Recently Published Bulletin Reports
Erebus (Antarctica) Lava lake remains active; most thermal alerts recorded since 2019
Rincon de la Vieja (Costa Rica) Frequent phreatic explosions during July-December 2023
Bezymianny (Russia) Explosion on 18 October 2023 sends ash plume 8 km high; lava flows and incandescent avalanches
Kilauea (United States) Low-level lava effusions in the lava lake at Halema’uma’u during July-December 2022
Nyamulagira (DR Congo) Lava flows and thermal activity during May-October 2023
Bagana (Papua New Guinea) Explosions, ash plumes, ashfall, and lava flows during April-September 2023
Mayon (Philippines) Lava flows, pyroclastic flows, ash emissions, and seismicity during April-September 2023
Nishinoshima (Japan) Eruption plumes and gas-and-steam plumes during May-August 2023
Krakatau (Indonesia) White gas-and-steam plumes and occasional ash plumes during May-August 2023
Villarrica (Chile) Strombolian activity, gas-and-ash emissions, and crater incandescence during April-September 2023
Merapi (Indonesia) Frequent incandescent avalanches during April-September 2023
Ebeko (Russia) Moderate explosive activity with ash plumes continued during June-November 2023
Erebus (Antarctica) — January 2024
Cite this Report
Erebus
Antarctica
77.53°S, 167.17°E; summit elev. 3794 m
All times are local (unless otherwise noted)
Lava lake remains active; most thermal alerts recorded since 2019
The lava lake in the summit crater of Erebus has been active since at least 1972. Located in Antarctica overlooking the McMurdo Station on Ross Island, it is the southernmost active volcano on the planet. Because of the remote location, activity is primarily monitored by satellites. This report covers activity during 2023.
The number of thermal alerts recorded by the Hawai'i Institute of Geophysics and Planetology’s MODVOLC Thermal Alerts System increased considerably in 2023 compared to the years 2020-2022 (table 9). In contrast to previous years, the MODIS instruments aboard the Aqua and Terra satellites captured data from Erebus every month during 2023. Consistent with previous years, the lowest number of anomalous pixels were recorded in January, November, and December.
Table 9. Number of monthly MODIS-MODVOLC thermal alert pixels recorded at Erebus during 2017-2023. See BGVN 42:06 for data from 2000 through 2016. The table was compiled using data provided by the HIGP – MODVOLC Thermal Alerts System.
Year |
Jan |
Feb |
Mar |
Apr |
May |
Jun |
Jul |
Aug |
Sep |
Oct |
Nov |
Dec |
SUM |
2017 |
0 |
21 |
9 |
0 |
0 |
1 |
11 |
61 |
76 |
52 |
0 |
3 |
234 |
2018 |
0 |
21 |
58 |
182 |
55 |
17 |
137 |
172 |
103 |
29 |
0 |
0 |
774 |
2019 |
2 |
21 |
162 |
151 |
55 |
56 |
75 |
53 |
29 |
19 |
1 |
0 |
624 |
2020 |
0 |
2 |
16 |
18 |
4 |
4 |
1 |
3 |
18 |
3 |
1 |
6 |
76 |
2021 |
0 |
9 |
1 |
0 |
2 |
56 |
46 |
47 |
35 |
52 |
5 |
3 |
256 |
2022 |
1 |
13 |
55 |
22 |
15 |
32 |
39 |
19 |
31 |
11 |
0 |
0 |
238 |
2023 |
2 |
33 |
49 |
82 |
41 |
32 |
70 |
64 |
42 |
17 |
5 |
11 |
448 |
Sentinel-2 infrared images showed one or two prominent heat sources within the summit crater, accompanied by adjacent smaller sources, similar to recent years (see BGVN 46:01, 47:02, and 48:01). A unique image was obtained on 25 November 2023 by the OLI-2 (Operational Land Imager-2) on Landsat 9, showing the upper part of the volcano surrounded by clouds (figure 32).
Geologic Background. Mount Erebus, the world's southernmost historically active volcano, overlooks the McMurdo research station on Ross Island. It is the largest of three major volcanoes forming the crudely triangular Ross Island. The summit of the dominantly phonolitic volcano has been modified by one or two generations of caldera formation. A summit plateau at about 3,200 m elevation marks the rim of the youngest caldera, which formed during the late-Pleistocene and within which the modern cone was constructed. An elliptical 500 x 600 m wide, 110-m-deep crater truncates the summit and contains an active lava lake within a 250-m-wide, 100-m-deep inner crater; other lava lakes are sometimes present. The glacier-covered volcano was erupting when first sighted by Captain James Ross in 1841. Continuous lava-lake activity with minor explosions, punctuated by occasional larger Strombolian explosions that eject bombs onto the crater rim, has been documented since 1972, but has probably been occurring for much of the volcano's recent history.
Information Contacts: Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: https://earthobservatory.nasa.gov/images/152134/erebus-breaks-through).
Rincon de la Vieja (Costa Rica) — January 2024
Cite this Report
Rincon de la Vieja
Costa Rica
10.83°N, 85.324°W; summit elev. 1916 m
All times are local (unless otherwise noted)
Frequent phreatic explosions during July-December 2023
Rincón de la Vieja is a volcanic complex in Costa Rica with a hot convecting acid lake that exhibits frequent weak phreatic explosions, gas-and-steam emissions, and occasional elevated sulfur dioxide levels (BGVN 45:10, 46:03, 46:11). The current eruption period began June 2021. This report covers activity during July-December 2023 and is based on weekly bulletins and occasional daily reports from the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA).
Numerous weak phreatic explosions continued during July-December 2023, along with gas-and-steam emissions and plumes that rose as high as 3 km above the crater rim. Many weekly OVSICORI-UNA bulletins included the previous week's number of explosions and emissions (table 9). For many explosions, the time of explosion was given (table 10). Frequent seismic activity (long-period earthquakes, volcano-tectonic earthquakes, and tremor) accompanied the phreatic activity.
Table 9. Number of reported weekly phreatic explosions and gas-and-steam emissions at Rincón de la Vieja, July-December 2023. Counts are reported for the week before the Weekly Bulletin date; not all reports included these data. Courtesy of OVSICORI-UNA.
OVSICORI Weekly Bulletin |
Number of explosions |
Number of emissions |
28 Jul 2023 |
6 |
14 |
4 Aug 2023 |
10 |
12 |
1 Sep 2023 |
13 |
11 |
22 Sep 2023 |
12 |
13 |
29 Sep 2023 |
6 |
11 |
6 Oct 2023 |
12 |
5 |
13 Oct 2023 |
7 |
9 |
20 Oct 2023 |
1 |
15 |
27 Oct 2023 |
3 |
23 |
3 Nov 2023 |
3 |
10 |
17 Nov 2023 |
0 |
Some |
24 Nov 2023 |
0 |
14 |
8 Dec 2023 |
4 |
16 |
22 Dec 2023 |
8 |
18 |
Table 10. Summary of activity at Rincón de la Vieja during July-December 2023. Weak phreatic explosions and gas emissions are noted where the time of explosion was indicated in the weekly or daily bulletins. Height of plumes or emissions are distance above the crater rim. Courtesy of OVSICORI-UNA.
Date |
Time |
Description of Activity |
1 Jul 2023 |
0156 |
Explosion. |
2 Jul 2023 |
0305 |
Explosion. |
4 Jul 2023 |
0229, 0635 |
Event at 0635 produced a gas-and-steam plume that rose 700 m and drifted W; seen by residents in Liberia (21 km SW). |
9 Jul 2023 |
1843 |
Explosion. |
21 Jul 2023 |
0705 |
Explosion. |
26 Jul 2023 |
1807 |
Explosion. |
28 Jul 2023 |
0802 |
Explosion generated a gas-and-steam plume that rose 500 m. |
30 Jul 2023 |
1250 |
Explosion. |
31 Jul 2023 |
2136 |
Explosion. |
11 Aug 2023 |
0828 |
Explosion. |
18 Aug 2023 |
1304 |
Explosion. |
21 Aug 2023 |
1224 |
Explosion generated gas-and-steam plumes rose 500-600 m. |
22 Aug 2023 |
0749 |
Explosion generated gas-and-steam plumes rose 500-600 m. |
24 Aug 2023 |
1900 |
Explosion. |
25 Aug 2023 |
0828 |
Event produced a steam-and-gas plume that rose 3 km and drifted NW. |
27-28 Aug 2023 |
0813 |
Four small events; the event at 0813 on 28 August lasted two minutes and generated a steam-and-gas plume that rose 2.5 km. |
1 Sep 2023 |
1526 |
Explosion generated plume that rose 2 km and ejected material onto the flanks. |
2-3 Sep 2023 |
- |
Small explosions detected in infrasound data. |
4 Sep 2023 |
1251 |
Gas-and-steam plume rose 1 km and drifted W. |
7 Nov 2023 |
1113 |
Explosion. |
8 Nov 2023 |
0722 |
Explosion. |
12 Nov 2023 |
0136 |
Small gas emissions. |
14 Nov 2023 |
0415 |
Small gas emissions. |
According to OVSICORI-UNA, during July-October the average weekly sulfur dioxide (SO2) flux ranged from 68 to 240 tonnes/day. However, in mid-November the flux increased to as high as 334 tonnes/day, the highest value measured in recent years. The high SO2 flux in mid-November was also detected by the TROPOMI instrument on the Sentinel-5P satellite (figure 43).
Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.
Information Contacts: Observatorio Vulcanológico Sismológica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard MD 20771, USA (URL: https://so2.gsfc.nasa.gov/).
Bezymianny (Russia) — November 2023
Cite this Report
Bezymianny
Russia
55.972°N, 160.595°E; summit elev. 2882 m
All times are local (unless otherwise noted)
Explosion on 18 October 2023 sends ash plume 8 km high; lava flows and incandescent avalanches
Bezymianny, located on Russia’s Kamchatka Peninsula, has had eruptions since 1955 characterized by dome growth, explosions, pyroclastic flows, ash plumes, and ashfall. Activity during November 2022-April 2023 included gas-and-steam emissions, lava dome collapses generating avalanches, and persistent thermal activity. Similar eruptive activity continued from May through October 2023, described here based on information from weekly and daily reports of the Kamchatka Volcano Eruptions Response Team (KVERT), notices from Tokyo VAAC (Volcanic Ash Advisory Center), and from satellite data.
Overall activity decreased after the strong period of activity in late March through April 2023, which included ash explosions during 29 March and 7-8 April 2023 that sent plumes as high as 10-12 km altitude, along with dome growth and lava flows (BGVN 48:05). This reduced activity can be seen in the MIROVA thermal detection system graph (figure 56), which was consistent with data from the MODVOLC thermal detection system and with Sentinel-2 satellite images that showed persistent hotspots in the summit crater when conditions allowed observations. A renewed period of strong activity began in mid-October 2023.
Activity increased significantly on 17 October 2023 when large collapses began during 0700-0830 on the E flanks of the lava dome and continued to after 0930 the next day (figure 57). Ash plumes rose to an altitude of 4.5-5 km, extending 220 km NNE by 18 October. A large explosion at 1630 on 18 October produced an ash plume that rose to an altitude of 11 km (8 km above the summit) and drifted NNE and then NW, extending 900 km NW within two days at an altitude of 8 km. Minor ashfall was noted in Kozyrevsk (45 km WNW). At 0820 on 20 October an ash plume was identified in satellite images drifting 100 km ENE at altitudes of 4-4.5 km.
Lava flows and hot avalanches from the dome down the SE flank continued over the next few days, including 23 October when clear conditions allowed good observations (figures 58 and 59). A large thermal anomaly was observed over the volcano through 24 October, and in the summit crater on 30 October (figure 60). Strong fumarolic activity continued, with numerous avalanches and occasional incandescence. By the last week of October, volcanic activity had decreased to a level consistent with that earlier in the reporting period.
Aviation warnings were frequently updated during 17-20 October. KVERT issued a Volcano Observatory Notice for Aviation (VONA) on 17 October at 1419 and 1727 (0219 and 0527 UTC) raising the Aviation Color Code (ACC) from Yellow to Orange (second highest level). The next day, KVERT issued a VONA at 1705 (0505 UTC) raising the ACC to Red (highest level) but lowered it back to Orange at 2117 (0917 UTC). After another decrease to Yellow and back to Orange, the ACC was reduced to Yellow on 20 October at 1204 (0004 UTC). In addition, the Tokyo VAAC issued a series of Volcanic Ash Advisories beginning on 16 October and continuing through 30 October.
Geologic Background. The modern Bezymianny, much smaller than its massive neighbors Kamen and Kliuchevskoi on the Kamchatka Peninsula, was formed about 4,700 years ago over a late-Pleistocene lava-dome complex and an edifice built about 11,000-7,000 years ago. Three periods of intensified activity have occurred during the past 3,000 years. The latest period, which was preceded by a 1,000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large open crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.
Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Kamchatka Volcanological Station, Kamchatka Branch of Geophysical Survey, (KB GS RAS), Klyuchi, Kamchatka Krai, Russia (URL: http://volkstat.ru/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).chr
Kilauea (United States) — January 2023
Cite this Report
Kilauea
United States
19.421°N, 155.287°W; summit elev. 1222 m
All times are local (unless otherwise noted)
Low-level lava effusions in the lava lake at Halema’uma’u during July-December 2022
Kīlauea is the southeastern-most volcano in Hawaii and overlaps the E flank of the Mauna Loa volcano. Its East Rift Zone (ERZ) has been intermittently active for at least 2,000 years. An extended eruption period began in January 1983 and was characterized by open lava lakes and lava flows from the summit caldera and the East Rift Zone. During May 2018 magma migrated into the Lower East Rift Zone (LERZ) and opened 24 fissures along a 6-km-long NE-trending fracture zone that produced lava flows traveling in multiple directions. As lava emerged from the fissures, the lava lake at Halema'uma'u drained and explosions sent ash plumes to several kilometers altitude (BGVN 43:10).
The current eruption period started during September 2021 and has recently been characterized by lava effusions, spatter, and sulfur dioxide emissions in the active Halema’uma’u lava lake (BGVN 47:08). Lava effusions, some spatter, and sulfur dioxide emissions have continued during this reporting period of July through December 2022 using daily reports, volcanic activity notices, and abundant photo, map, and video data from the US Geological Survey's (USGS) Hawaiian Volcano Observatory (HVO).
Summary of activity during July-December 2022. Low-level effusions have continued at the western vent of the Halema’uma’u crater during July through early December 2022. Occasional weak ooze-outs (also called lava break outs) would occur along the margins of the crater floor. The overall level of the active lava lake throughout the reporting period gradually increased due to infilling, however it stagnated in mid-September (table 13). During September through November, activity began to decline, though lava effusions persisted at the western vent. By 9 December, the active part of the lava lake had completely crusted over, and incandescence was no longer visible.
Table 13. Summary of measurements taken during overflights at Kīlauea that show a gradual increase in the active lava lake level and the volume of lava effused since 29 September 2021. Lower activity was reported during September-October. Data collected during July-December 2022. Courtesy of HVO.
Date: |
Level of the active lava lake (m): |
Cumulative volume of lava effused (million cubic meters): |
7 Jul 2022 |
130 |
95 |
19 Jul 2022 |
133 |
98 |
4 Aug 2022 |
136 |
102 |
16 Aug 2022 |
137 |
104 |
12 Sep 2022 |
143 |
111 |
5 Oct 2022 |
143 |
111 |
28 Oct 2022 |
143 |
111 |
Activity during July 2022. Lava effusions were reported from the western vent in the Halema’uma’u crater, along with occasional weak ooze-outs along the margins of the crater floor. The height of the lava lake was variable due to deflation-inflation tilt events; for example, the lake level dropped approximately 3-4 m during a summit deflation-inflation event reported on 1 July. Webcam images taken during the night of 6-12 July showed intermittent low-level spattering at the western vent that rose less than 10 m above the vent (figure 519). Measurements made during an overflight on 7 July indicated that the crater floor was infilled about 130 m and that 95 million cubic meters of lava had been effused since 29 September 2021. A single, relatively small lava ooze-out was active to the S of the lava lake. Around midnight on 8 July there were two brief periods of lava overflow onto the lake margins. On 9 July lava ooze-outs were reported near the SE and NE edges of the crater floor and during 10-11 July they occurred near the E, NE, and NW edges. On 16 July crater incandescence was reported, though the ooze-outs and spattering were not visible. On 18 July overnight webcam images showed incandescence in the western vent complex and two ooze-outs were reported around 0000 and 0200 on 19 July. By 0900 there were active ooze-outs along the SW edge of the crater floor. Measurements made from an overflight on 19 July indicated that the crater floor was infilled about 133 m and 98 million cubic meters of lava had erupted since 29 September 2021 (figure 520). On 20 July around 1600 active ooze-outs were visible along the N edge of the crater, which continued through the next day. Extensive ooze-outs occurred along the W margin during 24 July until 1900; on 26 July minor ooze-outs were noted along the N margin. Minor spattering was visible on 29 July along the E margin of the lake. The sulfur dioxide emission rates ranged 650-2,800 tons per day (t/d), the higher of which was measured on 8 July (figure 519).
Activity during August 2022. The eruption continued in the Halema’uma’u crater at the western vent. According to HVO the lava in the active lake remained at the level of the bounding levees. Occasional minor ooze-outs were observed along the margins of the crater floor. Strong nighttime crater incandescence was visible after midnight on 6 August over the western vent cone. During 6-7 August scattered small lava lobes were active along the crater floor and incandescence persisted above the western vent through 9 August. During 7-9 August HVO reported a single lava effusion source was active along the NW margin of the crater floor. Measurements from an overflight on 4 August indicated that the crater floor was infilled about 136 m total and that 102 million cubic meters of lava had been erupted since the start of the eruption. Lava breakouts were reported along the N, NE, E, S, and W margins of the crater during 10-16 August. Another overflight survey conducted on 16 August indicated that the crater floor infilled about 137 m and 104 million cubic meters of lava had been erupted since September 2021. Measured sulfur dioxide emissions rates ranged 1,150-2,450 t/d, the higher of which occurred on 8 August.
Activity during September 2022. During September, lava effusion continued from the western vent into the active lava lake and onto the crater floor. Intermittent minor ooze-outs were reported through the month. A small ooze-out was visible on the W crater floor margin at 0220 on 2 September, which showed decreasing surface activity throughout the day, but remained active through 3 September. On 3 September around 1900 a lava outbreak occurred along the NW margin of the crater floor but had stopped by the evening of 4 September. Field crews monitoring the summit lava lake on 9 September observed spattering on the NE margin of the lake that rose no higher than 10 m, before falling back onto the lava lake crust (figure 521). Overflight measurements on 12 September indicated that the crater floor was infilled a total of 143 m and 111 million cubic meters of lava had been erupted since September 2021. Extensive breakouts in the W and N part of the crater floor were reported at 1600 on 20 September and continued into 26 September. The active part of the lava lake dropped by 10 m while other parts of the crater floor dropped by several meters. Summit tiltmeters recorded a summit seismic swarm of more than 80 earthquakes during 1500-1800 on 21 September, which occurred about 1.5 km below Halema’uma’u; a majority of these were less than Mw 2. By 22 September the active part of the lava lake was infilled about 2 m. On 23 September the western vent areas exhibited several small spatter cones with incandescent openings, along with weak, sporadic spattering (figure 522). The sulfur dioxide emission rate ranged from 930 t/d to 2,000 t/d, the higher of which was measured on 6 September.
Activity during October 2022. Activity during October declined slightly compared to previous months, though lava effusions persisted from the western vent into the active lava lake and onto the crater floor during October (figure 523). Slight variations in the lava lake were noted throughout the month. HVO reported that around 0600 on 3 October the level of the lava lake has lowered slightly. Overflight measurements taken on 5 October indicated that the crater floor was infilled a total of about 143 m and that 111 million cubic meters of lava had been effused since September 2021. During 6-7 October the lake gradually rose 0.5 m. Sulfur dioxide measurements made on 22 October had an emission rate of 700 t/d. Another overflight taken on 28 October showed that there was little to no change in the elevation of the crater floor: the crater floor was infilled a total of 143 m and 111 million cubic meters of lava had erupted since the start of the eruption.
Activity during November 2022. Activity remained low during November, though HVO reported that lava from the western vent continued to effuse into the active lava lake and onto the crater floor throughout the month. The rate of sulfur dioxide emissions during November ranged from 300-600 t/d, the higher amount of which occurred on 9 November.
Activity during December 2022. Similar low activity was reported during December, with lava effusing from the western vent into the active lava lake and onto the crater floor. During 4-5 December the active part of the lava lake was slightly variable in elevation and fluctuated within 1 m. On 9 December HVO reported that lava was no longer erupting from the western vent in the Halema’uma’u crater and that sulfur dioxide emissions had returned to near pre-eruption background levels; during 10-11 December, the lava lake had completely crusted over, and no incandescence was visible (figure 524). Time lapse camera images covering the 4-10 December showed that the crater floor showed weak deflation and no inflation. Some passive events of crustal overturning were reported during 14-15 December, which brought fresh incandescent lava to the lake surface. The sulfur dioxide emission rate was approximately 200 t/d on 14 December. A smaller overturn event on 17 December and another that occurred around 0000 and into the morning of 20 December were also detected. A small seismic swarm was later detected on 30 December.
Geologic Background. Kilauea overlaps the E flank of the massive Mauna Loa shield volcano in the island of Hawaii. Eruptions are prominent in Polynesian legends; written documentation since 1820 records frequent summit and flank lava flow eruptions interspersed with periods of long-term lava lake activity at Halemaumau crater in the summit caldera until 1924. The 3 x 5 km caldera was formed in several stages about 1,500 years ago and during the 18th century; eruptions have also originated from the lengthy East and Southwest rift zones, which extend to the ocean in both directions. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1,100 years old; 70% of the surface is younger than 600 years. The long-term eruption from the East rift zone between 1983 and 2018 produced lava flows covering more than 100 km2, destroyed hundreds of houses, and added new coastline.
Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI 96718, USA (URL: http://hvo.wr.usgs.gov/).
Nyamulagira (DR Congo) — November 2023
Cite this Report
Nyamulagira
DR Congo
1.408°S, 29.2°E; summit elev. 3058 m
All times are local (unless otherwise noted)
Lava flows and thermal activity during May-October 2023
Nyamulagira (also known as Nyamuragira) is a shield volcano in the Democratic Republic of Congo with the summit truncated by a small 2 x 2.3 km caldera with walls up to about 100 m high. Documented eruptions have occurred within the summit caldera, as well as from numerous flank fissures and cinder cones. The current eruption period began in April 2018 and has more recently been characterized by summit crater lava flows and thermal activity (BGVN 48:05). This report describes lava flows and variable thermal activity during May through October 2023, based on information from the Observatoire Volcanologique de Goma (OVG) and various satellite data.
Lava lake activity continued during May. The MIROVA (Middle InfraRed Observation of Volcanic Activity) system recorded moderate-to-strong thermal activity throughout the reporting period; activity was more intense during May and October and relatively weaker from June through September (figure 95). The MODVOLC thermal algorithm, detected a total of 209 thermal alerts. There were 143 hotspots detected during May, eight during June, nine during September, and 49 during October. This activity was also reflected in infrared satellite images, where a lava flow was visible in the NW part of the crater on 7 May and strong activity was seen in the center of the crater on 4 October (figure 96). Another infrared satellite image taken on 12 May showed still active lava flows along the NW margin of the crater. According to OVG lava effusions were active during 7-29 May and moved to the N and NW parts of the crater beginning on 9 May. Strong summit crater incandescence was visible from Goma (27 km S) during the nights of 17, 19, and 20 May (figure 97). On 17 May there was an increase in eruptive activity, which peaked at 0100 on 20 May. Notable sulfur dioxide plumes drifted NW and W during 19-20 May (figure 98). Drone footage acquired in partnership with the USGS (United States Geological Survey) on 20 May captured images of narrow lava flows that traveled about 100 m down the W flank (figure 99). Data from the Rumangabo seismic station indicated a decreasing trend in activity during 17-21 May. Although weather clouds prevented clear views of the summit, a strong thermal signature on the NW flank was visible in an infrared satellite image on 22 May, based on an infrared satellite image. On 28 May the lava flows on the upper W flank began to cool and solidify. By 29 May seismicity returned to levels similar to those recorded before the 17 May increase. Lava effusion continued but was confined to the summit crater; periodic crater incandescence was observed.
Low-level activity was noted during June through October. On 1 June OVG reported that seismicity remained at lower levels and that crater incandescence had been absent for three days, though infrared satellite imagery showed continued lava effusion in the summit crater. The lava flows on the flanks covered an estimated 0.6 km2. Satellite imagery continued to show thermal activity confined to the lava lake through October (figure 96), although no lava flows or significant sulfur dioxide emissions were reported.
Geologic Background. Africa's most active volcano, Nyamulagira (also known as Nyamuragira), is a massive high-potassium basaltic shield about 25 km N of Lake Kivu and 13 km NNW of the steep-sided Nyiragongo volcano. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Documented eruptions have occurred within the summit caldera, as well as from the numerous flank fissures and cinder cones. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Recent lava flows extend down the flanks more than 30 km from the summit as far as Lake Kivu; extensive lava flows from this volcano have covered 1,500 km2 of the western branch of the East African Rift.
Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Charles Balagizi, Goma Volcano Observatory, Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo.
Bagana (Papua New Guinea) — October 2023
Cite this Report
Bagana
Papua New Guinea
6.137°S, 155.196°E; summit elev. 1855 m
All times are local (unless otherwise noted)
Explosions, ash plumes, ashfall, and lava flows during April-September 2023
The remote volcano of Bagana is located in central Bougainville Island, Papua New Guinea. Recorded eruptions date back to 1842 and activity has consisted of effusive activity that has built a small lava dome in the summit crater and occasional explosions that produced pyroclastic flows. The most recent eruption has been ongoing since February 2000 and has produced occasional explosions, ash plumes, and lava flows. More recently, activity has been characterized by ongoing effusive activity and ash emissions (BGVN 48:04). This report updates activity from April through September 2023 that has consisted of explosions, ash plumes, ashfall, and lava flows, using information from the Darwin Volcanic Ash Advisory Center (VAAC) and satellite data.
An explosive eruption was reported on 7 July that generated a large gas-and-ash plume to high altitudes and caused significant ashfall in local communities; the eruption plume had reached upper tropospheric (16-18 km altitude) altitudes by 2200, according to satellite images. Sulfur dioxide plumes were detected in satellite images on 8 July and indicated that the plume was likely a mixture of gas, ice, and ash. A report issued by the Autonomous Bougainville Government (ABG) (Torokina District, Education Section) on 10 July noted that significant ash began falling during 2000-2100 on 7 July and covered most areas in the Vuakovi, Gotana (9 km SW), Koromaketo, Laruma (25 km W) and Atsilima (27 km NW) villages. Pyroclastic flows also occurred, according to ground-based reports; small deposits confined to one drainage were inspected by RVO during an overflight on 17 July and were confirmed to be from the 7 July event. Ashfall continued until 10 July and covered vegetation, which destroyed bushes and gardens and contaminated rivers and streams.
RVO reported another eruption on 14 July. The Darwin VAAC stated that an explosive event started around 0830 on 15 July and produced an ash plume that rose to 16.5 km altitude by 1000 and drifted N, according to satellite images. The plume continued to drift N and remained visible through 1900, and by 2150 it had dissipated.
Ashfall likely from both the 7 and 15 July events impacted about 8,111 people in Torokina (20 km SW), including Tsito/Vuakovi, Gotana, Koromaketo, Kenaia, Longkogari, Kenbaki, Piva (13 km SW), and Atsinima, and in the Tsitovi district, according to ABG. Significant ashfall was also reported in Ruruvu (22 km N) in the Wakunai District of Central Bougainville, though the thickness of these deposits could not be confirmed. An evacuation was called for the villages in Wakunai, where heavy ashfall had contaminated water sources; the communities of Ruruvu, Togarau, Kakarapaia, Karauturi, Atao, and Kuritaturi were asked to evacuate to a disaster center at the Wakunai District Station, and communities in Torokina were asked to evacuate to the Piva District station. According to a news article, more than 7,000 people needed temporary accommodations, with about 1,000 people in evacuation shelters. Ashfall had deposited over a broad area, contaminating water supplies, affecting crops, and collapsing some roofs and houses in rural areas. Schools were temporarily shut down. Intermittent ash emissions continued through the end of July and drifted NNW, NW, and SW. Fine ashfall was reported on the coast of Torokina, and ash plumes also drifted toward Laruma and Atsilima.
A small explosive eruption occurred at 2130 on 28 July that ejected material from the crater vents, according to reports from Torokina, in addition to a lava flow that contained two lobes. A second explosion was detected at 2157. Incandescence from the lava flow was visible from Piva as it descended the W flank around 2000 on 29 July (figure 47). The Darwin VAAC reported that a strong thermal anomaly was visible in satellite images during 30-31 July and that ash emissions rose to 2.4 km altitude and drifted WSW on 30 July. A ground report from RVO described localized emissions at 0900 on 31 July.
The Darwin VAAC reported that ash plumes were identified in satellite imagery at 0800 and 1220 on 12 August and rose to 2.1 km and 3 km altitude and drifted NW and W, respectively. A news report stated that aid was sent to more than 6,300 people that were adversely affected by the eruption. Photos taken during 17-19 August showed ash emissions rising no higher than 1 km above the summit and drifting SE. A small explosion generated an ash plume during the morning of 19 August. Deposits from small pyroclastic flows were also captured in the photos. Satellite images captured lava flows and pyroclastic flow deposits. Two temporary seismic stations were installed near Bagana on 17 August at distances of 7 km WSW (Vakovi station) and 11 km SW (Kepox station). The Kepox station immediately started to record continuous, low-frequency background seismicity.
Satellite data. Little to no thermal activity was detected during April through mid-July 2023; only one anomaly was recorded during early April and one during early June, according to MIROVA (Middle InfraRed Observation of Volcanic Activity) data (figure 48). Thermal activity increased in both power and frequency during mid-July through September, although there were still some short gaps in detected activity. MODVOLC also detected increased thermal activity during August; thermal hotspots were detected a total of five times on 19, 20, and 27 August. Weak thermal anomalies were also captured in infrared satellite images on clear weather days throughout the reporting period on 7, 12, and 17 April, 27 May, 1, 6, 16, and 31 July, and 19 September (figure 48); a strong thermal anomaly was visible on 31 July. Distinct sulfur dioxide plumes that drifted generally NW were intermittently captured by the TROPOMI instrument on the Sentinel-5P satellite and sometimes exceeded two Dobson Units (DUs) (figure 49).
Geologic Background. Bagana volcano, in a remote portion of central Bougainville Island, is frequently active. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although occasional explosive activity produces pyroclastic flows. Lava flows with tongue-shaped lobes up to 50 m thick and prominent levees descend the flanks on all sides.
Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Autonomous Bougainville Government, P.O Box 322, Buka, AROB, PNG (URL: https://abg.gov.pg/); Andrew Tupper (Twitter: @andrewcraigtupp); Simon Carn, Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: http://www.volcarno.com/, Twitter: @simoncarn); Radio NZ (URL: https://www.rnz.co.nz/news/pacific/494464/more-than-7-000-people-in-bougainville-need-temporary-accommodation-after-eruption); USAID, 1300 Pennsylvania Ave, NW, Washington DC 20004, USA (URL: https://www.usaid.gov/pacific-islands/press-releases/aug-08-2023-united-states-provides-immediate-emergency-assistance-support-communities-affected-mount-bagana-volcanic-eruptions).
Mayon (Philippines) — October 2023
Cite this Report
Mayon
Philippines
13.257°N, 123.685°E; summit elev. 2462 m
All times are local (unless otherwise noted)
Lava flows, pyroclastic flows, ash emissions, and seismicity during April-September 2023
Mayon is located in the Philippines and has steep upper slopes capped by a small summit crater. Historical eruptions date back to 1616 CE that have been characterized by Strombolian eruptions, lava flows, pyroclastic flows, and mudflows. Eruptions mostly originated from a central conduit. Pyroclastic flows and mudflows have commonly descended many of the approximately 40 drainages that surround the volcano. The most recent eruption occurred during June through October 2022 and consisted of lava dome growth and gas-and-steam emissions (BGVN 47:12). A new eruption was reported during late April 2023 and has included lava flows, pyroclastic density currents, ash emissions, and seismicity. This report covers activity during April through September 2023 based on daily bulletins from the Philippine Institute of Volcanology and Seismology (PHIVOLCS).
During April through September 2023, PHIVOLCS reported near-daily rockfall events, frequent volcanic earthquakes, and sulfur dioxide measurements. Gas-and-steam emissions rose 100-900 m above the crater and drifted in different directions. Nighttime crater incandescence was often visible during clear weather and was accompanied by incandescent avalanches of material. Activity notably increased during June when lava flows were reported on the S, SE, and E flanks (figure 52). The MIROVA graph (Middle InfraRed Observation of Volcanic Activity) showed strong thermal activity coincident with these lava flows, which remained active through September (figure 53). According to the MODVOLC thermal algorithm, a total of 110 thermal alerts were detected during the reporting period: 17 during June, 40 during July, 27 during August, and 26 during September. During early June, pyroclastic density currents (PDCs) started to occur more frequently.
Low activity was reported during much of April and May; gas-and-steam emissions rose 100-900 m above the crater and generally drifted in different directions. A total of 52 rockfall events and 18 volcanic earthquakes were detected during April and 147 rockfall events and 13 volcanic events during May. Sulfur dioxide flux measurements ranged between 400-576 tons per day (t/d) during April, the latter of which was measured on 29 April and between 162-343 t/d during May, the latter of which was measured on 13 May.
Activity during June increased, characterized by lava flows, pyroclastic density currents (PDCs), crater incandescence and incandescent rockfall events, gas-and-steam emissions, and continued seismicity. Weather clouds often prevented clear views of the summit, but during clear days, moderate gas-and-steam emissions rose 100-2,500 m above the crater and drifted in multiple directions. A total of 6,237 rockfall events and 288 volcanic earthquakes were detected. The rockfall events often deposited material on the S and SE flanks within 700-1,500 m of the summit crater and ash from the events drifted SW, S, SE, NE, and E. Sulfur dioxide emissions ranged between 149-1,205 t/d, the latter of which was measured on 10 June. Short-term observations from EDM and electronic tiltmeter monitoring indicated that the upper slopes were inflating since February 2023. Longer-term ground deformation parameters based on EDM, precise leveling, continuous GPS, and electronic tilt monitoring indicated that the volcano remained inflated, especially on the NW and SE flanks. At 1000 on 5 June the Volcano Alert Level (VAL) was raised to 2 (on a 0-5 scale). PHIVOLCS noted that although low-level volcanic earthquakes, ground deformation, and volcanic gas emissions indicated unrest, the steep increase in rockfall frequency may indicate increased dome activity.
A total of 151 dome-collapse PDCs occurred during 8-9 and 11-30 June, traveled 500-2,000 m, and deposited material on the S flank within 2 km of the summit crater. During 8-9 June the VAL was raised to 3. At approximately 1947 on 11 June lava flow activity was reported; two lobes traveled within 500 m from the crater and deposited material on the S (Mi-isi), SE (Bonga), and E (Basud) flanks. Weak seismicity accompanied the lava flow and slight inflation on the upper flanks. This lava flow remained active through 30 June, moving down the S and SE flank as far as 2.5 km and 1.8 km, respectively and depositing material up to 3.3 km from the crater. During 15-16 June traces of ashfall from the PDCs were reported in Sitio Buga, Nabonton, City of Ligao and Purok, and San Francisco, Municipality of Guinobatan. During 28-29 June there were two PDCs generated by the collapse of the lava flow front, which generated a light-brown ash plume 1 km high. Satellite monitors detected significant concentrations of sulfur dioxide beginning on 29 June. On 30 June PDCs primarily affected the Basud Gully on the E flank, the largest of which occurred at 1301 and lasted eight minutes, based on the seismic record. Four PDCs generated between 1800 and 2000 that lasted approximately four minutes each traveled 3-4 km on the E flank and generated an ash plume that rose 1 km above the crater and drifted N and NW. Ashfall was recorded in Tabaco City.
Similar strong activity continued during July; slow lava effusion remained active on the S and SE flanks and traveled as far as 2.8 km and 2.8 km, respectively and material was deposited as far as 4 km from the crater. There was a total of 6,983 rockfall events and 189 PDCs that affected the S, SE, and E flanks. The volcano network detected a total of 2,124 volcanic earthquakes. Continuous gas-and-steam emissions rose 200-2,000 m above the crater and drifted in multiple directions. Sulfur dioxide emissions averaged 792-4,113 t/d, the latter of which was measured on 28 July. During 2-4 July three PDCs were generated from the collapse of the lava flow and resulting light brown plumes rose 200-300 m above the crater. Continuous tremor pulses were reported beginning at 1547 on 3 July through 7 July at 1200, at 2300 on 8 July and going through 0300 on 10 July, and at 2300 on 16 July, as recorded by the seismic network. During 6-9 July there were 10 lava flow-collapse-related PDCs that generated light brown plumes 300-500 m above the crater. During 10-11 July light ashfall was reported in some areas of Mabinit, Legazpi City, Budiao and Salvacion, Daraga, and Camalig, Albay. By 18 July the lava flow advanced 600 m on the E flank as well.
During 1733 on 18 July and 0434 on 19 July PHIVOLCS reported 30 “ashing” events, which are degassing events accompanied by audible thunder-like sounds and entrained ash at the crater, which produced short, dark plumes that drifted SW. These events each lasted 20-40 seconds, and plume heights ranged from 150-300 m above the crater, as recorded by seismic, infrasound, visual, and thermal monitors. Three more ashing events occurred during 19-20 July. Short-term observations from electronic tilt and GPS monitoring indicate deflation on the E lower flanks in early July and inflation on the NW middle flanks during the third week of July. Longer-term ground deformation parameters from EDM, precise leveling, continuous GPS, and electronic tilt monitoring indicated that the volcano was still generally inflated relative to baseline levels. A short-lived lava pulse lasted 28 seconds at 1956 on 21 July, which was accompanied by seismic and infrasound signals. By 22 July, the only lava flow that remained active was on the SE flank, and continued to extend 3.4 km, while those on the S and E flanks weakened markedly. One ashing event was detected during 30-31 July, whereas there were 57 detected during 31 July-1 August; according to PHIVOLCS beginning at approximately 1800 on 31 July eruptive activity was dominated by phases of intermittent ashing, as well as increased in the apparent rates of lava effusion from the summit crater. The ashing phases consisted of discrete events recorded as low-frequency volcanic earthquakes (LFVQ) typically 30 seconds in duration, based on seismic and infrasound signals. Gray ash plume rose 100 m above the crater and generally drifted NE. Shortly after these ashing events began, new lava began to effuse rapidly from the crater, feeding the established flowed on the SE, E, and E flanks and generating frequent rockfall events.
Intensified unrest persisted during August. There was a total of 4,141 rockfall events, 2,881 volcanic earthquakes, which included volcanic tremor events, 32 ashing events, and 101 PDCs detected throughout the month. On clear weather days, gas-and-steam emissions rose 300-1,500 m above the crater and drifted in different directions (figure 54). Sulfur dioxide emissions averaged 735-4,756 t/d, the higher value of which was measured on 16 August. During 1-2 August the rate of lava effusion decreased, but continued to feed the flows on the SE, S, and E flanks, maintaining their advances to 3.4 km, 2.8 km, and 1.1 km from the crater, respectively (figure 55). Rockfall and PDCs generated by collapses at the lava flow margins and from the summit dome deposited material within 4 km of the crater. During 3-4 August there were 10 tremor events detected that lasted 1-4 minutes. Short-lived lava pulse lasted 35 seconds and was accompanied by seismic and infrasound signals at 0442 on 6 August. Seven collapses were recorded at the front of the lava flow during 12-14 August.
During September, similar activity of slow lava effusion, PDCs, gas-and-steam emissions, and seismicity continued. There was a total of 4,452 rockfall events, 329 volcanic earthquakes, which included volcanic tremor events, two ashing events, and 85 PDCs recorded throughout the month. On clear weather days, gas-and-steam emissions rose 100-1,500 m above the crater and drifted in multiple directions. Sulfur dioxide emissions averaged 609-2,252 t/d, the higher average of which was measured on 6 September. Slow lava effusion continued advancing on the SE, S, and E flanks, maintaining lengths of 3.4 km, 2.8 km, and 1.1 km, respectively. Rockfall and PDC events generated by collapses along the lava flow margins and at the summit dome deposited material within 4 km of the crater.
Geologic Background. Symmetrical Mayon, which rises above the Albay Gulf NW of Legazpi City, is the most active volcano of the Philippines. The steep upper slopes are capped by a small summit crater. Recorded eruptions since 1616 CE range from Strombolian to basaltic Plinian, with cyclical activity beginning with basaltic eruptions, followed by longer periods of andesitic lava flows. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic density currents and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often damaged populated lowland areas. A violent eruption in 1814 killed more than 1,200 people and devastated several towns.
Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, University of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); William Rogers, Legazpi City, Albay Province, Philippines.
Nishinoshima (Japan) — October 2023
Cite this Report
Nishinoshima
Japan
27.247°N, 140.874°E; summit elev. 100 m
All times are local (unless otherwise noted)
Eruption plumes and gas-and-steam plumes during May-August 2023
Nishinoshima, located about 1,000 km S of Tokyo, is a small island in the Ogasawara Arc in Japan. The island is the summit of a massive submarine volcano that has prominent submarine peaks to the S, W, and NE. Eruptions date back to 1973 and the current eruption period began in October 2022. Recent activity has consisted of small ash plumes and fumarolic activity (BGVN 48:07). This report covers activity during May through August 2023, using information from monthly reports of the Japan Meteorological Agency (JMA) monthly reports and satellite data.
Activity during May through June was relatively low. The Japan Coast Guard (JCG) did overflights on 14 and 22 June and reported white gas-and-steam emissions rising 600 m and 1,200 m from the central crater of the pyroclastic cone, respectively (figure 125). In addition, multiple white gas-and-steam emissions rose from the inner rim of the W side of the crater and from the SE flank of the pyroclastic cone. Discolored brown-to-green water was observed around almost the entire perimeter of the island; on 22 June light green discolored water was observed off the S coast of the island.
Observations from the Himawari meteorological satellite confirmed an eruption on 9 and 10 July. An eruption plume rose 1.6 km above the crater and drifted N around 1300 on 9 July. Satellite images acquired at 1420 and 2020 on 9 July and at 0220 on 10 July showed continuing emissions that rose 1.3-1.6 km above the crater and drifted NE and N. The Tokyo VAAC reported that an ash plume seen by a pilot and identified in a satellite image at 0630 on 21 July rose to 3 km altitude and drifted S.
Aerial observations conducted by JCG on 8 August showed a white-and-gray plume rising from the central crater of the pyroclastic cone, and multiple white gas-and-steam emissions were rising from the inner edge of the western crater and along the NW-SE flanks of the island (figure 126). Brown-to-green discolored water was also noted around the perimeter of the island.
Intermittent low-to-moderate power thermal anomalies were recorded in the MIROVA graph (Middle InfraRed Observation of Volcanic Activity), showing an increase in both frequency and power beginning in July (figure 127). This increase in activity coincides with eruptive activity on 9 and 10 July, characterized by eruption plumes. According to the MODVOLC thermal alert algorithm, one thermal hotspot was recorded on 20 July. Weak thermal anomalies were also detected in infrared satellite imagery, accompanied by strong gas-and-steam plumes (figure 128).
Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Multiple eruptions that began in 2013 completely covered the previous exposed surface and continued to enlarge the island. The island is the summit of a massive submarine volcano that has prominent peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the ocean surface 9 km SSE.
Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).
Krakatau (Indonesia) — October 2023
Cite this Report
Krakatau
Indonesia
6.1009°S, 105.4233°E; summit elev. 285 m
All times are local (unless otherwise noted)
White gas-and-steam plumes and occasional ash plumes during May-August 2023
Krakatau is located in the Sunda Strait between Java and Sumatra, Indonesia. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan cones and left only a remnant of Rakata. The post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones; it has been the site of frequent eruptions since 1927. The current eruption period began in May 2021 and has recently consisted of Strombolian eruptions and ash plumes (BGVN 48:07). This report describes lower levels of activity consisting of ash and white gas-and-steam plumes during May through August 2023, based on information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, referred to as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), MAGMA Indonesia, and satellite data.
Activity was relatively low during May and June. Daily white gas-and-steam emissions rose 25-200 m above the crater and drifted in different directions. Five ash plumes were detected at 0519 on 10 May, 1241 on 11 May, 0920 on 12 May, 2320 on 12 May, and at 0710 on 13 May, and rose 1-2.5 km above the crater and drifted SW. A webcam image taken on 12 May showed ejection of incandescent material above the vent. A total of nine ash plumes were detected during 6-11 June: at 1434 and 00220 on 6 and 7 June the ash plumes rose 500 m above the crater and drifted NW, at 1537 on 8 June the ash plume rose 1 km above the crater and drifted SW, at 0746 and at 0846 on 9 June the ash plumes rose 800 m and 3 km above the crater and drifted SW, respectively, at 0423, 1431, and 1750 on 10 June the ash plumes rose 2 km, 1.5 km, and 3.5 km above the crater and drifted NW, respectively, and at 0030 on 11 June an ash plume rose 2 km above the crater and drifted NW. Webcam images taken on 10 and 11 June at 0455 and 0102, respectively, showed incandescent material ejected above the vent. On 19 June an ash plume at 0822 rose 1.5 km above the crater and drifted SE.
Similar low activity of white gas-and-steam emissions and few ash plumes were reported during July and August. Daily white gas-and-steam emissions rose 25-300 m above the crater and drifted in multiple directions. Three ash plumes were reported at 0843, 0851, and 0852 on 20 July that rose 500-2,000 m above the crater and drifted NW.
The MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data showed intermittent low-to-moderate power thermal anomalies during May through August 2023 (figure 140). Although activity was often obscured by weather clouds, a thermal anomaly was visible in an infrared satellite image of the crater on 12 May, accompanied by an eruption plume that drifted SW (figure 141).
Geologic Background. The renowned Krakatau (frequently mis-named as Krakatoa) volcano lies in the Sunda Strait between Java and Sumatra. Collapse of an older edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of that volcano are preserved in Verlaten and Lang Islands; subsequently the Rakata, Danan, and Perbuwatan cones were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption caused more than 36,000 fatalities, most as a result of tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones. Anak Krakatau has been the site of frequent eruptions since 1927.
Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).
Villarrica (Chile) — October 2023
Cite this Report
Villarrica
Chile
39.42°S, 71.93°W; summit elev. 2847 m
All times are local (unless otherwise noted)
Strombolian activity, gas-and-ash emissions, and crater incandescence during April-September 2023
Villarrica, in central Chile, consists of a 2-km-wide caldera that formed about 3,500 years ago and is located at the base of the presently active cone at the NW margin of a 6-km-wide caldera. Historical eruptions eruptions date back to 1558 and have been characterized by mild-to-moderate explosive activity with occasional lava effusions. The current eruption period began in December 2014 and has recently consisted of nighttime crater incandescence, ash emissions, and seismicity (BGVN 48:04). This report covers activity during April through September 2023 and describes occasional Strombolian activity, gas-and-ash emissions, and nighttime crater incandescence. Information for this report primarily comes from the Southern Andes Volcano Observatory (Observatorio Volcanológico de Los Andes del Sur, OVDAS), part of Chile's National Service of Geology and Mining (Servicio Nacional de Geología y Minería, SERNAGEOMIN) and satellite data.
Seismicity during April consisted of long period (LP) events and tremor (TRE); a total of 9,413 LP-type events and 759 TR-type events were detected throughout the month. Nighttime crater incandescence persisted and was visible in the degassing column. Sulfur dioxide data was obtained using Differential Absorption Optical Spectroscopy Equipment (DOAS) that showed an average value of 1,450 ± 198 tons per day (t/d) during 1-15 April and 1,129 ± 201 t/d during 16-30 April, with a maximum daily value of 2,784 t/d on 9 April. Gas-and-steam emissions of variable intensities rose above the active crater as high as 1.3 km above the crater on 13 April. Strombolian explosions were not observed and there was a slight decrease in the lava lake level.
There were 14,123 LP-type events and 727 TR-type events detected during May. According to sulfur dioxide measurements taken with DOAS equipment, the active crater emitted an average value of 1,826 ± 482 t/d during 1-15 May and 912 ± 41 t/d during 16-30 May, with a daily maximum value of 5,155 t/d on 13 May. Surveillance cameras showed continuous white gas-and-steam emissions that rose as high as 430 m above the crater on 27 May. Nighttime incandescence illuminated the gas column less than 300 m above the crater rim was and no pyroclastic emissions were reported. A landslide was identified on 13 May on the E flank of the volcano 50 m from the crater rim and extending 300 m away; SERNAGEOMIN noted that this event may have occurred on 12 May. During the morning of 27 and 28 May minor Strombolian explosions characterized by incandescent ejecta were recorded at the crater rim; the last reported Strombolian explosions had occurred at the end of March.
Seismic activity during June consisted of five volcano-tectonic (VT)-type events, 21,606 LP-type events, and 2,085 TR-type events. The average value of sulfur dioxide flux obtained by DOAS equipment was 1,420 ± 217 t/d during 1-15 June and 2,562 ± 804 t/d, with a maximum daily value of 4,810 t/d on 17 June. White gas-and-steam emissions rose less than 480 m above the crater; frequent nighttime crater incandescence was reflected in the degassing plume. On 12 June an emission rose 100 m above the crater and drifted NNW. On 15 June one or several emissions resulted in ashfall to the NE as far as 5.5 km from the crater, based on a Skysat satellite image. Several Strombolian explosions occurred within the crater; activity on 15 June was higher energy and ejected blocks 200-300 m on the NE slope. Surveillance cameras showed white gas-and-steam emissions rising 480 m above the crater on 16 June. On 19 and 24 June low-intensity Strombolian activity was observed, ejecting material as far as 200 m from the center of the crater to the E.
During July, seismicity included 29,319 LP-type events, 3,736 TR-type events, and two VT-type events. DOAS equipment recorded two days of sulfur dioxide emissions of 4,220 t/d and 1,009 t/d on 1 and 13 July, respectively. Constant nighttime incandescence was also recorded and was particularly noticeable when accompanied by eruptive columns on 12 and 16 July. Minor explosive events were detected in the crater. According to Skysat satellite images taken on 12, 13, and 16 July, ashfall deposits were identified 155 m S of the crater. According to POVI, incandescence was visible from two vents on the crater floor around 0336 on 12 July. Gas-and-ash emissions rose as high as 1.2 km above the crater on 13 July and drifted E and NW. A series of gas-and-steam pulses containing some ash deposited material on the upper E flank around 1551 on 13 July. During 16-31 July, average sulfur dioxide emissions of 1,679 ± 406 t/d were recorded, with a maximum daily value of 2,343 t/d on 28 July. Fine ash emissions were also reported on 16, 17, and 23 July.
Seismicity persisted during August, characterized by 27,011 LP-type events, 3,323 TR-type events, and three VT-type events. The average value of sulfur dioxide measurements taken during 1-15 August was 1,642 ± 270 t/d and 2,207 ± 4,549 t/d during 16-31 August, with a maximum daily value of 3,294 t/d on 27 August. Nighttime crater incandescence remained visible in degassing columns. White gas-and-steam emissions rose 480 m above the crater on 6 August. According to a Skysat satellite image from 6 August, ash accumulation was observed proximal to the crater and was mainly distributed toward the E slope. White gas-and-steam emissions rose 320 m above the crater on 26 August. Nighttime incandescence and Strombolian activity that generated ash emissions were reported on 27 August.
Seismicity during September was characterized by five VT-type events, 12,057 LP-type events, and 2,058 TR-type events. Nighttime incandescence persisted. On 2 September an ash emission rose 180 m above the crater and drifted SE at 1643 (figure 125) and a white gas-and-steam plume rose 320 m above the crater. According to the Buenos Aires VAAC, periods of continuous gas-and-ash emissions were visible in webcam images from 1830 on 2 September to 0110 on 3 September. Strombolian activity was observed on 2 September and during the early morning of 3 September, the latter event of which generated an ash emission that rose 60 m above the crater and drifted 100 m from the center of the crater to the NE and SW. Ashfall was reported to the SE and S as far as 750 m from the crater. The lava lake was active during 3-4 September and lava fountaining was visible for the first time since 26 March 2023, according to POVI. Fountains captured in webcam images at 2133 on 3 September and at 0054 on 4 September rose as high as 60 m above the crater rim and ejected material onto the upper W flank. Sulfur dioxide flux of 1,730 t/d and 1,281 t/d was measured on 3 and 4 September, respectively, according to data obtained by DOAS equipment.
Strong Strombolian activity and larger gas-and-ash plumes were reported during 18-20 September. On 18 September activity was also associated with energetic LP-type events and notable sulfur dioxide fluxes (as high as 4,277 t/d). On 19 September Strombolian activity and incandescence were observed. On 20 September at 0914 ash emissions rose 50 m above the crater and drifted SSE, accompanied by Strombolian activity that ejected material less than 100 m SSE, causing fall deposits on that respective flank. SERNAGEOMIN reported that a Planet Scope satellite image taken on 20 September showed the lava lake in the crater, measuring 32 m x 35 m and an area of 0.001 km2. Several ash emissions were recorded at 0841, 0910, 1251, 1306, 1312, 1315, and 1324 on 23 September and rose less than 150 m above the crater. The sulfur dioxide flux value was 698 t/d on 23 September and 1,097 t/d on 24 September. On 24 September the Volcanic Alert Level (VAL) was raised to Orange (the third level on a four-color scale). SENAPRED maintained the Alert Level at Yellow (the middle level on a three-color scale) for the communities of Villarrica, Pucón (16 km N), Curarrehue, and Panguipulli.
During 24-25 September there was an increase in seismic energy (observed at TR-events) and acoustic signals, characterized by 1 VT-type event, 213 LP-type events, and 124 TR-type events. Mainly white gas-and-steam emissions, in addition to occasional fine ash emissions were recorded. During the early morning of 25 September Strombolian explosions were reported and ejected material 250 m in all directions, though dominantly toward the NW. On 25 September the average value of sulfur dioxide flux was 760 t/d. Seismicity during 25-30 September consisted of five VT-type events, 1,937 LP-type events, and 456 TR-type events.
During 25-29 September moderate Strombolian activity was observed and ejected material as far as the crater rim. In addition, ash pulses lasting roughly 50 minutes were observed around 0700 and dispersed ENE. During 26-27 September a TR episode lasted 6.5 hours and was accompanied by discrete acoustic signals. Satellite images from 26 September showed a spatter cone on the crater floor with one vent that measured 10 x 14 m and a smaller vent about 35 m NE of the cone. SERNAGEOMIN reported an abundant number of bomb-sized blocks up to 150 m from the crater, as well as impact marks on the snow, which indicated explosive activity. A low-altitude ash emission was observed drifting NW around 1140 on 28 September, based on webcam images. Between 0620 and 0850 on 29 September an ash emission rose 60 m above the crater and drifted NW. During an overflight taken around 1000 on 29 September scientists observed molten material in the vent, a large accumulation of pyroclasts inside the crater, and energetic degassing, some of which contained a small amount of ash. Block-sized pyroclasts were deposited on the internal walls and near the crater, and a distal ash deposit was also visible. The average sulfur dioxide flux measured on 28 September was 344 t/d. Satellite images taken on 29 September ashfall was deposited roughly 3 km WNW from the crater and nighttime crater incandescence remained visible. The average sulfur dioxide flux value from 29 September was 199 t/d. On 30 September at 0740 a pulsating ash emission rose 1.1 km above the crater and drifted NNW (figure 126). Deposits on the S flank extended as far as 4.5 km from the crater rim, based on satellite images from 30 September.
Infrared MODIS satellite data processed by MIROVA (Middle InfraRed Observation of Volcanic Activity) showed intermittent thermal activity during April through September, with slightly stronger activity detected during late September (figure 127). Small clusters of thermal activity were detected during mid-June, early July, early August, and late September. According to the MODVOLC thermal alert system, a total of four thermal hotspots were detected on 7 July and 3 and 23 September. This activity was also intermittently captured in infrared satellite imagery on clear weather days (figure 128).
Geologic Background. The glacier-covered Villarrica stratovolcano, in the northern Lakes District of central Chile, is ~15 km south of the city of Pucon. A 2-km-wide caldera that formed about 3,500 years ago is located at the base of the presently active, dominantly basaltic to basaltic andesite cone at the NW margin of a 6-km-wide Pleistocene caldera. More than 30 scoria cones and fissure vents are present on the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Eruptions documented since 1558 CE have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.
Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); Proyecto Observación Villarrica Internet (POVI) (URL: http://www.povi.cl/); Sistema y Servicio Nacional de Prevención y Repuesta Ante Desastres (SENAPRED), Av. Beauchef 1671, Santiago, Chile (URL: https://web.senapred.cl/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).
Merapi (Indonesia) — October 2023
Cite this Report
Merapi
Indonesia
7.54°S, 110.446°E; summit elev. 2910 m
All times are local (unless otherwise noted)
Frequent incandescent avalanches during April-September 2023
Merapi, located just north of the major city of Yogyakarta in central Java, Indonesia, has had activity within the last 20 years characterized by pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome. The current eruption period began in late December 2020 and has more recently consisted of ash plumes, intermittent incandescent avalanches of material, and pyroclastic flows (BGVN 48:04). This report covers activity during April through September 2023, based on information from Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG which specifically monitors Merapi. Additional information comes from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), MAGMA Indonesia, the Darwin Volcanic Ash Advisory Centre (VAAC), and various satellite data.
Activity during April through September 2023 primarily consisted of incandescent avalanches of material that mainly affected the SW and W flanks and traveled as far as 2.3 km from the summit (table 25) and white gas-and-steam emissions that rose 10-1,000 m above the crater.
Table 25. Monthly summary of avalanches and avalanche distances recorded at Merapi during April through September 2023. The number of reported avalanches does not include instances where possible avalanches were heard but could not be visually confirmed as a result of inclement weather. Data courtesy of BPPTKG (April-September 2023 daily reports).
Month |
Average number of avalanches per day |
Distance avalanches traveled (m) |
Apr 2023 |
19 |
1,200-2,000 |
May 2023 |
22 |
500-2,000 |
Jun 2023 |
18 |
1,200-2,000 |
Jul 2023 |
30 |
300-2,000 |
Aug 2023 |
25 |
400-2,300 |
Sep 2023 |
23 |
600-2,000 |
BPPTKG reported that during April and May white gas-and-steam emissions rose 10-750 m above the crater, incandescent avalanches descended 500-2,000 m on the SW and W flanks (figure 135). Cloudy weather often prevented clear views of the summit, and sometimes avalanches could not be confirmed. According to a webcam image, a pyroclastic flow was visible on 17 April at 0531. During the week of 28 April and 4 May a pyroclastic flow was reported on the SW flank, traveling up to 2.5 km. According to a drone overflight taken on 17 May the SW lava dome volume was an estimated 2,372,800 cubic meters and the dome in the main crater was an estimated 2,337,300 cubic meters.
During June and July similar activity persisted with white gas-and-steam emissions rising 10-350 m above the crater and frequent incandescent avalanches that traveled 300-2,000 m down the SW, W, and S flanks (figure 136). Based on an analysis of aerial photos taken on 24 June the volume of the SW lava dome was approximately 2.5 million cubic meters. A pyroclastic flow was observed on 5 July that traveled 2.7 km on the SW flank. According to the Darwin VAAC multiple minor ash plumes were identified in satellite images on 19 July that rose to 3.7 km altitude and drifted S and SW. During 22, 25, and 26 July a total of 17 avalanches descended as far as 1.8 km on the S flank.
Frequent white gas-and-steam emissions continued during August and September, rising 10-450 m above the crater. Incandescent avalanches mainly affected the SW and W flanks and traveled 400-2,300 m from the vent (figure 137). An aerial survey conducted on 10 August was analyzed and reported that estimates of the SW dome volume was 2,764,300 cubic meters and the dome in the main crater was 2,369,800 cubic meters.
Frequent and moderate-power thermal activity continued throughout the reporting period, according to a MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data (figure 138). There was an increase in the number of detected anomalies during mid-May. The MODVOLC thermal algorithm recorded a total of 47 thermal hotspots: six during April, nine during May, eight during June, 15 during July, four during August, and five during September. Some of this activity was captured in infrared satellite imagery on clear weather days, sometimes accompanied by incandescent material on the SW flank (figure 139).
Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2,000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequent growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities.
Information Contacts: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, Twitter: @BPPTKG); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Øystein Lund Andersen (URL: https://www.oysteinlundandersen.com/, https://twitter.com/oysteinvolcano).
Ebeko
Russia
50.686°N, 156.014°E; summit elev. 1103 m
All times are local (unless otherwise noted)
Moderate explosive activity with ash plumes continued during June-November 2023
Ebeko, located on the N end of Paramushir Island in Russia’s Kuril Islands just S of the Kamchatka Peninsula, consists of three summit craters along a SSW-NNE line at the northern end of a complex of five volcanic cones. Observed eruptions date back to the late 18th century and have been characterized as small-to-moderate explosions from the summit crater, accompanied by intense fumarolic activity. The current eruptive period began in June 2022, consisting of frequent explosions, ash plumes, and thermal activity (BGVN 47:10, 48:06). This report covers similar activity during June-November 2023, based on information from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.
Moderate explosive activity continued during June-November 2023 (figures 50 and 51). According to visual data from Severo-Kurilsk, explosions sent ash 2-3.5 km above the summit (3-4.5 km altitude) during most days during June through mid-September. Activity after mid-September was slightly weaker, with ash usually reaching less than 2 km above the summit. According to KVERT the volcano in October and November was, with a few exceptions, either quiet or obscured by clouds that prevented satellite observations. KVERT issued Volcano Observatory Notices for Aviation (VONA) on 8 and 12 June, 13 and 22 July, 3 and 21 August, and 31 October warning of potential aviation hazards from ash plumes drifting 3-15 km from the volcano. Based on satellite data, KVERT reported a persistent thermal anomaly whenever weather clouds permitted viewing.
Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.
Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/).
Search Bulletin Archive by Publication Date
Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.
The default month and year is the latest issue available.
Bulletin of the Global Volcanism Network - Volume 22, Number 05 (May 1997)
Managing Editor: Richard Wunderman
Akita-Yakeyama (Japan)
Landslide, explosion, mud- and debris-flows, and tephra
Arenal (Costa Rica)
New pyroclastic cone noted in May
Atmospheric Effects (1995-2001) (Unknown)
German lidar data from early 1991 through mid-1997
Etna (Italy)
New map of the craters Voragine and Bocca Nuova
False Reports (Unknown)
Mexico: Rumors of new volcano prove false; methane combustion implicated
Irazu (Costa Rica)
Comparatively high numbers of earthquakes in April and May
Langila (Papua New Guinea)
Late-May eruptions send plumes up to 4.5 km elevation
Manam (Papua New Guinea)
Continued outbursts and light ashfalls
Monowai (New Zealand)
Seismically inferred eruption during 17-20 April
Poas (Costa Rica)
Number of monthly earthquakes high in April, lower in May
Rabaul (Papua New Guinea)
Inflation precedes 1 June eruption at Tavurvur
Rincon de la Vieja (Costa Rica)
Conspicuous fumaroles and plumes persist
San Cristobal (Nicaragua)
Eruptions cause ashfall on the slopes; plumes to 2,500 m
Soufriere Hills (United Kingdom)
Pyroclastic flows no longer confined by the crater's N wall
Special Announcements (Unknown)
Aviator's observation form
Stromboli (Italy)
New map of the crater terrace
Telica (Nicaragua)
Continued high levels of seismicity
Turrialba (Costa Rica)
Fumarolic temperatures near 90°C; two M 2 earthquakes in May
Akita-Yakeyama (Japan) — May 1997
Cite this Report
Akita-Yakeyama
Japan
39.964°N, 140.757°E; summit elev. 1366 m
All times are local (unless otherwise noted)
Landslide, explosion, mud- and debris-flows, and tephra
On 11 May, rapid movement of an older landslide was followed by a steam explosion that triggered mud flows and a small tephra emission. The event occurred at Sumikawa-Onsen (a hot spring resort) at the foot of Akita-Yakeyama, ~4 km NE of the summit. The following is based on a report by Shintaro Hayashi.
Although the landslide began moving a few days before 11 May, the sliding accelerated 20 minutes before the explosion. A field party saw the fast-moving landslide and took refuge prior to 0800 on 11 May. The explosion was witnessed at 0800 by a pilot flying over the area; he saw a water-and-steam column rising like a geyser, followed within seconds by black smoke emissions.
The explosion, heard as far as 1.4 km away, triggered a mudflow along the Akagawa River and eventually developed into a debris flow downstream. The field party noticed a thin coat of ash covering the mudflow deposits; they concluded that the tephra had issued from the explosion site.
Hayashi suggested that the explosion was triggered by sudden depressurization of a hot water reservoir under the hot spring due to removal of the overlying debris. The depressurization led to sudden boiling, generating sufficient steam pressure to explode. The volume of erupted material was estimated to be between 1,000 and 10,000 m3.
According to Hiroyuri Hamaguchi the precursory vibration and tremor were recorded by a short-period seismometer 1 km NNE of the hot spring. The landslide was as large as 500 m wide, 150 m long, and 500 m deep. After 2000 on 10 May, tremors of increasing amplitude built up. They declined by midnight and then returned at 0400 on 11 May. A maximum amplitude was reached at 0732, followed by a hiatus during 0753-0757. Short- and long-period events took place at 0757 and 0758, respectively.
Hayakawa reported that two hotels at the foot of Akita Yakeyama were completely destroyed by the landslide and lahar; however, there were no casualties because the staff and guests had evacuated. Air photos taken on 12 May by Asia Air Survey Co. can be seen on the internet.
Geologic Background. One of several Japanese volcanoes named Yakeyama ("Burning Mountain"), Akita-Yakeyama is the most recently active of a group of coalescing edifices in NW Honshu immediately west of Hachimantai volcano. The main volcano, Yakeyama, contains a small lava dome in its 600-m-wide summit crater. Tsugamori to the east is a stratovolcano of roughly the same height and has a 2-km-wide crater breached to the NE. The flat-topped lava dome of Kuroshimori lies 4 km S of Yakedake. One of several thermal areas, the Tamagawa Spa at the western foot has strongly acidic and slightly radioactive water. The last magmatic eruption formed the Onigajo lava dome in the summit crater about 5000 years ago. There have been somewhat uncertain reported 19th-century eruptions and mild phreatic eruptions in the 20th century.
Information Contacts: Shintaro Hayashi, Faculty of Education, Akita University, 1-1 Tegata-Gakuen-Cho, Akita 010, Japan; Hiroyuki Hamaguchi, Faculty of Science, Tohoku University, Sendai 980-77, Japan; Yukio Hayakawa, Faculty of Education, Gunma University, 4-2 Aramaki-machi, Mae-bashi-chi, Gunma 371, Japan (URL: http://www.hayakawayukio.jp/); Tatsuro Chiba, Dept of Disaster Prevention, Asia Air Survey Co., 4-2-18 Shinjuku, Shinjuku-ku, Tokyo 160, Japan (URL: http://www.ajiko.co.jp/en/).
Arenal
Costa Rica
10.463°N, 84.703°W; summit elev. 1670 m
All times are local (unless otherwise noted)
New pyroclastic cone noted in May
During April OVSICORI-UNA scientists noted a decrease in eruptive vigor and seismicity at Arenal compared to the previous month. Lavas erupted beginning in January 1997 advanced during April to reach an elevation of ~800 m on the N flank; lavas erupted in March advanced during April to reach an elevation of 1,150 m. During mid-May some advancing lava fronts had reached an elevation of about 1000 m. As has been typical during recent years, Crater D showed only fumarolic activity. Crater C erupted about 288 times during May.
Tremor occurred for as much as 15 hours/day during April, but both tremor and earthquake counts dropped by about a third compared to March, and further still during May. Nonetheless, on 16 May there were 8 hours of continuous tremor (amplitude, 18 mm; dominant frequency, 2.0-3.9 Hz). This tremor accompanied venting of new lava that traveled down the NNW flank. At least through April, the OVSICORI-UNA distance network continued to undergo radial contraction of ~22 ppm/year.
During 10-14 May, Gerardo Soto saw mild Strombolian eruptions tens of minutes apart, with ash columns up to 500 m above the crater. Although this seemed comparatively quiet, the usual vigorous summit fumarolic outgassing prevailed. A new pyroclastic cone was noted in Crater C (figure 82); it stood tens of meters high. Although the volcano lacked pyroclastic flows while he was watching, well developed pyroclastic-flow fans existed on the N and W flanks and summit.
Arenal's first chronicled eruption, in 1968, began an unbroken sequence of Strombolian explosions and basaltic andesite discharges from multiple vents. The volcano can be seen from a lodge 2.8 km S of the vent that enables visitors to hear, to see, and occasionally to smell its dynamism.
Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.
Information Contacts: E. Fernandez, R. Van der Laat, F. de Obaldia, T. Marino, V. Barboza, W. Jimenez, R. Saenz, E. Duarte, M. Martinez, E. Hernandez, and F. Vega, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; G.J. Soto, Oficina de Sismologia y Vulcanologia del Arenal y Miravalles (OSIVAM), Instituto Costarricense de Electricidad (ICE), Apartado 10032-1000, San José, Costa Rica.
Atmospheric Effects (1995-2001) (Unknown) — May 1997
Cite this Report
Atmospheric Effects (1995-2001)
Unknown
Unknown, Unknown; summit elev. m
All times are local (unless otherwise noted)
German lidar data from early 1991 through mid-1997
The Pinatubo aerosol layer at Garmisch-Partenkirchen declined to a minimum in the summer of 1996 (figure 3 and table 11). Since then no further decay was observed. The January-June 1997 average value of the integrated backscatter represents ~70% of 1991 pre-Pinatubo value. It is too early, however, to establish the aerosol load observed since mid-1996 as a new stratospheric background.
Table 11. Lidar data from Germany (October 1996-June 1997) and Hawaii (July-December 1996) showing altitudes of aerosol layers. Backscattering rations are for the Nd-YAG wavelength of 0.53 um, with equivalent ruby values in parentheses for data from Germany; those from Mauna Loa are for the ruby wavelength of 0.69 um. The integrated value shows total backscatter, expressed in steradians-1, integrated over 300-m intervals from the tropopause to 30 km at Garmisch-Partenkirchen and 15.8-33 km at Hawaii. The "ci" stands for cirrus clouds; their presence in the tropopause region usually obscures the lower boundary of the aerosol layer. Courtesy of Horst Jager and John Barnes.
DATE |
LAYER ALTITUDE (km) (peak) |
BACKSCATTERING RATIO |
BACKSCATTERING INTEGRATED |
Garmisch-Partenkirchen, Germany (47.5°N, 11.0°E) |
03 Oct 1996 |
13-28 (16.3) |
1.08 (1.15) |
-- |
24 Oct 1996 |
9-27 (19.8) |
1.08 (1.16) |
-- |
31 Oct 1996 |
Ci-26 (15.2) |
1.06 (1.12) |
-- |
03 Nov 1996 |
Ci-30 (14.4) |
1.06 (1.12) |
-- |
09 Nov 1996 |
12-27 (15.1) |
1.08 (1.15) |
-- |
22 Nov 1996 |
9-32 (15.2) |
1.08 (1.15) |
-- |
04 Dec 1996 |
Ci-30 (16.7) |
1.08 (1.16) |
-- |
26 Dec 1996 |
10-30 (23.3) |
1.07 (1.14) |
-- |
29 Dec 1996 |
9-26 (22.5) |
1.07 (1.13) |
-- |
12 Jan 1997 |
12-29 (17.5) |
1.09 (1.17) |
-- |
15 Jan 1997 |
12-29 (22.1) |
1.09 (1.17) |
-- |
17 Jan 1997 |
10-28 (19.8) |
1.08 (1.15) |
-- |
30 Jan 1997 |
10-27 (18.7) |
1.09 (1.17) |
-- |
06 Feb 1997 |
14-28 (22.5) |
1.09 (1.17) |
-- |
10 Feb 1997 |
11-29 (20.3) |
1.07 (1.13) |
-- |
22 Feb 1997 |
13-27 (19.8) |
1.08 (1.15) |
-- |
01 Mar 1997 |
12-26 (20.9) |
1.08 (1.16) |
-- |
09 Mar 1997 |
11-28 (20.1) |
1.10 (1.20) |
-- |
12 Mar 1997 |
16-26 (20.6) |
1.07 (1.15) |
-- |
02 Apr 1997 |
13-26 (22.7) |
1.07 (1.14) |
-- |
07 Apr 1997 |
12-27 (18.7) |
1.10 (1.20) |
-- |
17 Apr 1997 |
12-26 (15.9) |
1.06 (1.13) |
-- |
24 Apr 1997 |
13-30 (18.5) |
1.10 (1.20) |
-- |
14 May 1997 |
Ci-28 (19.7) |
1.08 (1.16) |
-- |
06 Jun 1997 |
Ci-25 (19.9) |
1.08 (1.16) |
-- |
Mauna Loa, Hawaii (19.5°N, 155.6°W) (corrected data) |
03 Jul 1996 |
16-28 (24.7) |
1.22 |
0.48 x 10-4 |
10 Jul 1996 |
16-33 (24.1) |
1.34 |
0.99 x 10-4 |
17 Jul 1996 |
16-34 (22.0) |
1.29 |
0.83 x 10-4 |
01 Aug 1996 |
16-27 (25.3) |
1.18 |
0.51 x 10-4 |
07 Aug 1996 |
16-32 (24.7) |
1.36 |
0.88 x 10-4 |
20 Aug 1996 |
17-31 (24.4) |
1.34 |
0.91 x 10-4 |
28 Aug 1996 |
16-31 (25.9) |
1.28 |
0.67 x 10-4 |
04 Sep 1996 |
17-29 (23.5) |
1.24 |
0.76 x 10-4 |
11 Sep 1996 |
17-30 (28.0) |
1.40 |
0.88 x 10-4 |
18 Sep 1996 |
17-32 (24.1) |
1.29 |
0.78 x 10-4 |
27 Sep 1996 |
17-32 (24.4) |
1.28 |
0.73 x 10-4 |
02 Oct 1996 |
17-34 (25.3) |
1.36 |
0.84 x 10-4 |
10 Oct 1996 |
16-34 (28.0) |
1.38 |
0.97 x 10-4 |
17 Oct 1996 |
16-33 (25.0) |
1.38 |
0.93 x 10-4 |
31 Oct 1996 |
16-32 (22.1) |
1.30 |
0.95 x 10-4 |
27 Nov 1996 |
15-30 (24.4) |
1.40 |
1.19 x 10-4 |
04 Dec 1996 |
17-34 (23.8) |
1.28 |
0.63 x 10-4 |
10 Dec 1996 |
16-34 (25.0) |
1.37 |
1.00 x 110-4 |
18 Dec 1996 |
16-34 (21.7) |
1.45 |
1.20 x 10-4 |
Correction: Lidar data from Mauna Loa, Hawaii, for July-December 1996 (Bulletin v. 22, no. 3) was incorrect by a factor of 1,000. Corrected data is presented in this issue (table 11).
Geologic Background. The enormous aerosol cloud from the March-April 1982 eruption of Mexico''s El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin thorugh 1989. Lidar data and other atmospheric observations were again published intermittently between 1995 and 2001; those reports are included here.
Information Contacts: Horst Jager, Fraunhofer-Institut fur Atmospharische Umweltforschung, Kreuzeckbahnstrasse 19, D-8100 Garmisch-Partenkirchen, Germany.
Etna
Italy
37.748°N, 14.999°E; summit elev. 3357 m
All times are local (unless otherwise noted)
New map of the craters Voragine and Bocca Nuova
A map prepared from observations carried out on 11 April of Voragine and Bocca Nuova craters is presented in figure 66. The position and altitude of the points shown by stars were measured with ranging binoculars (model 1500 DAES; on loan courtesy Leica-France) from two observation points (circles) on the rim of the craters. Photos of the crater interior were also used to draw the map.
Bocca Nuova crater measured ~170 m deep and had two active cones on the crater floor. The N cone, 25 m above the crater floor, was the most active. Its Strombolian activity threw ejecta close to Monumento, a spot on the crater's N rim. The S cone, 35-40 m above the crater floor, appeared composed of two coalescent cones, and was less active then the N one.
The depth of the Voragine crater measured ~150 m. Quiet steam emission was observed escaping from the large hole on the lower part of the crater floor.
Geologic Background. Mount Etna, towering above Catania on the island of Sicily, has one of the world's longest documented records of volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.
Information Contacts: Pierre Briole, Orazio Consoli, Christine Deplus, and Jean-Luc Froger, Institut de Physique du Globe de Paris, Case 89, 4 place Jussieu, 75252 Paris Cedex 05, France.
False Reports (Unknown) — May 1997
Cite this Report
False Reports
Unknown
Unknown, Unknown; summit elev. m
All times are local (unless otherwise noted)
Mexico: Rumors of new volcano prove false; methane combustion implicated
Although mid-May speculations suggested that a new volcano might be developing in the SE part of the State of Zacatecas, the incident has been attributed to methane combustion unrelated to volcanism. The event took place near the town of Jerez, ~50 km SW of Zacatecas city. Hugo Delgado received a video made by local residents, asked officials about the event, and provided the following report.
"The place where this phenomena is happening is a flat area (a square area [~20 m on each side]) where the ground is smoking (combustion-like blue smoke). There are several cracks on the ground and inside the cracks the earth looks reddish and hot. The people who sent me the video show how a piece of wood burns [when] they put it inside the crack. The area was isolated from the curious people (crowds of families who want to see what is happening visit the place) [by] digging a furrow around the hot site and posting policemen in order to [prevent] children [from falling] into the hot cracks.
"People from the University of Zacatecas and from the SEMARNAP (Ministry of the Environment, Natural Resources, and Fisheries) have visited the area and concluded that microbial activity on concentrated organic material in the area has produced methane and this started to burn since the beginning of May. Burning of methane has [caused] the ground to glow. According to their report, no deformation of the ground has been detected, nor [were] ashes or sulfuric odors detected during their visit. Samples taken from the ground were chemically analyzed [revealing] mainly organic material in them. This kind of [incident] has occurred before in other [parts] of Zacatecas, according to SEMARNAP.
"[It] seems that somebody (unidentified, but according to the local people, it was a retired scientist [transporting] equipment) came to the region to see the phenomena, and commented that it was the birth of a volcano. Thus, the inhabitants became alarmed. Local newspapers have also published that methane is burning there according to the researchers of the University of Zacatecas.
"Officials from the National Center for Disaster Prevention (CENAPRED) knew about this event, and have received the reports from SEMARNAP and the University of Zacatecas. This has been treated not as a volcanic problem but [an] environmental [one].
"A year ago, there was a similar event in the region. Carlos Gutierrez from CENAPRED visited the zone in order to deploy seismic equipment to observe this event. It was determined that organic material (sedimentary carbon[aceous] deposit[s] in a lacustrine environment during the Pleistocene) was burning underground after the local people incinerated dry grass (a common practice in Mexico to fertilize the land before the rainy season)."
Luca Ferrari provided geological insight into the area. It is on the E flank of the Sierra Madre Occidental, a huge mid-Tertiary volcanic pile related to subduction of the Farallon Plate. Volcanic rocks in the area include extensive silicic ashflow tuffs of late Oligocene to early Miocene age; these are sometimes capped by small volumes of andesitic and basaltic lavas ~20 Ma old. The incident took place more than 200 km N of the active volcanic arc (the Mexican Volcanic Belt, related to the ongoing subduction of the Rivera and Cocos plates). Quaternary intra-plate basalts are absent within a 200 km radius of the site of the incident. From a tectonic point of view, the village of Jerez lies at the N end of the Tlaltenango graben, which formed during Basin and Range extension in the early Miocene. Tectonic activity appears to have slowed since then and no Quaternary faulting is reported in the region.
Geologic Background. False or otherwise incorrect reports of volcanic activity.
Information Contacts: Hugo Delgado, Instituto de Geofisica, U.N.A.M.Circuito Cientifico, C.U. 04510, Mexico D.F., Mexico; Luca Ferrari, Instituto de Geologia, UNAM, Apdo. Postal 376, 36000 Guanajuato, Gto., Mexico.
Irazu
Costa Rica
9.979°N, 83.852°W; summit elev. 3436 m
All times are local (unless otherwise noted)
Comparatively high numbers of earthquakes in April and May
In April and May there were 107 and 136 earthquakes, respectively, a higher number than is typical. These were mainly detected locally. One M 1.9 earthquake centered 4 km SW of the active crater at a depth of 3.8 km took place at 0054 on 6 April. A M 2.2 earthquake struck at 0437 the same day at 5.2 km depth centered 11 km NW of the crater. On 19 May the station 5 km SW (IRZ2) registed a swarm consisting of 23 high-frequency earthquakes.
Irazú lies along a fault zone shaken by repeated earthquakes in the past 6 years. It was estimated that ~40 of May's 136 earthquakes were associated with faulting. Earlier summaries of monthly earthquakes for December 1996, and January and March 1997 reported 51, 82, and 92 events, respectively.
Irazú's ashfalls frequently reached San Jose, 25 km to the E, during its historically most active period in 1963- 65. That period of intermittent, weak-to-moderate explosive activity severely affected agricultural areas over much of central Costa Rica, causing major economic problems. During the same interval, 46 secondary mudflows swept down the Rio Reventado valley.
Geologic Background. The massive Irazú volcano in Costa Rica, immediately E of the capital city of San José, covers an area of 500 km2 and is vegetated to within a few hundred meters of its broad summit crater complex. At least 10 satellitic cones are located on its S flank. No lava effusion is known since the eruption of the Cervantes lava flows from S-flank vents about 14,000 years ago, and all known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the W towards the main crater, which contains a small lake. The first well-documented eruption occurred in 1723, and frequent explosive eruptions have occurred since. Ashfall from the last major eruption during 1963-65 caused significant disruption to San José and surrounding areas. Phreatic activity reported in 1994 may have been a landslide event from the fumarolic area on the NW summit (Fallas et al., 2018).
Information Contacts: E. Fernandez, R. Van der Laat, F. de Obaldia, T. Marino, V. Barboza, W. Jimenez, R. Saenz, E. Duarte, M. Martinez, E. Hernandez, and F. Vega, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica.
Langila (Papua New Guinea) — May 1997
Cite this Report
Langila
Papua New Guinea
5.525°S, 148.42°E; summit elev. 1330 m
All times are local (unless otherwise noted)
Late-May eruptions send plumes up to 4.5 km elevation
Vulcanian explosions resumed in late May. During the first 3 weeks of the month Crater 2 released moderate volumes of steam. Then, an explosion on the 22nd at 1510 produced dark gray ash clouds that rose to about 4.5 km above the crater rim. Explosions on the following days of May generated ash clouds to heights of between 2 and 3.5 km. Low rumbling sounds on the 27th presumably accompanied other explosions. Only weak vapor vented at Crater 3 during May. Seismographs remained inoperative.
Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.
Information Contacts: B. Talai, D. Lolok, P. de Saint-Ours, and C. McKee, RVO.
Manam (Papua New Guinea) — May 1997
Cite this Report
Manam
Papua New Guinea
4.08°S, 145.037°E; summit elev. 1807 m
All times are local (unless otherwise noted)
Continued outbursts and light ashfalls
During the first week of May, Main Crater gently emitted small to moderate ash clouds, similar to those in late April. On 9 May, activity increased slightly and ash clouds were ejected to 500-1,000 m above the summit resulting in light ashfall downwind. Forceful emissions and light ashfalls at Main Crater occurred on the 13th; there were also two loud explosions during 1500-1600. After that, there were weak-moderate ash emissions accompanied by roaring noises and infrequent rumblings. Rumblings on the 6th and 28th were attributed to rocks cascading into Southwest Valley. Activity increased again on the 29th. South Crater weakly emitted steam during May.
Seismicity showed an irregular rise during May (growing from 800 to 1,700 low-frequency events/day). Wave amplitudes, although low, doubled. Water-tube tiltmeters at Manam Volcano Observatory (4 km SW of the summit) showed a very small inflationary change (0.5 µrad), which may be significant because it continues the inflationary pattern evident since early March.
Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.
Information Contacts: B. Talai, D. Lolok, P. de Saint-Ours, and C. McKee, RVO.
Monowai (New Zealand) — May 1997
Cite this Report
Monowai
New Zealand
25.887°S, 177.188°W; summit elev. -132 m
All times are local (unless otherwise noted)
Seismically inferred eruption during 17-20 April
Between 17 and 20 April the seismic network of the French Laboratoire de Geophysique in Tahiti recorded an acoustic swarm from Monowai seamount (figure 3). The swarm ended on 20 April at 2058 GMT. It was very similar to the swarm of September 1996, with similar amplitudes and overall duration.
The signals for the 17 April acoustic swarm that started at 2007 GMT consisted of strong acoustic waves with a maximum peak-to-peak amplitude of 1.01 m/s. These and later signals were interpreted as an indication of explosive phenomena. The subsequent acoustic waves were weaker, with amplitudes between 50 and 450 millimicrons/second. Overall, the laboratory recorded 136 acoustic waves. Most of the signals clustered into two episodes. The first took place on 18 April during 0013-1911 GMT and included 46 acoustic waves. The second occurred on 19 April during 0308-0810 GMT and included 81 acoustic waves. In addition to including more waves in a shorter time interval, the second episode was stronger.
The above-cited coordinates (25.89°S, 177.19°W) are for the summit of the volcano. A bubbling area was discovered on 17 October 1977 at 25.917°S, 177.233°W. The exact coordinates of the acoustic source discussed here are not well known, and can not be located precisely using currently available T-wave selections.
Proceeding NNE from the Rumble (I, II, III, and IV) seamounts (New Zealand), the next known active volcanoes lie in the Southern Kermadec Islands. From S to N, these consist of Curtis (submarine), Brimstone Island (submarine), Macauley Island (a sub-aerial caldera), Raoul Island (a vigorously active stratovolcano), an unnamed center (submarine), and then Monowai (submarine). Monowai was the source of over six inferred eruptions; in some cases these eruption reports were also based on collateral visual observations such as discolored water and bubbles.
Geologic Background. Monowai, also known as Orion seamount, is a basaltic stratovolcano that rises from a depth of about 1,500 to within 100 m of the ocean surface about halfway between the Kermadec and Tonga island groups, at the southern end of the Tonga Ridge. Small cones occur on the N and W flanks, and an 8.5 x 11 km submarine caldera with a depth of more than 1,500 m lies to the NNE. Numerous eruptions have been identified using submarine acoustic signals since it was first recognized as a volcano in 1977. A shoal that had been reported in 1944 may have been a pumice raft or water disturbance due to degassing. Surface observations have included water discoloration, vigorous gas bubbling, and areas of upwelling water, sometimes accompanied by rumbling noises. It was named for one of the New Zealand Navy bathymetric survey ships that documented its morphology.
Information Contacts: Olivier Hyvernaud, BP 640, Laboratoire de Geophysique, Tahiti, French Polynesia.
Poas
Costa Rica
10.2°N, 84.233°W; summit elev. 2697 m
All times are local (unless otherwise noted)
Number of monthly earthquakes high in April, lower in May
During April, fumarolic degassing and weak bubbling continued in the 29°C, green-turquoise-colored crater lake. On the N crater floor there appeared a new 80-m-long fracture with fumaroles depositing sulfur; weakly escaping gases there had temperatures of 94°C. The same temperature was measured at the accessible part of the pyroclastic cone, and other fumaroles reached temperatures of 92-93°C. A steam plume rose 300 m above the crater floor.
April seismicity increased to 2,532 events (2,192 low-frequency and 339 medium-frequency). Only one month in the previous year had more events: during January 1996 there were 4,045 events. The high seismicity was not sustained, May 1997 earthquakes only numbered 1,020. In conjunction with medium-frequency earthquakes, people watching the volcano noticed new fumaroles. The distance net showed no significant changes during 1997.
Geologic Background. The broad vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the complex stratovolcano extends to the lower N flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, last erupted about 7,500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since an eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.
Information Contacts: E. Fernandez, R. Van der Laat, F. de Obaldia, T. Marino, V. Barboza, W. Jimenez, R. Saenz, E. Duarte, M. Martinez, E. Hernandez, and F. Vega, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA).
Rabaul (Papua New Guinea) — May 1997
Cite this Report
Rabaul
Papua New Guinea
4.2459°S, 152.1937°E; summit elev. 688 m
All times are local (unless otherwise noted)
Inflation precedes 1 June eruption at Tavurvur
Inflation recorded since late April culminated in a Strombolian eruption on 1 June. Unlike most of the earlier Strombolian eruptions, this one escalated slowly and sustained moderate-to-high intensities briefly before declining.
Activity during May. The lead-up to June's Strombolian eruption, like that of the April eruption, was characterized by relatively low-pressure, but voluminous gas-rich emissions. Occasionally, these very pale gray emissions produced light ashfalls from columns with heights of 0.6-1 km altitude. Roaring sounds were heard throughout May; loud explosions occurred on the 2nd (at 0105), 12th (1526), 14th (0759), 15th (0052), and 31st (2201). Weak night glows were seen above the crater on the 1, 2, 16, and 25 May.
Twenty-one low-frequency earthquakes (mostly associated with explosions) were recorded during May; most in the first two weeks. The highest numbers of daily earthquakes reached four on the 7th and three on the 8th. There were six high-frequency earthquakes on the 18th. Two of these were located immediately NE of the caldera and one was just outside the SE part of the caldera. Background seismicity remained low at ~20 RSAM units.
The Sulphur Creek water-tube tiltmeters registered N-down tilt in early May, continuing the inflationary pattern seen since late April. About 5 µrad of inflationary tilt had accumulated by mid-May, a time when the tilting seemed to cease or perhaps reverse slightly. At Sulphur Creek, the total inflation since the March eruption was ~10 µrad.
A new electronic tiltmeter was installed at Matupit Island on 8 May and soon indicated WNW-down tilt, suggesting inflation of the magma reservoir. About 18 µrad of this tilting had accumulated by 15 May when tilt changed to WSW-down, a direction radial to Tavurvur. This change was consistent with the behavior of the tiltmeters at Sulphur Creek in mid May. The WSW-down tilt continued through the remainder of the month, amounting to ~20 µrad. The pattern of tilting registered by the electronic tiltmeter on the S part of the Vulcan headland (Vulcan Island) was complicated during the first half of May, but during the second half of the month ~10 µrad of SW-down tilt took place, consistent with the inflation in the central or eastern part of the caldera.
During May the water-tube tiltmeters at Tavuiliu (on Rabaul caldera's SW rim) continued to shift in a SW- down direction. Since the April eruption this tilting had amounted to about 6 µrad. The only late-stage precursor to the 1 June eruption was an unusual E-down tilt of a few microradians recorded at the Matupit Island electronic tiltmeter beginning about midday on 31 May.
Activity during June. Apart from the tilt, through the early morning of 1 June there was little indication of the impending Strombolian eruption. The eruption's early phase began when low-pressure, hazy, white-and-blue emissions rose a few hundred meters above Tavurvur.
Starting about 0700 at Matupit Island, a N-down shift in tilt began at ~1 µrad/hour accompanied by discontinuous tremor (recorded at the nearest seismic station, KPTH, ~1 km away on Matupit Island). By about 0830 on 1 June, the seismicity had climbed to ~50 RSAM units from a normal background of about 20. At 0837, a moderate explosion sent a low-density ash cloud ~1.3 km above the vent. Seismicity briefly reached 200 RSAM units and then declined to ~90 RSAM units by 0900. The column remained at ~1.3 km and seismicity fluctuated between about 60 and 150 RSAM units until 1030 when activity intensified.
Later, at about 1030, the column rose to ~2.5 km and seismicity increased to 250 RSAM units. The column was a pale gray-brown color, with moderate ash content. A strong S wind blew the plume over the E side of Rabaul Town. Then, between 1100 and 1145, eruptive vigor declined and seismicity fell (to 120 RSAM units).
From 1130 until 1930, the eruption was observed at comparatively close range, at 0.5-1.5 km distances. Although the explosions were initially, around 1130, almost continuous, the column only rose to ~0.5 km above the vent. There were multiple active vents within Tavurvur's summit crater, but the principal one was near the crater's S rim. The explosions produced broad, dense, and moderately dark gray emission clouds that assumed the shape of cock's tails. The activity began increasing again at 1145 and lightning was seen in the column at 1200. The N-down tilt that had been in progress since 0700 reversed at 1200 after accumulating ~5 µrad.
A change in the column was noticed at about 1240 as the emissions became distinctly depleted in ash and the sounds grew louder and sharper. By this time seismicity had increased to about 250 RSAM units, where it stayed until 1400. Tavurur's principal vent (on the S side of the crater) started ejecting incandescent lava fragments, including some very large ones. For brief intervals, other vents in the crater issued dark, dense clouds.
The noisy explosions from the principal vent carried brightly incandescent lava fragments with little ash. In contrast, the dense ash-rich explosions from other vents escaped were accompanied by little or no sound.
During a brief lull between about 1400 and 1425 seismicity fell to ~200 RSAM units. Then, at about 1425, distinctly louder explosions began. It appeared that fluid lava had almost reached the crater rim and the explosions were akin to bubbles bursting. The explosions usually involved sustained jetting for periods of over 10 seconds. Intervals between events were typically only a few seconds.
Beginning about 1440, visible shock waves were observed. At about 1451 the explosions were very loud and the eruption column was about 0.5 km high. At 1450, seismicity peaked at 645 RSAM units.
A prolonged period of dense, dark ash emission commenced at about 1500 and seismicity fell sharply. While dark ash clouds billowed upwards from vents in the W part of the crater, the principal vent continued producing nearly ash-free explosions bearing larger incandescent fragments. The dense, dark ash emission had ceased by 1519, and by then seismicity had dropped to 300 RSAM units. Seismicity during 1520-1600 increased to ~500 RSAM units; after that it declined slowly so that by 1800 it reached 300 RSAM units. After 1830 seismicity declined more quickly, so that by 2030 it reached only 90 RSAM units.
For most of the remainder of the eruption the only vent to emit much solid material was the principal vent, which continued to eject nearly ash-free, incandescent lava fragments. Although the bulk of the column remained only ~0.5 km above the vent, beginning in the mid-afternoon some fragments rose ~100 m higher. Explosions throughout the afternoon tended to sustain stronger jets of gas and lava fragments. By about 1800 some of the explosions were more than 1-minute long. In one 5-minute period at about 1800 there were eight explosions.
Witnesses on a boat sailing past Tavurvur's S and W flanks at about 1910-1930 noticed considerably more ejecta landing N of the vent. Some ejecta blew in the strong prevailing S wind as far as Tavurvur's N flank. Between 1200 and 2000 the tiltmeter at Matupit Island had accumulated ~5 µrad of predominantly S-down tilt. Then, at 2000, the tilt shifted to SW down, changing by 0.3 µrad/hour.
During the night of 1 June there were episodes of rhythmic degassing; in addition some very loud detonations shook buildings. Background seismicity fell slowly after 2030 on June 1, descending by midnight to 30 RSAM units. Sustained increases in seismicity returned on 2 June during two intervals: the first, 0100-0145, and the second, 0300-0500. During these intervals, seismicity reached 300 and 250 RSAM units, respectively. In addition, a brief (10 minute) peak in seismicity occurred around 0330 on 2 June; it reached 750 RSAM units.
Overview. Unlike some previous eruptions, no lava flows were generated by the 1-2 June event. Ejected lava fragments showed textural evidence of moderate expansion but lacked evidence of post-emplacement flow. Additionally, the bombs were considerably smaller.
The volume of material erupted on 1 June was very small, possibly only 1 x 105 m3. There was no off- set in tilt as had been seen with the earlier, larger eruptions. Thus, after the 1 June eruption, Tavurvur remained inflated 10 µrad over the tilt encountered after the March eruption (BGVN 22:03). Accordingly, scientists believe that Tavurvur could erupt with similar intensity again in coming weeks.
Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the asymmetrical shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1,400 years ago. An earlier caldera-forming eruption about 7,100 years ago is thought to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the N and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and W caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.
Information Contacts: B. Talai, D. Lolok, P. de Saint-Ours, and C. McKee, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.
Rincon de la Vieja (Costa Rica) — May 1997
Cite this Report
Rincon de la Vieja
Costa Rica
10.83°N, 85.324°W; summit elev. 1916 m
All times are local (unless otherwise noted)
Conspicuous fumaroles and plumes persist
During April, fumarolic activity remained in the E and S parts of the main crater. In the latter location, escaping gases hissed like a pressure cooker and were audible from the crater rim. Gas columns rose up to 200 m high. Adjacent to the crater, visitors smelled sulfur gases and their throats, eyes, and skin became irritated. Some of the plants damaged during November 1995 showed new signs of recovery. Although the seismic station (RIN3, located 5 km SW of the active crater) remained out of service during May, earthquake counts numbered five events in December 1996 and 24 in January 1997.
Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.
Information Contacts: E. Fernandez, R. Van der Laat, F. de Obaldia, T. Marino, V. Barboza, W. Jimenez, R. Sáenz, E. Duarte, M. Martinez, E. Hernandez, and F. Vega, Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica.
San Cristobal (Nicaragua) — May 1997
Cite this Report
San Cristobal
Nicaragua
12.702°N, 87.004°W; summit elev. 1745 m
All times are local (unless otherwise noted)
Eruptions cause ashfall on the slopes; plumes to 2,500 m
According to press reports quoting an official from the Instituto Nicaraguense de Estudios Territoriales (INETER), an eruptive phase began at San Cristóbal during the night of 19-20 May. Because of the possibility of ashfall, authorities declared a state of alert in the city of Chinandega, one of the largest cities in Nicaragua, situated 20 km WSW, the main downwind direction. A report about precursory seismicity was provided by INETER on 18 May. Observations after the start of eruptive activity were sent by Benjamin van Wyk de Vries (Open University), and include information from INETER scientists.
Precursory activity as of 18 May. Strong seismic activity was detected starting in May, by far the strongest seismicity observed since the new seismic station (CRIN, ~3 km NW of the crater at the base of the volcano), was installed at the end of 1992. As of 18 May CRIN was recording 500 volcano-seismic events/day, with frequencies of 1-6 Hz and durations of ~1 minute or more. Sometimes roughly mono-frequency wavetrains of ~3 Hz were observed. RSAM values climbed from2 odor. INETER volcanologists visited the volcano on 17 May, but could not climb to the crater because of high gas concentrations.
On 18 May INETER was preparing an observation point at Casita volcano, ~4 km SE of San Cristóbal. At the seismic station, CRIN, additional channels with low amplification were switched to be transmitted to the Managua data center. The installation of additional seismic stations is planned. INETER volcanologists took gas and water samples for analysis, and local residents were being interviewed to obtain information about recent changes at the volcano. INETER informed the Nicaraguan Government and the Civil Defense Organization about the situation.
Activity during 21-26 May. B. van Wyk de Vries visited the volcano during 21-23 May, setting up the base for a deformation network, and checking the general state of the cone and crater. RSAM levels stayed fairly constant during this period, but began a slow decline at the end of May. Eruptions through 26 May produced light gray clouds of ash that normally rose 50-200 m above the crater. There were a few notable large eruptions, including one at about 0245 on 22 May that reached 800 m. The height differences were partly due to how quickly the plume was pulled over by the wind. One pulse made a noise that was heard 3 km away at the Casita observation post. Pedro Perez (contracted to The Open University), who was at the crater edge on the morning of the 22nd, noted dull noises before each ejection of ash. Sounds were not heard the next day, when the ejections were less powerful. There were periods of up to a few hours with very weak gas release, then equally long periods of eruptions every 5-10 minutes, or a constant plume. If the wind was strong the plume was dragged down the cone to ~900 m, after which it rose to 1,000-1,200 m; during calmer periods the plume rose to 2,500 m.
Summit visit on 23 May. There was no activity when the crater was reached at 1200 on 23 May. Volcanologists stayed for an hour installing a GPS station on the edge of the outer crater. They made a very quick descent into the crater and saw a new vent. Before the start of activity in early May, San Cristóbal was generally the same as when van Wyk de Vries first saw it in 1986. The main change has been the slow progressive growth of the inner pit crater (figure 2). There is an old outer crater ledge on the S side, then the main crater (10-50 m deep); a small inner cone has been gradually hollowed out by a pit crater. The cone has now mostly fallen in, and only a small part to the S and W still exists. The pit is ~80 m deep and Pedro Perez reported that in early May it had a flat bottom. At that time there was little degassing: a few fumaroles on the SW side and a few fumarole mounds on the SE part of the main crater floor. There had been a vigorous fumarole on the edge of the pit crater, with a temperature of ~600°C, but this part had fallen in. On 23 May there was a 4-m-wide vent in the SW part of the pit crater floor; looking in at 45° no bottom could be seen, and in shadow it was not glowing. On the walls of the pit were dark patches of wet rock, where water seepage or fumarolic emanations had discolored the new ash. The whole of the crater was covered by ash. On the crater floor it was 10 cm deep and around the edges 1-2 cm. The upwind crater rim (SE-N) had a slight dusting. On the downwind rim ash had been stripped off the top of rocks but was accumulating in fine layers on the vertical upwind surfaces. The ash was being continually blown around and formed some beautiful ripples.
Ash covered the W side of the mountain, giving it a light-gray appearance down to ~800 m. Although vegetation hid the ash layer from distant viewers, it continued down to ~600 m where a 1-3 mm thick layer coated the ground and dusted the leaves. Gas masks were worn during the descent from the summit because the ash billowed up. Down at the farm of Las Rojas (500 m elevation) there was a slight dusting of ash; other farms reported heavier falls. Vegetation damage was not observed, possibly because everything is so dry in the area. Very light ashfall was occurring 10-15 km downwind.
No tremor was felt at the crater, though there were ~600 events/day being recorded. Campesinos living on the pass between San Cristóbal and Casita felt shocks on the night of 21-22 May. The only significant deformation features noted on 23 May were several fissures around the edge of the inner pit crater, which indicate that it is still enlarging. The fractures on the main crater floor were covered in ash, which was not fractured, indicating that there was no movement over the previous few days. Pedro Perez noted some rockfalls during explosive activity on the morning of the 22nd, from the N side of the pit crater.
Deformation network.The new GPS network consists of two triangles. The outer triangle is centered on a point on the pass between Casita and San Cristóbal, with one position on Casita, one 2 km SE of Chinandega, and one 10 km NE of Chinandega. The lines are ~10 km long. The center point should form one corner of an inner triangle, the other points being at Las Rojas farm to the W and one as yet undecided on the N flank. These lines are <5 km long. Within the inner triangle, points were placed at ~1,500 m elevation on the SE flank and on the W side of the crater edge at ~1,700 m; both are 1-2 km from the center point. Simultaneous measurements at all four of the outer triangle points were taken with the Open University GPS and the INETER GPS. Two points on the volcano were fixed, and will be re-occupied by INETER personnel. Although the whole of the network is not in place, at least three points on the volcano have been fixed and will indicate any major movement.
Volcanic history. San Cristóbal is a stratovolcano 100 km NW of Managua that has erupted about nine times since the Spanish conquest. Its previous most recent confirmed eruption was a 45-minute ash emission in October 1977 (SEAN 02:10), but a small ash emission may have occurred in November 1987 (SEAN 13:01). The San Cristóbal complex comprises San Cristóbal cone, El Chonco cone, Cerro Montoso, Casita volcano, and La Pelona Caldera (Hazlet, 1987; Van Wyk de Vries and Borgia, 1996). San Cristóbal proper is the youngest feature of the complex. Casita was probably active in the 16th century, and has several active fumarole fields. La Pelona looks as though it was once a large stratocone that underwent a caldera-forming eruption in the Quaternary. El Chonco is an 800-m-high andesite-dacite cone. Cerro Montoso is a 600-m-high andesitic scoria cone cut by large faults.
The complex as a whole has a tendency to produce significant amounts of dacitic magma. Examples include the Chonco cone and Loma La Teta (a dacite dome associated with El Chonco), recent pyroclastic-flow and tephra deposits on San Cristóbal and Casita, and the La Pelona Caldera ignimbrite. This type of magma contrasts with the predominant basalt-basaltic andesite of the other nearby volcanoes, such as Telica, Rota, and El Hoyo/Cerro Negro. Martha Navarro (INETER), who has done geological and hazard mapping at San Cristóbal, noted that the dacitic pyroclastic-flow deposits of San Cristóbal are similar in composition to a thick tephra-fall deposit that the forms subsoil over much of the west side of the cone. On the cone itself, these deposits are covered by more recent andesitic scoriae and bombs, some or all of which come from the historical eruptions in the 17th century and the 1970's. There have not been any historical lava flows, but several lava flows are still only partially vegetated.
References. Hazlett, R.W., 1987, Geology of the San Cristóbal volcanic complex, Nicaragua, in Williams, S.N. and Carr, M.J. (eds.), Richard E. Stoiber 75th Birthday Volume: J. Volcanol. Geotherm. Res., v. 33, p. 223-230.
Van Wyk de Vries, B., and Borgia, A., 1996, The role of basement in volcano deformation, in McGuire, W.J., Jones, A.P., and Neuberg, J. (eds.), Volcano Instability on the Earth and Other Planets: Geological Society Special Publication 110, London, p. 95-110.
Geologic Background. The San Cristóbal volcanic complex, consisting of five principal volcanic edifices, forms the NW end of the Marrabios Range. The symmetrical 1745-m-high youngest cone, named San Cristóbal (also known as El Viejo), is Nicaragua's highest volcano and is capped by a 500 x 600 m wide crater. El Chonco, with several flank lava domes, is located 4 km W of San Cristóbal; it and the eroded Moyotepe volcano, 4 km NE of San Cristóbal, are of Pleistocene age. Volcán Casita, containing an elongated summit crater, lies immediately east of San Cristóbal and was the site of a catastrophic landslide and lahar in 1998. The Plio-Pleistocene La Pelona caldera is located at the eastern end of the complex. Historical eruptions from San Cristóbal, consisting of small-to-moderate explosive activity, have been reported since the 16th century. Some other 16th-century eruptions attributed to Casita volcano are uncertain and may pertain to other Marrabios Range volcanoes.
Information Contacts: Wilfried Strauch and Pedro Perez, Department of Geophysics, Instituto Nicaraguense de Estudios Territoriales (INETER), P.O. Box 1761, Managua, Nicaragua; Benjamin van Wyk de Vries, Department of Earth Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom; Reuters.
Soufriere Hills (United Kingdom) — May 1997
Cite this Report
Soufriere Hills
United Kingdom
16.72°N, 62.18°W; summit elev. 915 m
All times are local (unless otherwise noted)
Pyroclastic flows no longer confined by the crater's N wall
On 25 June, unusually large pyroclastic flows swept down drainages on the volcano's NNE side reaching almost as far as the airport. Settlements along their path sustained serious damage. Amid rescue efforts on 27 June, MVO reported at least nine people dead, six injured, and 14 missing. Additional information will be provided in next month's Bulletin.
The following summarizes weekly Scientific Reports of the Montserrat Volcano Observatory for the period 11 May-7 June 1997 and NOAA/NESDIS satellite observations during 12 May-6 June. Many of the places mentioned in this report appear on available maps (e.g. BGVN 22:02; Williams, 1997).
A new risk map was released on 6 June (figure 22). Zone A was expanded from the crater to the N as far as Harris, Bramble, and Bethel villages. Areas designated as Zone B included Tuitt's and Spanish Point on the E and Streatham and Farrell's on the W. Bramble Airport, ~5 km NE of the volcano, was moved into zone C.
At the beginning of this reporting period, dome growth (estimated at 2 m3/s) was concentrated on the crater's S side, above the Galway's area. Rockfalls and a few small pyroclastic flows were shed into both the White River and down the S side of the Tar River valley. After 12 May loud roaring sounds caused by vigorous venting of ash and gas from the dome were heard at Whites, Harris, and Farrell's. These were taken to indicate increased gas pressures within the dome. Furthermore, on 12 May an airplane pilot reported ash between 1,830 and 2,440 m altitude.
On 13 May at 0755 a moderate-size pyroclastic flow from the summit region eroded a narrow channel on the E flank of the dome, a spot underlain by the ancestral Castle Peak. The flow went down the Tar River valley, splitting into two branches that traveled down either side of the upper break in slope, and eventually reached the delta at the coast. The ash cloud from this flow reached 3.3 km altitude and later formed a plume conspicuous in visible satellite imagery for 220 km WNW of the summit.
On 14 and 15 May, small, nearly continuous rockfalls and some small pyroclastic flows occurred on the NE and SE flanks of the dome; these traveled either towards the E (Tar River valley) or S (down Galway's side). Beginning at about 2040 on 15 May a 70-minute-long outburst generated moderate-size pyroclastic flows down the E side, creating a small scar ~40 m N of the one formed on 13 May.
Events on 16 May included small-to-moderate pyroclastic flows from the dome's summit. These traveled down the dome's N and NW sides, towards Farrell's wall, which deflected them E toward the Tar River valley. In addition erosion occurred on the dome's N face: talus continued piling up against the N and NNE crater rim.
During the following days activity was concentrated on the N and E flanks of the dome, with three major rockfall chutes developed on the dome's E, NE, and N sides. At the base of one of these chutes rockfall material piled up against the crater's N wall (Farrell's). Several small rockfalls were also heard on the crater's S side (Galway's wall), where new, relatively fine-grained rockfall deposits had blanketed the entire talus slopes.
On 18 May at 0820 the largest pyroclastic flow of this reporting period occurred. First, a large long-period earthquake took place; observers at Whites reported that the entire dome was being shaken just before the flow started. This pyroclastic flow traveled from the summit down both the 15 May chute and the NE chute. Then it passed down the N side of the Tar River valley to stop a few hundred meters from the delta. During that night intense glows were observed over the dome's entire NW face. There were also some incandescent rockfalls and small pyroclastic flows.
Clear visibility on 19 May revealed a new dark extrusion at the top of the NW dome. This area discharged ash and steam and ejected 5- to 20-cm diameter fragments up to ~60 m above the dome. The source of continuous rockfalls with small pyroclastic flows extended from the 15 May chute on the E to the margin of the September 1996 scar on the NW. The remnant wall of the scar prevented material from reaching the rim of Gages wall. The N side of the crater had filled up, with small amounts of dome material falling into the top of Tuitt's Ghaut, the N- flank drainage.
On 21 and 22 May a few small spines toppled, sending rockfalls down the E, NE, and NW flanks. On 22 May at 1300, after a rockfall on the N flank, some blocks reached ~100 m down the N flank (Tuitt's Ghaut). At 1430 a pyroclastic flow on the same flank produced an almost continuous ash plume; lapilli up to 4 mm in diameter were collected at Dyers and ash fragments ~1 mm in size were reported at Farrell's and from Salem up to St. John's.
Observations on 23 May from Chances Peak revealed several small spines and large blocks in the summit area with vigorous venting and gas emissions in the growth area; there was also a cleft in the middle separating the S lobe from the new extrusion in the N.
On 27 May, a large pyroclastic flow generated high on the E side of the dome traveled down the Tar River valley at a speed of 230 km/h , the fastest flow yet documented during the eruption. In the lower part of the valley the flow slowed considerably, and it stopped ~150 m from the sea. That same day, for the first time, moderate-size pyroclastic flows reached Tuitt's Ghaut; later on 29 May discernible material was deposited 400 m down this drainage.
By 31 May, talus slopes over the dome's E and NE flanks had covered the chutes formed by mid-May pyroclastic flows. The upper part of the dome's E face looked more blocky and relatively inactive. When visibility was good, the presence of ash below ~1,600 m was reported almost daily in satellite imagery.
Small pyroclastic flows down Tuitt's Ghaut on 2 June left fresh deposits ~1 km from the crater rim. By 3 June they reached 1.4 km, and by 4 June, 1.8 km. At 1207 on 5 June a pyroclastic flow extended ~2.9 km from the crater rim; a shorter flow followed to ~2 km. All of these pyroclastic flows were confined to the narrow valley and comparatively slow moving, taking about three minutes to descend it. In the first 500 m of the upland portion of the valley all vegetation was stripped from the valley walls. Farther down, some trees were left standing within the deposits. In the upper 1 km of the deposits there was evidence of several small, lobate flows. In general the thermal effects remained confined to 10 m from the deposit's edge, but on bends it rode up the banks of the ghaut (the so- called "bobsled" effect). The front of the flow was marked by a pile of burned logs and coarse debris, and a finer-grained surge had traveled ~100-200 m farther down the ghaut. A pyroclastic flow at 1845 on 6 June traveled ~2 km down from the crater rim; its front carried particularly large boulders. The flow significantly widened the notch in the crater wall through which it traveled; by this time the domes talus created a smooth slope down the ghaut.
NOAA reported ash clouds on 3, 4, and 5 June in visible satellite imagery up to 2,150 m altitude and crossing over the Virgin Islands, 400 km NW.
Seismicity. The shifting focus of dome growth and rising vigor of emission were reflected in a general decline in the number of long-period earthquakes and an increase in the number of hybrid earthquake swarms. Each swarm lasted for a few hours; some intense swarms during 19-21 May reached up to 35 events/hour. Rockfalls remained common and were concentrated during periods of minor dome collapse. The ratio of maximum rockfall amplitudes measured at Galway's Estate Station and Long Ground station served to differentiate between Tar River and White River pyroclastic flows.
Toward the end of May there was a significant reduction in the number of hybrid and long-period earthquakes, and rockfalls. The hybrid earthquake swarms continued until 27 May; although less frequent, they lasted longer.
The number of long-period earthquakes dropped to the normal background (0-4 events/day), the lowest levels since mid-March. The number of rockfalls increased from 1 June, and for the rest of the period were concentrated on the N and E sides of the dome. Periods of enhanced rockfall and pyroclastic-flow activity occurred every 16-20 hours and lasted ~4 hours. In the lulls, rockfalls continued at greatly reduced levels.
After 4 June the number of both long-period and hybrid earthquakes increased again. Over 50% of these shocks triggered rockfalls.
Ground deformation. GPS measurements at station FT3 (Farrell's wall) on 12 May showed continued movement to the NW, consistent with the total 20 cm of displacement noted since January 1997. Data were somewhat equivocal on 17 and 21 May. A GPS occupation at Chances Peak on 23 May suggested that it had moved 3.5 cm WNW since 28 April. Prior to that date, the movement was toward the NW. The change in direction was thought to reflect the dome's northward shift in activity.
Telemetered electronic tiltmeters installed at Chances Peak on 18 and 21 May (stations CP2 and CP3, W and E of the summit, respectively) registered cycles of inflation and deflation, each lasting ~12-18 hours. Progressive intervals and magnitudes of inflation were greater than those of deflation. Inflation occurred with hybrid earthquake swarms, and deflation correlated with peak rockfall/pyroclastic-flow events. RSAM patterns showed a strong correlation with tilt, with the higher spikes reflecting rockfalls, and the lower intensity patterns reflecting the sum of hybrid events and lesser rockfall activity. Thus tilt and RSAM combined provided a predictive capability. Accordingly, when it was possible, missions to close-in areas were scheduled during early inflation, when the likelihood of pyroclastic flows was considered minimal.
Crack 2, which developed into a zone of broad fracture on Chances Peak, was measured on 23 May, and on 4 and 8 June. The shear along the crack was dextral (E block moving S relative to W block) and reached 6 cm. The shear during 23 May-4 June was 2.5 cm. On 23 May a telemetered extensometer installed across part of Crack 2 that day showed almost 5 mm of diurnal change.
Dome volume, COSPEC, and other measurements. Using a combination of theodolite, GPS, and ranging binoculars, scientists on 19 May estimated the summit at 991 m elevation. One major change since the previous survey (15 April) was the inflation of the highest part of the dome above Galway's wall. Another change was the growth of the new extrusion in the N summit area and the talus accumulation in a 300-m-wide zone against the back of Farrell's wall, due to the activity on the N and NE faces. The volume of the dome from this survey was estimated at 60.1 x 106 m3; this established an average extrusion rate during 15 April-19 May of 2.7 x 105 m3/day (3.1 m3/s).
Later dome-volume surveys were severely hampered by poor visibility; however, brief clear windows allowed photos to be taken for both 31 May and 1 June, documenting continued growth of the dome's N side and summit. On the basis of these photos, the dome's volume was 64.6 x 106 m3, a mean growth rate of 3.5 m3/s during 19 May-1 June. As with the last survey this represented a rate considerably above the mean extrusion rate of 2.1 m3/s.
Mini-COSPEC runs that were completed daily, often both in the morning and afternoon, gave results substantially higher than the usual background flux of 200-300 t/d. May and June SO2 fluxes were as follows: 24 May, 950 metric tons per day (t/d); 26 May, 940 t/d; 27 May, 971 t/d; 28 May, 616 t/d; 29 May, 770 t/d; 30 May, 510 t/d; 2 and 3 June, 475 t/d; 4 June, 2,129 t/d; 5 June, 2,242 t/d; 6 June, 642 t/d; and 7 June, 505 t/d. The high values on 4-5 June correlated with increased pyroclastic flow activity during 4-6 June. Sulfur diffusion tubes collected on 20 April and 4 May mainly showed values similar to those of previous weeks (table 19). The results from Upper Amersham on 17 May presumably increased because of the increase in the level of eruptive activity.
Table 19. SO2 concentrations in part per billion (ppb) from diffusion tubes at sites around the volcano. Recommended action level is 100 ppb. Courtesy of MVO.
Location |
20 Apr 1997 |
04 May 1997 |
17 May 1997 |
Plymouth Police HQ |
7.3 |
7.8 |
17.1 |
Upper Amersham |
45.0 |
53.2 |
81.1 |
Lower Amersham |
12.1 |
16.9 |
32.0 |
Weekes |
0.0 |
0.0 |
4.3 |
Whites landfill |
0.8 |
1.2 |
1.2 |
Rainwater collected W and NW of the volcano on 17 May was more acidic than samples from the previous week and chlorides and sulfates were present at substantially higher levels (table 20). After heavy rainfall and continued winds from the S and SE, a rainwater sample collected on 28 May from Lawyers, 2 km north of Salem, had a pH of 3.3. On those same days, new sites to the N of the volcano were also monitored and showed very low pH values. During this period the fluoride content of the rainwater was also elevated. The pH and fluoride returned to normal values when the wind direction changed to WNW at the end of May. Piped ground water had remained unaffected by the low pH of the rainwater.
Table 20. Rainwater geochemistry from 17 May to 1 June. For comparison, WHO guideline values are as follows: pH, 6.5- 8.5; TDS, 1.0 g/l; fluorides, 1.5 mg/l; chlorides, 250 mg/l; sulfates, 250 mg/l. Courtesy of MVO.
Date |
Location |
pH |
Conductivity (mS/cm) |
Total Dissolved Solids (g/l) |
Sulfates (mg/l) |
Chlorides (mg/l) |
Fluorides (mg/l) |
17 May 1997 |
Weekes |
3.8 |
0.272 |
0.136 |
37 |
50 |
0.65 |
17 May 1997 |
Plymouth Police HQ |
2.7 |
3.51 |
1.75 |
560 |
710 |
-- |
17 May 1997 |
Upper Amersham |
2.4 |
2.45 |
1.22 |
107 |
315 |
-- |
17 May 1997 |
Lower Amersham |
2.8 |
4.26 |
2.13 |
97 |
760 |
-- |
25 May 1997 |
Weekes |
2.6 |
1.286 |
0.644 |
5 |
133 |
1.50 |
25 May 1997 |
Upper Amersham |
2.0 |
7.24 |
3.62 |
93 |
1000 |
0.20 |
25 May 1997 |
Am. cattle trough |
7.72 |
0.335 |
0.168 |
-- |
56 |
0.55 |
25 May 1997 |
Trial's reservoir |
7.9 |
0.827 |
0.414 |
42 |
112 |
0.35 |
27 May 1997 |
Hope |
2.8 |
0.789 |
0.37 |
-- |
70 |
1.50 |
28 May 1997 |
Weekes |
2.5 |
1.557 |
0.778 |
-- |
126 |
1.50 |
28 May 1997 |
Molyneux |
2.6 |
1.312 |
0.657 |
7 |
94 |
1.50 |
28 May 1997 |
Dyer's |
2.8 |
0.702 |
0.351 |
3 |
80 |
1.40 |
28 May 1997 |
Lawyer's |
3.0 |
0.46 |
0.23 |
-- |
52 |
1.25 |
28 May 1997 |
M.V.O. |
2.8 |
0.863 |
0.432 |
-- |
80 |
1.50 |
31 Jun 1997 |
Weekes |
3.4 |
0.257 |
0.128 |
3 |
-- |
1.20 |
31 Jun 1997 |
M.V.O. |
5.3 |
0.066 |
0.033 |
-- |
-- |
0.35 |
31 Jun 1997 |
Dyer's |
6.7 |
0.092 |
0.046 |
3 |
-- |
0.20 |
31 Jun 1997 |
Upper Amersham |
2.8 |
0.914 |
0.458 |
12 |
-- |
1.50 |
31 Jun 1997 |
Lower Amersham |
3.1 |
0.533 |
0.267 |
18 |
-- |
1.15 |
31 Jun 1997 |
Am. cattle trough |
8.89 |
0.32 |
0.16 |
-- |
-- |
0.35 |
31 Jun 1997 |
Trial's res. Overflow(from the tap) |
7.8 |
0.845 |
0.423 |
38 |
-- |
0.30 |
Ash was collected on 17 May following several days of increased volcanic activity. The ash was at least 6 mm thick at Upper Amersham, and 4 mm at Lower Amersham, the Plymouth Police Headquarters, and Dagenham. Ash collected on 1 June was noticeably fine and widely distributed from Brodericks to Dyers with the thickest ash fall (2 mm) at Upper Amersham, Dagenham, and Plymouth Police HQ.
Reference. Williams, A.R., 1997, Montserrat, under the Volcano: National Geographic, v. 192, no. 1 (July 1997), p. 58-77.
Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.
Information Contacts: Montserrat Volcano Observatory (MVO), c/o Chief Minister's Office, PO Box 292, Plymouth, Montserrat (URL: http://www.mvo.ms/); NOAA/NESDIS Satellite Analysis Branch (SAB), Room 401, 5200 Auth Road, Camp Spring, MD 20746, USA.
Special Announcements (Unknown) — May 1997
Cite this Report
Special Announcements
Unknown
Unknown, Unknown; summit elev. m
All times are local (unless otherwise noted)
Aviator's observation form
Tens of commercial jet aircraft, which are not designed to fly through particulate and corrosive gases, have suffered damage from inadvertently encountering ash clouds that had drifted tens to hundreds of kilometers from erupting volcanoes; in one case, a plane descended more than 6 km before the engines could be restarted (Casadevall, 1994). As a result of this vulnerability, there have been new and evolving strategies for alerting aviators as to the presence, location, and movement of eruption plumes. Conversely, pilots often see aspects of volcanism that merit preservation in the Bulletin. In order to solicit and register these observations, a form for pilots relates a series of key questions (plate 1, back page).
The form, called the "Volcanic Activity Reporting Form," is now included in the US Aeronautical Information Manual (FAA, 1995), a reference used by all large US carriers. A similar form is in use by members of the International Civil Aviation Organization (ICAO).
The form is divided into two parts. The critical upper part (numbers 1-8) gets radioed to air traffic control immediately. Most of the form's lower part provides stated choices on topics such as ash density and color, continuousness of the eruption, as well as the effects on the aircraft and atmosphere (numbers 9-15). The last block (number 16) allows pilots to provide further written information.
The forms are ultimately to be sent (via mail or fax) to GVN for archiving. Expenses for postage or connections by fax can be reimbursed by the GVN.
In addition to the form itself, we wish to receive other aviation observations. These may include eyewitness accounts or photos made by passengers or crew, descriptions of damage, or ash collected by mechanics, as well as relevant weather details from meteorologists. These can (and already do) complement volcanological and atmospheric studies of eruptive activity. Ideally, such multiple perspectives can build a much more comprehensive picture of volcanic processes than can result from any one vantage point.
Every day thousands of people fly across potentially ash-contaminated airspace--to some degree, the people in these planes are just as vulnerable as villages perched on a volcano's flanks. Conventional planes still lack on- board instruments to warn pilots if hazardous atmospheric ash lies ahead. Such plumes are relatively rare, but to consistently avoid them requires interdisciplinary communication and cooperation between both aviators and scientists.
References. Casadevall, T.J. (ed.), 1994, Volcanic ash and aviation safety, Proceeding of the First International Symposium on Volcanic Ash and Aviation Safety (Seattle, Washington, July 1991): U.S. Geological Survey Bulletin 2047, 450 p.
Federal Aviation Administration, 1995, Volcanic Activity Reporting Form: US Aeronautical Information Manual (AIM), 1995 (June), Appendix 2 (1 May 1997), p. A2-1, Superintendent of Documents, US Government Printing Office, Washington, D.C.
Further Reference. Casadevall, T.J., and Thompson, T.B., 1995, Volcanoes and principal aeronautical features, Geophysical Investigation Map GP-1011: U.S. Geological Survey, prepared in cooperation with Jeppesen Sanderson, Inc.
Geologic Background. Special announcements or information of general interest not linked to any specific volcano.
Information Contacts: Captain Ed Miller (Retired), Air Line Pilots Association, 535 Herndon Parkway, P.O. Box 1169, Herndon, VA 20172-1169 USA; Tom Fox, Air Navigation Bureau, International Civil Aviation Organization (ICAO), 999 University St., Montreal H3C 5H7, Canada.
Stromboli
Italy
38.789°N, 15.213°E; summit elev. 924 m
All times are local (unless otherwise noted)
New map of the crater terrace
A 7-hour visit on 23 May led to the construction of a crater terrace map (figure 55). The Crater 2 pit mapped in 1994 and 1995 had filled in and was occupied by an inactive lava flow fed from a small truncated cone. From information by Jürg Alean (BGVN 22:03) it was inferred that this flow was emplaced between 25 April and 19 September 1996. A new subsidence bowl was forming to the SE of the former Crater 2 pit. This was occupied by a pit crater and three vents (2/1, 2/2, and 2/3), none of which exhibited explosive activity. Vent 2/1, ~4 m in diameter, was the source of regular (~1/s) gas puffs and occasional gas release, and also showed night incandescence.
Activity during the 23 May visit was at lower levels than seen in either October 1994 (BGVN 19:10) or September 1995 (BGVN 20:11/12). However, excellent viewing conditions revealed that major changes had occurred since the 1994 and 1995 surveys (BGVN 22:03).
During the intervals 1100-1400 and 1900-2200, no eruptions were observed from Crater 3. However, at about1400 on 24 May, an explosion from Crater 3 fed a brown ash cloud that rose ~200 m above the crater rim. This was observed from the sea.
Night-time temperature measurements obtained from Pizzo Sopra la Fossa using a Minolta/Land 152 infrared thermometer (corrected for an emissivity of 0.956) gave 2/1 vent temperatures of 670-699°C. Vents 2/2 and 2/3 (~3 x 1 m and <1 m wide, respectively) were actively degassing without incandescence. The site of hornitos in 1994 and 1995 was occupied by a pit, with a wall on the NE side.
Crater 1 was occupied by two active vents (1/1 and 1/2). Between 1055 and 1155 on 23 May eight explosions occurred from these two vents. The first two explosions sent bombs 100-200 m above the crater rim with ~20% of the ejecta landing on the upper Sciara. The following six explosions sent ejecta up to 50 m above the vent.
For the next two hours, Crater 1 exploded ~1-2 times/hour, but additional sloshing and gas release sounds were occasionally audible from Pizzo Sopra la Fossa. By the evening of 23 May, Crater 1 activity had escalated to levels similar to the 1055-1155 period. As darkness fell, an intense pulsating glow visible over Crater 1 could have been due to a small, active lava pond on the crater floor. This may have accounted for the sloshing sounds heard earlier in the day.
Stromboli, a small island N of Sicily, has been in almost continuous eruption for over 2,000 years. Its small Strombolian explosions, which hurl incandescent scoriae above the crater rim, occur several times a day, but larger eruptions are less frequent.
Geologic Background. Spectacular incandescent nighttime explosions at Stromboli have long attracted visitors to the "Lighthouse of the Mediterranean" in the NE Aeolian Islands. This volcano has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent scarp that formed about 5,000 years ago due to a series of slope failures which extends to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.
Information Contacts: Andy Harris, HIGP/SOEST, University of Hawaii, 2525 Correa Road, Honolulu, HI 96822 USA.
Telica
Nicaragua
12.606°N, 86.84°W; summit elev. 1036 m
All times are local (unless otherwise noted)
Continued high levels of seismicity
Seismicity as of mid-May remained at a high level, similar to recent months. There have been ~160 daily volcano-seismic events detected, with little variation. During March there were ~150 seismic signals/day recorded; in December 1996 there were <100 signals/day (BGVN 22:03).
An eruption on 31 July 1994 produced a gas-and-ash column and detectable ash fell as far as 17 km from the summit (BGVN 19:07). Phreatic explosions continued until 12 August 1994 when seismicity began decreasing (BGVN 19:09).
Geologic Background. Telica, one of Nicaragua's most active volcanoes, has erupted frequently since the beginning of the Spanish era. This volcano group consists of several interlocking cones and vents with a general NW alignment. Sixteenth-century eruptions were reported at symmetrical Santa Clara volcano at the SW end of the group. However, its eroded and breached crater has been covered by forests throughout historical time, and these eruptions may have originated from Telica, whose upper slopes in contrast are unvegetated. The steep-sided cone of Telica is truncated by a 700-m-wide double crater; the southern crater, the source of recent eruptions, is 120 m deep. El Liston, immediately E, has several nested craters. The fumaroles and boiling mudpots of Hervideros de San Jacinto, SE of Telica, form a prominent geothermal area frequented by tourists, and geothermal exploration has occurred nearby.
Information Contacts: Wilfried Strauch, Department of Geophysics, Instituto Nicaraguense de Estudios Territoriales (INETER), P.O. Box 1761, Managua, Nicaragua.
Turrialba (Costa Rica) — May 1997
Cite this Report
Turrialba
Costa Rica
10.025°N, 83.767°W; summit elev. 3340 m
All times are local (unless otherwise noted)
Fumarolic temperatures near 90°C; two M 2 earthquakes in May
Fumaroles emitted comparatively little gas but remained active in the main crater's NE, N, NW, and W parts, with temperatures in the range 89-90°C. In the N and S parts of the crater, small areas of mass-wasting covered some fumaroles. Seismicity at a station 500 m E of the active crater (station VTU) has been measured consistently since May 1996; reported local earthquake counts included 72 in December 1996, 146 in January 1997, 194 in February, 182 in March, and 137 in April. During May, seismic station VTU registered a total of 72 earthquakes. On 10-11 May, four of these were located at 5-6 km depths at 8-9 km distances NE of the crater, with magnitudes of 2.1-2.6. Their origin was possibly related to a local fault.
Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.
Information Contacts: E. Fernandez, R. Van der Laat, F. de Obaldia, T. Marino, V. Barboza, W. Jimenez, R. Saenz, E. Duarte, M. Martinez, E. Hernandez, and F. Vega, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica.