Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Sabancaya (Peru) Explosions, ash and SO2 plumes, thermal anomalies, and lava dome growth during June-November 2019

Karangetang (Indonesia) Lava flows, strong thermal anomalies, gas-and-steam emissions, and ash plumes during May-November 2019

Ulawun (Papua New Guinea) New vent, lava fountaining, lava flow, and ash plumes in late September-October 2019

Nyamuragira (DR Congo) Strong thermal anomalies and fumaroles within the summit crater during June-November 2019

Bagana (Papua New Guinea) Intermittent gas-and-steam emissions and thermal anomalies during June-November 2019

Kerinci (Indonesia) Intermittent gas-and-steam and ash plumes during June-early November 2019

Bezymianny (Russia) Lava dome growth, ongoing thermal anomalies, moderate gas-steam emissions, June-November 2019

Mayon (Philippines) Gas-and-steam plumes and summit incandescence during May-October 2019

Merapi (Indonesia) Low-volume dome growth continues during April-September 2019 with rockfalls and small block-and-ash flows

Manam (Papua New Guinea) Significant eruption on 28 June produced an ash plume up to 15.2 km and pyroclastic flows

Tangkuban Parahu (Indonesia) Phreatic eruption on 27 July followed by intermittent explosions through to 17 September 2019

Sheveluch (Russia) Frequent ash explosions and lava dome growth continue through October 2019



Sabancaya (Peru) — December 2019 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Explosions, ash and SO2 plumes, thermal anomalies, and lava dome growth during June-November 2019

Sabancaya is an andesitic stratovolcano located in Peru. The most recent eruptive episode began in early November 2016, which is characterized by gas-and-steam and ash emissions, seismicity, and explosive events (BGVN 44:06). The ash plumes are dispersed by wind with a typical radius of 30 km, which occasionally results in ashfall. Current volcanism includes high seismicity, gas-and-steam emissions, ash and SO2 plumes, numerous thermal anomalies, and explosive events. This report updates information from June through November 2019 using information primarily from the Instituto Geofisico del Peru (IGP) and Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico) (OVI-INGEMMET).

Table 5. Summary of eruptive activity at Sabancaya during June-November 2019 based on IGP weekly reports, the Buenos Aires VAAC advisories, the HIGP MODVOLC hotspot monitoring algorithm, and Sentinel-5P/TROPOMI satellite data.

Month Avg. Daily Explosions by week Max plume Heights (km above crater) Plume drift MODVOLC Alerts Min Days with SO2 over 2 DU
Jun 2019 12, 13, 16, 17 2.6-3.8 30 km S, SW, E, SE, NW, NE 15 20
Jul 2019 23, 22, 16, 13 2.3-3.7 E, SE, S, NE 7 25
Aug 2019 12, 30, 25, 26 2-4.5 30 km NW, W S, NE, SE, SW 7 25
Sep 2019 29, 32, 24, 15 1.5-2.5 S, SE, E, W, NW, SW 14 26
Oct 2019 32, 36, 44, 48, 28 2.5-3.5 S, SE, SW, W 11 25
Nov 2019 58, 50, 47, 17 2-4 W, SW, S, NE, E 13 22

Explosions, ash emissions, thermal signatures, and high concentrations of SO2 were reported each week during June-November 2019 by IGP, the Buenos Aires Volcanic Ash Advisory Centre (VAAC), HIGP MODVOLC, and Sentinel-2 and Sentinel-5P/TROPOMI satellite data (table 5). Thermal anomalies were visible in the summit crater, even in the presence of meteoric clouds and ash plumes were occasionally visible rising from the summit in clear weather (figure 68). The maximum plume height reached 4.5 km above the crater drifting NW, W, and S the week of 29 July-4 August, according to IGP who used surveillance cameras to visually monitor the plume (figure 69). This ash plume had a radius of 30 km, which resulted in ashfall in Colca (NW) and Huambo (W). On 27 July the SO2 levels reached a high of 12,814 tons/day, according to INGEMMET. An average of 58 daily explosions occurred in early November, which is the largest average of this reporting period.

Figure (see Caption) Figure 68. Sentinel-2 satellite imagery detected ash plumes, gas-and-steam emissions, and multiple thermal signatures (bright yellow-orange) in the crater at Sabancaya during June-November 2019. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 69. A webcam image of an ash plume rising from Sabancaya on 1 August 2019 at least 4 km above the crater. Courtesy of IGP.

Seismicity was also particularly high between August and September 2019, according to INGEMMET. On 14 August, roughly 850 earthquakes were detected. There were 280 earthquakes reported on 15 September, located 6 km NE of the crater. Both seismic events were characterized as seismic swarms. Seismicity decreased afterward but continued through the reporting period.

In February 2017, a lava dome was established inside the crater. Since then, it has been growing slowly, filling the N area of the crater and producing thermal anomalies. On 26 October 2019, OVI-INGEMMET conducted a drone overflight and captured video of the lava dome (figure 70). According to IGP, this lava dome is approximately 4.6 million cubic meters with a growth rate of 0.05 m3/s.

Figure (see Caption) Figure 70. Drone images of the lava dome and degassing inside the crater at Sabancaya on 26 (top) and 27 (bottom) October 2019. Courtesy of INGEMMET (Informe Ténico No A6969).

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows strong, consistent thermal anomalies occurring all throughout June through November 2019 (figure 71). In conjunction with these thermal anomalies, the October 2019 special issue report by INGEMMET showed new hotspots forming along the crater rim in July 2018 and August 2019 (figure 72).

Figure (see Caption) Figure 71. Thermal anomalies at Sabancaya for 3 January through November 2019 as recorded by the MIROVA system (Log Radiative Power) were frequent, strong, and consistent. Courtesy of MIROVA.
Figure (see Caption) Figure 72. Thermal hotspots on the NW section of the crater at Sabancaya using MIROVA images. These images show the progression of the formation of at least two new hotspots between February 2017 to August 2019. Courtesy of INGEMMET, Informe Técnico No A6969.

Sulfur dioxide emissions also persisted at significant levels from June through November 2019, as detected by Sentinel-5P/TROPOMI satellite data (figure 73). The satellite measurements of the SO2 emissions exceeded 2 DU (Dobson Units) at least 20 days each month during this time. These SO2 plumes sometimes occurred for multiple consecutive days (figure 74).

Figure (see Caption) Figure 73. Consistent, large SO2 plumes from Sabancaya were seen in TROPOMI instrument satellite data throughout June-November 2019, many of which drifted in different directions based on the prevailing winds. Courtesy of NASA Goddard Space Flight Center.
Figure (see Caption) Figure 74. Persistent SO2 plumes from Sabancaya appeared daily during 13-16 September 2019 in the TROPOMI instrument satellite data. Courtesy of NASA Goddard Space Flight Center.

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Instituto Geofisico del Peru (IGP), Calle Badajoz N° 169 Urb. Mayorazgo IV Etapa, Ate, Lima 15012, Perú (URL: https://www.gob.pe/igp); Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Karangetang (Indonesia) — December 2019 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Lava flows, strong thermal anomalies, gas-and-steam emissions, and ash plumes during May-November 2019

Karangetang (also known as Api Siau), located on the island of Siau in the Sitaro Regency, North Sulawesi, Indonesia, has experienced more than 40 recorded eruptions since 1675 in addition to many smaller undocumented eruptions. In early February 2019, a lava flow originated from the N crater (Kawah Dua) traveling NNW and reaching a distance over 3 km. Recent monitoring showed a lava flow from the S crater (Kawah Utama, also considered the "Main Crater") traveling toward the Kahetang and Batuawang River drainages on 15 April 2019. Gas-and-steam emissions, ash plumes, moderate seismicity, and thermal anomalies including lava flow activity define this current reporting period for May through November 2019. The primary source of information for this report comes from daily and weekly reports by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), the Darwin Volcanic Ash Advisory Center (VAAC), and satellite data.

PVMBG reported that white gas-and-steam emissions were visible rising above both craters consistently between May through November 2019 (figures 30 and 31). The maximum altitude for these emissions was 400 m above the Dua Crater on 27 May and 700 m above the Main Crater on 12 June. Throughout the reporting period PVMBG noted that moderate seismicity occurred, which included both shallow and deep volcanic earthquakes.

Figure (see Caption) Figure 30. A Sentinel-2 image of Karangetang showing two active craters producing gas-and-steam emissions with a small amount of ash on 7 August 2019. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 31. Webcam images of gas-and-steam emissions rising from the summit of Karangetang on 14 (top) and 25 (bottom) October 2019. Courtesy of PVMBG via Øystein Lund Andersen.

Activity was relatively low between May and June 2019, consisting mostly of gas-and-steam emissions. On 26-27 May 2019 crater incandescence was observed above the Main Crater; white gas-and-steam emissions were rising from both craters (figures 32 and 33). At 1858 on 20 July, incandescent avalanches of material originating from the Main Crater traveled as far as 1 km W toward the Pangi and Kinali River drainages. By 22 July the incandescent material had traveled another 500 m in the same direction as well as 1 km in the direction of the Nanitu and Beha River drainages. According to a Darwin VAAC report, discreet, intermittent ash eruptions on 30 July resulted in plumes drifting W at 7.6 km altitude and SE at 3 km, as observed in HIMAWARI-8 satellite imagery.

Figure (see Caption) Figure 32. Photograph of summit crater incandescence at Karangetang on 12 May 2019. Courtesy of Dominik Derek.
Figure (see Caption) Figure 33. Photograph of both summit crater incandescence at Karangetang on 12 May 2019 accompanied by gas-and-steam emissions. Courtesy of Dominik Derek.

On 5 August 2019 a minor eruption produced an ash cloud that rose 3 km and drifted E. PVMBG reported in the weekly report for 5-11 August that an incandescent lava flow from the Main Crater was traveling W and SW on the slopes of Karangetang and producing incandescent avalanches (figure 34). During 12 August through 1 September lava continued to effuse from both the Main and Dua craters. Avalanches of material traveled as far as 1.5 km SW toward the Nanitu and Pangi River drainages, 1.4-2 km to the W of Pangi, and 1.8 km down the Sense River drainage. Lava fountaining was observed occurring up to 10 m above the summit on 14-20 August.

Figure (see Caption) Figure 34. Photograph of summit crater incandescence and a lava flow from Karangetang on 7 August 2019. Courtesy of MAGMA Indonesia.

PVMBG reported that during 2-22 September lava continued to effuse from both craters, traveling SW toward the Nanitu, Pangi, and Sense River drainages as far as 1.5 km. On 24 September the lava flow occasionally traveled 0.8-1.5 km toward the West Beha River drainage. The lava flow from the Main Crater continued through at least the end of November, moving SW and W as far as 1.5 km toward the Nanitu, Pangi, and Sense River drainages. In late October and onwards, incandescence from both summit craters was observed at night. The lava flow often traveled as far as 1 km toward the Batang and East Beha River drainage on 12 November, the West Beha River drainage on 15, 22, 24, and 29 November, and the Batang and West Beha River drainages on 25-27 November (figure 35). On 30 November a Strombolian eruption occurred in the Main Crater accompanied by gas-and-steam emissions rising 100 m above the Main Crater and 50 m above the Dua Crater. Lava flows traveled SW and W toward the Nanitu, Sense, and Pangi River drainages as far as 1.5 km, the West Beha and Batang River drainages as far as 1 km, and occasionally the Batu Awang and Kahetang River drainages as far as 2 km. Lava fountaining was reported occurring 10-25 m above the Main Crater and 10 m above the Dua Crater on 6, 8-12, 15, 21-30 November.

Figure (see Caption) Figure 35. Webcam image of gas-and-steam emissions rising from the summit of Karangetang accompanied by incandescence and lava flows at night on 27 November 2019. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed consistent and strong thermal anomalies within 5 km of the summit craters from late July through November 2019 (figure 36). Satellite imagery from Sentinel-2 corroborated this data, showing strong thermal anomalies and lava flows originating from both craters during this same timeframe (figure 37). In addition to these lava flows, satellite imagery also captured intermittent gas-and-steam emissions from May through November (figure 38). MODVOLC thermal alerts registered 165 thermal hotspots near Karangetang's summit between May and November.

Figure (see Caption) Figure 36. Frequent and strong thermal anomalies at Karangetang between 3 January through November 2019 as recorded by the MIROVA system (Log Radiative Power) began in late July and were recorded within 5 km of the summit craters. Courtesy of MIROVA.
Figure (see Caption) Figure 37. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed ongoing thermal activity (bright orange) at Karangetang from July into November 2019. The lava flows traveled dominantly in the W direction from the Main Crater. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 38. Sentinel-2 satellite imagery showing gas-and-steam emissions with a small amount of ash (middle and right) rising from both craters of Karangetang during May through November 2019. Courtesy of Sentinel Hub Playground.

Sentinel-5P/TROPOMI satellite data detected multiple sulfur dioxide plumes between May and November 2019 (figure 39). These emissions occasionally exceeded 2 Dobson Units (DU) and drifted in different directions based on the dominant wind pattern.

Figure (see Caption) Figure 39. SO2 emissions from Karangetang (indicated by the red box) were seen in TROPOMI instrument satellite data during May through November 2019, many of which drifted in different directions based on the prevailing winds. Top left: 27 May 2019. Top middle: 26 July 2019. Top right: 17 August 2019. Bottom left: 27 September 2019. Bottom middle: 3 October 2019. Bottom right: 21 November 2019. Courtesy of NASA Goddard Space Flight Center.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: https://www.oysteinlundandersen.com); Dominik Derek (URL: https://www.facebook.com/07dominikderek/).


Ulawun (Papua New Guinea) — December 2019 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


New vent, lava fountaining, lava flow, and ash plumes in late September-October 2019

Ulawun is a basaltic-to-andesitic stratovolcano located in West New Britain, Papua New Guinea, with typical activity consisting of seismicity, gas-and-steam plumes, and ash emissions. The most recent eruption began in late June 2019 involving ash and gas-and-steam emissions, increased seismicity, and a pyroclastic flow (BGVN 44:09). This report includes volcanism from September to October 2019 with primary source information from the Rabaul Volcano Observatory (RVO) and the Darwin Volcanic Ash Advisory Centre (VAAC).

Activity remained low through 26 September 2019, mainly consisting of variable amounts of gas-and-steam emissions and low seismicity. Between 26 and 29 September RVO reported that the seismicity increased slightly and included low-level volcanic tremors and Real-Time Seismic Amplitude Measurement (RSAM) values in the 200-400 range on 19, 20, and 22 September. On 30 September small volcanic earthquakes began around 1000 and continued to increase in frequency; by 1220, they were characterized as a seismic swarm. The Darwin VAAC advisory noted that an ash plume rose to 4.6-6 km altitude, drifting SW and W, based on ground reports.

On 1 October 2019 the seismicity increased, reaching RSAM values up to 10,000 units between 0130 and 0200, according to RVO. These events preceded an eruption which originated from a new vent that opened on the SW flank at 700 m elevation, about three-quarters of the way down the flank from the summit. The eruption started between 0430 and 0500 and was defined by incandescence and lava fountaining to less than 100 m. In addition to lava fountaining, light- to dark-gray ash plumes were visible rising several kilometers above the vent and drifting NW and W (figure 21). On 2 October, as the lava fountaining continued, ash-and-steam plumes rose to variable heights between 2 and 5.2 km (figures 22 and 23), resulting in ashfall to the W in Navo. Seismicity remained high, with RSAM values passing 12,000. A lava flow also emerged during the night which traveled 1-2 km NW. The main summit crater produced white gas-and-steam emissions, but no incandescence or other signs of activity were observed.

Figure (see Caption) Figure 21. Photographs of incandescence and lava fountaining from Ulawun during 1-2 October 2019. A) Lava fountains along with ash plumes that rose several kilometers above the vent. B) Incandescence and lava fountaining seen from offshore. Courtesy of Christopher Lagisa.
Figure (see Caption) Figure 22. Photographs of an ash plume rising from Ulawun on 1 October 2019. In the right photo, lava fountaining is visible. Courtesy of Christopher Lagisa.
Figure (see Caption) Figure 23. Photograph of lava fountaining and an ash plume rising from Ulawun on 1 October 2019. Courtesy of Joe Metto, WNB Provincial Disaster Office (RVO Report 2019100101).

Ash emissions began to decrease by 3 October 2019; satellite imagery and ground observations showed an ash cloud rising to 3 km altitude and drifting N, according to the Darwin VAAC report. RVO reported that the fissure eruption on the SW flank stopped on 4 October, but gas-and-steam emissions and weak incandescence were still visible. The lava flow slowed, advancing 3-5 m/day, while declining seismicity was reflected in RSAM values fluctuating around 1,000. RVO reported that between 23 and 31 October the main summit crater continued to produce variable amounts of white gas-and-steam emissions (figure 24) and that no incandescence was observed after 5 October. Gas-and-steam emissions were also observed around the new SW vent and along the lava flow. Seismicity remained low until 27-29 October; it increased again and peaked on 30 October, reaching an RSAM value of 1,700 before dropping and fluctuating around 1,200-1,500.

Figure (see Caption) Figure 24. Webcam photo of a gas-and-steam plume rising from Ulawun on 30 October 2019. Courtesy of the Rabaul Volcano Observatory (RVO).

In addition to ash plumes, SO2 plumes were also detected between September and October 2019. Sentinel-5P/TROPOMI data showed SO2 plumes, some of which exceeded 2 Dobson Units (DU) drifting in different directions (figure 25). MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed strong, frequent thermal anomalies within 5 km of the summit beginning in early October 2019 and throughout the rest of the month (figure 26). Only one thermal anomaly was detected in early December.

Figure (see Caption) Figure 25. Sentinel-5P/TROPOMI data showing a high concentration of SO2 plumes rising from Ulawun between late September-early October 2019. Top left: 11 September 2019. Top right: 1 October 2019. Bottom left: 2 October 2019. Bottom right: 3 October 2019. Courtesy of the NASA Space Goddard Flight Center.
Figure (see Caption) Figure 26. Frequent and strong thermal anomalies at Ulawun for February through December 2019 as recorded by the MIROVA system (Log Radiative Power) began in early October and continued throughout the month. Courtesy of MIROVA.

Activity in November was relatively low, with only a variable amount of white gas-and-steam emissions visible and low (less than 200 RSAM units) seismicity with sporadic volcanic earthquakes. Between 9-22 December, a webcam showed intermittent white gas-and-steam emissions were observed at the main crater, accompanied by some incandescence at night. Some gas-and-steam emissions were also observed rising from the new SW vent along the lava flow.

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Christopher Lagisa, West New Britain Province, Papua New Guinea (URL: https://www.facebook.com/christopher.lagisa, images posted at https://www.facebook.com/christopher.lagisa/posts/730662937360239 and https://www.facebook.com/christopher.lagisa/posts/730215604071639).


Nyamuragira (DR Congo) — December 2019 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Strong thermal anomalies and fumaroles within the summit crater during June-November 2019

Nyamuragira (also known as Nyamulagira) is a high-potassium basaltic shield volcano located in the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo. Previous volcanism consisted of the reappearance of a lava lake in the summit crater in mid-April 2018, lava emissions, and high seismicity (BGVN 44:05). Current activity includes strong thermal signatures, continued inner crater wall collapses, and continued moderate seismicity. The primary source of information for this June-November 2019 report comes from the Observatoire Volcanologique de Goma (OVG) and satellite data and imagery from multiple sources.

OVG reported in the July 2019 monthly that the inner crater wall collapses that were observed in May continued to occur. During this month, there was a sharp decrease in the lava lake level, and it is no longer visible. However, the report stated that lava fountaining was visible from a small cone within this crater, though its activity has also decreased since 2014. In late July, a thermal anomaly and fumaroles were observed originating from this cone (figure 85). Seismicity remained moderate throughout this reporting period.

Figure (see Caption) Figure 85. Photograph showing the small active cone within the crater of Nyamuragira in late July 2019. Fumaroles are also observed within the crater originating from the small cone. Courtesy of Sergio Maguna.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows strong, frequent thermal anomalies within 5 km of the summit between June through November (figure 86). The strength of these thermal anomalies noticeably decreases briefly in September. MODVOLC thermal alerts registered 54 thermal hotspots dominantly near the N area of the crater during June through November 2019. Satellite imagery from Sentinel-2 corroborated this data, showing strong thermal anomalies within the summit crater during this same timeframe (figure 87).

Figure (see Caption) Figure 86. The MIROVA graph of thermal activity (log radiative power) at Nyamuragira during 30 January through November 2019 shows strong, frequent thermal anomalies through November with a brief decrease in activity in late April-early May and early September. Courtesy of MIROVA.
Figure (see Caption) Figure 87. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed ongoing thermal activity at Nyamuragira into November 2019. Courtesy of Sentinel Hub Playground.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sergio Maguna (Facebook: https://www.facebook.com/sergio.maguna.9, images posted at https://www.facebook.com/sergio.maguna.9/posts/1267625096730837).


Bagana (Papua New Guinea) — December 2019 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Intermittent gas-and-steam emissions and thermal anomalies during June-November 2019

Bagana volcano is found in a remote portion of central Bougainville Island in Papua New Guinea. The most recent eruptive phase that began in early 2000 has produced ash plumes and thermal anomalies (BGVN 44:06, 50:01). Activity has remained low between January-July 2019 with rare thermal anomalies and occasional steam plumes. This reporting period updates information for June-November 2019 and includes thermal anomalies and intermittent gas-and-steam emissions. Thermal data and satellite imagery are the primary sources of information for this report.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed an increased number of thermal anomalies within 5 km from the summit beginning in late July-early August (figure 38). Two Sentinel-2 thermal satellite images showed faint, roughly linear thermal anomalies, indicative of lava flows trending EW and NS on 7 July 2019 and 6 August, respectively (figure 39). Weak thermal hotspots were briefly detected in late September-early October after a short hiatus in September. No thermal anomalies were recorded in Sentinel-2 past August due to cloud cover; however, gas-and-steam emissions were visible on 7 July and in September (figures 39, 40, and 41).

Figure (see Caption) Figure 38. Thermal anomalies near the crater summit at Bagana during February-November 2019 as recorded by the MIROVA system (Log Radiative Power) increased in frequency and power in early August. A small cluster was detected in early October after a brief pause in activity in early September. Courtesy of MIROVA.
Figure (see Caption) Figure 39. Sentinel-2 thermal satellite imagery showing small thermal anomalies at Bagana between July-August 2019. Left: A very faint thermal anomaly and a gas-and-steam plume is seen on 7 July 2019. Right: Two small thermal anomalies are faintly seen on 6 August 2019. Both Sentinel-2 satellite images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 40. A gas-and-steam plume rising from the summit of Bagana on 18 September 2019. Courtesy of Brendan McCormick Kilbride (University of Manchester).

The Deep Carbon Observatory (DCO) scientific team partnered with the Rabaul Volcano Observatory and the Bougainville Disaster Office to observe activity at Bagana and collect gas data using drone technology during two weeks of field work in mid-September 2019. For this field work, the major focus was to understand the composition of the volcanic gas emitted at Bagana and measure the concentration of these gases. Since Bagana is remote and difficult to climb, research about its gas emissions has been limited. The recent advancements in drone technology has allowed for new data collection at the summit of Bagana (figure 41). Most of the emissions consisted of water vapor, according to Brendan McCormick Kilbride, one of the volcanologists on this trip. During 14-19 September there was consistently a strong gas-and-steam plume from Bagana (figure 42).

Figure (see Caption) Figure 41. Degassing plumes seen from drone footage 100 m above the summit of Bagana. Top: Zoomed out view of the summit of Bagana degassing. Bottom: Closer perspective of the gases emitted from Bagana. Courtesy of Kieran Wood (University of Bristol) and the Bristol Flight Laboratory.
Figure (see Caption) Figure 42. Photos of gas-and-steam plumes rising from Bagana between 14-19 September 2019. Courtesy of Brendan McCormick Kilbride (University of Manchester).

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Brendan McCormick Kilbride, University of Manchester, Manchester M13 9PL, United Kingdom (URL: https://www.research.manchester.ac.uk/portal/brendan.mccormickkilbride.html, Twitter: https://twitter.com/BrendanVolc); Kieran Wood, University of Bristol, Bristol BS8 1QU, United Kingdom (URL: http://www.bristol.ac.uk/engineering/people/kieran-t-wood/index.html, Twitter: https://twitter.com/DrKieranWood, video posted at https://www.youtube.com/watch?v=A7Hx645v0eU); University of Bristol Flight Laboratory, Bristol BS8 1QU, United Kingdom (Twitter: https://twitter.com/UOBFlightLab).


Kerinci (Indonesia) — December 2019 Citation iconCite this Report

Kerinci

Indonesia

1.697°S, 101.264°E; summit elev. 3800 m

All times are local (unless otherwise noted)


Intermittent gas-and-steam and ash plumes during June-early November 2019

Kerinci, located in Sumatra, Indonesia, is a highly active volcano characterized by explosive eruptions with ash plumes and gas-and-steam emissions. The most recent eruptive episode began in April 2018 and included intermittent explosions with ash plumes. Volcanism continued from June-November 2019 with ongoing intermittent gas-and-steam and ash plumes. The primary source of information for this report comes from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), the Darwin Volcanic Ash Advisory Centre (VAAC), and MAGMA Indonesia.

Brown- to gray-colored ash clouds drifting in different directions were reported by PVMBG, the Darwin VAAC, and MAGMA Indonesia between June and early November 2019. Ground observations, satellite imagery, and weather models were used to monitor the plume, which ranged from 4.3 to 4.9 km altitude, or about 500-1,100 m above the summit. On 7 June 2019 at 0604 a gray ash emission rose 800 m above the summit, drifting E, according to a ground observer. An ash plume on 12 July rose to 4 km altitude and drifted SW, as determined by satellite imagery and weather models. An eruption produced a gray ash cloud on 31 July that rose to 4.6 km altitude and drifted NE and E, according to PVMBG and the Darwin VAAC (figure 17). Another ash cloud rose up to 4.3 km altitude on 3 August. On 2 September a possible ash plume rose to a maximum altitude of 4.9 km and drifted WSW, according to the Darwin VAAC advisory.

Figure (see Caption) Figure 17. A gray ash plume at Kerinci rose roughly 800 m above the summit on 31 July 2019 and drifted NE and E. Courtesy of MAGMA Indonesia.

Brown ash emissions rose to 4.4 km altitude at 1253 on 6 October, drifting WSW. Similar plumes reached 4.6 km altitude twice on 30 October and moved NE, SE, and E at 0614 and WSW at 1721, based on ground observations. On 1-2 November, ground observers saw brown ash emissions rising up to 4.3 km drifting ESE. Between 3 and 5 November the brown ash plumes rose 100-500 m above the summit, according to PVMBG.

Gas emissions continued to be observed through November, as reported by PVMBG and identified in satellite imagery (figure 18). Seismicity that included volcanic earthquakes also continued between June and early November, when the frequency decreased.

Figure (see Caption) Figure 18. Sentinel-2 thermal satellite imagery showing a typical white gas-and-steam plume at Kerinci on 9 August 2019. Sentinel-2 satellite image with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Bezymianny (Russia) — December 2019 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Lava dome growth, ongoing thermal anomalies, moderate gas-steam emissions, June-November 2019

The long-term activity at Bezymianny has been dominated by almost continuous thermal anomalies, moderate gas-steam emissions, dome growth, lava flows, and an occasional ash explosion (BGVN 44:06). The volcano is monitored by the Kamchatka Volcanic Eruptions Response Team (KVERT. Throughout the reporting period of June to November 2019, the Aviation Colour Code remained Yellow (second lowest of four levels).

According to KVERT weekly reports, lava dome growth continued in June through mid-July 2019. Thereafter the reports did not mention dome growth, but indicated that moderate gas-and-steam emissions (figure 32) continued through November. The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system, based on analysis of MODIS data, detected hotspots within 5 km of the summit almost every day. KVERT also reported a thermal anomaly over the volcano almost daily, except when it was obscured by clouds. Infrared satellite imagery often showed thermal anomalies generated by lava flows or dome growth (figure 33).

Figure (see Caption) Figure 32. Photo of Bezymianny showing fumarolic activity on 4 July 2019. Photo by O. Girina (IVS FEB RAS, KVERT); courtesy of KVERT.
Figure (see Caption) Figure 33. Typical infrared satellite images of Bezymianny showing thermal anomalies in the summit crater, including a lava flow to the WNW. Top: 21 August 2019 with SWIR filter (bands 12, 8A, 4). Bottom: 17 September 2019 with Atmospheric Penetration filter (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Geologic Background. Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Mayon (Philippines) — November 2019 Citation iconCite this Report

Mayon

Philippines

13.257°N, 123.685°E; summit elev. 2462 m

All times are local (unless otherwise noted)


Gas-and-steam plumes and summit incandescence during May-October 2019

Mayon, located in the Philippines, is a highly active stratovolcano with recorded historical eruptions dating back to 1616. The most recent eruptive episode began in early January 2018 that consisted of phreatic explosions, steam-and-ash plumes, lava fountaining, and pyroclastic flows (BGVN 43:04). The previous report noted small but distinct thermal anomalies, gas-and-steam plumes, and slight inflation (BGVN 44:05) that continued to occur from May into mid-October 2019. This report includes information based on daily bulletins from the Philippine Institute of Volcanology and Seismology (PHIVOLCS) and Sentinel-2 satellite imagery.

Between May and October 2019, white gas-and-steam plumes rose to a maximum altitude of 800 m on 17 May. PHIVOLCS reported that faint summit incandescence was frequently observed at night from May-July and Sentinel-2 thermal satellite imagery showed weaker thermal anomalies in September and October (figure 49); the last anomaly was identified on 12 October. Average SO2 emissions as measured by PHIVOLCS generally varied between 469-774 tons/day; the high value of the period was on 25 July, with 1,171 tons/day. Small SO2 plumes were detected by the TROPOMI satellite instrument a few times during May-September 2019 (figure 50).

Figure (see Caption) Figure 49. Sentinel-2 thermal satellite imagery of Mayon between May-October 2019. Small thermal anomalies were recorded in satellite imagery from the summit and some white gas-and-steam plumes are visible. Top left: 30 May 2019. Top right: 9 June 2019. Bottom left: 22 September 2019. Bottom right: 12 October 2019. Sentinel-2 satellite images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 50. Small SO2 plumes rising from Mayon during May-September 2019 recorded in DU (Dobson Units). Top left: 28 May 2019. Top right: 26 July 2019. Bottom left: 16 August 2019. Bottom right: 23 September 2019. Courtesy of NASA Goddard Space Flight Center.

Continuous GPS data has shown slight inflation since June 2018, corroborated by precise leveling data taken on 9-17 April, 16-25 July, and 23-30 October 2019. Elevated seismicity and occasional rockfall events were detected by the seismic monitoring network from PHIVOLCS from May to July; recorded activity decreased in August. Activity reported by PHIVOLCS in September-October 2019 consisted of frequent gas-and-steam emissions, two volcanic earthquakes, and no summit incandescence.

Geologic Background. Beautifully symmetrical Mayon, which rises above the Albay Gulf NW of Legazpi City, is the Philippines' most active volcano. The structurally simple edifice has steep upper slopes averaging 35-40 degrees that are capped by a small summit crater. Historical eruptions date back to 1616 and range from Strombolian to basaltic Plinian, with cyclical activity beginning with basaltic eruptions, followed by longer term andesitic lava flows. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic flows and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often devastated populated lowland areas. A violent eruption in 1814 killed more than 1,200 people and devastated several towns.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, University of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/).


Merapi (Indonesia) — October 2019 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Low-volume dome growth continues during April-September 2019 with rockfalls and small block-and-ash flows

Merapi is an active volcano north of the city of Yogyakarta (figure 79) that has a recent history of dome growth and collapse, resulting in block-and-ash flows that killed over 400 in 2010, while an estimated 10,000-20,000 lives were saved by evacuations. The edifice contains an active dome at the summit, above the Gendol drainage down the SE flank (figure 80). The current eruption episode began in May 2018 and dome growth was observed from 11 August 2018-onwards. This Bulletin summarizes activity during April through September 2019 and is based on information from Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG, the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG), Sutopo of Badan Nasional Penanggulangan Bencana (BNPB), MAGMA Indonesia, along with observations by Øystein Lund Andersen and Brett Carr of the Lamont-Doherty Earth Observatory.

Figure (see Caption) Figure 79. Merapi volcano is located north of Yogyakarta in Central Java. Photo courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 80. A view of the Gendol drainage where avalanches and block-and-ash flows are channeled from the active Merapi lava dome. The Gendol drainage is approximately 400 m wide at the summit. Courtesy of Brett Carr, Lamont-Doherty Earth Observatory.

At the beginning of April the rate of dome growth was relatively low, with little morphological change since January, but the overall activity of Merapi was considered high. Magma extrusion above the upper Gendol drainage resulted in rockfalls and block-and-ash flows out to 1.5 km from the dome, which were incandescent and visible at night. Five block-and-ash flows were recorded on 24 April, reaching as far as 1.2 km down the Gendol drainage. The volume of the dome was calculated to be 466,000 m3 on 9 April, a slight decrease from the previous week. Weak gas plumes reached a maximum of 500 m above the dome throughout April.

Six block-and-ash flows were generated on 5 May, lasting up to 77 seconds. Throughout May there were no significant changes to the dome morphology but the volume had decreased to 458,000 by 4 May according to drome imagery analysis. Lava extrusion continued above the Gendol drainage, producing rockfalls and small block-and-ash flows out to 1.2 km (figure 81). Gas plumes were observed to reach 400 m above the top of the crater.

Figure (see Caption) Figure 81. An avalanche from the Merapi summit dome on 17 May 2019. The incandescent blocks traveled down to 850 m away from the dome. Courtesy of Sutopo, BNPB.

There were a total of 72 avalanches and block-and-ash flows from 29 January to 1 June, with an average distance of 1 km and a maximum of 2 km down the Gendol drainage. Photographs taken by Øystein Lund Andersen show the morphological change to the lava dome due to the collapse of rock and extruding lava down the Gendol drainage (figures 82 and 83). Block-and-ash flows were recorded on 17 and 20 June to a distance of 1.2 km, and a webcam image showed an incandescent flow on 26 June (figure 84). Throughout June gas plumes reached a maximum of 250 m above the top of the crater

Figure (see Caption) Figure 82. The development of the Merapi summit dome from 2 June 2018 to 17 June 2019. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 83. Photos taken of the Merapi summit lava dome in June 2019. Top: This nighttime time-lapse photograph shows incandescence at the south-facing side of the dome on the 16 June. Middle: A closeup of a small rockfall from the dome on 17 June. Bottom: A gas plume accompanying a small rockfall on 17 June. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 84. Blocks from an incandescent rockfall off the Merapi dome reached out to 1 km down the Gendol drainage on 26 June 2019. Courtesy of MAGMA Indonesia.

Analysis of drone images taken on 4 July gave an updated dome volume of 475,000 m3, a slight increase but with little change in the morphology (figure 85). Block-and-ash flows traveled 1.1 km down the Gendol drainage on 1 July, 1 km on the 13th, and 1.1 km on the 14th, some of which were seen at night as incandescent blocks fell from the dome (figure 86). During the week of 19-25 July there were four recorded block-and-ash flows reaching 1.1 km, and flows traveled out to around 1 km on the 24th, 27th, and 31st. The morphology of the dome continued to be relatively stable due to the extruding lava falling into the Gendol drainage. Gas plumes reached 300 m above the top of the crater during July.

Figure (see Caption) Figure 85. The Merapi dome on 30 July 2019 producing a weak plume. Courtesy of MAGMA Indonesia.
Figure (see Caption) Figure 86. Incandescent rocks from the hot lava dome at the summit of Merapi form rockfalls down the Gendol drainage on 14 July 2019. Courtesy of Øystein Lund Andersen.

During the week of 5-11 August the dome volume was calculated to be 461,000 m3, a slight decrease from the week before with little morphological changes due to the continued lava extrusion collapsing into the Gendol drainage. There were five block-and-ash flows reaching a maximum of 1.2 km during 2-8 August. Two flows were observed on the 13th and 14th reaching 950 m, out to 1.9 km on the 20th and 22nd, and to 550 m on the 24th. There were 16 observed flows that reached 500-1,000 m on 25-27 August, with an additional flow out to 2 km at 1807 on the 27th (figure 87). Gas plumes reached a maximum of 350 m through the month.

Figure (see Caption) Figure 87. An incandescent rockfall from the Merapi dome that reached 2 km down the Gendol drainage on 27 August 2019. Courtesy of BPPTKG.

Brett Carr was conducting field work at Merapi during 12-26 September. During this time the lava extrusion was low (below 1 m3 per second). He observed small rockfalls with blocks a couple of meters in size, traveling about 50-200 m down the drainage every hour or so, producing small plumes as they descended and resulting in incandescence on the dome at night. Small dome collapse events produced block-and-ash flows down the drainage once or twice per day (figure 88) and slightly larger flows just over 1 km long a couple of times per week.

Figure (see Caption) Figure 88. A rockfall on the Merapi dome, towards the Gendol drainage at 0551 on 20 September 2019. Courtesy of Brett Carr, Lamont-Doherty Earth Observatory.

The dome volume was 468,000 m3 by 19 September, a slight increase from the previous calculation but again with little morphological change. Two block-and-ash flows were observed out to 600 m on 9 September and seven occurred on the 9th out to 500-1,100 m. Two occurred on the 14th down to 750-900 m, three occurred on 17, 20, and 21 September to a maximum distance of 1.2 km, and three more out to 1.5 km through the 26th. A VONA (Volcano Observatory Notice for Aviation) was issued on the 22nd due to a small explosion producing an ash plume up to approximately 3.8 km altitude (about 800 m above the summit) and minor ashfall to 15 km SW. This was followed by a block-and-ash flow reaching as far as 1.2 km and lasting for 125 seconds (figure 89). Preceding the explosion there was an increase in temperature at several locations on the dome. Weak gas plumes were observed up to 100 m above the crater throughout the month.

Figure (see Caption) Figure 89. An explosion at Merapi on 22 September 2019 was followed by a block-and-ash flow that reached 1.2 km down the Gendol drainage. Courtesy of BPPTKG.

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, Twitter: @BPPTKG); Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/, Twitter: https://twitter.com/BNPB_Indonesia); Øystein Lund Andersen? (Twitter: @OysteinLAnderse, URL: http://www.oysteinlundandersen.com); Sutopo Purwo Nugroho, BNPB (Twitter: @Sutopo_PN, URL: https://twitter.com/Sutopo_PN); Brett Carr, Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY, USA (URL: https://www.ldeo.columbia.edu/user/bcarr).


Manam (Papua New Guinea) — October 2019 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Significant eruption on 28 June produced an ash plume up to 15.2 km and pyroclastic flows

Manam is a frequently active volcano forming an island approximately 10 km wide, located 13 km north of the main island of Papua New Guinea. At the summit are the Main Crater and South Crater, with four valleys down the NE, SE, SW, and NW flanks (figure 57). Recent activity has occurred at both summit craters and has included gas and ash plumes, lava flows, and pyroclastic flows. Activity in December 2018 prompted the evacuation of nearby villages and the last reported activity for 2018 was ashfall on 8 December. Activity from January through September 2019 summarized below is based on information from the Rabaul Volcano Observatory (RVO), the Darwin Volcanic Ash Advisory Center (VAAC), the University of Hawai'i's MODVOLC thermal alert system, Sentinel-5P/TROPOMI and NASA Aqua/AIRS SO2 data, MIROVA thermal data, Sentinel-2 satellite images, and observations by visiting scientists. A significant eruption in June resulted in evacuations, airport closure, and damage to local crops and infrastructure.

Figure (see Caption) Figure 57. A PlanetScope image of Manam showing the two active craters with a plume emanating from the South Crater and the four valleys at the summit on 29 August 2019. Image copyright 2019 Planet Labs, Inc.

Activity during January-May 2019. Several explosive eruptions occurred during January 2019 according to Darwin VAAC reports, including an ash plume that rose to around 15 km and dispersed to the W on the 7th. RVO reported that an increase in seismic activity triggered the warning system shortly before the eruption commenced (figure 58). Small explosions were observed through to the next day with ongoing activity from the Main Crater and a lava flow in the NE valley observed from around 0400. Intermittent explosions ejected scoria after 0600, depositing ejecta up to 2 cm in diameter in two villages on the SE side of the island. Incandescence at both summit craters and hot deposits at the terminus of the NE valley are visible in Sentinel-2 TIR data acquired on the 10th (figure 59).

Figure (see Caption) Figure 58. Real-Time Seismic-Amplitude Measurement graph representing seismicity at Manam over 7-9 January 2019, showing the increase during the 7-8 January event. Courtesy of RVO.
Figure (see Caption) Figure 59. Sentinel-2 thermal infrared (TIR) imagery shows incandescence in the two Manam summit craters and at the terminus of the NE valley near the shoreline on 10 January 2019. Courtesy of Sentinel-Hub Playground.

Another explosion generated an ash plume to around 15 km on the 11th that dispersed to the SW. An explosive eruption occurred around 4 pm on the 23rd with the Darwin VAAC reporting an ash plume to around 16.5 km altitude, dispersing to the E. Activity continued into the following day, with satellites detecting SO2 plumes on both 23 and 24 January (figure 60). Activity declined by February with one ash plume reported up to 4.9 km altitude on 15 February.

Figure (see Caption) Figure 60. SO2 plumes originating from Manam detected by NASA Aqua/AIRS (top) on 23 January 2019 and by Sentinel-5P/TROPOMI on 24 January (bottom). Images courtesy of Simon Carn, Michigan Technological University.

Ash plumes rose up to 3 km between 1 and 5 March, and dispersed to the SE, ESE, and E. During 5-6 March the plumes moved E, and the events were accompanied by elevated seismicity and significant thermal anomalies detected in satellite data. During 19-22 March explosions produced ash plumes up to 4.6 km altitude, which dispersed to the E and SE. Simon Carn of the Michigan Technological University noted a plume in Aqua/AIRS data at around 15 km altitude at 0400 UTC on 23 January with approximately 13 kt measured, similar to other recent eruptions. Additional ash plumes were detected on 29 March, reaching 2.4-3 km and drifting to the E, NE, and N. Multiple SO2 plumes were detected throughout April (figure 61).

Figure (see Caption) Figure 61. Examples of elevated SO2 (sulfur dioxide) emissions from Manam during April 2019, on 9 April (top left), 21 April (top right), 22 April (bottom left), 28 April (bottom right). Courtesy of the NASA Space Goddard Flight Center.

During 19-28 May the Deep Carbon Observatory ABOVE (Aerial-based Observations of Volcanic Emissions) scientific team observed activity at Manam and collected gas data using drone technology. They recorded degassing from the South Crater and Main Crater (figure 63 and 64), which was also detected in Sentinel-5P/TROPOMI data (figure 65). Later in the day the plumes rose vertically up to 3-4 km above sea level and appeared stronger due to condensation. Incandescence was observed each night at the South Crater (figure 66). The Darwin VAAC reported an ash plume on 10 May, reaching 5.5 km altitude and drifting to the NE. Smaller plumes up to 2.4 km were noted on the 11th.

Figure (see Caption) Figure 62. Degassing plumes from the South Crater of Manam, seen from Baliau village on the northern coast on 24 May 2019. Courtesy of Emma Liu, University College London.
Figure (see Caption) Figure 63. A strong gas-and-steam plume from Manam was observed moving tens of kilometers downwind on 19 May 2019, viewed here form the SSW at dusk. Photo courtesy of Julian Rüdiger, Johannes Gutenberg University Mainz.
Figure (see Caption) Figure 64. Sentinel-5P/TROPOMI SO2 data acquired on 22 May 2019 during the field observations of the Deep Carbon Observatory ABOVE team. Image courtesy of Simon Carn, Michigan Technological University.
Figure (see Caption) Figure 65. Incandescence at the South Crater of Manam was visible during 19-21 May 2019 from the Baliau village on the northern coast of the island. Photos courtesy of Tobias Fischer, University of New Mexico (top) and Matthew Wordell (bottom).

Activity during June 2019. Ash plumes rose to 4.3 km and drifted SW on 7-8 June, and up to 3-3.7 km and towards the E and NE on 18 June. Sentinel-2 thermal satellite data show hot material around the Main Crater on 24 June (figure 66). On 27 June RVO reported that RSAM (Real-time Seismic Amplitude Measurement, a measure of seismic activity through time) increased from 540 to over 1,400 in 30 minutes. "Thundering noise" was noted by locals at around 0100 on the 28th. An ash plume drifting SW was visible in satellite images acquired after 0620, coinciding with reported sightings by nearby residents (figure 67). The Darwin VAAC noted that by 0910 the ash plume had reached 15.2 km altitude and was drifting SW. When seen in satellite imagery at 1700 that day the large ash plume had detached and remained visible extending SW. There were 267 lightning strokes detected within 75 km during the event (figure 68) and pyroclastic flows were generated down the NE and W flanks. At 0745 on 29 June an ash plume reached up to 4.8 km.

Villages including Dugulava, Yassa, Budua, Madauri, Waia, Dangale, and Bokure were impacted by ashfall and approximately 3,775 people had evacuated to care centers. Homes and crops were reportedly damaged due to falling ash and scoria. Flights through Madang airport were also disrupted due to the ash until they resumed on the 30th. The Office of the Resident Coordinator in Papua New Guinea reported that as many as 455 homes and gardens were destroyed. Humanitarian resources were strained due to another significant eruption at nearby Ulawun that began on 26 June.

Figure (see Caption) Figure 66. Sentinel-2 thermal satellite data show hot material around the Main Crater and a plume dispersing SE through light cloud cover on 24 June 2019. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 67. Himawari-8 satellite image showing the ash plume rising above Manam and drifting SW at 0840 on 28 June. Satellite image courtesy of NCIT ScienceCloud.
Figure (see Caption) Figure 68. There were 267 lightning strokes detected within 75 km of Manam between 0729 on 27 June and 0100 on 29 June 2019. Sixty of these occurred within the final two hours of this observation period, reflecting increased activity. Red dots are cloud to ground lightning strokes and black dots are in-cloud strokes. Courtesy of Chris Vagasky, Vaisala Inc.

Activity during July-September 2019. Activity was reduced through July and September. The Darwin VAAC reported an ash plume to approximately 6 km altitude on 6 July that drifted W and NW, another plume that day to 3.7 km that drifted N, and a plume on the 21st that rose to 4.3 km and drifted SW and W. Diffuse plumes rose to 2.4-2.7 km and drifted towards the W on 29 September. Thermal anomalies in the South Crater persisted through September.

Fresh deposits from recent events are visible in satellite deposits, notably in the NE after the January activity (figure 69). Satellite TIR data reflected elevated activity with increased energy detected in March and June-July in MODVOLC and MIROVA data (figure 70).

Figure (see Caption) Figure 69. Sentinel-2 thermal infrared images acquired on 12 October 2018, 20 May 2019, and 12 September 2019 show the eruption deposits that accumulated during this time. A thermal anomaly is visible in the South Crater in the May and September images. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 70. MIROVA log radiative power plot of MODIS thermal infrared at Manam during February through September 2019. Increases in activity were detected in March and June-July. Courtesy of MIROVA.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Office of the Resident Coordinator, United Nations, Port Moresby, National Capital District, Papua New Guinea (URL: https://papuanewguinea.un.org/en/about/about-the-resident-coordinator-office, https://reliefweb.int/report/papua-new-guinea/papua-new-guinea-volcanic-activity-office-resident-coordinator-flash-2); Himawari-8 Real-time Web, developed by the NICT Science Cloud project in NICT (National Institute of Information and Communications Technology), Japan, in collaboration with JMA (Japan Meteorological Agency) and CEReS (Center of Environmental Remote Sensing, Chiba University) (URL: https://himawari8.nict.go.jp/); Simon Carn, Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: http://www.volcarno.com/, Twitter: @simoncarn); Chris Vagasky, Vaisala Inc., Louisville, Colorado, USA (URL: https://www.vaisala.com/en?type=1, Twitter: @COweatherman, URL: https://twitter.com/COweatherman); Emma Liu, University College London Earth Sciences, London WC1E 6BS (URL: https://www.ucl.ac.uk/earth-sciences/people/academic/dr-emma-liu); Matthew Wordell, Boise, ID, USA (URL: https://www.matthhew.com/biocontact); Julian Rüdiger, Johannes Gutenberg University Mainz, Saarstr. 21, 55122 Mainz, Germany (URL: https://www.uni-mainz.de/).


Tangkuban Parahu (Indonesia) — October 2019 Citation iconCite this Report

Tangkuban Parahu

Indonesia

6.77°S, 107.6°E; summit elev. 2084 m

All times are local (unless otherwise noted)


Phreatic eruption on 27 July followed by intermittent explosions through to 17 September 2019

Tangkuban is located in the West Bandung and Subang Regencies in the West Java Province and has two main summit craters, Ratu and Upas (figure 3). Recent activity has largely consisted of phreatic explosions and gas-and-steam plumes at the Ratu crater. Prior to July 2019, the most recent activity occurred in 2012-2013, ending with a phreatic eruption on 5 October 2013 (BGVN 40:04). Background activity includes geothermal activity in the Ratu crater consisting of gas and steam emission (figure 4). This area is a tourist destination with infrastructure, and often people, overlooking the active crater. This report summarizes activity during 2014 through September 2019 and is based on official agency reports. Monitoring is the responsibility of Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM).

Figure (see Caption) Figure 3. Map of Tangkuban Parahu showing the Sunda Caldera rim and the Ratu, Upas, and Domas craters. Basemap is the August 2019 mosaic, copyright 2019 Planet Labs, Inc.
Figure (see Caption) Figure 4. Background activity at the Ratu crater of Tangkuban Parahu is shown in these images from 1 May 2012. The top image is an overview of the crater and the bottom four images show typical geothermal activity. Copyrighted photos by Øystein Lund Andersen, used with permission.

The first reported activity in 2014 consisted of gas-and-steam plumes during October-December, prompting PVMBG to increase the alert level from I to II on 31 December 2014. These white plumes reached a maximum of 50 m above the Ratu crater (figure 5) and were accompanied by elevated seismicity and deformation. This prompted the implementation of an exclusion zone with a radius of 1.5 km around the crater. The activity decreased and the alert level was lowered back to I on 8 January 2015. There was no further reported activity from January 2015 through mid-2019.

Figure (see Caption) Figure 5. Changes at the Ratu crater of Tangkuban Parahu during 25 December 2014 to 8 January 2015. Rain water accumulated in the crater in December and intermittent gas-and-steam plumes were observed. Courtesy of PVMBG (8 January 2015 report).

From 27 June 2019 an increase in activity was recorded in seismicity, deformation, gas chemistry, and visual observations. By 24 July the responsible government agencies had communicated that the volcano could erupt at any time. At 1548 on 26 July a phreatic (steam-driven) explosion ejected an ash plume that reached 200 m; a steam-rich plume rose to 600 m above the Ratu crater (figures 6, and 7). People were on the crater rim at the time and videos show a white plume rising from the crater followed by rapid jets of ash and sediment erupting through the first plume. Deposition of eruption material was 5-7 cm thick and concentrated within a 500 m radius from the point between the Rata and Upas craters, and wider deposition occurred within 2 km of the crater (figures 8 and 9). According to seismic data, the eruption lasted around 5 minutes and 30 seconds (figure 10). Videos show several pulses of ash that fell back into the crater, followed by an ash plume moving laterally towards the viewers.

Figure (see Caption) Figure 6. These screenshots are from a video taken from the Ratu crater rim at Tangkuban Parahu on 26 July 2019. Initially there is a white gas-and-steam plume rising from the crater, then a high-velocity black jet of ash and sediment rises through the plume. This video was widely shared across multiple social media platforms, but the original source could not be identified.
Figure (see Caption) Figure 7. The ash plume at Tangkuban Parahu on 26 July 2019. Courtesy of BNPB.
Figure (see Caption) Figure 8. Volcanic ash and lapilli was deposited around the Ratu crater of Tangkuban Parahu during a phreatic eruption on 26 July 2019. Note that the deposits have slumped down the window and are thicker than the actual ashfall. Courtesy of BNPB.
Figure (see Caption) Figure 9. Ash was deposited on buildings that line the Ratu crater at Tangkuban Parahu during a phreatic eruption on 26 July 2019. Photo courtesy of Novrian Arbi/via Reuters.
Figure (see Caption) Figure 10. A seismogram showing the onset of the 26 July 2019 eruption of Tangkuban Parahu and the elevated seismicity following the event. Courtesy of PVMBG via Øystein Lund Andersen.

On 27 July, the day after the eruption, Øystein Lund Andersen observed the volcano using a drone camera, operated from outside the restricted zone. Over a period of two hours the crater produced a small steam plume; ashfall and small blocks from the initial eruption are visible in and around the crater (figure 11). The ashfall is also visible in satellite imagery, which shows that deposition was restricted to the immediate vicinity to the SW of the crater (figure 12).

Figure (see Caption) Figure 11. Photos of the Ratu crater of Tangkuban Parahu on 27 July 2019, the day after a phreatic eruption. A small steam plume continued through the day. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 12. PlanetScope satellite images showing the Ratu crater of Tangkuban Parahu before (17 July 2019) and after (28 July 2019) the explosion that took place on 26 July 2019. Natural color PlanetScope Imagery, copyright 2019 Planet Labs, Inc.

Another eruption occurred at 2046 on 1 August 2019 and lasted around 11 minutes, producing a plume up to 180 m above the vent. Additional explosions occurred at 0043 on 2 August, lasting around 3 minutes according to seismic data, but were not observed. Explosions continued to be recorded at 0145, 0357, and 0406 at the time of the PVMBG report when the last explosion was ongoing, and a photo shows an explosion at 0608 (figure 13). The explosions produced plumes that reached between 20 and 200 m above the vent. Due to elevated activity the Alert Level was increased to II on 2 August. Ash emission continued through the 4th. During 5-11 August events ejecting ash continued to produce plumes up to 80 m, and gas-and-steam plumes up to 200 m above the vent. Ashfall was localized around Ratu crater. The following week, 12-18 August, activity continued with ash and gas-and-steam plumes reaching 100-200 m above the vent. During 19-25 August, similar activity sent ash to 50-180 m, and gas-and-steam plumes to 200 m. A larger phreatic explosion occurred at 0930 on 31 August with an ash plume reaching 300 m, and a gas-and-steam plume reaching 600 m above the vent, depositing ash and sediment around the crater.

Figure (see Caption) Figure 13. A small ash plume below a white gas-and-steam plume erupting from the Ratu crater of Tangkuban Parahu on 2 August 2019 at 0608. Courtesy of PVBMG (2 August 2019 report).

In early September activity consisted of gas-and-steam plumes up to 100-180 m above the vent with some ash plumes observed (figure 14). Two larger explosions occurred at 1657 and 1709 on 7 September with ash reaching 180 m, and gas-and-steam up to 200 m above the vent. Ash and sediment deposited around the crater. Due to strong winds to the SSW, the smell of sulfur was reported around Cimahi City in West Bandung, although there was no detected increase in sulfur emissions. A phreatic explosion on 17 September produced an ash plume to 40 m and a steam plume to 200 m above the crater. Weak gas-and-steam emissions reaching 200 m above the vent continued through to the end of September.

Figure (see Caption) Figure 14. A phreatic explosion at Tangkuban Parahu in the Ratu crater at 0724 on 4 September 2019, lasting nearly one minute. The darker ash plume reached around 100 m above the vent. Courtesy of PVGHM (4 September 2019 report).

Geologic Background. Gunung Tangkuban Parahu is a broad shield-like stratovolcano overlooking Indonesia's former capital city of Bandung. The volcano was constructed within the 6 x 8 km Pleistocene Sunda caldera, which formed about 190,000 years ago. The volcano's low profile is the subject of legends referring to the mountain of the "upturned boat." The Sunda caldera rim forms a prominent ridge on the western side; elsewhere the rim is largely buried by deposits of the current volcano. The dominantly small phreatic eruptions recorded since the 19th century have originated from several nested craters within an elliptical 1 x 1.5 km summit depression.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: https://www.oysteinlundandersen.com/tangkuban-prahu/tangkuban-prahu-volcano-west-java-one-day-after-the-26th-july-phreatic-eruption/); Reuters (URL: https://www.reuters.com/news/picture/editors-choice-pictures-idUSRTX71F3E).


Sheveluch (Russia) — November 2019 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Frequent ash explosions and lava dome growth continue through October 2019

After a lull in activity at Sheveluch, levels intensified again in mid-December 2018 and remained high through April 2019, with lava dome growth, strong explosions that produced ash plumes, incandescent lava flows, hot avalanches, numerous thermal anomalies, and strong fumarolic activity (BGVN 44:05). This report summarizes activity between May and October 2019. The volcano is monitored by the Kamchatka Volcanic Eruptions Response Team (KVERT).

According to KVERT, explosive activity continued to generate ash plumes during May-October 2019 (table 13). Strong fumarolic activity, incandescence and growth of the lava dome, and hot avalanches accompanied this process. There were also reports of plumes caused by re-suspended ash rather than new explosions. Plumes frequently extended a few hundred kilometers downwind, with the longest ones remaining visible in imagery as much as 1,000-1,400 km away. One of the larger explosions, on 1 October (figure 52), also generated a pyroclastic flow. Some of the stronger explosions sent the plume to an altitude of 10-11 km, or more than 7 km above the summit. The Aviation Color Code remained at Orange (the second highest level on a four-color scale) throughout the reporting period, except for several hours on 6 October when it was raised to Red (the highest level).

Table 13. Explosions and ash plumes at Sheveluch during May-October 2019. Dates and times are UTC, not local. Data courtesy of KVERT.

Dates Plume altitude (km) Drift Distance and Direction Remarks
30 Apr-02 May 2019 -- 200 km SE Resuspended ash.
03-10 May 2019 -- 50 km SE, SW Gas-and-steam plumes containing some ash.
13 May 2019 -- 16 km SE Resuspended ash.
11-12 Jun 2019 -- 60 km WNW Explosions and hot avalanches seen in video and satellite images.
24, 27 Jun 2019 4.5 E, W Ash plumes.
05 Aug 2019 2.5 40 km NW Diffuse ash plume.
25 Aug 2019 4.5-5 500 km NW Ash plumes.
29 Aug 2019 10 Various; 550 km N Explosions at 1510 produced ash plumes.
30 Aug 2019 7-7.5 50 km SSE Explosions at 1957 produced ash plumes.
03 Sep 2019 5.5 SE --
02-03, 05 Sep 2019 10 660 km SE Ash plumes seen in satellite images.
05 Sep 2019 -- -- Resuspended ash.
11-12 Sep 2019 -- 250 km ESE Resuspended ash plumes. Satellite and webcam data recorded ash emissions and a gas-and-steam plume with some ash drifting 50 km ESE on 12 Sep.
12-15, 17, 19 Sep 2019 -- 200 km SW, SE, NE Ash plumes.
20-21, 23, 26 Sep 2019 7 580 km ESE Explosions produced ash plumes.
29 Sep, 01-02 Oct 2019 9 1,400 km SE, E Explosions produced ash plumes. Notable pyroclastic flow traveled SE on 1 Oct.
04 Oct 2019 -- 170 km E Resuspended ash.
06 Oct 2019 10 430 km NE; 1,080 km ENE Ash plumes. Aviation Color Code raised to Red for several hours.
08 Oct 2019 -- 170 km E Resuspended ash.
06, 09 Oct 2019 6.5-11 1,100 km E --
11-13, 15 Oct 2019 6.5-7 620 km E, SE Explosions produced ash plumes.
16-17 Oct 2019 -- 125 km E Resuspended ash.
19-20 Oct 2019 -- 110 km SE Resuspended ash.
21 Oct 2019 10-11 1,300 km SE Explosions produced ash plumes.
Figure (see Caption) Figure 52. An explosion of Sheveluch on 1 October 2019. A pyroclastic flow was also reported by KVERT this day. Courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.

Numerous thermal anomalies, based on MODIS satellite instruments analyzed using the MODVOLC algorithm, were observed every month. Consistent with this, the MIROVA (Middle InfraRed Observation of Volcanic Activity) system recorded thermal anomalies almost daily. According to KVERT, a thermal anomaly over Sheveluch was identified in satellite images during the entire reporting period, although cloudy weather sometimes obscured observations.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 20, Number 09 (September 1995)

Managing Editor: Richard Wunderman

Aira (Japan)

Explosions continue, but at much lower levels compared to August

Akan (Japan)

Elevated seismicity accompanied by tremor

Arenal (Costa Rica)

Gas and lava emissions; some Strombolian eruptions and pyroclastic flows

Asosan (Japan)

Continued mud and water ejections and many isolated tremors

Bezymianny (Russia)

Explosive eruption causes 2-3 mm of ashfall 50 km away

Etna (Italy)

Ash emissions and another episode of Strombolian activity from the summit craters

Irazu (Costa Rica)

Minor increase in seismicity during August

Iwatesan (Japan)

Tremor and low-frequency earthquakes

Izu-Tobu (Japan)

Migrating seismic swarms

Kilauea (United States)

Numerous lava flows upslope and on the coastal plain; new ocean entry formed

Kirishimayama (Japan)

Seismicity decreases near Shinmoe Crater

Kozushima (Japan)

Strong earthquake swarm in early October

Kujusan (Japan)

Phreatic explosion on 11 October causes ashfall 60 km away

Negro, Cerro (Nicaragua)

Small lava flows in main crater; ash eruptions end in mid-August

Parker (Philippines)

Crater lake overflow causes flooding; no volcanic activity

Poas (Costa Rica)

Over 9,000 seismic events in September, most of them low-frequency; no tilt

Rincon de la Vieja (Costa Rica)

Seismic activity continues at a rate of tens of events per month

Ruapehu (New Zealand)

Large eruptions produce lahars and send plumes to over 10 km altitude

Soufriere Hills (United Kingdom)

Phreatic eruptions continue; new lava dome in summit crater

St. Helens (United States)

Steady increase in seismicity through 1995



Aira (Japan) — September 1995 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Explosions continue, but at much lower levels compared to August

Activity at Minami-dake Crater in September consisted of 13 eruptions, including seven explosive ones. The highest ash plume of the month rose 1,500 m on 15 September. Ashfall measured at the Kagoshima Local Meteorological Observatory, 10 km W, was 26 g/m2. At a seismic station 2.3 km NE of Minami-dake crater (Station B), 449 earthquakes and 431 tremors were recorded.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Akan (Japan) — September 1995 Citation iconCite this Report

Akan

Japan

43.384°N, 144.013°E; summit elev. 1499 m

All times are local (unless otherwise noted)


Elevated seismicity accompanied by tremor

During September, Me-Akan was the site of elevated seismicity and limited tremor. The monthly total number of earthquakes was 252 at Station A, 2.3 km NW from Ponmachineshiri Crater. The highest daily number of earthquakes, on 10 September, was 19. On 13 September a volcanic tremor occurred for one minute duration.

Geologic Background. Akan is a 13 x 24 km caldera located immediately SW of Kussharo caldera. The elongated, irregular outline of the caldera rim reflects its incremental formation during major explosive eruptions from the early to mid-Pleistocene. Growth of four post-caldera stratovolcanoes, three at the SW end of the caldera and the other at the NE side, has restricted the size of the caldera lake. Conical Oakandake was frequently active during the Holocene. The 1-km-wide Nakamachineshiri crater of Meakandake was formed during a major pumice-and-scoria eruption about 13,500 years ago. Within the Akan volcanic complex, only the Meakandake group, east of Lake Akan, has been historically active, producing mild phreatic eruptions since the beginning of the 19th century. Meakandake is composed of nine overlapping cones. The main cone of Meakandake proper has a triple crater at its summit. Historical eruptions at Meakandake have consisted of minor phreatic explosions, but four major magmatic eruptions including pyroclastic flows have occurred during the Holocene.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Arenal (Costa Rica) — September 1995 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Gas and lava emissions; some Strombolian eruptions and pyroclastic flows

In September, Arenal's active vent, crater C, continued its regular emission of gases, lava, and sporadic Strombolian eruptions; in addition, there were occasional pyroclastic flows. Lava that began to be emitted in July 1995 followed a course toward the SW and by the end of September had flowed to 1,050-m elevation. By the end of September, lava moving NW reached 800 m elevation. At the 1,400-m elevation a new arm branched off; it trended SW and by the end of September had reached 1,200 m elevation.

Explosions in September sent columns >1 km above the active vent that were typically blown to the NW, W, and SW. Toward the end of the month, some ash also fell on the NE and E flanks. Bombs and blocks arrived at elevations as low as 1,200 m. Crater D was fumarolically active.

During September there were 977 seismic events and 223 hours of tremor (figure 73). The majority of the seismic events were associated with Strombolian eruptions. Some of these eruptions were large enough to register at an outlying station 27 km more distant from Arenal than the one usually used (station JTS, 30 km SW of the crater). The total number of events (figure 73) for February and March were extrapolated based on 9 and 19 days, respectively, of recorded data.

Figure (see Caption) Figure 73. Seismic events and tremor at Arenal, January-September 1995, recorded at Station VACR (2.7 km NE of the main crater). Courtesy of OVSICORI-UNA.

A pulse of expansion detected in May 1995 ceased, and in September distance lines returned to a tendency toward long-term contraction (13 µrad/year). With the exception of one dry tilt instrument, which indicated deflation at 12 µrad/year on the W flank, there were no significant measured changes in tilt.

A brilliant color photograph of Arenal erupting appeared on the front page of the Washington Times on 22 September. Without either objects for scale or accompanying clarifying text, the photo caused considerable short-term confusion about the volcano's status. It was quickly learned that the photo depicted typical conditions at the volcano and observers in Costa Rica had not witnessed increases in activity. The volcano's first chronicled eruption took place in 1968 and many basaltic andesite discharges have followed.

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: E. Fernandez, E. Duarte, R. Saenz, W. Jimenez, and V. Barboza, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica.


Asosan (Japan) — September 1995 Citation iconCite this Report

Asosan

Japan

32.884°N, 131.104°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Continued mud and water ejections and many isolated tremors

Throughout September the hot water pool on the floor of Naka-dake Crater 1 frequently ejected mud and water; the highest ejection rose 10 m. Many isolated tremors were recorded at Station A, 800 m W of the crater. The monthly total of isolated tremors was 6,618; only two earthquakes were detected. Continuous tremor with 0.2-0.8 µm amplitude was registered throughout the month.

Mud ejections have been reported since May 1994 (BGVN 19:05). The 24-km-wide Aso Caldera contains 15 central cones. One of these cones, Naka-dake, has erupted more than 165 times since 553 AD, the first documented historical eruption in Japan. Aso is located 75 km E of Unzen and 150 km N of Sakura-jima volcanoes.

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Bezymianny (Russia) — September 1995 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Explosive eruption causes 2-3 mm of ashfall 50 km away

At 0500 on 6 October, regional seismic stations began to record volcanic tremor with a maximum amplitude of 5-6 µm. An ash plume was detected by the Alaska Volcano Observatory (AVO) on a satellite image taken at 0824. The Institute of Volcanology (IV) reported that an eruptive column first appeared over Bezymianny around that time, and by 0900 it was ~8 km high. Weather satellite imagery at 0948 showed that the plume had reached the coastline nearly due E, with a top estimated to be 10 km above sea level.

At 0930, volcanic ash started to fall in Kliuchi, ~50 km NNE. Tremor and ash emission increased up to 1200, followed by 3 hours of intense ashfall; during a period of 140 minutes 700 g/m2 of ash fell in Kliuchi. Because the air in Kliuchi was strongly polluted with volcanic gas, a warning was issued for the residents to take precautions. From Kliuchi, E. Zhdanova, a volcanologist from the Institute of Volcanic Geology and Geochemistry (IVGG), reported that ashfall had stopped at about 1700 on 6 October after 2-3 mm of deposition. AVO satellite imagery at 1813 showed the disconnected ash plume ~150 km E. The plume was moving ENE and was over 400 km from the source. By about 0930 on 7 October, the ash plume had undergone significant diffusion and was no longer detectable on satellite images.

As of the morning of 7 October the volcano was obscured, but there was no more tremor. Zhdanova suggested that the explosive phase of the eruption had ended and a lava dome was forming again. This interpretation was confirmed by a large hot spot seen at the vent on AVHRR imagery after the ash cloud had disconnected from the volcano.

Geologic Background. Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Alaska Volcano Observatory; E. Zhdanova and V. Kirianov, Institute of Volcanic Geology & Geochemistry, Piip Avenue 9, Petropavlovsk-Kamchatsky, 683006, Russia; N.A. Zharinov and S.A. Fedotov, Institute of Volcanology, Petropavlovsk-Kamchatsky, 683006, Russia.


Etna (Italy) — September 1995 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3295 m

All times are local (unless otherwise noted)


Ash emissions and another episode of Strombolian activity from the summit craters

A strong episode of black ash emission from Northeast Crater (figure 60) during the late morning of 13 September lasted only a few minutes, sending an ash plume 100 m above the crater rim. Red ash emissions from Bocca Nuova and Northeast Crater continued until about 20 September, but explosions of variable frequency and intensity were heard from both throughout the month. Voragine (Chasm) and Southeast Crater exhibited only weak degassing in September. Poor weather prevented internal crater observations.

Figure (see Caption) Figure 60. Topographic sketch map of Etna's summit craters (stippled), September 1995. Shaded areas within the craters indicate collapsed, degassing pits, and solid points are active boccas producing Strombolian activity. Within Bocca Nuova, the hatched area indicates the deepest part of the crater floor. Courtesy of the Istituto Internazionale di Vulcanologia.

On the evening of 2 October explosive Strombolian activity resumed at Northeast Crater from two small vents, aligned NNE-SSW in the lowest portion of the crater floor, ~150 m below the crater rim (figure 60). During observations the next morning, loud vigorous explosions were almost continuous, throwing scoria above the crater rim. A slight decrease in the frequency and energy of the explosions occurred that afternoon, although some incandescent bombs fell on the outer crater slope. Activity continued to decline during the night, and on the morning of 4 October Strombolian explosions were restricted to a single vent ejecting bombs up to a few tens of meters above the crater floor. By the evening of 5 October only incandescent degassing vents were present. During the same period, Bocca Nuova exhibited frequent red-brown ash emissions alternating with normal degassing. Ash emission was occasionally accompanied by incandescent bomb ejection. The ash puffs, more copious on the morning of 3 October, were produced by the same partially collapsed vent that was the site of Strombolian activity in August (BGVN 20:08).

Bombs collected on the crater rim (the first accessible material since the end of the 1991-93 eruption) were geochemically comparable with the 1991-93 lavas. The bombs were porphyritic hawaiite with phenocrysts of plagioclase (~16 volume %), clinopyroxene (~4%), olivine (~1%) and Ti-magnetite microphenocrysts in an intersertal groundmass.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sonia Calvari and Massimo Pompilio, CNR Istituto Internazionale di Vulcanologia, Piazza Roma 2, 95123 Catania, Italy.


Irazu (Costa Rica) — September 1995 Citation iconCite this Report

Irazu

Costa Rica

9.979°N, 83.852°W; summit elev. 3432 m

All times are local (unless otherwise noted)


Minor increase in seismicity during August

Irazú's seismic station (IRZ2), located 5 km SW of the active crater, registered a minor increase in seismicity: During August and September there were low-frequency events detected 10 and 14 times, respectively. There were also higher-frequency events only detected locally during August and September; these occurred 30 and 48 times, respectively.

Geologic Background. Irazú, one of Costa Rica's most active volcanoes, rises immediately E of the capital city of San José. The massive volcano covers an area of 500 km2 and is vegetated to within a few hundred meters of its broad flat-topped summit crater complex. At least 10 satellitic cones are located on its S flank. No lava flows have been identified since the eruption of the massive Cervantes lava flows from S-flank vents about 14,000 years ago, and all known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the W towards the historically active crater, which contains a small lake of variable size and color. Although eruptions may have occurred around the time of the Spanish conquest, the first well-documented historical eruption occurred in 1723, and frequent explosive eruptions have occurred since. Ashfall from the last major eruption during 1963-65 caused significant disruption to San José and surrounding areas.

Information Contacts: E. Fernandez, E. Duarte, R. Saenz, W. Jimenez, and V. Barboza, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica.


Iwatesan (Japan) — September 1995 Citation iconCite this Report

Iwatesan

Japan

39.853°N, 141.001°E; summit elev. 2038 m

All times are local (unless otherwise noted)


Tremor and low-frequency earthquakes

Between 0019 and 0105 on 15 September, Tohoku University seismometers near Iwate volcano registered intermittent small-amplitude volcanic tremors and low-frequency earthquakes. Four low-frequency earthquakes had epicenters 2 km E of the summit at ~8 km depths.

Geologic Background. Viewed from the east, Iwatesan volcano has a symmetrical profile that invites comparison with Fuji, but on the west an older cone is visible containing an oval-shaped, 1.8 x 3 km caldera. After the growth of Nishi-Iwate volcano beginning about 700,000 years ago, activity migrated eastward to form Higashi-Iwate volcano. Iwate has collapsed seven times during the past 230,000 years, most recently between 739 and 1615 CE. The dominantly basaltic summit cone of Higashi-Iwate volcano, Yakushidake, is truncated by a 500-m-wide crater. It rises well above and buries the eastern rim of the caldera, which is breached by a narrow gorge on the NW. A central cone containing a 500-m-wide crater partially filled by a lake is located in the center of the oval-shaped caldera. A young lava flow from Yakushidake descended into the caldera, and a fresh-looking lava flow from the 1732 eruption traveled down the NE flank.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Izu-Tobu (Japan) — September 1995 Citation iconCite this Report

Izu-Tobu

Japan

34.9°N, 139.098°E; summit elev. 1406 m

All times are local (unless otherwise noted)


Migrating seismic swarms

On 11-12 and 18 September micro-earthquake swarms occurred offshore near Cape Kawana-zaki, in an area adjacent Ito City on the E coast of the Izu Peninsula (figure 15). After that, few micro-earthquakes took place until late September. An intense swarm began in late September; focal depths shallowed as the swarm shifted N and lay off Cape Shiofuki-zaki (figure 15). Personnel at Ajiro Weather Station, 9 km NNW of the source, felt 33 shocks. Kamata seismic station in Ito City, 5 km SW of the source, registered a total of 3,608 shocks. Two tiltmeters near the coast of Ito Peninsula showed rapid changes in tilt; volume strain meters around the volcano recorded compression.

Figure (see Caption) Figure 15. Izu-Tobu epicenter map (top) and plot of focal depths versus time for September through 16 October 1995 (bottom). Courtesy of JMA.

Geologic Background. The Izu-Tobu volcano group (Higashi-Izu volcano group) is scattered over a broad, plateau-like area of more than 400 km2 on the E side of the Izu Peninsula. Construction of several stratovolcanoes continued throughout much of the Pleistocene and overlapped with growth of smaller monogenetic volcanoes beginning about 300,000 years ago. About 70 subaerial monogenetic volcanoes formed during the last 140,000 years, and chemically similar submarine cones are located offshore. These volcanoes are located on a basement of late-Tertiary volcanic rocks and related sediments and on the flanks of three Quaternary stratovolcanoes: Amagi, Tenshi, and Usami. Some eruptive vents are controlled by fissure systems trending NW-SE or NE-SW. Thirteen eruptive episodes have been documented during the past 32,000 years. Kawagodaira maar produced pyroclastic flows during the largest Holocene eruption about 3000 years ago. The latest eruption occurred in 1989, when a small submarine crater was formed NE of Ito City.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Kilauea (United States) — September 1995 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Numerous lava flows upslope and on the coastal plain; new ocean entry formed

A large lava flow broke out of the E (Kamoamoa) tube on 1 August at 490 m elevation and cascaded down Pulama Pali (a fault scarp); by 3 August the flow had split into three lobes. The E flow was the most voluminous and advanced down the W side of the flow field as an aa/pahoehoe flow with multiple channels. The W flow was a large pahoehoe sheet flow with many active streams. The middle flow was an 1,800-m-long channelized aa/pahoehoe flow, but had stagnated by mid-August. On 17 August the W lobe cascaded over Paliuli and spread out along its base over the next five days. That same day the E lobe reached the coastal plain and on 18 August was within 200 m of the WHA seismometer, which was removed the next day. Two pahoehoe flows were noted upslope on 3 August, originating at ~660 and ~650 m elevation. The upper flow was not active on 11 August; however, the lower flow was still active and burning forest at 590 m elevation. The Highcastle ocean entry was active but variable in August, with mild explosive activity on 7-8 August. During sampling on 11 August, a lava stream visible through a skylight at ~635 m elevation was 15 m wide and 19 m deep. A lava flow 300-400 m long was active close to the 600-m elevation, but all flows and the Highcastle ocean entry stagnated when the eruption paused on the evening of 22 August.

The eruption resumed on 25 August, and the first flows broke out of the tube system at 660 m elevation. Later breakouts were noted at 600 and 510 m elevations. The tube system appeared to be reoccupied only as far as the 510-m elevation, from which point a large aa flow cascaded down the E side of the flow field. By the 28th, flows had advanced to 240 m elevation. By 29 August the Kamoamoa lava tube had been reoccupied as far as the top of Pulama Pali. Several surface breakouts burned kipukas above the pali, and numerous shallow skylights developed. On the slope of Pulama Pali, aa and channelized pahoehoe flows advanced in two major fronts down the E side of the Kamoamoa flow field, burning forest along the edge. The leading edge of these flows reached the base of Pulama Pali on 29 August and advanced as pahoehoe sheet flows toward the coast, entering the ocean on 7 September. Through 11 September, pahoehoe spilled into the ocean at several discrete locations in a zone ~200-300 m wide on the far E margin of the Kamoamoa flow field.

On 12 September, voluminous channelized and sheet flows were observed at the coast and on Pulama Pali; surface flows on the slope were limited to intermittent breakouts. These lava flows continued to burn forest along the E edge of the flow field. Pahoehoe sheet flows several hundred meters wide continued to enter the ocean at the E edge of the Kamoamoa flow field (Kamokuna) in late September. A new ocean entry 1 km W of the other flows (Kamoamoa) was established on 21 September. By 9 October a major ocean entry fed by a tube was well established at Kamokuna and generating a large plume from a diffuse, ~100-m-wide entry zone of surface pahoehoe flows; there was only minor explosive activity. Smaller, intermittent entries were observed farther W at Kamoamoa, where surface pahoehoe flows occasionally reached the ocean. On the slope of Pulama pali, most of the lava was traveling in tubes, though small surface flows were frequent.

The pond at Pu`u `O`o continued to shrink in early August, and a sluggish crust had formed over much of the pond; the only open areas were on the W and N edges. The pond remained locally crusted and fairly small in late August; it was often >95 m below the crater rim, but it rose slightly during the pause. Between 25 August and 1 September the pond rose ~30 m, but subsequently dropped back to around 100 m. During this interval very vesicular tephra were deposited on the crater rim. By 5 September, the lava pond had risen to 60 m, overlapping the old crater floor formed in February 1992, but again receded to ~100 m depth by 12 September. The level of the lava pond then remained unchanged at roughly 80 m below the crater rim through 9 October. Sloshing lava in the ~15-m-diameter circular pond occasionally overflowed onto the adjacent crater floor formed during August.

Eruption tremor levels along the East Rift Zone remained low, with sporadic bursts of higher amplitudes during 6-9 August. Microearthquake counts were high on 1-2 August, but were below average beneath the summit and rift zones through mid-month. Low-level tremor persisted until the evening of 22 August, when it decreased in amplitude. Amplitudes remained at nearly background levels until the morning of the 26th, gradually increasing to nearly 2x background. On 24 August, counts of shallow (LPC-A) and intermediate-depth (LPC-C) long-period earthquakes were high. The counts remained high through the 26th for the LPC-C events and through the 27th for the LPC-A events. On the evening of 24 August a shallow M 3.2 earthquake beneath the upper edge of the East Rift Zone was felt mildly by a few nearby residents. Eruption tremor levels were fairly high until early on 30 August. Tremor amplitudes in early September dropped to nearly background levels with bands of higher amplitudes of one-half to three hours duration.

The number of intermediate, long-period microearthquakes was high during 5-8 September (nearly 500 events). Tremor levels were relatively low during 12-25 September except for isolated higher-amplitude bursts. Eruption tremor amplitudes were ~2x background until 30 September. From 1 October, tremor levels dropped slightly, and by 4 October, banding patterns of low amplitudes alternating with higher amplitudes became apparent. Also, from 1 October, intermediate-depth long-period (LPC-C) earthquake counts began to increase. The most intense days were 5-7 October, with total daily counts of 167, 434, and 214, respectively; many were large enough to locate. Short-period microearthquake activity remained low to moderate beneath the summit and rift zones from August through early October.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: Tari Mattox and Paul Okubo, Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, Hawaii Volcanoes National Park, HI 96718, USA.


Kirishimayama (Japan) — September 1995 Citation iconCite this Report

Kirishimayama

Japan

31.934°N, 130.862°E; summit elev. 1700 m

All times are local (unless otherwise noted)


Seismicity decreases near Shinmoe Crater

The total number of earthquakes in September was 182, a significant decreased compared to the 463 recorded in August. On 29 September there were 25 earthquakes recorded at Station A, 1.7 km SW of Shinmoe-dake Crater, the highest daily total of the month.

Geologic Background. Kirishimayama is a large group of more than 20 Quaternary volcanoes located north of Kagoshima Bay. The late-Pleistocene to Holocene dominantly andesitic group consists of stratovolcanoes, pyroclastic cones, maars, and underlying shield volcanoes located over an area of 20 x 30 km. The larger stratovolcanoes are scattered throughout the field, with the centrally located Karakunidake being the highest. Onamiike and Miike, the two largest maars, are located SW of Karakunidake and at its far eastern end, respectively. Holocene eruptions have been concentrated along an E-W line of vents from Miike to Ohachi, and at Shinmoedake to the NE. Frequent small-to-moderate explosive eruptions have been recorded since the 8th century.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Kozushima (Japan) — September 1995 Citation iconCite this Report

Kozushima

Japan

34.219°N, 139.153°E; summit elev. 572 m

All times are local (unless otherwise noted)


Strong earthquake swarm in early October

At 2143 on 6 October, a M 5.6 earthquake occurred near Kozu-shima (figure 2). The earthquake, which had an intensity at Kozu-shima of V on JMA's scale, caused a few landslides there. A M 4.8 earthquake 14 minutes earlier had an intensity of IV. During the next several days, an earthquake swarm continued offshore to the SW of Kozu-shima (figure 2, bottom). The swarm's maximum depth shifted downward with time, reaching 20-25 km. None of this seismicity was thought to have been induced by volcanism.

Figure (see Caption) Figure 2. Kozu-shima epicenter map (top) and plot of focal depths versus time for September through 16 October 1995 (bottom). Courtesy of JMA.

Though obscured by epicenters on figure 2, Kozu-shima island has dimensions of 4 x 6 km and lies 20 km SSW of Nii-jima island and adjacent to the Izu Peninsula. Kozu-shima contains abundant rhyolitic surge deposits and lava domes. Its last eruption was in 838-840 AD. Seismicity near the volcano, and sometimes in vicinity of Nii-jima, has been episodically high in recent years.

Geologic Background. A cluster of rhyolitic lava domes and associated pyroclastic deposits form the small 4 x 6 km island of Kozushima in the northern Izu Islands. Kozushima lies along the Zenisu Ridge, one of several en-echelon ridges oriented NE-SW, transverse to the trend of the northern Izu arc. The youngest and largest of the 18 lava domes, 574-m-high Tenjoyama, occupies the central portion of the island. Most of the older domes, some of which are Holocene in age, flank Tenjoyama to the north, although late-Pleistocene domes are also found at the southern end of the island. Only two possible historical eruptions, from the 9th century, are known. A lava flow may have reached the sea during an eruption in 832 CE. Tenjosan lava dome was formed during a major eruption in 838 CE that also produced pyroclastic flows and surges. Earthquake swarms took place during the 20th century.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Kujusan (Japan) — September 1995 Citation iconCite this Report

Kujusan

Japan

33.086°N, 131.249°E; summit elev. 1791 m

All times are local (unless otherwise noted)


Phreatic explosion on 11 October causes ashfall 60 km away

The observation of "smoke" in the Kuju Volcano Group (figure 1) near the Hosho dome (summit elevation 1,762 m, figure 2) at about 1800 on 11 October prompted the local meteorological observatory to issue a volcano alert. Ashfall from the phreatic activity was observed in towns as far as 60 km away, but there was no noticeable seismicity. When observed by the Kyushu Mobile Volcano Observation Team at 1430 on 12 September, steam was rising 400 m from around mid-slope on the dome. At that time there were three vents and fissure vents on the E slope of Hosho in an area ~300 m E-W by 100 m N-S. A photograph published in the Japan Times on 13 October (figure 3) showed steam emissions from numerous points along one ridge of the dome.

Figure (see Caption) Figure 1. Map of central and southern Kyushu Island, showing selected cities and historically active volcanoes. Courtesy of Tokiko Tiba.
Figure (see Caption) Figure 2. Map of the Kuju Volcano Group (modified from Kuno, 1962). Hosho Dome is near the center of the group.
Figure (see Caption) Figure 3. Photograph of steam emissions from the Hosho dome at Kuju. Scanned from a photograph published in the Japan Times, 13 October 1995.

Reference. Kuno, H., 1962, Japan, Taiwan, and Marianas: Catalog of active volcanoes of the world, part 11, p. 54-57.

Geologic Background. Kujusan is a complex of stratovolcanoes and lava domes lying NE of Aso caldera in north-central Kyushu. The group consists of 16 andesitic lava domes, five andesitic stratovolcanoes, and one basaltic cone. Activity dates back about 150,000 years. Six major andesitic-to-dacitic tephra deposits, many associated with the growth of lava domes, have been recorded during the Holocene. Eruptive activity has migrated systematically eastward during the past 5000 years. The latest magmatic activity occurred about 1600 years ago, when Kurodake lava dome at the E end of the complex was formed. The first reports of historical eruptions were in the 17th and 18th centuries, when phreatic or hydrothermal activity occurred. There are also many hot springs and hydrothermal fields. A fumarole on Hosho lava dome was the site of a sulfur mine for at least 500 years. Two geothermal power plants are in operation at Kuju.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan; Tokiko Tiba, Department of Geology, National Science Museum, 3-23-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169, Japan; The Japan Times, Tokyo, Japan.


Cerro Negro (Nicaragua) — September 1995 Citation iconCite this Report

Cerro Negro

Nicaragua

12.506°N, 86.702°W; summit elev. 728 m

All times are local (unless otherwise noted)


Small lava flows in main crater; ash eruptions end in mid-August

Increased seismicity was detected at and up to 15 km around Cerro Negro during 24-28 May. Ash plumes to ~100 m above the crater rim were first observed on 29 May (or the afternoon of 28 May). The eruptions (1-2/hour) correlated with periods of increased seismic activity. On 1 June, the seismicity increased in frequency and intensity, with eruptions occurring about every 15 minutes. Fine-grained ash, consisting primarily of free crystals with minor amounts of basaltic fragments, was deposited N of the cone (figure 7). Bulk density of the ash deposit was measured at 1.3 +- 0.2 g/cm3. Trace amounts of ash (0.5 mm) from eruptions on 2-5 June fell as far N as Malpaisillo (figure 7), with 1-mm ash thicknesses extending 5 km N of the vent. This deposit represents 1 x 104 m3 of ash, equivalent to an eruption rate of 100 m3/hour.

Figure (see Caption) Figure 7. Location map of Cerro Negro and adjacent volcanoes, Nicaragua. Dashed ellipses show the interpreted extent of 0.5- and 1-mm-thick ash deposits for 2-5 June 1995 activity. Courtesy of Brittain Hill.

Eruptive activity was observed and recorded during 2-5 June, 6 June-1 July, and 24 July-16 August. During this time, activity was characterized by discrete explosions occurring on average every 8 +- 5 minutes. There was no apparent periodicity to the explosions, although patterns of increasing and decreasing repose times were apparent. These explosions commonly produced convective columns at least 400 m above the cone, and sometimes rising ~1 km; many produced ballistically transported blocks. Most blocks fell within the crater, but some occasionally impacted as far as half way down the outer slope of the cone. Blocks that reached maximum heights (100 m) and distances had estimated ejection velocities of 100-120 m/second.

The most intense activity was observed just before noon on 2 June, when a small dilute pyroclastic flow formed on the NW flank of the cone during an explosion. Deposits from this flow were found on the NW flank and extended <100 m from the base. The massive, fine-grained (<1 mm median diameter), and very well sorted deposit was ~1 cm thick on the cone slope and covered very fine ash from 29 May-1 June explosions. Although this deposit has the high degree of sorting and grain-size characteristics of surges, sorting is better than commonly observed in basaltic surge deposits (Wohletz, 1983). One explanation for this high degree of sorting is that the deposit was produced from a dilute, relatively low energy surge, which lacks a magmatic component common in most other basaltic surge deposits (Wohletz and Sheridan, 1979). This interpretation is consistent with the generally phreatic character of the eruption.

Seismic activity increased markedly on 24 July, with sustained periods of nearly constant tremor. A small lava flow formed in the E part of the main crater on 24-25 July. Ash eruptions during and after the lava emission continued at the same apparent frequency and magnitude as before. A sporadic increase in seismicity on 3 August was accompanied by increased degassing from within the crater. However, there was no associated increase in the number or magnitude of ash eruptions. Eruptive activity decreased significantly on 15 August, and ceased on 16 August.

Soil radon concentrations were monitored at 28 stations deployed around the base of Cerro Negro during early June. These stations were located near a permanent seismic station on the SSE side of the volcano, and on and near the Cerro La Mula Ridge, which extends NW from Cerro Negro (figure 7). Anomalously high radon concentrations were observed at nearly all of these stations during 2-3 June. At one station (700 m SSE of the crater), the radon concentration was 396 pCi/L on 2-3 June and 146 pCi/L on 3-4 June, compared with 17 pCi/L previously measured (Conway and others, 1994). Anomalous values (100-1,000x background) also were observed on 2-3 June at stations located up to 800 m N of the crater. Radon concentrations had dropped to near background levels at most stations by 4-5 June, but eruptive activity continued with little change. We conclude that a pulse of soil degassing occurred during the initial stages of the eruption, likely associated with dike injection and fracturing of wallrock.

A self-potential anomaly across Cerro La Mula Ridge, 750 m N of the active crater, correlated with the location of low-temperature fumaroles (60-88°C), and radon anomalies. Temperature increases of ~30°C were measured in this area, associated with the 1995 eruptive activity. Continuous monitoring of the self-potential anomaly on 4-5 June revealed amplitude changes corresponding to diurnal changes in air and ground temperatures, and periods of rainfall.

Preliminary ash-leachate studies by M. Navarro show low total S and Cl, along with low S/Cl, consistent with lack of a juvenile component in the ejecta. In addition, the regularity of the eruptions, the consistent fine grain-size of the deposits, and lack of obvious juvenile components support the interpretation of activity as dominantly phreatic. The heat needed to drive this event was provided by the intrusion of a small volume of magma into the shallow subsurface. Evidence for the presence of new magma includes the eruption of lava on 24-25 July, observed patterns of seismicity, increased temperature and radon flux in thermal areas, and the relatively constant periodicity of eruptions over the days of direct observation.

Cerro Negro is the site of the most recent small-volume basaltic eruption at a cinder cone in the western hemisphere, having last erupted in April 1992 (Connor and others, 1993). Cerro Negro first erupted in 1850, with at least 19 documented eruptions occurring up to April 1992. The longest eruption occurred in 1960, when activity persisted for approximately three months. Cerro Negro is characterized by unusually explosive eruptions, and may represent the upper end of basaltic eruption explosivities. Preliminary research suggests that this explosivity may be controlled by relatively high magmatic water contents (>2 weight percent) associated with highly crystalline, viscous magmas (Roggensack and others, 1994).

References. Connor, C.B, Powell, L., Strauch, W., Navarro, M., Urbina, O., and Rose, W.I., 1993, The 1992 eruption of Cerro Negro, Nicaragua: An example of Plinian-style activity at a small basaltic cinder cone: EOS, Transactions of the American Geophysical Union v. 74, no. 43, p. 640.

Conway, F.M., Macfarlane, A.W., Connor, C.B., LaFemina, P.C., and Reimer, M., 1994, Degassing at a young cinder cone: Volcan Cerro Negro: Geological Society of America, 1994 Annual Meeting Abstracts with Program, 26 (7), p. A453.

Roggensack, K., Williams, S.N., Hervig, R.L., McKnight, S.B., Connor, C.B., and Navarro, M., 1994, Evidence of polybaric fractionation: Melt inclusions in 1992 eruption of Cerro Negro volcano, Nicaragua: EOS, Transactions of the American Geophysical Union, v. 75, no. 44, p. 747.

Wohletz, K.H., 1983, Mechanisms of hydrovolcanic pyroclast formation: grainþsize, scanning electron microscopy, and experimental studies: Journal of Volcanology and Geothermal Research, v. 17, p. 31-63.

Wohletz, K.H., and Sheridan, M.F., 1979, A model of pyroclastic surge: Geological Society of America Special Paper 180, Boulder, CO, p. 177-194.

Geologic Background. Nicaragua's youngest volcano, Cerro Negro, was created following an eruption that began in April 1850 about 2 km NW of the summit of Las Pilas volcano. It is the largest, southernmost, and most recent of a group of four youthful cinder cones constructed along a NNW-SSE-trending line in the central Marrabios Range. Strombolian-to-subplinian eruptions at intervals of a few years to several decades have constructed a roughly 250-m-high basaltic cone and an associated lava field constrained by topography to extend primarily NE and SW. Cone and crater morphology have varied significantly during its short eruptive history. Although it lies in a relatively unpopulated area, occasional heavy ashfalls have damaged crops and buildings.

Information Contacts: Martha Navarro, Oscar Canales, and Wilfried Strauch, Instituto Nicaraguense de Estudios Territorales, Managua, Nicaragua; Brittain E. Hill, Charles B. Connor, F. Michael Conway, and Peter LaFemina, Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, 6220 Culebra Rd., San Antonio, TX 78238-5166 USA.


Parker (Philippines) — September 1995 Citation iconCite this Report

Parker

Philippines

6.113°N, 124.892°E; summit elev. 1824 m

All times are local (unless otherwise noted)


Crater lake overflow causes flooding; no volcanic activity

The overflow of Maughan Lake, the crater lake at Parker volcano, followed heavy rains associated with a passing typhoon and caused flashflooding in NW-flank communities on 6 September. A team from the Philippine Institute of Volcanology and Seismology (PHIVOLCS) was dispatched to determine whether the overflow was caused by volcanic activity. Although no volcanic alert was declared, PHIVOLCS recommended that the crater area should be considered off-limits because of instability of the crater walls. Fieldwork on 8-9 September revealed that the flood was channel-confined along the NW-flank Alah River, which drains the crater lake, from 1,000 m down to 540 m elevation (Barangay New Dumangas, T'boli, South Cotabato Province). Below this point it was transformed into a sheetwash. The floods killed more than 60 people, destroyed 300 homes and nine bridges, and displaced 50,000 people.

Aerial observations on 11 September indicated that two or three landslides, indicated by escarpments, had occurred along the Alah River prior to the crater lake outbreak. The total mass displaced appears to have been sufficient to have dammed the upper reaches of the river. The crater wall was well-vegetated and without landslide scars, although underwater landslides may have contributed to the rise and subsequent overflow of the lake. The overflow breached the blocked river channel, sending an estimated ~10-15 x 106 m3 of lake water down the river, lowering the lake by 1 m. No turbidity or color change was observed in the crater lake, indicating that there had been no volcanic explosion. On 9-10 September PHIVOLCS installed seismometers in T'boli, 12 km NW of the crater at 540 m elevation, and at Tobolok, ~4 km NW of the crater at 1,300 m elevation. No volcanic seismic events were recorded through 11 September.

Geologic Background. Parker volcano, also known locally as Falen, is a low, vegetated stratovolcano overlooking Sarangani Bay near the southern tip of Mindanao Island. The steep-sided, 1824-m-high andesitic-dacitic stratovolcano is surrounded by extensive, youthful pyroclastic-flow deposits that suggest parallels to Pinatubo volcano. The summit of Parker is truncated by a 2.9-km-wide caldera with steep-sided walls that rise 200-500 m above heart-shaped Maughan Lake. This volcano was unknown to most volcanologists until recent years, but it is now known to have been the source of a major explosive eruption in 1641 that was previously attributed to Awu volcano on Sangihe Island, Indonesia and caused darkness over the island of Mindanao. The 1641 eruption included the emplacement of voluminous pyroclastic flows and lahars and resulted in the formation of the summit caldera. This was the last of three major explosive eruptions from Parker during the last 3800 years.

Information Contacts: Ernesto G. Corpuz, Philippine Institute of Volcanology and Seismology (PHIVOLCS), 5th & 6th Floors Hizon Building, 29 Quezon Avenue, Quezon City, Philippines; United Press International.


Poas (Costa Rica) — September 1995 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Over 9,000 seismic events in September, most of them low-frequency; no tilt

During September, 9,144 seismic events took place, the most for any month in 1994 or thus far in 1995. These events were predominantly low-frequency (8,854 events, figure 58);

Figure (see Caption) Figure 58. Low-frequency seismicity at Poás, January-September 1995. Data were collected at station POA2 located 2.7 km SW of the active crater. Courtesy of OVSICORI-UNA.

The level of the sky blue lake within the N crater climbed 0.6 m in September with respect to August. The lake's temperature was 34°C.  Fumaroles on the W lake terrace increased their output, but they only generated gas columns <50 m high. Although weaker than these fumaroles, two new fumaroles appeared on the terrace to the NW and SW of the lake. Other new fumaroles were seen along the N wall of the pyroclastic cone; fumarolic gases discharging from the cone reached 93°C. Constant bubbling continued to issue from points in the central and W lake. The fumarolic area on the SW and S wall maintained a 90-95°C temperature and discharged gas columns that rose as high as 100 m. Mass wasting of unstable hydrothermally altered rocks in this area covered some fumarolic vents and opened new ones.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: E. Fernandez, E. Duarte, R. Saenz, W. Jimenez, and V. Barboza, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica.


Rincon de la Vieja (Costa Rica) — September 1995 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Seismic activity continues at a rate of tens of events per month

The seismic receiver at the remote Rincón de la Vieja volcanic complex (RIN3) is located 5 km SW of the active crater. During August it registered 42 events at frequencies below 1.5 Hz; during September, 28 events with frequencies below 2.5 Hz.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: E. Fernandez, E. Duarte, R. Sáenz, W. Jimenez, and V. Barboza, Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica.


Ruapehu (New Zealand) — September 1995 Citation iconCite this Report

Ruapehu

New Zealand

39.28°S, 175.57°E; summit elev. 2797 m

All times are local (unless otherwise noted)


Large eruptions produce lahars and send plumes to over 10 km altitude

Following noteworthy "vent clearing" eruptions at Ruapehu (figure 17) on 29 June and 3 July, and phreatic eruptions in September, a series of larger eruptions began on 23 September. During the next week Ruapehu discharged plumes that were frequently reported by aviation sources to have reached at least 10 km. The following was compiled from Institute of Geological & Nuclear Sciences (IGNS) reports and aviation notices.

Figure (see Caption) Figure 17. Index map of North Island, New Zealand, showing the location of Ruapehu and other volcanic centers.

Precursory activity and minor eruptions. Many of Ruapehu's frequent small eruptions have been linked to high temperature in the crater lake. Unusually high lake temperatures (as well as other measured changes) also preceded the recent activity. During 1985-95 the surface temperature of Ruapehu's crater lake peaked at >40°C seven times; two of those peaks were in 1995. The early 1995 peak reached 55°C, the highest surface lake temperature recorded in 13 years (BGVN 20:01 and 20:05). The second 1995 peak reached roughly 44°C, the third highest seen in the 1985-95 interval. Key observations, including those from crater lake inspections carried out during visits from 25 May through 23 September (table 7) suggested a build-up in activity.

Table 7. Summary of key observations at Ruapehu, 25 May-23 September 1995. Prior to the larger eruptions observers reported that the lake was generally gray in color, often with sulfur slicks on its shore or surface; the lake began discharging water at Outlet sometime between 4 and 18 July. Courtesy of IGNS (IGNS Immediate Report (25 May-15 Aug 1995); IGNS Science Alert Bulletin (18-21 Sep 1995); Aviation report (23 Sep 1995).

Date Crater Lake Data Other Observations
25 May 1995 45.9°C at Outlet; ~0.7 m below overflow. One very small eruption observed.
16 Jun 1995 38.0°C at Outlet; ~1.5 m below overflow. No evidence of recent eruptions.
26 Jun 1995 Very strong tremor for a few hours at one station. --
29 Jun 1995 Last ARGOS transmission. Volcanic earthquake (M 3.2) correlated with an eruption.
03 Jul 1995 -- Volcanic earthquake (M 2.4) correlated with an eruption.
04 Jul 1995 33.0°C at Outlet; 0.5 m below overflow. Intense steaming in the lake center. Two very small eruptions observed; evidence of larger eruptions that probably occurred on 29 June and 3 July. Small deformation.
18 Jul 1995 31.0°C at Outlet. Discharge of 50 l/s. Evidence for recent minor eruptions but no observed activity.
15 Aug 1995 29.0°C at Outlet. Discharge of 5-10 l/s. No evidence of recent activity; small deformation.
18 Sep 1995 Moderate vent-clearing explosive eruption at 0805 from within the lake. Caused a flood, a lahar, and a small mudflow down the flanks; accompanying volcanic earthquake (ML 3.6). The lahar was the largest down the Whangahu river since 1975.
20 Sep 1995 48°C at Outlet. Very large overflow. New scoria bombs found; 15 small phreatic eruptions witnessed.
20 Sep 1995 -- Eruption similar to 18 September, only smaller; accompanying volcanic earthquake (ML 3.2).
20-21 Sep 1995 Lake water chemistry indicates increased magma-water interaction. Geodetic data show increased crater diameter.
23 Sep 1995 Major eruption began; column top reached over 10 km altitude. --

A hydrophone and related acoustical detection components in the crater lake registered unusually high noise levels during late May, consistent with seismic activity. A moderate noise burst took place on 13 June, and relative quiet prevailed through 29 June. These data were communicated via the satellite-relayed ARGOS data system at 2-hour intervals; the last transmission (0800 on 29 June) came just prior to a M 3.2 volcanic earthquake and eruption that destroyed the ARGOS equipment.

Seismicity was at background levels from 15 May until just prior to the 29 June earthquake. The earthquake began at 0802 as a small 2-Hz signal followed by a 1-Hz signal. The main part of the earthquake, which also contained 2-Hz signal, started at 0821, and peaked between 0822 and 0824. After the main part of the earthquake, more signals centered around 1 and 2 Hz prevailed. The 2-Hz signals are common to both volcanic earthquakes and tremor at Ruapehu, suggesting that both may excite the same resonator.

Ruapehu's tremor typically has a dominant frequency of ~2 Hz and occurs almost constantly, often with no clear surface volcanic expression. Although not recorded at all stations, during 1995 and possibly longer, tremor has contained a previously unrecognized dominant frequency of 7 Hz with a consistent amplitude of 1 µm/s. During April, May, and late June, intervals of strong 2-Hz tremor dominated the seismic records. Very strong tremor took place for a few hours on 26 June. Tremor declined thereafter and remained low from early July through much of August.

Lake water increased in Cl and especially Mg ions closer to the eruption. The Mg/Cl ratio rose from values around 0.035 in early 1995 (BGVN 20:05), to the most recently reported value of 0.072 on 15 August (table 8); there was a further increase of unstated magnitude on 20-21 September (table 7). Prior to the eruption, the rise in Mg was thought to represent leaching from unweathered andesites. The increase in Cl, which reached greater levels than seen in at least 9 years, was thought to result from both large-scale evaporation and HCl input. The rise in Mg/Cl ratio represented the largest shifts seen since the large 1971 and 1975 eruptions. Shifts in the concentrations of K, Fe, and SO4 from samples collected on 18 July suggested increased input of SO2 into the vent-lake system rather than a water-rock equilibrium process in the vent. Although provisional, results for SO4 on 18 July suggested a 4.5% increase--the highest ever recorded for the lake.

Table 8. Ruapehu Crater Lake water analyses and temperatures at Outlet, 25 May-4 July 1995. Courtesy of IGNS.

Date Mg (ppm) Cl (ppm) Mg/Cl Outlet Temp (°C)
25 May 1995 385 7603 0.051 46
16 Jun 1995 427 7797 0.055 38
04 Jul 1995 514 7976 0.064 33
18 Jul 1995 551 8014 0.069 --
15 Aug 1995 584 8154 0.072 --

Deformation surveys on 4 July and 15 August confirmed only small measurable changes. This result suggested little or no magmatic movement in the upper part of the vent, in contrast with much of the other data in the same time interval. The limited deformation may have been a consequence of an open vent that allowed a small amount of magma to escape without measurable deformation. Measurable changes were apparently evident later (20-21 September, table 7).

Larger eruptions in late September. Ruapehu produced a series of larger eruptions during 23-30 September and later, continuing into October. Preliminary estimates suggested the eruption plumes reached 8-12 km heights as reported by aviation sources (table 7 and figure 18). The aviation reports and occasional satellite imagery typically noted plumes possibly extending as far as ~270 km from the summit (from an episode of eruptive bursts that were thought to have been more dense and ash-rich beginning at 1600 on 24 September). This particular series of bursts only initially reached low levels, but ash was said to have been lifted higher by induced cumulus convection, ultimately reaching a reported altitude of ~12 km. On subsequent days, the plume's typical maximum lateral extent was given as roughly 60 km.

Figure (see Caption) Figure 18. Histogram summarizing the height of column tops for Ruapehu eruptions, based on available aviation reports and IGNS Science Alert Bulletins. Courtesy of Nick Heffter, NOAA.

For the 24-hour interval ending on 24 September (exact times undisclosed) observers at Ruapehu noted both small- and medium-sized steam-rich ash-bearing explosions, the largest of which had plumes that rose from 500 to over 1,500 m. On 24 September medium-sized explosions yielded a distinctive, though modest seismic signature and lesser explosions were not detectible. Near midnight on 24 September the number of volcanic earthquakes rose significantly; strong tremor roughly doubled in intensity compared to that morning; reflected seismic waves from numerous explosions yielded a confused signal.

Reports for 25 September (at 0900, 1700, and a summary the next day) noted that an eruption column had developed from many moderate-sized eruptions. With its top at 8-10 km altitude, the plume was blown into the E quadrant for several tens of kilometers, dropping ash 18 km E (Desert road; total accumulation, 1 mm), 30 km E (the Kaimanawa mountains), and 120 km E (traces at the coast). The ash deposited at Desert Road contained mainly particles of 10-250 µm size; 30-60% of the particles were juvenile. Significant amounts of ash had accumulated in the vent area but large blocks had been ejected less than ~1 km from the vent. Outlet was dry, but based on later observations, the inner crater still contained a lake.

At 0900 on 25 September a lahar flowed down the Whangaehu valley. The valley forms a key drainage that descends ESE from the crater, ultimately curving S and W to encircle Ruapehu's S flank; downstream parts of the Whangaehu Valley cross the Auckland-Wellington rail line near Tangiwai. Later the lahar declined in size, but it was noted as still continuing and sediment-laden at 1630, having eroded a stream bank upstream of the Tangiwai bridge. Another lahar flowed W of the crater down Mangaturuturu Valley.

At 1700 on 25 September, the volcanism during the previous 30 hours was described as episodic, punctuated by two cycles of increasing then decreasing intensity. Based on seismic data, the second cycle was not quite as vigorous as the first. In the night and morning of 25-26 September minor amounts of ash continued to fall over the volcano's E quadrant. Low-to-moderate tremor continued until at least 1700. Occasional explosions were large enough to be recorded seismically but were smaller than those in the morning of the previous day. Although during much of the day visual observations were hampered by cloud cover, at 0600-0700 on 26 September observers saw the plume drifting ESE. The plume was fed by numerous weak explosions and observers noted that minor amounts of ash fell throughout the night. Observers also noted that lahars flowing down the Whangaehu Valley were smaller than on the previous day. A very small lahar, deposited during an earlier event, was noted in the SE-flank Wahionoa Valley.

A SO2 flux measurement at 1600 on 26 September indicated an output of 2,600 +- 400 metric tons/day. Such high fluxes confirmed significant magmatic involvement in the eruption. Although cloud cover limited the visibility on much of 26 September, the low seismic activity during the day suggested explosions of modest size. From about 2300 through early the next morning tremor amplitude fluctuated, increasing up to moderate levels. After 0400 tremor coexisted with many volcanic earthquakes.

Visual observations made after sunrise on 27 September correlated tremor and earthquake increases to moderately vigorous eruptive activity. During this period (0600-0700) the earthquakes reached a size equivalent to those on 25 September. By about 0930 on 27 September, however, the earthquakes stopped and the eruption's size dropped. Earthquakes then remained undetected until at least 1700.

Aerial observers on 27 and 28 September saw that Crater Lake had been greatly reduced in size; although indistinct, the steaming surface had clearly dropped by tens of meters. They also saw a previously concealed terrace formed during the 1945 eruption and recognized a new small lahar deposit in a drainage on the NW flank (in the Whakapapaiti Valley). On 27 September observers reported no water in the upper Whangaehu Valley and viewers the next day stated that downstream at the Tangiwai bridge the water level had returned to normal.

During the 24 hours ending at 0930 on 28 September, moderate levels of seismicity prevailed, and three larger volcanic earthquakes took place in the 0215-0340 interval. These earthquakes may have been associated with discrete explosions. Other volcanic earthquakes at 0736 and 0839 were linked to mild puffs of ash-bearing steam rising from the crater.

Ruapehu's alert status was raised to Level 4 (table 9) on 25 September. As late as early October, there had been no reports of death or injury caused by the eruption. Because of potential hazard to aircraft, aviation and meteorological workers have carefully monitored the eruption, producing forecasts of the plume's transport and dispersal ("VAFTAD" modeling program, see BGVN 19:06) as well as the actual visible observations that have confirmed the height of the plume's top (figure 18).

Table 9. Scientific Volcano Alert Level system for New Zealand volcanoes. Note that the frequently active cone volcanoes of New Zealand (White, Ngauruhoe, and Ruapehu) require definitions different from all other volcanic systems. Because of this, Alert Levels 1-4 are split into two parts: one for the frequently active cones and the other for reawakening systems. Courtesy of the IGNS.

Alert Level Phenomena Observed Scientific Interpretation (Volc Status)
0 Typical background surface activity; seismicity, deformation, and heat flow at low levels. Usual dormant, intra-eruption or quiescent state.
1 Departure from typical background surface activity. Minor phreatic activity. Apparent seismic, geodetic, thermal, or other unrest indicators. Signs of volcano unrest. No significant eruption threat.
2 Increase from a low level of activity, accompanied by changes to monitored indicators. Significant change in level or style of ongoing eruptive activity. Increase in seismicity, deformation, heat flow and/or other unrest indicators. Indications of intrusive processes. Local eruption threat.
3 Increased vigour of ongoing activity and monitored indicators. Significant local eruption in progress. Commencement of minor eruptions at reawakening vent(s). Relatively high and increasing trends shown by unrest indicators. Increasing intrusive trends indicate real possibility of hazardous eruptions.
4 Significant change to ongoing activity and monitored indicators. Hazardous local eruption in progress. Establishment of magmatic activity at reawakening vent(s), with acceleration of unrest indicators. Large-scale eruption now appears imminent.
5 Hazardous large volcanic eruption in progress. Destruction within the Permanent Danger (red) Zone. Significant risk over wider areas.

The late September eruption was widely covered in the news. According to Reuters (25 September), "A conservative Australian politician is linking nuclear testing by China and France to a string of earthquakes around the Pacific and volcanic eruptions in Montserrat and New Zealand's Mount Ruapehu." Although this connection was discounted by earth scientists, the accusation did reverberate in the media and parliaments world wide.

Geologic Background. Ruapehu, one of New Zealand's most active volcanoes, is a complex stratovolcano constructed during at least four cone-building episodes dating back to about 200,000 years ago. The 110 km3 dominantly andesitic volcanic massif is elongated in a NNE-SSW direction and surrounded by another 100 km3 ring plain of volcaniclastic debris, including the Murimoto debris-avalanche deposit on the NW flank. A series of subplinian eruptions took place between about 22,600 and 10,000 years ago, but pyroclastic flows have been infrequent. A single historically active vent, Crater Lake, is located in the broad summit region, but at least five other vents on the summit and flank have been active during the Holocene. Frequent mild-to-moderate explosive eruptions have occurred in historical time from the Crater Lake vent, and tephra characteristics suggest that the crater lake may have formed as early as 3000 years ago. Lahars produced by phreatic eruptions from the summit crater lake are a hazard to a ski area on the upper flanks and to lower river valleys.

Information Contacts: C.J.N. Wilson, B.J. Scott, P.M. Otway, and I.A. Nairn, Institute of Geological & Nuclear Sciences (IGNS), Private Bag 2000, Wairakei, New Zealand; Bureau of Meteorology, Northern Territory Regional Office, POB 735, Darwin NT 0801, Australia; J. Heffter, National Oceanic and Atmospheric Administration (NOAA), Air Resources Laboratory SSMC3, Room 3151, 1315 East West Hwy., Silver Spring, MD 20910 USA; Synoptic Analysis Branch, NOAA/NESDIS, Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA.


Soufriere Hills (United Kingdom) — September 1995 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Phreatic eruptions continue; new lava dome in summit crater

Following the formation of Vent 3 and significant ashfall on 22 August (20:8), more than 6,000 residents of southern Montserrat were evacuated to safe areas in the N part of the island. Press sources estimated that by late August ~3,000 people had left for neighboring islands. Vent 4 opened on 27 August and produced mainly steam emissions with some minor ash through 30 August. Although seismicity was high from 30 August through 1 September, steam and ash emissions remained low (20:8).

From 0500 on 1 September through 0500 on the 3rd, only 19 shallow earthquakes occurred beneath the volcano. During that same period, 17 episodes of gas venting were recorded; at least six of those episodes produced some ash, and the two events on 2 September each decayed into a long-period signal of ~10 minutes duration. Venting continued to enlarge vents 2 and 3, but emissions from Vent 4 remained low. A helicopter observation flight on the afternoon of 2 September was in progress when an emission episode began at 1606 with increased steaming that developed rapidly into a small steam-and-ash plume. The emission occurred from a narrow part of the main group of vents that extend SE from Vent 1. Mud on the floor of the vent was expelled during the episode, forming a small mudflow that moved down the S side of the moat and over the area of Vent 2. A gas-and-ash emission at 1912 on 2 September, similar in size and duration to emissions in recent days, was widely observed because of clear conditions. Lightning associated with this activity lasted ~1.5 hours, and an SO2 odor was detected. Installation of a hardened EDM (electronic distance meter) station in the Tar River area was completed on 2 September.

During 3-4 September there were four gas-venting episodes, twelve volcano-tectonic (VT) earthquakes, and four long-period earthquakes. Aerial observations on the morning of 3 September revealed that the area around the S end of the main group of vents had been enlarged. The moat pond in the NW corner was still present, and fragmental material had collapsed into Vent 1. Afternoon observations showed no new mudflows, and the S moat appeared dry.

On the afternoon of 3 September, scientists at the volcano observatory completed an assessment of the current volcanism since 21 August and prospects for future activity. The rate of eruption signals increased slightly after 21 August, but the size of the eruptions did not. No change in the style of eruptions was anticipated, but areas downwind could be subject to ashfall and temporary darkness. Eruptions were thought likely to be concentrated along the linear vent chain on the W side of Castle Peak dome. The amount of shallow seismicity decreased below that prior to 21 August. SO2 flux remained near detection limits since 21 August. The rate of long-period seismic events showed no clear pattern, although a slight decrease may have occurred. Initial EDM results indicated no movement of the SE flank of Castle Peak dome or at a site in Upper Gages. Electronic tiltmeters have detected no large-scale deformation since they stabilized on 5 August. Ash samples analyzed through 27 August revealed no juvenile material.

The scientists concluded the following: ". . . eruptions to date have been entirely phreatic, with no direct evidence of magmatic involvement. So long as this behavior pattern persists, it only constitutes a significant hazard to areas within 1.5 km of Castle Peak dome and the areas S of White's Bottom ghaut. All ghauts [ephemeral watercourses] that originate on the flanks of the Soufriere Hills volcano are subject to flooding and should be avoided." Based on this advice, the government approved re-occupation of the areas immediately S of the Belham Valley River from which residents were evacuated on 23 August. All other residents from areas closer to the crater, evacuated since 21 August, were required to stay in the northern third of the island. Controlled entry restrictions were relaxed in most areas to allow residents to prepare for an approaching hurricane. Following passage of the hurricane, on 6 September the remaining evacuation orders were lifted.

Activity during 4-8 September was consistent at a low and generally declining level. At about 1530 on 8 September there was a significant steam explosion. Two hours later, at about 1730, two large ash eruptions produced a vertical plume that formed a mushroom cloud, which drifted to St. Peters (~30 km NNW) and to the N. Soufriere Hills continued to have intermittent swarms of earthquakes from the summit and nearby areas, including three events felt in Woodlands on 11 September. Occasional steam eruptions produced falls of fine ash in communities around the volcano, and morphological changes were continuing in the summit area. These developments suggested to volcanologists that magma was close to the surface under the volcano and that a magmatic eruption was still a possibility.

Two weeks later, on 25 September, a lava dome began growing in the W part of the moat near the linear chain of vents. An explosion between 1100 and 1200 on 27 September caused ashfall on the S part of the island, with minor ashfall also reported in the St. Georges area. Minor explosive activity continued through the end of September.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Soufriere Hills Volcano Observatory, Plymouth; Seismic Research Unit, UWI; UNDHA; AP; Caribbean News Agency (CANA), Barbados.


St. Helens (United States) — September 1995 Citation iconCite this Report

St. Helens

United States

46.2°N, 122.18°W; summit elev. 2549 m

All times are local (unless otherwise noted)


Steady increase in seismicity through 1995

No explosions or gas-and-ash emissions occurred from the lava dome between 1 January and 30 September 1995. Seismic activity was still low, but the number of small-magnitude (M

Figure (see Caption) Figure 44. Seismicity at Mount St. Helens, January 1986-September 1995. A high concentration of earthquake activity at

This same zone of seismic activity became active in late 1987, about 2 years before the 1989-91 steam explosions began, and it presumably marks the approximate location of the magma conduit system. Those relatively small explosions hurled dome rocks as large as 30-40 cm in diameter at least 800 m from the dome and produced ash plumes as high as ~6 km above sea level. Detailed study of the 1987-91 seismicity and the 1989-91 explosions suggests that both occurred in response to increased pressure in the conduit system.

One possible cause for the pressure increase is that volcanic gas (primarily water vapor) became concentrated along the conduit system as a consequence of the progressive cooling and crystallization of magma. This increased pressure would likely lead to increased rock fracturing immediately surrounding the conduit system, as well as to intermittent sudden gas release. In addition, downward growth of cracks and fractures in the dome during and immediately after periods of intense precipitation could trigger gas explosions when such fractures intersect pressurized areas; many but not all of the 1989-91 explosions followed periods of heavy rainfall. Another possible cause for the pressure increase is intrusion of new magma into the lower depths of the conduit system. There is no evidence, however, that any magma has approached the surface during 1995. Regardless of the cause, it seems likely that the change in seismicity reflects a renewed increase in pressure along the magma conduit system.

Because the 1989-91 steam explosions were not preceded by any specific short-term warning signs, the similarity of the current seismicity raises concerns that future small dome explosions could occur without additional warning. Experience with the 1989-91 explosions, as well as explosions during the years of dome growth, suggests that they would produce hazards primarily within the crater, to a lesser degree in the stream channels leading from the crater, and to an even smaller degree on the upper flanks of the volcano. These hazards could include the impact of ejected dome rocks and rapidly moving pyroclastic flows sweeping the crater floor. During the 5 February 1991 explosion, a small pyroclastic flow reached the N edge of the crater. Heat from a rock avalanche or pyroclastic flow could also generate a lahar in the crater and in channels leading from the crater. Also, gas explosions could generate dilute but visible ash plumes perhaps as high as 6 km above the volcano and light ashfall as far as ~160 km downwind.

Geologic Background. Prior to 1980, Mount St. Helens formed a conical, youthful volcano sometimes known as the Fuji-san of America. During the 1980 eruption the upper 400 m of the summit was removed by slope failure, leaving a 2 x 3.5 km horseshoe-shaped crater now partially filled by a lava dome. Mount St. Helens was formed during nine eruptive periods beginning about 40-50,000 years ago and has been the most active volcano in the Cascade Range during the Holocene. Prior to 2200 years ago, tephra, lava domes, and pyroclastic flows were erupted, forming the older St. Helens edifice, but few lava flows extended beyond the base of the volcano. The modern edifice was constructed during the last 2200 years, when the volcano produced basaltic as well as andesitic and dacitic products from summit and flank vents. Historical eruptions in the 19th century originated from the Goat Rocks area on the north flank, and were witnessed by early settlers.

Information Contacts: Dan Dzurisin, Cascades Volcano Observatory, U.S. Geological Survey, 5400 MacArthur Blvd., Vancouver, WA 98661 USA; Steve Malone, Geophysics Program, University of Washington, Seattle, WA 98195 USA. URL: https://volcanoes.usgs.gov/observatories/cvo/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).