"A second flight was conducted 25 January from Thule to 86°N and PSC's were again detected within the temperature region of -85°C from about 81°N - 86°N. A third mission was flown 27 January from Thule to 87°N over the same flight path (60° meridian) and somewhat to the east. The El Chichón layer decreased in intensity and was less structured. There were no indications of PSC's, correlating with stratospheric temperature data, which showed that the low-temperature region had moved over the north pole toward Siberia. Returning to Virginia on 28 January, the same consistency was observed in the stratospheric layer as on the earlier northbound flight, with a slight decrease in peak scattering ratio.

"In addition to the uplooking airborne lidar, a downlooking lidar was used to study the tropospheric aerosols. In-situ measurements of aerosol mass and number density, CO2 and O3 were made over the full flight range at various altitudes during the mission.

Lidar data. At Mauna Loa, Hawaii, a distinct double aerosol layer was observed 3 January, similar to the pattern observed in December. No strong upper peak was present a week later, but numerous small layers were detected above the main lower peak. On 19 January, enhanced higher-altitude layers were no longer detected. Two distinct layers were observed over Fukuoka, Japan on 10 February, in contrast to the broad monolayer present a month earlier.

Lidar at Garmisch-Partenkirchen, West Germany continued to detect aerosols from the March-April 1982 eruption of El Chichón. Altitude and values of peak backscattering were slightly lower than in the summer but secondary peaks at higher altitudes were sometimes detected. Integrated backscattering between 1 km above the tropopause and the top of the aerosol layer, about 20% below expected values in the second half of September and the first half of October, rose to 70% above expected values 14 November as the tropopause altitude dropped to 9.9 km in arctic air and backscattering was enhanced between 9 and 13 km.

Unusual sunrises and sunsets. Edward Brooks reported that dawns and dusks indicated a variable and often weak aerosol layer over Jeddah, Saudi Arabia in late December and early January. Morning and evening colors on 26 December suggested that few scattering particles were present at either low or high altitudes. Stronger sunrises and sunsets were observed 27-30 December, but only late dawn colors, illuminating low-altitude aerosols, were visible 31 December. Dawns were essentially colorless 3 and 7-9 January; only late dawn colors (aerosols at low altitude) were visible on the 4th, while only early dawn colors (high-altitude material) were seen 2 days later.

From Millville, New Jersey, Fred Schaaf reported that twilight colors were usually weak to moderate in December and early January. On 16 December, early twilight colors merged into a strong crimson glow at 12° altitude, suggesting that the top of the scattering layer was at 13-18 km altitude. Colors were strong again the following evening and included secondary illumination to a solar depression angle of about 12°. As in previous months, the arrival of arctic air 24 December weakened twilight colors. On 8 January, weak to moderate colors were replaced suddenly by a milky area at 12° altitude, indicating the top of the aerosol layer at 13-16 km. The same evening, a secondary glow remained visible to an SDA of 10°. On 12 January, the time that illumination ended suggested that highest aerosols were at 11-13 km. Only early twilight colors were visible 19 January. A week later, timing of the end of purplish illumination indicated that aerosols reached 16-19 km altitude and a deep-hued secondary glow persisted for much longer. However, colors were very weak the following night. On 1 February, moderate colors disappeared at a time indicating aerosols reached 11-16 km.

References. McCormick, M. P., Steele, H. M., Hamill, P., Chu, W. P., and Swissler, T. J., 1982, Polar stratospheric cloud sightings by SAM II: Journal of the Atmospheric Sciences, v. 39, no. 6, p. 1387-1397.

Steele, H. M., Hamill, P., McCormick, M. P., and Swissler, T. J., 1983, The formation of polar stratospheric clouds: Journal of the Atmospheric Sciences, v. 40, no. 8, p. 2055-2067.

Geologic Background. The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found here.

Information Contacts: P. McCormick, NASA; R. Reiter, Garmisch-Partenkirchen, W. Germany; T. DeFoor, MLO; M. Fujiwara and M. Hirono, Kyushu Univ., Japan; E. Brooks, Saudi Arabia; F. Schaaf, Millville, NJ.


Bagana (Papua New Guinea) — January 1984 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Two active lava flows

"The increase of summit activity noted in December resulted in [pulses of lava down the channel on the N flank] of the volcano from 5 January onwards. This lava remained active throughout the month and produced plumes of white and grey vapour."

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: P. Lowenstein, RVO.


Campi Flegrei (Italy) — January 1984 Citation iconCite this Report

Campi Flegrei

Italy

40.827°N, 14.139°E; summit elev. 458 m

All times are local (unless otherwise noted)


Uplift and seismicity in the caldera since mid-1982

"Campi Flegrei has been the site of slow vertical movements since at least Roman times. A slow subsidence had occurred since the last eruption in 1538. An uplift observed in 1970 continued until 1972 without significant seismic activity. The inferred maximum uplift with respect to previous levellings was 170 cm. Slow ground oscillations observed between 1972 and 1982 had an annual period with a range of about 10-15 cm/year in the zone of maximum uplift. Since the summer of 1982 oscillation has not reversed as in previous years. The overall uplift amounted to 110 cm between January 1982 and December 1983 in the zone of maximum movement, within the town of Pozzuoli in the center of the caldera. Repeated levelling surveys in the area have given evidence of an area of uplift of about 6 km radius with a fairly circular symmetry.

"In November 1982 moderate seismic activity was observed by the permanent seismic network that has been operating since 1972 (figure 1). The level of activity was slightly above the microseismic background in the area. In January 1983, public officials were notified of the anomalous trend of the phenomenon and the possibility of increasing seismic and volcanic hazard. In March, a distinct increase in seismic activity was observed with the first M 3 earthquake. Since then, ground uplift has continued with a velocity that reached 5 mm/day during October. After October, oscillations in the rate of uplift were observed, with a range between 1 and 4 mm/day. The seismic activity increased, following a trend similar to that of the uplift velocity. A M 4 earthquake occurred on 4 October when the rate of uplift reached 5 mm/day. This earthquake caused some building collapses (without injuries) in the town of Pozzuoli. Downtown Pozzuoli was evacuated after this event because of concern about the increasing seismic hazard. The main part of the town is built of old brick houses that were increasingly affected by the continuous seismic activity. On 13 October a seismic swarm of >250 shocks occurred in 5 hours. Maximum magnitude was 3.0.

Figure (see Caption) Figure 1. Map showing the distribution of the 212 best-located earthquakes as of early 1984 (circles) and positions of seismic stations (triangles). Index map (bottom) is after Nunziata and Rapolla (1981).

"The people evacuated from Pozzuoli were temporarily resettled in the resort areas surrounding Campi Flegrei. A new settlement has already been planned on the border of the more vulnerable area. The choice of its location was made by public authorities to minimize the social consequences of evacuating people from their residences. The new settlement is relatively safe from a seismic point of view but is not safe from a maximum probable volcanic event.

"The permanent surveillance network operating in the area comprises measurements of ground deformation and seismic activity, and monitoring of gas content and temperatures of fumaroles. Temporary measurements of self-potential have been performed by a French team from the IPG.

"Vertical ground deformation is measured by a repeated levelling of the permanent network (figure 2) and is also checked daily by a tide gauge in Pozzuoli harbor. Measurements are referred to a tide gauge located in the nearest stable place in Naples. Horizontal deformation is also measured on a network covering Campi Flegrei. The data give evidence of a maximum extension of about 40 cm over 4 km, nearly coincident with the area of maximum vertical uplift.

Figure (see Caption) Figure 2. Levelling network in the Campi Flegrei area, early 1984.

"The permanent seismic network operating in the area is composed of 22 vertical seismometers, eight of which are operated by the Osservatorio Vesuviano (OV) and 14 by the AGIP company for the initial purpose of monitoring seismic activity connected with the geothermal field. Seven AGIP stations and the eight OV stations are cable-connected to a central point in Naples. Routine locations are made on these 15 stations using the HYP071 program. Subsequent analysis of data from all 22 stations is made utilizing the program LQUAKE by R. Crosson. The preliminary velocity model is based on data collected from the geothermal wells in the area. The shallow character of the seismic activity does not give any evidence of a zone of anomalous propagation of S waves. A seismic explosion campaign has been planned in the Gulf of Pozzuoli of to provide information on the deeper structure of the area.

"The earthquakes of higher magnitude are mainly confined within a restricted area under the Solfatara Crater. They are offset with respect to the area of maximum uplift and their mean depth is about 3 km (E-W profile is shown in figure 3). Preliminary focal mechanisms indicate a predominantly tensile field in this area. The data on temporal distribution of earthquakes indicate a swarm-type character. The event of maximum magnitude (4) occurred 4 October 1983 and its epicenter was in the Solfatara area. A close correlation seems to exist between the velocity of uplift and the seismic activity. The more energetic earthquakes seem to coincide with the higher rates of uplift (4-5 mm/day).

Figure (see Caption) Figure 3. Profile (W-E) showing depth distribution of the earthquakes at Campi Flegrei shown in figure 1. Maximum magnitude 4.0.

"A cross-cooperation with seimologists from the Univ of Wisconsin is under way. A temporary network of ten 3-component stations with high dynamic range has already been deployed in the area and will be operating for some months. A temporary network of 3-component stations was also operated during November 1983 by IPG seismologists.

"Since April 1983, radon measurements have been made in water wells located in the area. The data are still too preliminary to infer any model. We await a prolonged period of measurements to infer what may be the seasonal trend. Temperatures of the Solfatara fumaroles are also continuously monitored. No significant change has been detected.

"Gas monitoring of the Solfatara fumaroles is carried out by several teams from the Universities of of Pisa, Palermo and Florence, both by continuous measurement and periodic sampling. Preliminary data seem to indicate an increase in the energy flux supplied to the deep water table located at 1.2 km depth by the geothermal wells.

"Two detailed surveys of the helium content of the ground have been performed by a team from the Univ of Rome. Order of magnitude variations have been detected in a large area NW of Pozzuoli."

Reference. Nunziata, C., and Rapolla, A., 1981, Interpretation of gravity and magnetic in the Phlegraean Fields Geothermal Area, Naples, Italy: JVGR, v. 9, p.

Geologic Background. Campi Flegrei is a large 13-km-wide caldera on the outskirts of Naples that contains numerous phreatic tuff rings and pyroclastic cones. The caldera margins are poorly defined, and on the south lie beneath the Gulf of Pozzuoli. Episodes of dramatic uplift and subsidence within the dominantly trachytic caldera have occurred since Roman times. The earliest known eruptive products are dated 47,000 yrs BP. The caldera formed following two large explosive eruptions, the massive Campanian ignimbrite about 36,000 BP, and the over 40 km3 Neapolitan Yellow Tuff (NYT) about 15,000 BP. Following eruption of the NYT a large number of eruptions have taken place from widely scattered subaerial and submarine vents. Most activity occurred during three intervals: 15,000-9500, 8600-8200, and 4800-3800 BP. Two eruptions have occurred in historical time, one in 1158 at Solfatara and the other in 1538 that formed the Monte Nuovo cinder cone.

Information Contacts: G. Luongo and R. Scandone, OV; F. Barberi, Univ. di Pisa.


Erebus (Antarctica) — January 1984 Citation iconCite this Report

Erebus

Antarctica

77.53°S, 167.17°E; summit elev. 3794 m

All times are local (unless otherwise noted)


Dimensions of active lava lake from photo data; seismicity normal; SO2 flux measured

"Volcanic activity at Mt. Erebus was observed in November and December 1983 by scientists from New Zealand and the U.S. The persistent convecting anorthoclase phonolite lava lake still existed and displayed activity similar to that observed over the last few years. Since 1976 its surface area has remained relatively constant. A recent airphoto showing the lava lake allowed a more precise determination of its size. The photo showed that the lake was ovoid and ~60 m long by ~45 m wide, considerably smaller than other ground-based observations have suggested.

"It has been previously reported that the level of the lava lake was dropping. A recent analysis of ground-based photographs makes it difficult to confirm a substantial lowering in the lake surface relative to other features seen on the Inner Crater floor. A small amount of lowering was documented in the 1979-80 austral summer field season, when a distinct bench with fumaroles rimmed the lake. However, the volcanic gas plume from the lake makes it extremely difficult to determine the lava lake height using simple visual estimates from the crater rim. Deformation studies currently in progress by NZGS personnel should give a better indication of the changes in the lava lake.

"The seismic network on Mt. Erebus was expanded by University of Alaska and Japanese personnel. Six radio-telemetry stations consisting of a single vertical-component seismometer are now situated on the flanks of the mountain. An additional station near the summit is presently inoperative. Three other stations are placed at sites 30-40 km from the summit of Mt. Erebus. Preliminary analysis of the seismic records show the level of seismicity to be normal.

"Airborne observations made using a C130 aircraft included sampling the plume for particle size distribution, and remote sensing using a COSPEC to determine SO2 flux, which was 230 ± 90 t/d [on 19 December]."

Further Reference. Chuan, R.L., Palais, J., and Rose, W.I., 1986, Fluxes, sizes, morphology, and compositions of particles in the Mt. Erebus volcanic plume, December 1983: Journal of Atmospheric Chemistry, v. 4, p. 467-477.

Geologic Background. Mount Erebus, the world's southernmost historically active volcano, overlooks the McMurdo research station on Ross Island. It is the largest of three major volcanoes forming the crudely triangular Ross Island. The summit of the dominantly phonolitic volcano has been modified by one or two generations of caldera formation. A summit plateau at about 3,200 m elevation marks the rim of the youngest caldera, which formed during the late-Pleistocene and within which the modern cone was constructed. An elliptical 500 x 600 m wide, 110-m-deep crater truncates the summit and contains an active lava lake within a 250-m-wide, 100-m-deep inner crater; other lava lakes are sometimes present. The glacier-covered volcano was erupting when first sighted by Captain James Ross in 1841. Continuous lava-lake activity with minor explosions, punctuated by occasional larger Strombolian explosions that eject bombs onto the crater rim, has been documented since 1972, but has probably been occurring for much of the volcano's recent history.

Information Contacts: P. Kyle, New Mexico Inst. of Mining & Tech.; W. Rose, Michigan Tech. Univ.


Etna (Italy) — January 1984 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Incandescent tephra from central crater; seismicity

"Beginning in December, numerous seismic crises were recorded, mainly connected to the degassing of the magma column through the central vents. In the same period, ejections of reddish ash (old material) or dark ash (fresh material) occurred from the central crater. At times (14, 16, and 28 January) these have been rather significant, depositing thin layers of ash on the E flank. Some nights, pulsating flashes, due to the ejection of incandescent material from Bocca Nuova were observed. Tiltmeter variations were also recorded."

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: R. Romano, IIV.


Piton de la Fournaise (France) — January 1984 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


Second phase of lava emission

"A second eruptive phase began on 18 January at 0454, preceded by inflation of the summit area that began in early January. A seismic swarm of about 50 low-energy events occurred between 0313 and 0454 on 18 January when harmonic tremor began. The eruptive fissure of the first phase, which began on 4 December, was still active (but with virtually no explosive activity and a low level of effusive activity) when the second phase began, but apparently ceased during the day on 18 January.

"Two new eruptive fissures formed ~400 m NNW of the main first phase fissure. Activity at the upper one rapidly decreased, and stopped at 0200 on 19 January. The other, ~200 m long, sustained lava fountaining more than 80 m high 18-19 January. The fountains produced a large amount of Pele's hair that was transported SW by wind and deposited on inhabited areas, causing a potential hazard for livestock grazing in the area. Emergency measures were taken by local authorities; fortunately, heavy rains and wind 19-23 January washed away most of the tephra that remained on the grass.

"During 18 January, the lava discharge was vigorous (up to 100 m3/s). At 1200 the flow extended 4 km from the vents. Inflation, possibly related to the emplacement of an intrusion, was measured on 18 January, showing the same pattern as after the start of the first phase on 4 December.

"On 24 January, the eruption was localized at two vents that were building two cinder cones. On 27 January, only one of the vents was still active. Eruptive activity was continuing as of 8 February."

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: J. Lenat, A. Bonneville, C. Hemond, F. Lalanne, and P. Tarits, OVPDLF, Réunion; P. Bachelery and J. Bougeres, Univ. de la Réunion.


Kilauea (United States) — January 1984 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


13th-15th major episodes of East Rift Zone eruption include lava fountains to 300 m and temperatures to 1,147°C

"Kilauea's episodic E rift zone eruption resumed in late January after 7 weeks of repose characterized by a desultory pattern of summit inflation, vanishingly weak harmonic tremor, and the virtual disappearance of magmatic gas at the vent. Episode 13 occurred 20-22 January, and episode 14 on 30-31 January. As in episodes 4-12, the eruptive vent for episodes 13 and 14 was at Pu'u O (figure 24).

Figure (see Caption) Figure 24. Kilauea lava flows from episodes 13, 14, and 15. Courtesy of HVO.

EPISODE 13

"Episode 12, which ended on 1 December 1983, left a complex of craters separated by low septa in the interior of Pu'u O. The largest and most central of the craters narrowed downward into a nearly vertical pipe about 20 m in diameter and at least 90 m long.

"On 20 January, harmonic tremor in the eruption zone increased gradually beginning at about 1030, and at 1117 HVO personnel first sighted moving lava about 50 m down in the pipe; by mid-afternoon the lava column could be seen slowly rising within the pipe. At 1724, the lava, which had by then filled the pipe and spread across the 30-40 m-wide floor of the crater, began to flow through the deep breach in the crater's NE rim. Supplied at a rate of approximately 10,000 m3/hour (an order of magnitude less than normal minimum rates for vigorous eruption at Pu'u O), the lava began advancing NE in the channel evacuated at the end of episode 12. By this time, tremor amplitude had increased tenfold.

"As the lava rising within Pu'u O approached and overflowed the spillway, the lava surface, from which a low dome fountain repeatedly rose and fell, was agitated, resembling a rolling boil in a saucepan. Over the next few hours, the vigor of lava emission and fountain activity gradually increased, accompanied by increasingly intense harmonic tremor.

"Unlike some of the recent previous episodes, in which a complex of fountains formed within Pu'u O as well as on its rim and flanks, episode 13 developed a single fountain over the large central conduit. The production of lava, normally steady in previous episodes, pulsed strongly. At intervals on the order of 0.5-1 minute the flux of lava in the channel and the height of the fountain waxed and waned. Hence, the fountain alternated rapidly from about the height of the crater rim (30-40 m above the pond surface within the crater) to as much as 40 or 50 m above the crater rim. The repeated increases in discharge of lava caused surges that advanced at about 10 m/s down the first 100 m or so of the lava channel.

"Episode 13 effusion stopped temporarily on 22 January at about 0030. During this first 31-hour period the lava river debouching from Pu'u O fed a 7 km-long flow that advanced NE. It split into 2 lobes (at Pu'u Kahauale'a) that rejoined farther NE. Continuous eruptive activity resumed at about 0530; it was preceded by an hour of intermittent, low fountain activity. The fountain was visible above the rim of Pu'u O by 0550, and effusion accompanied by renewed intense harmonic tremor continued until the eruptive activity waned sporadically from 1115 to its termination at 1123. This 6-hour period produced a second flow that advanced directly on top of the first; it followed the fork N of Pu'u Kahauale'a and stopped about 3 km NE of Pu'u O. The two effusive periods each terminated with [discontinuous] lava emission such that the fountain disappeared and reappeared repeatedly for a period of several minutes. Simultaneously, harmonic tremor decayed with marked alternations in amplitude.

Repose-period activity. "After episode 13, the interior of Pu'u O was a single bowl-like crater with a narrowing conduit, about 25 m wide at its mouth, extending downward from the crater floor. Throughout the entire repose period between episodes 13 and 14, the surface of a lava column was visible at depths of 0-25 m in the conduit. Sometimes fresh to barely crusted lava was exposed at the pond surface; at other times the pond surface was a solid frozen crust through which a small (0.5-3 m) orifice accommodated intermittent venting of magmatic gas, spatter, and small flows. At times, emission of spatter and gas through the small vent in the crust or alternating rise and fall of the fluid pond surface through a vertical interval of 10-15 m became strongly rhythmic with cycles about 4-6 minutes long. The activity closely resembled the gas-piston activity noted in Mauna Ulu lava ponds (1969-1974). In a typical cycle at Pu'u O, the pond surface appeared deep in the conduit and slowly rose for about 4 minutes. It remained poised momentarily, became agitated, and the lava then drained rapidly out of sight in about 1/2 minute. Draining was accompanied by emission of a plume of magmatic gas and a brief increase in tremor amplitude. After 1.5 minutes, lava would reappear deep in the conduit. When last visited in the early afternoon of 30 January, the lava pond had filled the steep-walled conduit and had begun to spread across the more gently sloping floor of the crater. About 30 m in diameter, the pond surface was about 5 m below the low point in the breach of the crater's NE rim. The surface was solid, and gas under pressure along with minor spatter issued intermittently with a deafening roar from a 0.5 m-diameter vent in the crust. Gas samples from this vent showed that there had been no change in gas composition during more than a year of eruptive activity.

EPISODE 14

"At about 1030 on 30 January, the amplitude of harmonic tremor began a gradual and persistent increase that reached a high level by about 1830, when glow and visible fountains of episode 14 were first reported. Observations from a vantage point in the upper E rift zone as well as from the S coast of Kilauea indicate that in the evening hours the sustained height of the fountain at Pu'u O was 150-200 m above the rim of the cone, and bursts of spatter were rising as high as 300 m. By morning, when observers arrived at the vent, the single fountain, again centered over the large central conduit, was lower; through the remainder of episode 14 the fountain height fluctuated at intervals of 10-20 seconds from low (commonly 10-20 m above the rim of the cone) to high levels (up to about 80-100 m above the rim of the cone). The high bursts produced tephra plumes and short-lived spatter-fed flows on the flanks of Pu'u O.

"Flows to the N and E (figure 24) were fed by distributary channels branching from the lava river that poured through the breached NE crater rim. The longest flow extended about 4 km from the vent. It turned SE and extended about halfway to Royal Gardens subdivision. A thick aa flow, fed entirely by spatter that cascaded over the S rim of the cone, advanced about 1.5 km S.

"Between 1315 and 1318 on 31 January lava emission declined, once again in spasmodic fits and starts. Harmonic tremor also decreased rapidly beginning at 1315, marking the eruption's end. In early February, the level of tremor, like that between episodes 13 and 14, was considerably higher than the background level during many of the previous repose periods.

"Following episode 14, the crater of Pu'u O was again a broad, steep-walled bowl from which a 20 m-diameter conduit extended nearly vertically downward. A 30-40 m-deep cleft in the NE crater rim marked the breach through which lava exited the crater.

Petrology. "Basalt of episodes 13 and 14 is sparsely porphyritic with scattered small olivine phenocrysts visible in hand-lens view. Lava temperatures measured by thermocouple were 1,129-1,131°C in the first few hours of episode 13. Subsequent episode 13 temperatures were 1,140-1,147°C, and include the highest temperature measured so far in this series of eruptions. During episode 14, temperatures, measured only at the edges of the widespread pahoehoe flow N of Pu'u O, were 1,136-1,137°C.

Deformation. Rapid summit subsidence, as recorded by the Uwekahuna tiltmeter, began at 2100 on 20 January and again at 1930 on 30 January-in each case a short time after vigorous eruption was under way. Resumption of inflationary tilt followed the end of each eruption by several hours. E-W deflationary changes measured at Uwekahuna were 11 µrad for episode 13 and 10 µrad for episode 14. This suggests that a minimum of 8 x 106 m3 of magma was withdrawn from the summit reservoir system during episodes 13 and 14."

Addendum: Episode 15 began at about 1945 on 14 February with a sharp increase in harmonic tremor. Summit deflation began about 2 hours later. During the evening, lava fountains rose as high as 300 m from the previously active vent at Pu'u O. Vigorous lava fountaining continued the next morning and lava flowed E and NE from Pu'u O. Eruptive activity ceased at about 1500 on 15 February.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: E. Wolfe, A. Okamura, R. Koyanagi, T. Duggan, R. Okamura, HVO.


Kusatsu-Shiranesan (Japan) — January 1984 Citation iconCite this Report

Kusatsu-Shiranesan

Japan

36.618°N, 138.528°E; summit elev. 2165 m

All times are local (unless otherwise noted)


1983 activity summarized

1983 activity is summarized in table 1; locations are on figure 1.

Table 1. Seismic activity at Kusatsu-Shirane, 1983. Courtesy of JMA.

Month Discrete Seismic Events Continuous Tremor Remarks
Jan 1983 Observed swarms Observed Rumbling at the summit.
Mar 1983 Observed swarms -- Increased fumarolic activity at Pit No. 2.
Apr 1983 -- Observed White plumes from Pits No. 2, No. 7, and a fumarole on the N inner wall of Yugama; N edge of frozen Yugama lake melted.
Jun 1983 Observed swarms -- --
Jul 1983 Observed swarms Almost at noise level Small eruption at Pit No. 6, NW wall of Yugama, on 26 July; small amount of ash.
Nov 1983 Observed swarms Observed during eruptive activity Explosive eruption at NW inner wall of Yugama and at Karagama on 13 Nov; a larger amount of ejecta.
Dec 1983 Observed swarms Observed during eruptive activity --

Further Reference. The 1982-1983 eruptions of Kusatsu-Shirane volcano, in XIX IUGG General Assembly, 1987, Report on volcanic activities and volcanological studies in Japan for the period from 1983 to 1986, p. 5-8.

Geologic Background. The Kusatsu-Shiranesan complex, located immediately north of Asama volcano, consists of a series of overlapping pyroclastic cones and three crater lakes. The andesitic-to-dacitic volcano was formed in three eruptive stages beginning in the early to mid-Pleistocene. The Pleistocene Oshi pyroclastic flow produced extensive welded tuffs and non-welded pumice that covers much of the E, S, and SW flanks. The latest eruptive stage began about 14,000 years ago. Historical eruptions have consisted of phreatic explosions from the acidic crater lakes or their margins. Fumaroles and hot springs that dot the flanks have strongly acidified many rivers draining from the volcano. The crater was the site of active sulfur mining for many years during the 19th and 20th centuries.

Information Contacts: JMA, Tokyo.


Langila (Papua New Guinea) — January 1984 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Vulcanian explosions; ashfalls on coast

"Activity remained high at Crater 2, but Vulcanian explosions replaced the more continuous activity that produced the lava flow on the NE flank in December. For most of the time, Crater 2 produced moderate amounts of white to brown ash-laden vapour, accompanied by discontinuous rumbling and explosion sounds, while the seismic station at Cape Gloucester airstrip, 9 km away, recorded discontinuous tremors and large explosion earthquakes. Peaks of activity occurred on 7, 12, and 25 January with emission of columns of thick dark tephra-laden vapour to heights of 1.5-2.5 km above the crater. Large blocks were ejected as far as 2 km from the vent by the more powerful explosions, and ashfalls were experienced on the coast, 10 km downwind. Activity at Crater 3 was confined to the emission of white and blue vapours."

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: P. Lowenstein, RVO.


Manam (Papua New Guinea) — January 1984 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Strombolian activity; explosion cloud to 3.5 km

"The eruptive activity continued through January. It consisted of night glow at both Main and Southern craters, and frequent Strombolian ejections of glowing lava fragments up to several hundred meters above Southern crater. Explosion noises and sub-continuous rumbling sounds were heard. Scoria and bombs ejected from Southern crater avalanched down the SW and SE valleys.

"Beginning 13 January, the amplitude of recorded B-type earthquakes started to increase considerably, although their number remained about 2,000/day. From 18-26 January, the amplitudes of events increased to about four times normal. At 1155 on 26 January, a large explosion from Southern crater produced a voluminous, dark ash-laden plume rising to 3.5 km. The amplitude of the sub-continuous tremor and B-type events then returned rapidly to normal. Up to 3 mm of ash were deposited on the coastal areas. For the remainder of January, the Strombolian activity continued at the same level as at the beginning of the month."

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: P. Lowenstein, RVO.


Pavlof (United States) — January 1984 Citation iconCite this Report

Pavlof

United States

55.417°N, 161.894°W; summit elev. 2493 m

All times are local (unless otherwise noted)


Plumes on satellite imagery; harmonic tremor

Six explosions were recorded between 1600 and 2000 on 15 December by Lamont-Doherty's 5-station seismic net 4.5-10 km from the volcano. One station, about [8.5] km from Pavlof, detected bursts of harmonic tremor 17 December, 1100-18 December, 0330; 18 December, 0530-0615 and 1040-1110; 20 December, 2200-2245; and 21 December, 2035-2048. Seismicity then decreased to the background level of several tens of events per day and remained at that level as of 26 January.

Eruption plumes were observed on three images returned 15-17 December from the NOAA 8 polar orbiting satellite. The images at 2101 on the 15th and 1031 on the 17th showed well-defined, relatively dense plumes extending 225 km E and 400 km NE from Pavlof above the weather cloud layer. A diffuse plume was observed on the image at 2018 on 18 December. No volcanic plumes were observed on other images 15-21 December, but heavy weather clouds obscured the area. There have been no eyewitness reports of eruptive activity since airline pilots last reported eruption clouds from Pavlof at 1400 on 15 December.

Geologic Background. The most active volcano of the Aleutian arc, Pavlof is a 2519-m-high Holocene stratovolcano that was constructed along a line of vents extending NE from the Emmons Lake caldera. Pavlof and its twin volcano to the NE, 2142-m-high Pavlof Sister, form a dramatic pair of symmetrical, glacier-covered stratovolcanoes that tower above Pavlof and Volcano bays. A third cone, Little Pavlof, is a smaller volcano on the SW flank of Pavlof volcano, near the rim of Emmons Lake caldera. Unlike Pavlof Sister, Pavlof has been frequently active in historical time, typically producing Strombolian to Vulcanian explosive eruptions from the summit vents and occasional lava flows. The active vents lie near the summit on the north and east sides. The largest historical eruption took place in 1911, at the end of a 5-year-long eruptive episode, when a fissure opened on the N flank, ejecting large blocks and issuing lava flows.

Information Contacts: S. McNutt, LDGO; M. E. Yount, USGS, Anchorage; M. Matson and W. Gould, NOAA/NESDIS.


Rabaul (Papua New Guinea) — January 1984 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Earthquakes, tilt indicate magma intrusion; eruption more likely within next few months

"There was a marked increase in the amount of unrest in Rabaul Caldera during January, with a total of 8,372 volcanic earthquakes recorded, an increase of 1,255 over the December total.

"A major seismic crisis took place on 15 January when 942 earthquakes occurred, including several strongly felt events. The maximum magnitude earthquake (ML 4.9) was accompanied by underground rumbling sounds. This crisis was accompanied by a maximum tilt change of 32.5 µrad at [a station immediately N of Greet Harbour] . . . .

"The overall distribution of earthquakes in January was similar to that in December, with high concentrations on the NE (Greet Harbour) and W (Karavia Bay) sides of the harbour. . . . Steady inflation of the Karavia Bay and Greet Harbour magma reservoirs continued throughout the month. . . .

"As a result of the increased activity in January, a warning was issued to the authorities to the effect that the eruption, which was previously thought to be only a possibility when the Stage-2 volcanic alert was declared on 29 October, was now much more likely to occur within the next few months."

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: P. Lowenstein, RVO.


St. Helens (United States) — January 1984 Citation iconCite this Report

St. Helens

United States

46.2°N, 122.18°W; summit elev. 2549 m

All times are local (unless otherwise noted)


Deformation and seismicity then new lobe

A new phase of the ongoing activity began with increasing deformation and seismicity in late January 1984, followed by the extrusion of a new lobe near the dome's summit.

Numerous rockfalls occurred in December after the active lobe had reached the top of the dome's steep S and SE flanks. Rockfalls from that area were infrequent in January, suggesting that the advance of the lobe had nearly stopped. Deformation of the dome's SE flank accelerated briefly in late December to more than 50 cm/day, but slowed by an order of magnitude in early January and remained at 5-6 cm/day through the end of the month. On the NE flank, rates of outward movement remained relatively high through 4 January. On 9 January, when weather next allowed access to the crater, NE flank deformation had slowed and a new mound was perched just E of the dome's summit (SEAN 08:12). The surface of the mound was old material, but it was apparently cored by magma. It reached its maximum elevation 20 January, then subsided slowly. Earthquakes remained relatively numerous through 9 January, but the period 10-17 January was the quietest seismically since late September, with the number of events per day dropping from about fourteen to two to six and energy release declining to near background level.

In mid-January, points on the floor of the crater's breach, about 1 km N of the dome, began to move outward, and medium-frequency events started to appear on seismic records. Energy release remained low but the number of medium-frequency events increased gradually through the end of January. Gas ejection episodes increased noticeably in duration and amplitude on seismic records. By 23 January, some were followed by several minutes of weak harmonic tremor. Vigorous plumes were observed and small blocks were deposited on the crater floor. SO2 emission averaged 90 ± 40 t/d during the first 3 weeks of January (as compared to 105 ± 25 t/d in December), but dropped to 35 ± 20 t/d for the remainder of the month and was below detection limits 26-28 January. A fairly large gas-and-ash ejection on the 28th was not followed by the typical temporary several-fold increase in SO2 flux.

New cracks were observed on top of the dome 29 January. A graben was evident on its SW side by 1 February, and radial cracks had appeared on the W side. By 3 February, the graben was a few tens of meters wide and a few meters deep, extending across the summit crater. Deformation began to accelerate rapidly. A point halfway up the N flank of the dome that had moved outward no more than a few centimeters per day through most of January showed rates of 11.6 cm/day on 30 January, 46 cm/day on 3 February and about 1 m/day by the 5th. Deformation changes on the SE flank were less dramatic, but rates also increased, from 6 cm/day through 3 February to 20 cm/day on 5 February (all rates are average daily changes since the previous measurement). This activity was accompanied by a rapid increase in the number of earthquakes and seismic energy release beginning 1 February. SO2 emission increased to 55 t/d 1 February and reached 140 t/d on the 6th.

When geologists arrived at the crater 6 February they observed a new mound filling the NW part of the dome's summit crater. The early January mound, about 100 m to the E, was subsiding. That evening, a small landslide from the E side of the dome moved 50-100 m to the main crater wall, causing minor snowmelt. The next day, the new mound had elongated and extended a short distance down the dome's N flank, while the January mound continued to subside. The surface of the new mound, like the January mound, was old material. No glow from the new mound was observed at night. N flank displacement was 2.4 m between 5 and 6 February, and rates of 3 m per day were measured on the 6th. SO2 emission increased to 140 t/d on 6 February and 170 t/d the next day. Seismicity peaked during the evening of 7 February, dropping sharply in the next 24 hours to only slightly elevated levels. The number of rockfall events increased but they were smaller and less frequent than during previous extrusion episodes. Poor weather prevented access to the crater after 6 February. A brief glimpse of the dome on 10 February revealed a new lobe perched on its summit. . . . The new lobe appeared to be hot; snow had accumulated on the rest of the dome, but not on the new lobe.

Geologic Background. Prior to 1980, Mount St. Helens formed a conical, youthful volcano sometimes known as the Fujisan of America. During the 1980 eruption the upper 400 m of the summit was removed by slope failure, leaving a 2 x 3.5 km horseshoe-shaped crater now partially filled by a lava dome. Mount St. Helens was formed during nine eruptive periods beginning about 40-50,000 years ago and has been the most active volcano in the Cascade Range during the Holocene. Prior to 2,200 years ago, tephra, lava domes, and pyroclastic flows were erupted, forming the older edifice, but few lava flows extended beyond the base of the volcano. The modern edifice consists of basaltic as well as andesitic and dacitic products from summit and flank vents. Historical eruptions in the 19th century originated from the Goat Rocks area on the north flank, and were witnessed by early settlers.

Information Contacts: R. Holcomb, T. Casadevall, USGS CVO, Vancouver, WA; S. Malone, University of Washington.


Veniaminof (United States) — January 1984 Citation iconCite this Report

Veniaminof

United States

56.17°N, 159.38°W; summit elev. 2507 m

All times are local (unless otherwise noted)


Lava fountains and flow continue

Perryville residents observed glow over the summit of the volcano during the evenings of 31 December, and 3, 4, 11, and 13 January. Activity intensified on 17 January, when they observed lava fountains as high as 200 m. The fountains were active for 30-45-minute periods, waned for indefinite intervals, then resumed.

During an overflight by USGS personnel between 1345 and 1410 on 23 January, billowing white vapor clouds rose from the summit area of the intra-caldera cone to approximately 3-4 km altitude and were blown E (figures 5 and 6). There was no ash in the eruption plume or on the area surrounding the cone. Fountains rose 10-20 m and lava flowed from a vent about 100 m below the summit of the cinder cone that has grown during the eruption to nearly fill the crater of the intra-caldera cone. The lava flow, estimated at 10-20 m wide, was confined by steep levees and extended more than 200 m onto the lava delta formed by earlier flows that covered the entire floor of the ice pit. Although the surface of the lava delta was irregular, its average thickness was estimated at about 30 m. USGS personnel estimated that approximately 45 x 106 m3 of lava has filled the ice pit since June.

Figure (see Caption) Figure 5. Sketch map by M. Elizabeth Yount of Veniaminof on 23 January 1984. The intra-caldera cone, lava-filled ice pit, and lava flows of November and January are shown. See figure 2 for comparison.
Figure (see Caption) Figure 6. Photograph of Veniaminof from the SE taken 23 January 1984. A vapor plume rises from the new cinder cone built within the summit crater of the intra-caldera cone. Steam rises from the perimeter of the ice pit where lava contacts ice. Courtesy of M. Elizabeth Yount.

The ice pit had increased in size since the last overflight on 4 November to more than 2 km by about 1 km (compare figures 5 and 2). Steam rose from numerous sites on the perimeter of the pit where lava contacted ice. Perryville residents observed a very large vapor cloud, but not much incandescent material, over the summit of the volcano 4-6 February. On the evening of the 6th, lava fountains rose to heights of several tens of meters for approximately half hour periods, separated by 45-minute intervals. On 7 February a small vapor cloud rose from the summit area, and that evening Perryville residents saw a faint glow but no lava fountains.

Geologic Background. Veniaminof, on the Alaska Peninsula, is truncated by a steep-walled, 8 x 11 km, glacier-filled caldera that formed around 3,700 years ago. The caldera rim is up to 520 m high on the north, is deeply notched on the west by Cone Glacier, and is covered by an ice sheet on the south. Post-caldera vents are located along a NW-SE zone bisecting the caldera that extends 55 km from near the Bering Sea coast, across the caldera, and down the Pacific flank. Historical eruptions probably all originated from the westernmost and most prominent of two intra-caldera cones, which rises about 300 m above the surrounding icefield. The other cone is larger, and has a summit crater or caldera that may reach 2.5 km in diameter, but is more subdued and barely rises above the glacier surface.

Information Contacts: M.E. Yount and T. Miller, USGS, Anchorage.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports