Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Nevados de Chillan (Chile) Explosions and pyroclastic flows continue; new dome emerges from Nicanor crater in June 2020

Bagana (Papua New Guinea) Ash plumes during 29 February-2 March and 1 May 2020

Kerinci (Indonesia) Intermittent ash emissions during January-early May 2020

Tinakula (Solomon Islands) Intermittent small thermal anomalies and gas-and-steam plumes during January-June 2020

Ibu (Indonesia) Frequent ash emissions and summit incandescence; Strombolian explosions in March 2020

Suwanosejima (Japan) Frequent explosions, ash plumes, and summit incandescence in January-June 2020

Kadovar (Papua New Guinea) Intermittent ash plumes and persistent summit thermal anomalies, January-June 2020

Sangay (Ecuador) Daily ash plumes and frequent pyroclastic flows produce ashfall and lahars, January-June 2020

Karangetang (Indonesia) Incandescent block avalanches through mid-January 2020; crater anomalies through May

Shishaldin (United States) Intermittent thermal activity and a possible new cone at the summit crater during February-May 2020

Masaya (Nicaragua) Lava lake level drops but remains active through May 2020; weak gas plumes

Krakatau (Indonesia) Strombolian explosions, ash plumes, and crater incandescence during April 2020



Nevados de Chillan (Chile) — May 2020 Citation iconCite this Report

Nevados de Chillan

Chile

36.868°S, 71.378°W; summit elev. 3180 m

All times are local (unless otherwise noted)


Explosions and pyroclastic flows continue; new dome emerges from Nicanor crater in June 2020

Nevados de Chillán is a complex of late-Pleistocene to Holocene stratovolcanoes in the Chilean Central Andes. An eruption started with a phreatic explosion and ash emission on 8 January 2016 from a new crater (Nicanor) on the E flank of the Nuevo crater, itself on the NW flank of the large Volcán Viejo stratovolcano. Strombolian explosions and ash emissions continued throughout 2016 and 2017; a lava dome within the Nicanor crater was confirmed in early January 2018. Explosions and pyroclastic flows continued during 2018 and 2019, with several lava flows appearing in late 2019. This report covers continuing activity from January-June 2020 when ongoing explosive events produced ash plumes, pyroclastic flows, and the growth of new dome inside the crater. Information for this report is provided primarily by Chile's Servicio Nacional de Geología y Minería (SERNAGEOMIN)-Observatorio Volcanológico de Los Andes del Sur (OVDAS), and by the Buenos Aires Volcanic Ash Advisory Center (VAAC).

Explosions with ash plumes rising up to three kilometers above the summit area were intermittent from late January through early June 2020. Some of the larger explosions produced pyroclastic flows that traveled down multiple flanks. Thermal anomalies within the Nicanor crater were recorded in satellite data several times each month from February through June. A reduction in overall activity led SERNAGEOMIN to lower the Alert Level from Orange to Yellow (on a 4-level, Green-Yellow-Orange-Red scale) during the first week of March, although tens of explosions with ash plumes were still recorded during March and April. Explosive activity diminished in early June and SERNAGEOMIN reported the growth of a new dome inside the Nicanor crater. By the end of June, a new flow had extended about 100 m down the N flank. Thermal activity recorded by the MIROVA project showed a drop in thermal energy in mid-December 2019 after the lava flows of September-November stopped advancing. A decrease in activity in January and February 2020 was followed by an increase in thermal and explosive activity in March and April. Renewed thermal activity from the growth of a new dome inside the Nicanor crater was recorded beginning in mid-June (figure 52).

Figure (see Caption) Figure 52. MIROVA thermal anomaly data for Nevados de Chillan from 8 September 2019 through June 2020 showed a drop in thermal activity in mid-December 2019 after the lava flows of September-November stopped advancing. A decrease in activity in January and February 2020 was followed by an increase in explosive activity in March and April. Renewed thermal activity from the growth of a new dome inside the Nicanor crater was recorded beginning in mid-June. Courtesy of MIROVA.

Weak gas emissions were reported daily during January 2020 until a series of explosions began on the 21st. The first explosion rose 100 m above the active crater; the following day, the highest explosion rose 1.6 km above the crater. The Buenos Aires VAAC reported pulse emissions visible in satellite imagery on 21 and 24 January that rose to 3.9-4.3 km altitude and drifted SE and NE, respectively. Intermittent explosions continued through 26 January. Incandescent ejecta was observed during the night of 28-29 January. The VAAC reported an isolated emission on 29 January that rose to 5.2 km altitude and drifted E. A larger explosion on 30 January produced an ash plume that SERNAGEOMIN reported at 3.4 km above the crater (figure 53). It produced pyroclastic flows that traveled down ravines on the NNE and SE flanks. The Washington VAAC reported on behalf of the Buenos Aires VAAC that an emission was observed in satellite imagery on 30 January that rose to 4.9 km altitude and was moving rapidly E, reaching 15 km from the summit at midday. The altitude of the ash plume was revised two hours later to 7.3 km, drifting NNE and rapidly dissipating. Satellite images identified two areas of thermal anomalies within the Nicanor crater that day. One was the same emission center (CE4) identified in November 2019, and the second was a new emission center (CE5) located 60 m NW.

Figure (see Caption) Figure 53. A significant explosion and ash plume from the Nicanor crater at Nevados de Chillan on 30 January 2020 produced an ash plume reported at 7.3 km altitude. The left image was taken within one minute of the initial explosion. Images posted by Twitter accounts #EmergenciasÑuble (left) and T13 (right); original photographers unknown.

When the weather permitted, low-altitude mostly white degassing was seen during February 2020, often with traces of fine-grained particulate material. Incandescence at the crater was observed overnight during 4-5 February. The Buenos Aires VAAC reported an emission on 14 February visible in the webcam. The next day, an emission was visible in satellite imagery at 3.9 km altitude that drifted E. Episodes of pulsating white and gray plumes were first observed by SERNAGEOMIN beginning on 18 February and continued through 25 February (figure 54). The Buenos Aires VAAC reported pulses of ash emissions moving SE on 18 February at 4.3 km altitude. Ash drifted E the next day at 3.9 km altitude and a faint plume was briefly observed on 20 February drifting N at 3.7 km altitude before dissipating. Sporadic pulses of ash moved SE from the volcano on 22 February at 4.3 km altitude, briefly observed in satellite imagery before dissipating. Thermal anomalies were visible from the Nicanor crater in Sentinel-2 satellite imagery on 23 and 28 February.

Figure (see Caption) Figure 54. An ash emission at Nevados de Chillan on 18 February 2020 was captured in Sentinel-2 satellite imagery drifting SE (left). Thermal anomalies within the Nicanor crater were measured on 23 (right) and 28 February. Images use Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.

Only low-altitude degassing of mostly steam was reported for the first half of March 2020. When SERNAGEOMIN lowered the Alert Level from Orange to Yellow on 5 March, they reduced the affected area from 5 km NE and 3 km SW of the crater to a radius of 2 km around the active crater. Thermal anomalies were recorded at the Nicanor crater in Sentinel-2 imagery on 4, 9, 11, 16, and 19 March (figure 55). A new series of explosions began on 19 March; 44 events were recorded during the second half of the month (figure 56). Webcams captured multiple explosions with dense ash plumes; on 25 and 30 March the plumes rose more than 2 km above the crater. Fine-grained ashfall occurred in Las Trancas (10 km SW) on 25 March. Pyroclastic flows on 25 and 30 March traveled 300 m NE, SE, and SW from the crater. Incandescence was observed at night multiple times after 20 March. The Buenos Aires VAAC reported several discrete pulses of ash that rose to 4.3 km altitude and drifted SE on 20 and 21 March, SW on 25 March, and SE on 29 and 30 March. Another ash emission rose to 5.5 km altitude later on 30 March and drifted SE.

Figure (see Caption) Figure 55. Sentinel-2 Satellite imagery of Nevados de Chillan during March 2020 showed thermal anomalies on five different dates at the Nicanor crater, including on 9, 11, and 16 March. A second thermal anomaly of unknown origin was also visible on 11 March about 2 km SW of the crater (center). Images use Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 56. Forty-four explosive events were recorded at Nevados de Chillan during the second half of March 2020 including on 19 March. Courtesy of SERNAGEOMIN webcams and chillanonlinenoticia.

In their semi-monthly reports for April 2020, SERNAGEOMIN reported 94 explosive events during the first half of the month and 49 during the second half; many produced dense ash plumes. The Buenos Aires VAAC reported frequent intermittent ash emissions during 1-13 April reaching altitudes of 3.7-4.3 km (figure 57). They reported the plume on 8 April visible in satellite imagery at 7.3 km altitude drifting SE. An emission on 13 April was also visible in satellite imagery at 6.1 km altitude drifting NE.

Figure (see Caption) Figure 57. Sentinel-2 satellite imagery captured a strong thermal anomaly and an ash plume drifting SE from Nevados de Chillan on 10 April 2020. Image uses Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.

During the second half of April 2020, SERNAGEOMIN reported that only one plume exceeded 2 km in height; on 21 April, it rose to 2.4 km above the crater (figure 58). The Buenos Aires VAAC reported isolated pulses of ash on 18, 26, 28, and 30 April. During the second half of April SERNAGEOMIN also reported that a pyroclastic flow traveled about 1,200 m from the crater rim down the SE flank. The ash from the pyroclastic flow drifted SE and S as far as 3.5 km. Satellite images showed continued activity from multiple emission centers around the crater. Pronounced scarps were noted on the internal walls of the crater, attributed to the deepening of the crater from explosive activity.

Figure (see Caption) Figure 58. Tens of explosions were reported at Nevados de Chillan during the second half of April 2020 that produced dense ash plumes. The plume on 21 April rose 2.4 km above the Nicanor crater. Photo by Josefa Carrasco Acuña from San Fabián de Alico; posted by Noticias Valpo Express.

Intermittent explosive activity continued during May 2020. The plumes contained abundant particulate material and were accompanied by periodic pyroclastic flows and incandescent ejecta around the active crater, especially visible at night. The Buenos Aires VAAC reported several sporadic weak ash emissions during the first week of May that rose to 3.7-5.2 km altitude and drifted NE. SERNAGEOMIN reported that only one explosion produced an ash emission that rose more than two km above the crater during the first two weeks of the month; on 6 May it rose to 2.5 km above the crater and drifted NE. They also observed pyroclastic flows on the E and SE flanks that day. Additional pyroclastic flows traveled 450 m down the S flank during the first half of the month, and similar deposits were observed to the N and NE. Satellite observations showed various emission points along the NW-trending lineament at the summit and multiple erosion scarps. Major erosion was noted at the NE rim of the crater along with an increase in degassing around the rim.

During the second half of May 2020 most of the ash plumes rose less than 2 km above the crater; a plume from one explosion on 22 May rose 2.2 km above the crater; the Buenos Aires VAAC reported the plume at 5.5 km altitude drifting NW (figure 59). Continuing pyroclastic emissions deposited material as far as 1.5 km from the crater rim on the NNW flank. There were also multiple pyroclastic deposits up to 500 m from the crater directed N and NE during the period. SERNAGEOMIN reported an increase in steam degassing between Nuevo-Nicanor and Nicanor-Arrau craters.

Figure (see Caption) Figure 59. Explosions produced dense ash plumes and pyroclastic flows at Nevados de Chillan multiple times during May 2020 including on 22 May. Courtesy of SERNAGEOMIN.

Webcam images during the first two weeks of June 2020 indicated multiple incandescent explosions. On 3 and 4 June plumes from explosions reached heights of over 1.25 km above the crater; the Buenos Aires VAAC reported them drifting NW at 3.9 km altitude. Incandescent ejecta on 6 June rose 760 m above the vent and drifted NE. In addition, pyroclastic flows were distributed on the N, NW, E and SE flanks. Significant daytime and nighttime incandescence was reported on 6, 9, and 10 June (figure 60). The VAAC reported emission pulses on 6 and 9 June drifting E and SE at 4.3 km altitude.

Figure (see Caption) Figure 60. Multiple ash plumes with incandescence were reported at Nevados de Chillan during the first ten days of June 2020 including on 6 June, after which explosive activity decreased significantly. Courtesy of SERNAGEOMIIN and Sismo Alerta Mexicana.

SERNAGEOMIN reported that beginning on the afternoon of 9 June 2020 a tremor-type seismic signal was first recorded, associated with continuous emission of gas and dark gray ash that drifted SE (figure 61). A little over an hour later another tremor signal began that lasted for about four hours, followed by smaller discrete explosions. A hybrid-type earthquake in the early morning of 10 June was followed by a series of explosions that ejected gas and particulate matter from the active crater. The vent where the emissions occurred was located within the Nicanor crater close to the Arrau crater; it had been degassing since 30 May.

Figure (see Caption) Figure 61. A tremor-type seismic signal was first recorded on the afternoon of 9 June 2020 at Nevados de Chillan. It was associated with the continuous emission of gas and dark gray ash that drifted SE, and incandescent ejecta visible after dark. View is to the S, courtesy of SERNAGEOMIN webcam, posted by Volcanology Chile.

After the explosions on the afternoon of 9 June, a number of other nearby vents became active. In particular, the vent located between the Nuevo and Nicanor craters began emitting material for the first time during this eruptive cycle. The explosion also generated pyroclastic flows that traveled less than 50 m in multiple directions away from the vent. Abundant incandescent material was reported during the explosion early on 10 June. Deformation measurements showed inflation over the previous 12 days.

SERNAGEOMIN identified a surface feature in satellite imagery on 11 June 2020 that they interpreted as a new effusive lava dome. It was elliptical with dimensions of about 85 x 120 m. In addition to a thermal anomaly attributed to the dome, they noted three other thermal anomalies between the Nuevo, Arrau, and Nicanor craters. They reported that within four days the base of the active crater was filled with effusive material. Seismometers recorded tremor activity after 11 June that was interpreted as associated with lava effusion. Incandescent emissions were visible at night around the active crater. Sentinel-2 satellite imagery recorded a bright thermal anomaly inside the Nicanor crater on 14 June (figure 62).

Figure (see Caption) Figure 62. A bright thermal anomaly was recorded inside the Nicanor crater at Nevados de Chillan on 14 June 2020. SERNAGEOMIN scientists attributed it to the growth of a new lava dome within the crater. Image uses Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.

A special report from SERNAGEOMIN on 24 June 2020 noted that vertical inflation had increased during the previous few weeks. After 20 June the inflation rate reached 2.49 cm/month, which was considered high. The accumulated inflation measured since July 2019 was 22.5 cm. Satellite imagery continued to show the growth of the dome, and SERNAGEOMIN scientists estimated that it reached the E edge of the Nicanor crater on 23 June. Based on these images, they estimated an eruptive rate of 0.1-0.3 m3/s, about two orders of magnitude faster than the Gil-Cruz dome that emerged between December 2018 and early 2019.

Webcams revealed continued low-level explosive activity and incandescence visible both during the day and at night. By the end of June, webcams recorded a lava flow that extended 94 m down the N flank from the Nicanor crater and continued to advance. Small explosions with abundant pyroclastic debris produced recurring incandescence at night. Satellite infrared imagery indicated thermal radiance from effusive material that covered an area of 37,000 m2, largely filling the crater. DEM analysis suggested that the size of the crater had tripled in volume since December 2019 due largely to erosion from explosive activity since May 2020. Sentinel-2 satellite imagery showed a bright thermal anomaly inside the crater on 27 June.

Geologic Background. The compound volcano of Nevados de Chillán is one of the most active of the Central Andes. Three late-Pleistocene to Holocene stratovolcanoes were constructed along a NNW-SSE line within three nested Pleistocene calderas, which produced ignimbrite sheets extending more than 100 km into the Central Depression of Chile. The largest stratovolcano, dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW end of the group. Volcán Viejo (Volcán Chillán), which was the main active vent during the 17th-19th centuries, occupies the SE end. The new Volcán Nuevo lava-dome complex formed between 1906 and 1945 between the two volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and eventually exceeded its height.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/, https://twitter.com/Sernageomin); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); #EmergenciasÑuble (URL: https://twitter.com/urgenciasnuble/status/1222943399185207296); T13, Channel 13 Press Department (URL: https://twitter.com/T13/status/1222951071443771394); Chillanonlinenoticia (URL: https://twitter.com/ChillanOnline/status/1240754211932995595); Noticias Valpo Express (URL: https://twitter.com/NoticiasValpoEx/status/1252715033131388928); Sismo Alerta Mexicana (URL: https://twitter.com/Sismoalertamex/status/1269351579095691265); Volcanology Chile (URL: https://twitter.com/volcanologiachl/status/1270548008191643651).


Bagana (Papua New Guinea) — July 2020 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Ash plumes during 29 February-2 March and 1 May 2020

Bagana lies in a nearly inaccessible mountainous tropical rainforest area of Bougainville Island in Papua New Guinea and is primarily monitored by satellite imagery of ash plumes and thermal anomalies. After a state of elevated activity that lasted through December 2018 (BGVN 43:05, 44:06, 44:12), the volcano entered a quieter period that persisted through at least May 2020. This report focuses on activity between December 2019 and May 2020.

Atmospheric clouds often obscured satellite views of the volcano during the reporting period. When the volcano could be observed, light-colored gas plumes were often observed (figure 43). Based on satellite and wind model data, the Darwin Volcanic Ash Advisory Centre (VAAC) reported that during 29 February-2 March ash plumes rose to an altitude of 1.8-2.1 km and drifted SW and N. On 1 May an ash plume rose to an altitude of 3 km and drifted NW and W. According to both Darwin VAAC volcanic ash advisories, the Aviation Color Code was Orange (second highest of four hazard levels).

Figure (see Caption) Figure 43. Sentinel-2 image of Bagana, showing a gas plume drifting SE on 13 March 2020, during a period when the Darwin VAAC had not reported any ash explosions (Natural Color rendering, bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

During the reporting period, the MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system recorded only intermittent thermal anomalies, all of which were of low radiative power. Sulfur dioxide emissions detected by satellite-based instruments over this reporting period were at low levels.

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Kerinci (Indonesia) — July 2020 Citation iconCite this Report

Kerinci

Indonesia

1.697°S, 101.264°E; summit elev. 3800 m

All times are local (unless otherwise noted)


Intermittent ash emissions during January-early May 2020

Kerinci is a stratovolcano located in Sumatra, Indonesia that has been characterized by explosive eruptions with ash plumes and gas-and-steam emissions. The most recent eruptive episode began in April 2018 which has included intermittent explosions and ash plumes. The previous report (BGVN 44:12) described more recent activity consisting of intermittent gas-and-steam and ash plumes which occurred during June through early November 2019. This volcanism continued through May 2020, though little to no activity was reported during December 2019. The primary source of information for this report comes from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) and the Darwin Volcanic Ash Advisory Centre (VAAC).

Activity during December 2019 consisted of white gas-and-steam emissions rising 100-500 m above the summit. White and brown emissions continued intermittently through May 2020, rising to a maximum altitude of 1 km above the summit on 14 April. During 3-6 and 8-9 January 2020, the Darwin VAAC and PVMBG issued notices reporting brown volcanic ash rising 150-600 m above the summit drifting S and ESE (figure 19). PVMBG published a VONA notice on 24 January at 0828 reporting ash rising 400 m above the summit. Brown emissions continued intermittently throughout the reporting period. On 1 February, volcanic ash was observed rising 300-960 m above the summit and drifting NE; PVMBG reported continuing brown emissions during 1-3 February. During 16-17 February, two VONA notices reported that brown ash plumes rose 150-400 m above the summit and drifted SW accompanied by consistent white gas-and-steam emissions (figure 20).

Figure (see Caption) Figure 19. Brown ash plume rose 500-600 m above Kerinci on 4 January 2020. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.
Figure (see Caption) Figure 20. White gas-and-steam emissions rose 400 m above Kerinci on 19 February 2020. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.

During 1-16 and 25-26 March 2020 brown ash emissions were frequently observed rising 100-500 m above the summit drifting in multiple directions. During 6-8 and 10-15, April brown ash emissions were reported 50-1,000 m above the summit. The most recent Darwin VAAC and VONA notices were published on 14 April, reporting volcanic ash rising 400 and 600 m above the summit, respectively; however, PVMBG reported brown emissions rising up to 1,000 m. By 25-27 April brown ash emissions rose 50-300 m above the summit. Intermittent white gas-and-steam emissions continued through May. The last brown emissions seen in May were reported on the 7th rising 50-100 m above the summit.

Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com, images at https://twitter.com/OysteinLAnderse/status/1213658331564269569/photo/1 and https://twitter.com/OysteinLAnderse/status/1230419965209018369/photo/1).


Tinakula (Solomon Islands) — July 2020 Citation iconCite this Report

Tinakula

Solomon Islands

10.386°S, 165.804°E; summit elev. 796 m

All times are local (unless otherwise noted)


Intermittent small thermal anomalies and gas-and-steam plumes during January-June 2020

Tinakula is a remote stratovolcano located 100 km NE of the Solomon Trench at the N end of the Santa Cruz. In 1971, an eruption with lava flows and ash explosions caused the small population to evacuate the island. Volcanism has previously been characterized by an ash explosion in October 2017 and the most recent eruptive period that began in December 2018 with renewed thermal activity. Activity since then has consisted of intermittent thermal activity and dense gas-and-steam plumes (BGVN 45:01), which continues into the current reporting period. This report updates information from January-June 2020 using primary source information from various satellite data, as ground observations are rarely available.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed weak, intermittent, but ongoing thermal activity during January-June 2020 (figure 41). A small cluster of slightly stronger thermal signatures was detected in late February to early March, which is correlated to MODVOLC thermal alert data; four thermal hotspots were recorded on 20, 27, and 29 February and 1 March. However, observations using Sentinel-2 satellite imagery were often obscured by clouds. In addition to the weak thermal signatures, dense gas-and-steam plumes were observed in Sentinel-2 satellite imagery rising from the summit during this reporting period (figure 42).

Figure (see Caption) Figure 41. Weak thermal anomalies at Tinakula from 26 June 2019 through June 2020 as recorded by the MIROVA system (Log Radiative Power) were intermittent and clustered more strongly in late February to early March.
Figure (see Caption) Figure 42. Sentinel-2 satellite imagery shows ongoing gas-and-steam plumes rising from Tinakula during January through May 2020. Images with atmospheric penetration (bands 12, 11, 8a) rendering; courtesy of Sentinel Hub Playground.

Three distinct thermal anomalies were observed in Sentinel-2 thermal satellite imagery on 22 January, 11 April, and 6 May 2020, accompanied by some gas-and-steam emissions (figure 43). The hotspot on 22 January was slightly weaker than the other two days, and was seen on the W flank, compared to the other two that were observed in the summit crater. According to MODVOLC thermal alerts, a hotspot was recorded on 6 May, which corresponded to a Sentinel-2 thermal satellite image with a notable anomaly in the summit crater (figure 43). On 10 June no thermal anomaly was seen in Sentinel-2 satellite imagery due to the presence of clouds; however, what appeared to be a dense gas-and-steam plume was extending W from the summit.

Figure (see Caption) Figure 43. Sentinel-2 thermal satellite images showing a weak thermal activity (bright yellow-orange) on 22 January 2020 on the W flank of Tinakula (top) and slightly stronger thermal hotspots on 11 April (middle) and 6 May (bottom) in at the summit, which are accompanied by gas-and-steam emissions. Images with atmospheric penetration (bands 12, 11, 8a) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The small 3.5-km-wide island of Tinakula is the exposed summit of a massive stratovolcano at the NW end of the Santa Cruz islands. Similar to Stromboli, it has a breached summit crater that extends from the summit to below sea level. Landslides enlarged this scarp in 1965, creating an embayment on the NW coast. The satellitic cone of Mendana is located on the SE side. The dominantly andesitic volcano has frequently been observed in eruption since the era of Spanish exploration began in 1595. In about 1840, an explosive eruption apparently produced pyroclastic flows that swept all sides of the island, killing its inhabitants. Frequent historical eruptions have originated from a cone constructed within the large breached crater. These have left the upper flanks and the steep apron of lava flows and volcaniclastic debris within the breach unvegetated.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Ibu (Indonesia) — July 2020 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Frequent ash emissions and summit incandescence; Strombolian explosions in March 2020

Ibu is an active stratovolcano located along the NW coast of Halmahera Island in Indonesia. Volcanism has recently been characterized by frequent ash explosions, ash plumes, and small lava flows within the crater throughout 2019 (BGVN 45:01). Activity continues, consisting of frequent white-and-gray emissions, ash explosions, ash plumes, and lava flows. This report updates activity through June 2020, using data from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Darwin Volcanic Ash Advisory Centre (VAAC), and various satellites.

Volcanism during the entire reporting period dominantly consisted of white-and-gray emissions that rose 200-800 m above the summit drifting in multiple directions. The ash plume with the maximum altitude of 13.7 km altitude occurred on 16 May 2020. Sentinel-2 thermal satellite imagery detected multiple smaller hotspots within the crater throughout the reporting period.

Continuous ash emissions were reported on 6 February rising to 2.1 km altitude drifting E, accompanied by a hotspot visible in infrared satellite imagery. On 16 February, a ground observer reported an eruption that produced an ash plume rising 800 m above the summit drifting W, according to a Darwin VAAC notice. Ash plumes continued through the month, drifting in multiple directions and rising up to 2.1 km altitude. During 8-10 March, video footage captured multiple Strombolian explosions that ejected incandescent material and produced ash plumes from the summit (figures 21 and 22). Occasionally volcanic lightning was observed within the ash column, as recorded in video footage by Martin Rietze. This event was also documented by a Darwin VAAC notice, which stated that multiple ash emissions rose 2.1 km altitude drifting SE. PVMBG published a VONA notice on 10 March at 1044 reporting ash plumes rising 400 m above the summit. PVMBG and Darwin VAAC notices described intermittent eruptions on 26, 28, and 29 March, all of which produced ash plumes rising 300-800 m above the summit.

Figure (see Caption) Figure 21. Strombolian explosions recorded at the crater summit of Ibu during 8-10 March 2020 ejected incandescent ejecta and a dense ash plume. Video footage copyright by Martin Rietze, used with permission.
Figure (see Caption) Figure 22. Strombolian explosions recorded at the crater summit of Ibu during 8-10 March 2020 ejected incandescent ejecta and ash. Frequent volcanic lightning was also observed. Video footage copyright by Martin Rietze, used with permission.

A majority of days in April included white-and-gray emissions rising up to 800 m above the summit. A ground observer reported an eruption on 9 April, according to a Darwin VAAC report, and a hotspot was observed in HIMAWARI-8 satellite imagery. Minor eruptions were reported intermittently during mid-April and early to mid-May. On 12 May at 1052 a VONA from PVMBG reported an ash plume 800-1,100 m above the summit. A large short-lived eruption on 16 May produced an ash plume that rose to a maximum of 13.7 km altitude and drifted S, according to the Darwin VAAC report. By June, volcanism consisted predominantly of white-and-gray emissions rising 800 m above the summit, with an ash eruption on 15 June. This eruptive event resulted in an ash plume that rose 1.8 km altitude drifting WNW and was accompanied by a hotspot detected in HIMAWARI-8 satellite imagery, according to a Darwin VAAC notice.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected frequent hotspots during July 2019 through June 2020 (figure 23). In comparison, the MODVOLC thermal alerts recorded a total of 24 thermal signatures over the course of 19 different days between January and June. Many thermal signatures were captured as small thermal hotspots in Sentinel-2 thermal satellite imagery within the crater (figure 24).

Figure (see Caption) Figure 23. Thermal anomalies recorded at Ibu from 2 July 2019 through June 2020 as recorded by the MIROVA system (Log Radiative Power) were frequent and consistent in power. Courtesy of MIROVA.
Figure (see Caption) Figure 24. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) showed occasional thermal hotspots (bright orange) in the Ibu summit crater during January through June 2020. Courtesy of Sentinel Hub Playground.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Martin Rietze, Taubenstr. 1, D-82223 Eichenau, Germany (URL: https://mrietze.com/, https://www.youtube.com/channel/UC5LzAA_nyNWEUfpcUFOCpJw/videos, video at https://www.youtube.com/watch?v=qMkfT1e4HQQ).


Suwanosejima (Japan) — July 2020 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Frequent explosions, ash plumes, and summit incandescence in January-June 2020

Suwanosejima is an active stratovolcano located in the northern Ryukyu Islands. Volcanism has previously been characterized by Strombolian explosions, ash plumes, and summit incandescence (BGVN 45:01), which continues to occur intermittently. A majority of this activity originates from vents within the large Otake summit crater. This report updates information during January through June 2020 using monthly reports from the Japan Meteorological Agency (JMA), the Tokyo Volcanic Ash Advisory Center (VAAC), and various satellite data.

During 3-10 January 2020, 13 explosions were detected from the Otake crater rising to 1.4 km altitude; material was ejected as far as 600 m away and ashfall was reported in areas 4 km SSW, according to JMA. Occasional small eruptive events continued during 12-17 January, which resulted in ash plumes that rose 1 km above the crater rim and ashfall was again reported 4 km SSW. Crater incandescence was visible nightly during 17-24 January, while white plumes rose as high as 700 m above the crater rim.

Nightly incandescence during 7-29 February, and 1-6 March, was accompanied by intermittent explosions that produced ash plumes rising up to 1.2 km above the crater rim (figure 44); activity during early February resulted in ashfall 4 km SSW. On 19 February an eruption produced a gray-white ash plume that rose 1.6 km above the crater (figure 45), resulting in ashfall in Toshima village (4 km SSW), according to JMA. Explosive events during 23-24 February ejected blocks onto the flanks. Two explosions were recorded during 1-6 March, which sent ash plumes as high as 900-1,000 m above the crater rim and ejected large blocks 300 m from the crater.

Figure (see Caption) Figure 44. Surveillance camera images of summit incandescence at Suwanosejima on 29 January (top left), 21 (middle left) and 23 (top right) February, and 25 March (bottom left and right) 2020. Courtesy of JMA (Monthly bulletin reports 511, January, February, and March 2020).
Figure (see Caption) Figure 45. Surveillance camera images of which and white-and-gray gas-and-steam emissions rising from Suwanosejima on 5 January (top), 19 February (middle), and 24 March 2020 (bottom). Courtesy of JMA (Monthly bulletin reports 511, January, February, and March 2020).

Nightly incandescence continued to be visible during 13-31 March, 1-10 and 17-24 April, 1-8, 15-31 May, 1-5 and 12-30 June 2020; activity during the latter part of March was relatively low and consisted of few explosive events. In contrast, incandescence was frequently accompanied by explosions in April and May. On 28 April at 0432 an eruption produced an ash plume that rose 1.6 km above the crater rim and drifted SE and E, and ejected blocks as far as 800 m from the crater. The MODVOLC thermal alerts algorithm also detected four thermal signatures during this eruption within the summit crater. An explosion at 1214 on 29 April caused glass in windows to vibrate up to 4 km SSW away while ash emissions continued to be observed following the explosion the previous day, according to the Tokyo VAAC.

During 1-8 May explosions occurred twice a day, producing ash plumes that rose as high as 1 km above the crater rim and ejecting material 400 m from the crater. An explosion on 29 May at 0210 produced an off-white plume that rose as high as 500 m above the crater rim and ejected large blocks up to 200 m above the rim. On 5 June an explosion produced gray-white plumes rising 1 km above the crater. Small eruptive events continued in late June, producing ash plumes that rose as high as 900 m above the crater rim.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed relatively stronger thermal anomalies in late February and late April 2020 with an additional six weaker thermal anomalies detected in early January (2), early February (1), mid-April (2), and mid-May (1) (figure 46). Sentinel-2 thermal satellite imagery in late January through mid-April showed two distinct thermal hotspots within the summit crater (figure 47).

Figure (see Caption) Figure 46. Prominent thermal anomalies at Suwanosejima during July-June 2020 as recorded by the MIROVA system (Log Radiative Power) occurred in late February and late April. Courtesy of MIROVA.
Figure (see Caption) Figure 47. Sentinel-2 thermal satellite images showing small thermal anomalies (bright yellow-orange) from two locations within the Otake summit crater at Suwanosejima. Images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kadovar (Papua New Guinea) — July 2020 Citation iconCite this Report

Kadovar

Papua New Guinea

3.608°S, 144.588°E; summit elev. 365 m

All times are local (unless otherwise noted)


Intermittent ash plumes and persistent summit thermal anomalies, January-June 2020

The steeply sloped 1.4-km-diameter Kadovar Island is located in the Bismark Sea offshore from the mainland of Papua New Guinea about 25 km NNE from the mouth of the Sepik River. Its first confirmed observed eruption began in early January 2018, with ash plumes and lava extrusion resulting in the evacuation of around 600 residents from the N side of the island (BGVN 43:03). A dome appeared at the base of the E flank during March-May 2018 (Planka et al., 2019); by November activity had migrated to a new dome growing near the summit on the E flank. Pulsating steam plumes, thermal anomalies, and periodic ash emissions continued throughout 2019 (BGVN 44:05, 45:01), and from January-June 2020, the period covered in this report. Information was provided by the Rabaul Volcano Observatory (RVO), the Darwin Volcanic Ash Advisory Center (VAAC), satellite sources, and photographs from visitors.

Activity during January-June 2020. Intermittent ash plumes, pulsating gas and steam plumes, and thermal anomalies continued at Kadovar during January-June 2020. MIROVA thermal data suggested persistent low-level anomalies throughout the period (figure 45). Sentinel-2 satellite data confirmed thermal anomalies at the summit on 5 and 25 January 2020, and an ash emission on 20 January (figure 46). Persistent pulsating steam plumes were visible whenever the skies were clear enough to see the volcano.

Figure (see Caption) Figure 45. Persistent low-level thermal activity at Kadovar was recorded in the MIROVA graph of radiative power from 2 July 2019 through June 2020. The island location is mislocated in the MIROVA system by about 5.5 km SE due to older mis-registered imagery; the anomalies are all on the island. Courtesy of MIROVA.
Figure (see Caption) Figure 46. Sentinel-2 satellite data confirmed thermal anomalies at the summit of Kadovar on 5 (left) and 25 January 2020, and an ash emission and steam plume that drifted SE on 20 January (center). Pulsating steam-and-gas emissions left a trail in the atmosphere drifting SE for several kilometers on 25 January (right). Left image uses Atmospheric penetration rendering (bands 12, 11, 8a), center and right images use Natural color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

On 2 February 2020 the Darwin VAAC reported a minor eruption plume that rose to 1.5 km altitude and drifted ESE for a few hours. Another plume was clearly discernible in satellite imagery on 5 February at 2.1 km altitude moving SE. RVO issued an information bulletin on 7 February reporting that, since the beginning of January, the eruption had continued with frequent Vulcanian explosions from the Main Vent with a recurrence interval of hours to days. Rocks and ash were ejected 300-400 m above the vent. Rumbling could be heard from Blupblup (Rubrub) island, 15 km E, and residents there also observed incandescence at night. On clear days the plume was sometimes visible from Wewak, on the mainland 100 km W. Additional vents produced variable amounts of steam. The Darwin VAAC reported continuous volcanic ash rising to 1.5 km on 22 February that extended ESE until it was obscured by a meteoric cloud; it dissipated early the next day. A small double ash plume and two strong thermal anomalies at the summit were visible in satellite imagery on 24 February (figure 47).

Figure (see Caption) Figure 47. Ash emissions and thermal anomalies continued at Kadovar during February 2020. Two small plumes of ash or dense steam rose from the summit on 24 February 2020, seen in this Natural color rendering (bands 4, 3, 2) on the left. The same image rendered in Atmospheric penetration (bands 12, 11, 8a) on the right shows two thermal anomalies in the same locations as the ash plumes. Courtesy of Sentinel Hub Playground.

The Darwin VAAC reported continuous ash emissions beginning on 13 March 2020 that rose to 1.5 km altitude and drifted SE. The plume was visible intermittently in satellite imagery for about 36 hours before dissipating. During April, pulsating steam plumes rose from two vents at the summit, and thermal anomalies appeared at both vents in satellite data (figure 48). Small but distinct SO2 anomalies were visible in satellite data on 15 and 16 April (figure 49).

Figure (see Caption) Figure 48. Steam plumes and thermal anomalies continued at Kadovar during April 2020. Top: A thermal anomaly at the summit accompanied pulsating steam plumes that drifted several kilometers SE before dissipating on 4 April 2020. Bottom left: Two gas-and-steam plumes drifted E from the summit on 9 April. Bottom right: Two adjacent thermal anomalies were present near the summit on 19 April. Top and bottom right images use Atmospheric penetration rendering (bands 12, 11, 8a), bottom left image uses Natural color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 49. Small but distinct SO2 anomalies were detected at Kadovar on 15 and 16 April 2020 with the TROPOMI instrument on the Sentinel-5P satellite. Nearby Manam often produces larger SO2 plumes that obscure evidence of activity at Kadovar. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Two summit vents remained active throughout May and June 2020, producing pulsating steam plumes that were visible for tens of kilometers and thermal anomalies visible in satellite data (figure 50). A strong thermal anomaly was visible beneath meteoric clouds on 8 June.

Figure (see Caption) Figure 50. During May and June 2020 thermal and plume activity continued at Kadovar. Top: Gas-and-steam plumes drifted NW from two sources at the summit of Kadovar on 19 May 2020. Bottom left: Two thermal anomalies marked the E rim of the summit crater on 28 June 2020. Bottom right: A zoomed out view of the same 28 June image shows pulsating steam plumes drifting 10 km NW from Kadovar. Top image is Natural color rendering (bands 4, 3, 2). Bottom images are Atmospheric penetration rendering (bands 12, 11, 8a) of Sentinel-2 images. Courtesy of Sentinel Hub Playground.

Visitor observations on 21 October 2019. Claudio Jung visited Kadovar on 21 October 2019. Shortly before arriving on the island an ash plume rose tens of meters above the summit and drifted W (figure 51). From the NW side of the summit crater rim, Jung saw the actively growing dome on the side of a larger dome, and steam and gas issuing from the growing dome (figure 52). The crater rim was covered with dead vegetation, ash, and large bombs from recent explosions (figure 53). The summit dome had minor fumarolic activity around the summit area and dead vegetation halfway up the flank (figure 54) while the fresh blocky lava of the actively growing dome on the E side of the summit produced significant steam and gas emissions. The growing dome produced periodic pulses of dense steam during his visit (figure 55).

Figure (see Caption) Figure 51. Views looking S show the shoreline dome at the base of the E flank of Kadovar that was active during March-May 2018 (left), and an ash plume drifting W from the summit dome located on the E side of the summit crater (right) on 21 October 2019. Copyrighted photos courtesy of Claudio Jung, used with permission.
Figure (see Caption) Figure 52. A panorama looking SE from the crater rim of Kadovar on 21 October 2019 shows the actively growing dome on the far left with a narrow plume of steam and gas being emitted. A large dome fills the summit crater; the crater rim is visible on the right. Copyrighted photo courtesy of Claudio Jung, used with permission.
Figure (see Caption) Figure 53. The crater rim of Kadovar on 21 October 2019 was covered with dead vegetation, ash, and large bombs from recent explosions. Person is sitting on a large bomb; weak fumarolic activity is visible along the rim. Copyrighted photo courtesy of Claudio Jung, used with permission.
Figure (see Caption) Figure 54. The summit dome of Kadovar on 21 October 2019 had minor fumarolic activity around most of its summit and dead vegetation half-way up the flank (left). The dead tree stumps suggest that vegetation covered the lower half of the dome prior to the eruption that began in January 2018. The fresh blocky lava of the actively growing dome on the E side of the summit dome produced significant steam and gas emissions (right). Copyrighted photos courtesy of Claudio Jung, used with permission.
Figure (see Caption) Figure 55. Dense steam from the growing dome on the E side of the summit drifted W from Kadovar on 21 October 2019. Copyrighted photo courtesy of Claudio Jung, used with permission.

Reference: Planka S, Walter T R, Martinis S, Cescab S, 2019, Growth and collapse of a littoral lava dome during the 2018/19 eruption of Kadovar Volcano, Papua New Guinea, analyzed by multi-sensor satellite imagery, Journal of Volcanology and Geothermal Research, v. 388, 15 December 2019, 106704, https://doi.org/10.1016/j.jvolgeores.2019.106704.

Geologic Background. The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the andesitic volcano, filling an arcuate landslide scarp open to the south; submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. A period of heightened thermal phenomena took place in 1976. An eruption began in January 2018 that included lava effusion from vents at the summit and at the E coast.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Claudio Jung (URL: https://www.instagram.com/jung.claudio/).


Sangay (Ecuador) — July 2020 Citation iconCite this Report

Sangay

Ecuador

2.005°S, 78.341°W; summit elev. 5286 m

All times are local (unless otherwise noted)


Daily ash plumes and frequent pyroclastic flows produce ashfall and lahars, January-June 2020

Frequent activity at Ecuador's Sangay has included pyroclastic flows, lava flows, ash plumes, and lahars reported since 1628. Its remoteness on the east side of the Andean crest make ground observations difficult; remote cameras and satellites provide important information on activity. The current eruption began in March 2019 and continued through December 2019 with activity focused on the Cráter Central and the Ñuñurco (southeast) vent; they produced explosions with ash plumes, lava flows, and pyroclastic flows and block avalanches. In addition, volcanic debris was remobilized in the Volcan river causing significant damming downstream. This report covers ongoing similar activity from January through June 2020. Information is provided by Ecuador's Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), and a number of sources of remote data including the Washington Volcanic Ash Advisory Center (VAAC), the Italian MIROVA Volcano HotSpot Detection System, and Sentinel-2 satellite imagery. Visitors also provided excellent ground and drone-based images and information.

Throughout January-June 2020, multiple daily reports from the Washington Volcanic Ash Advisory Center (VAAC) indicated ash plumes rising from the summit, generally 500-1,100 m. Each month one or more plumes rose over 2,000 m. The plumes usually drifted SW or W, and ashfall was reported in communities 25-90 km away several times during January-March and again in June. In addition to explosions with ash plumes, pyroclastic flows and incandescent blocks frequently descended a large, deep ravine on the SE flank. Ash from the pyroclastic flows rose a few hundred meters and drifted away from the volcano. Incandescence was visible on clear nights at the summit and in the ravine. The MIROVA log radiative power graph showed continued moderate and high levels of thermal energy throughout the period (figure 57). Sangay also had small but persistent daily SO2 signatures during January-June 2020 with larger pulses one or more days each month (figure 58). IG-EPN published data in June 2020 about the overall activity since May 2019, indicating increases throughout the period in seismic event frequency, SO2 emissions, ash plume frequency, and thermal energy (figure 59).

Figure (see Caption) Figure 57. This graph of log radiative power at Sangay for 18 Aug 2018 through June 2020 shows the moderate levels of thermal energy through the end of the previous eruption in late 2018 and the beginning of the current one in early 2019. Data is from Sentinel-2, courtesy of MIROVA.
Figure (see Caption) Figure 58. Small but persistent daily SO2 signatures were typical of Sangay during January-June 2020. A few times each month the plume was the same or larger than the plume from Columbia’s Nevado del Ruiz, located over 800 km NE. Image dates are shown in the header over each image. Courtesy of NASA’s Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 59. A multi-parameter graph of activity at Sangay from May 2019 to 12 June 2020 showed increases in many types of activity. a) seismic activity (number of events per day) detected at the PUYO station (source: IG-EPN). b) SO2 emissions (tons per day) detected by the Sentinel-5P satellite sensor (TROPOMI: red squares; source: MOUNTS) and by the IG-EPN (DOAS: green bars). c) height of the ash plumes (meters above crater) detected by the GOES-16 satellite sensor (source: Washington VAAC). d) thermal emission power (megawatt) detected by the MODIS satellite sensor (source: MODVOLC) and estimate of the accumulated lava volume (million M3, thin lines represent the error range). Courtesy of IG-EPN (Informe Especial del Volcán Sangay - 2020 - N°3, “Actualización de la actividad eruptiva”, Quito, 12 de junio del 2020).

Activity during January-March 2020. IG-EPN and the Washington VAAC reported multiple daily ash emissions throughout January 2020. Gas and ash emissions generally rose 500-1,500 m above the summit, most often drifting W or SW. Ashfall was reported on 8 January in the communities of Sevilla (90 km SSW), Pumallacta and Achupallas (60 km SW) and Cebadas (35 km WNW). On 16 January ash fell in the Chimborazo province in the communities of Atillo, Ichobamba, and Palmira (45 km W). Ash on 28 January drifted NW, with minor ashfall reported in Púngala (25 km NW) and other nearby communities. The town of Alao (20 km NW) reported on 30 January that all of the vegetation in the region was covered with fine white ash; Cebadas and Palmira also noted minor ashfall (figure 60).

Figure (see Caption) Figure 60. Daily ash plumes and repeated ashfall were reported from Sangay during January 2020. Top left: 1 January 2020 (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-2, JUEVES, 2 ENERO 2020). Top right: 20 January 2020 (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-21, MARTES, 21 ENERO 2020). Bottom left: 26 January-1 February 2020 expedition (Martes, 18 Febrero 2020 12:21, EXPEDICIÓN AL VOLCÁN SANGAY). Bottom right: 30 January 2020, minor ashfall was reported in the Province of Chimborazo (#IGAlInstante Informativo VOLCÁN SANGAY No. 006, JUEVES, 30 ENERO 2020). Courtesy of IG-EPN.

A major ravine on the SE flank has been the site of ongoing block avalanches and pyroclastic flows since the latest eruption began in March 2019. The pyroclastic flows down the ravine appeared incandescent at night; during the day they created ash clouds that drifted SW. Satellite imagery recorded incandescence and dense ash from pyroclastic flows in the ravine on 7 January (figure 61). They were also reported by IG on the 9th, 13th, 26th, and 28th. Incandescent blocks were reported in the ravine several times during the month. The webcam captured images on 31 January of large incandescent blocks descending the entire length of the ravine to the base of the mountain (figure 62). Large amounts of ash and debris were remobilized as lahars during heavy rains on the 25th and 28th.

Figure (see Caption) Figure 61. Sentinel-2 satellite imagery of Sangay from 7 January 2020 clearly showed a dense ash plume drifting W and ash and incandescent material from pyroclastic flows descending the SE-flank ravine. Left image uses natural color (bands 4, 3, 2) rendering and right images uses atmospheric penetration (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 62. Pyroclastic flows at Sangay produced large trails of ash down the SE ravine many times during January 2020 that rose and drifted SW. Top left: 9 January (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-9, JUEVES, 9 ENERO 2020). Top right: 13 January (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-14, MARTES, 14 ENERO 2020). On clear nights, incandescent blocks of lava and pyroclastic flows were visible in the ravine. Bottom left: 16 January (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-17, VIERNES, 17 ENERO 2020). Bottom right: 31 January (#IGAlInstante Informativo VOLCÁN SANGAY No. 007, VIERNES, 31 ENERO 2020). Courtesy of IG-EPN.

Observations by visitors to the volcano during 9-17 January 2020 included pyroclastic flows, ash emissions, and incandescent debris descending the SE flank ravine during the brief periods when skies were not completely overcast (figure 63 and 64). More often there was ash-filled rain and explosions heard as far as 16 km from the volcano, along with the sounds of lahars generated from the frequent rainfall mobilizing debris from the pyroclastic flows. The confluence of the Rio Upano and Rio Volcan is 23 km SE of the summit and debris from the lahars has created a natural dam on the Rio Upano that periodically backs up water and inundates the adjacent forest (figure 65). A different expedition to Sangay during 26 January-1 February 2020 by IG personnel to repair and maintain the remote monitoring station and collect samples was successful, after which the station was once again transmitting data to IG-EPN in Quito (figure 66).

Figure (see Caption) Figure 63. Hikers near Sangay during 9-17 January 2020 witnessed pyroclastic flows and incandescent explosions and debris descending the SE ravine. Left: The view from 40 km SE near Macas showed ash rising from pyroclastic flows in the SE ravine. Right: Even though the summit was shrouded with a cap cloud, incandescence from the summit crater and from pyroclastic flows on the SE flank were visible on clear nights. Courtesy of Arnold Binas, used with permission.
Figure (see Caption) Figure 64. The steep ravine on the SE flank of Sangay was hundreds of meters deep in January 2020 when these drone images were taken by members of a hiking trip during 9-17 January 2020 (left). Pyroclastic flows descended the ravine often (right), coating the sides of the ravine with fine, white ash and sending ash billowing up from the surface of the flow which resulted in ashfall in adjacent communities several times. Courtesy of Arnold Binas, used with permission.
Figure (see Caption) Figure 65. Debris from pyroclastic flows that descended the SE Ravine at Sangay was carried down the Volcan River (left) during frequent rains and caused repeated damming at the confluence with the Rio Upano (right), located 23 km SE of the summit. These images show the conditions along the riverbeds during 9-17 January 2020. Courtesy of Arnold Binas, used with permission.
Figure (see Caption) Figure 66. An expedition by scientists from IG-EPN to one of the remote monitoring stations at Sangay during 26 January-1 February 2020 was successful in restoring communication to Quito. The remote location and constant volcanic activity makes access and maintenance a challenge. Courtesy of IG-EPN (Martes, 18 Febrero 2020 12:21, EXPEDICIÓN AL VOLCÁN SANGAY).

During February 2020, multiple daily VAAC reports of ash emissions continued (figure 67). Plumes generally rose 500-1,100 m above the summit and drifted W, although on 26 February emissions were reported to 1,770 m. Ashfall was reported in Macas (40 km SE) on 1 February, and in the communities of Pistishi (65 km SW), Chunchi (70 km SW), Pumallacta (60 k. SW), Alausí (60 km SW), Guamote (40 km WNW) and adjacent areas of the Chimborazo province on 5 February. The Ecuadorian Red Cross reported ash from Sangay in the provinces of Cañar and Azuay (60-100 km SW) on 25 February. Cebadas and Guamote reported moderate ashfall the following day. The communities of Cacha (50 km NW) and Punín (45 km NW) reported trace amounts of ashfall on 29 February. Incandescent blocks were seen on the SE flank multiples times throughout the month. A pyroclastic flow was recorded on the SE flank early on 6 February; additional pyroclastic flows were observed later that day on the SW flank. On 23 February a seismic station on the flank recorded a high-frequency signal typical of lahars.

Figure (see Caption) Figure 67. Steam and ash could be seen drifting SW from the summit of Sangay on 11 February 2020 even though the summit was hidden by a large cap cloud. Ash was also visible in the ravine on the SE flank. Courtesy of Sentinel Hub Playground, natural color (bands 4, 3, 2) rendering.

A significant ash emission on 1 March 2020 was reported about 2 km above the summit, drifting SW. Multiple ash emissions continued daily during the month, generally rising 570-1,170 m high. An emission on 12 March also rose 2 km above the summit. Trace ashfall was reported in Cebadas (35 km WNW) on 12 March. The community of Huamboya, located 40 km ENE of Sangay in the province of Morona-Santiago reported ashfall on 17 March. On 19 and 21 March ashfall was seen on the surface of cars in Macas to the SE. (figure 68). Ash was also reported on the 21st in de Santa María De Tunants (Sinaí) located E of Sangay. Ash fell again in Macas on 23 March and was also reported in General Proaño (40 km SE). The wind changed direction the next day and caused ashfall on 24 March to the SW in Cuenca and Azogues (100 km SW).

Figure (see Caption) Figure 68. Ashfall from Sangay was reported on cars in Huamboya on 17 March 2020 (left) and in Macas on 19 March (right). Courtesy IG-EPN, (#IGAlInstante Informativo VOLCÁN SANGAY No. 024, MARTES, 17 MARZO 2020 and #IGAlInstante Informativo VOLCÁN SANGAY No. 025, JUEVES, 19 MARZO 2020).

Incandescence from the dome at the crater and on the SE flank was noted by IG on 3, 4, and 13 March. Remobilized ash from a pyroclastic flow was reported drifting SW on 13 March. The incandescent path of the flow was still visible that evening. Numerous lahars were recorded seismically during the month, including on days 5, 6, 8, 11, 15, 30 and 31. Images from the Rio Upano on 11 March confirmed an increase from the normal flow rate (figure 69) inferred to be from volcanic debris. Morona-Santiago province officials reported on 14 March that a new dam had formed at the confluence of the Upano and Volcano rivers that decreased the flow downstream; by 16 March it had given way and flow had returned to normal levels.

Figure (see Caption) Figure 69. Images from the Rio Upano on 11 March 2020 (left) confirmed an increase from the normal flow rate related to lahars from Sangay descending the Rio Volcan. By 16 March (right), the flow rate had returned to normal, although the large blocks in the river were evidence of substantial activity in the past. Courtesy of IG (#IGAlInstante Informativo VOLCÁN SANGAY No. 018, MIÉRCOLES, 11 MARZO 2020 and #IGAlInstante Informativo VOLCÁN SANGAY No. 023, LUNES, 16 MARZO 2020).

Activity during April-June 2020. Lahar activity continued during April 2020; they were reported seven times on 2, 5, 7, 11, 12, 19, and 30 April. A significant reduction in the flow of the Upano River at the entrance bridge to the city of Macas was reported 9 April, likely due to a new dam on the river upstream from where the Volcan river joins it caused by lahars related to ash emissions and pyroclastic flows (figure 70). The flow rate returned to normal the following day. Ash emissions were reported most days of the month, commonly rising 500-1,100 m above the summit and drifting W. Incandescent blocks or flows were visible on the SE flank on 4, 10, 12, 15-16, and 20-23 April (figure 71).

Figure (see Caption) Figure 70. A significant reduction in the flow of the Upano River at the entrance bridge to the city of Macas was reported on 9 April 2020, likely due to a new dam upstream from lahars related to ash emissions and pyroclastic flows from Sangay. Courtesy of IG-EPN (#IGAlInstante Informativo VOLCÁN SANGAY No. 032, JUEVES, 9 ABRIL 2020).
Figure (see Caption) Figure 71. Incandescent blocks rolled down the SE ravine at Sangay multiple times during April 2020, including on 4 April (left). Pyroclastic flows left two continuous incandescent trails in the ravine on 23 April (right). Courtesy of IG-EPN (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-95, SÁBADO, 4 ABRIL 2020 and INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-114, JUEVES, 23 ABRIL 2020).

Activity during May 2020 included multiple daily ash emissions that drifted W and numerous lahars from plentiful rain carrying ash and debris downstream. Although there were only a few visible observations of ash plumes due to clouds, the Washington VAAC reported plumes visible in satellite imagery throughout the month. Plumes rose 570-1,170 m above the summit most days; the highest reported rose to 2,000 m above the summit on 14 May. Two lahars occurred in the early morning on 1 May and one the next day. A lahar signal lasted for three hours on 4 May. Two lahar signals were recorded on the 7th, and three on the 9th. Lahars were also recorded on 16-17, 20-22, 26-27, and 30 May. Incandescence on the SE flank was only noted three times, but it was cloudy nearly every day.

An increase in thermal and overall eruptive activity was reported during June 2020. On 1 and 2 June the webcam captured lava flows and remobilization of the deposits on the SE flank in the early morning and late at night. Incandescence was visible multiple days each week. Lahars were reported on 4 and 5 June. The frequent daily ash emissions during June generally rose to 570-1,200 m above the summit and drifted usually SW or W. The number of explosions and ash emissions increased during the evening of 7 June. IG interpreted the seismic signals from the explosions as an indication of the rise of a new pulse of magma (figure 72). The infrasound sensor log from 8 June also recorded longer duration tremor signals that were interpreted as resulting from the descent of pyroclastic flows in the SE ravine.

Figure (see Caption) Figure 72. Seismic and infrasound signals indicated increased explosive and pyroclastic flow activity at Sangay on 7-8 June 2020. Left: SAGA station (seismic component) of 7 and 8 June. The signals correspond to explosions without VT or tremor signals, suggesting the rise of a new magma pulse. Right: SAGA station infrasound sensor log from 8 June. The sharp explosion signals are followed a few minutes later (examples highlighted in red) by emergent signals of longer duration, possibly associated with the descent of pyroclastic material in the SE flank ravine. Courtesy if IG-EPN (Informe Especial del Volcán Sangay - 2020 - N°3, “Actualización de la actividad eruptiva”, Quito, 12 de junio del 2020).

On the evening of 8 June ashfall was reported in the parish of Cebadas and in the Alausí Canton to the W and SW of Sangay. There were several reports of gas and ash emissions to 1,770 m above the summit the next morning on 9 June, followed by reports of ashfall in the provinces of Guayas, Santa Elena, Los Ríos, Morona Santiago, and Chimborazo. Ashfall continued in the afternoon and was reported in Alausí, Chunchi, Guamote, and Chillanes. That night, which was clear, the webcam captured images of pyroclastic flows down the SE-flank ravine; IG attributed the increase in activity to the collapse of one or more lava fronts. On the evening of 10 June additional ashfall was reported in the towns of Alausí, Chunchi, and Guamote (figure 73); satellite imagery indicated an ash plume drifting W and incandescence from pyroclastic flows in the SE-flank ravine the same day (figure 74).

Figure (see Caption) Figure 73. Ashfall from Sangay was reported in Alausí (top left), Chunchi (top right) and Guamote (bottom) on 10 June 2020. Courtesy of IG-EPN (#IGAlInstante Informativo VOLCÁN SANGAY No. 049, MIÉRCOLES, 10 JUNIO 2020).
Figure (see Caption) Figure 74. Incandescent pyroclastic flows (left) and ash plumes that drifted W (right) were recorded on 10 June 2020 at Sangay in Sentinel-2 satellite imagery. Courtesy of Sentinel Hub Playground.

Ashfall continued on 11 June and was reported in Guayaquil, Guamote, Chunchi, Riobamba, Guaranda, Chimbo, Echandía, and Chillanes. The highest ash plume of the report period rose to 2,800 m above the summit that day and drifted SW. That evening the SNGRE (Servicio Nacional de Gestion de Riesgos y Emergencias) reported ash fall in the Alausí canton. IG noted the increase in intensity of activity and reported that the ash plume of 11 June drifted more than 600 km W (figure 75). Ash emissions on 12 and 13 June drifted SW and NW and resulted in ashfall in the provinces of Chimborazo, Cotopaxi, Tungurahua, and Bolívar. On 14 June, the accumulation of ash interfered with the transmission of information from the seismic station. Lahars were reported each day during 15-17 and 19-21 June. Trace amounts of ashfall were reported in Macas to the SE on 25 June.

Figure (see Caption) Figure 75. The ash plume at Sangay reported on 11 June 2020 rose 2.8 km above the summit and drifted W according to the Washington VAAC and IG (left). Explosions and high levels of incandescence on the SE flank were captured by the Don Bosco webcam (right). Courtesy of IG-EPN (#IGAlInstante Informativo VOLCÁN SANGAY No. 055, JUEVES, 11 JUNIO 2020 and INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-164, VIERNES, 12 JUNIO 2020).

During an overflight of Sangay on 24 June IG personnel observed that activity was characterized by small explosions from the summit vent and pyroclastic flows down the SE-flank ravine. The explosions produced small gas plumes with a high ash content that did not rise more than 500 m above the summit and drifted W (figure 76). The pyroclastic flows were restricted to the ravine on the SE flank, although the ash from the flows rose rapidly and reached about 200 m above the surface of the ravine and also drifted W (figure 77).

Figure (see Caption) Figure 76. A dense ash plume rose 500 m from the summit of Sangay on 24 June 2020 and drifted W during an overflight by IG-EPN personnel. The aerial photograph is taken from the SE; snow-covered Chimborazo is visible behind and to the right of Sangay. Photo by M Almeida, courtesy of IG EPN (Jueves, 02 Julio 2020 10:29, INFORME DEL SOBREVUELO AL VOLCÁN SANGAY EL 24 DE JUNIO DE 2020).
Figure (see Caption) Figure 77. Pyroclastic flows descended the SE flank ravine at Sangay during an overflight by IG-EPN personnel on 24 June 2020. Ash from the pyroclastic flow rose 200 m and drifted W, and infrared imagery identified the thermal signature of the pyroclastic flow in the ravine. Photo by M Almeida, IR Image by S Vallejo, courtesy of IG EPN (Jueves, 25 Junio 2020 12:24, SOBREVUELO AL VOLCÁN SANGAY).

Infrared imagery taken during the overflight on 24 June identified three significant thermal anomalies in the large ravine on the SE flank (figure 78). Analysis by IG scientists suggested that the upper anomaly 1 (125°C) was associated with explosive activity that was observed during the flight. Anomaly 2 (147°C), a short distance below Anomaly 1, was possibly related to effusive activity of a small flow, and Anomaly 3 (165°C) near the base of the ravine that was associated with pyroclastic flow deposits. The extent of the changes at the summit of Sangay and along the SE flank since the beginning of the eruption that started in March 2019 were clearly visible when images from May 2019 were compared with images from the 24 June 2020 overflight (figure 79). The upper part of the ravine was nearly 400 m wide by the end of June.

Figure (see Caption) Figure 78. A thermal image of the SE flank of Sangay taken on 24 June 2020 indicated three thermal anomalies. Anomaly 1 was associated with explosive activity, Anomaly 2 was associated with effusive activity, and Anomaly 3 was related to pyroclastic-flow deposits. Image prepared by S Vallejo Vargas, courtesy of IG EPN (Jueves, 02 Julio 2020 10:29, INFORME DEL SOBREVUELO AL VOLCÁN SANGAY EL 24 DE JUNIO DE 2020).
Figure (see Caption) Figure 79. Aerial and thermal photographs of the southern flank of the Sangay volcano on 17 May 2019 (left: visible image) and 24 June 2020 (middle: visible image, right: visible-thermal overlay) show the morphological changes on the SE flank, associated with the formation of a deep ravine and the modification of the summit. Photos and thermal image by M Almeida, courtesy of IG EPN (Jueves, 02 Julio 2020 10:29, INFORME DEL SOBREVUELO AL VOLCÁN SANGAY EL 24 DE JUNIO DE 2020).

Geologic Background. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

Information Contacts: Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Arnold Binas (URL: https://www.doroadventures.com).


Karangetang (Indonesia) — June 2020 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Incandescent block avalanches through mid-January 2020; crater anomalies through May

The Karangetang andesitic-basaltic stratovolcano (also referred to as Api Siau) at the northern end of the island of Siau, north of Sulawesi, Indonesia, has had more than 50 observed eruptions since 1675. Frequent explosive activity is accompanied by pyroclastic flows and lahars, and lava-dome growth has created two active summit craters (Main to the S and Second Crater to the N). Rock avalanches, observed incandescence, and satellite thermal anomalies at the summit confirmed continuing volcanic activity since the latest eruption started in November 2018 (BGVN 44:05). This report covers activity from December 2019 through May 2020. Activity is monitored by Indonesia's Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), and ash plumes are monitored by the Darwin VAAC (Volcanic Ash Advisory Center). Information is also available from MODIS thermal anomaly satellite data through both the University of Hawaii's MODVOLC system and the Italian MIROVA project.

Increased activity that included daily incandescent avalanche blocks traveling down the W and NW flanks lasted from mid-July 2019 (BGVN 44:12) through mid-January 2020 according to multiple sources. The MIROVA data showed increased number and intensity of thermal anomalies during this period, with a sharp drop during the second half of January (figure 40). The MODVOLC thermal alert data reported 29 alerts in December and ten alerts in January, ending on 14 January, with no further alerts through May 2020. During December and the first half of January incandescent blocks traveled 1,000-1,500 m down multiple drainages on the W and NW flanks (figure 41). After this, thermal anomalies were still present at the summit craters, but no additional activity down the flanks was identified in remote satellite data or direct daily observations from PVMBG.

Figure (see Caption) Figure 40. An episode of increased activity at Karangetang from mid-July 2019 through mid-January 2020 included incandescent avalanche blocks traveling down multiple flanks of the volcano. This was reflected in increased thermal activity seen during that interval in the MIROVA graph covering 5 June 2019 through May 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 41. An episode of increased activity at Karangetang from mid-July 2019 through mid-January 2020 included incandescent avalanche blocks traveling up to 1,500 m down drainages on the W and NW flanks of the volcano. Top left: large thermal anomalies trend NW from Main Crater on 5 December 2019; about 500 m N a thermal anomaly glows from Second Crater. Top center: on 15 December plumes of steam and gas drifted W and SW from both summit craters as seen in Natural Color rendering (bands 4,3,2). Top right: the same image as at top center with Atmospheric penetration rendering (bands 12, 11, 8a) shows hot zones extending WNW from Main Crater and a thermal anomaly at Second Crater. Bottom left: thermal activity seen on 14 January 2020 extended about 800 m WNW from Main Crater along with an anomaly at Second Crater and a hot spot about 1 km W. Bottom center: by 19 January the anomaly from Second Crater appeared slightly stronger than at Main Crater, and only small anomalies appeared on the NW flank. Bottom right: an image from 14 March shows only thermal anomalies at the two summit craters. Courtesy of Sentinel Hub Playground.

A single VAAC report in early April noted a short-lived ash plume that drifted SW. Intermittent low-level activity continued through May 2020. Small SO2 plumes appeared in satellite data multiple times in December 2019 and January 2020; they decreased in size and frequency after that but were still intermittently recorded into May 2020 (figure 42).

Figure (see Caption) Figure 42. Small plumes of sulfur dioxide were measured at Karangetang with the TROPOMI instrument on the Sentinel-5P satellite multiple times during December 2019 (top row). They were less frequent but still appeared during January-May 2020 (bottom row). Larger plumes were also detected from Dukono, located 300 km ESE at the N end of North Maluku. Courtesy of Global Sulfur Dioxide Monitoring Page.

PVMBG reported in their daily summaries that steam plumes rose 50-150 m above the Main Crater and 25-50 m above Second Crater on most days in December. The incandescent avalanche activity that began in mid-July 2019 also continued throughout December 2019 and January 2020 (figure 43). Incandescent blocks from the Main Crater descended river drainages (Kali) on the W and NW flanks throughout December. They were reported nearly every day in the Nanitu, Sense, and Pangi drainages, traveling 1,000-1,500 m. Incandescence from both craters was visible 10-25 m above the crater rim most nights.

Figure (see Caption) Figure 43. Incandescent block avalanches descended the NW flank of Karangetang as far as 1,500 m frequently during December 2019 and January 2020. Left image taken 13 December 2019, right image taken 6 January 2020 by PVMBG webcam. Courtesy of PVMBG, Oystein Anderson, and Bobyson Lamanepa.

A few blocks were noted traveling 800 m down Kali Beha Barat on 1 December. Incandescence above the Main crater reached 50-75 m during 4-6 December. During 4-7 December incandescent blocks appeared in Kali Sesepe, traveling 1,000-1,500 m down from the summit. They were also reported in Kali Batang and Beha Barat during 4-14 December, usually moving 800-1,000 m downslope. Between 5 and 14 December, gray and white plumes from Second Crater reached 300 m multiple times. During 12-15 December steam plumes rose 300-500 m above the Main crater. Activity decreased during 18-26 December but increased again during the last few days of the month. On 28 December, incandescent blocks were reported 1,500 m down Kali Pangi and Nanitu, and 1,750 m down Kali Sense.

Incandescent blocks were reported in Kali Sesepi during 4-6 January and in Kali Batang and Beha Barat during 4-8 and 12-15 January (figure 44); they often traveled 800-1,200 m downslope. Activity tapered off in those drainages and incandescent blocks were last reported in Kali Beha Barat on 15 January traveling 800 m from the summit. Incandescent blocks were also reported traveling usually 1,000-1,500 m down the Nanitu, Sense, and Pangi drainages during 4-19 January. Blocks continued to occasionally descend up to 1,000 m down Kali Nanitu through 24 January. Pulses of activity occurred at the summit of Second Crater a few times in January. Steam plumes rose 25-50 m during 8-9 January and again during 16-31 January, with plumes rising 300-400 m on 20, 29, and 31 January. Incandescence was noted 10-25 m above the summit of Second Crater during 27-30 January.

Figure (see Caption) Figure 44. Incandescent material descends the Beha Barat, Sense, Nanitu, and Pangi drainages on the NW flank of Karangetang in early January 2020. Courtesy of Bobyson Lamanepa; posted on Twitter on 6 January 2020.

Activity diminished significantly after mid-January 2020. Steam plumes at the Main Crater rose 50-100 m on the few days where the summit was not obscured by fog during February. Faint incandescence occurred at the Main Crater on 7 February, and steam plumes rising 25-50 m from Second Crater that day were the only events reported there in February. During March, steam plumes persisted from the Main Crater, with heights of over 100 m during short periods from 8-16 March and 25-30 March. Weak incandescence was reported from the Main Crater only once, on 25 March. Very little activity occurred at Second Crater during March, with only steam plumes reported rising 25-300 m from the 22nd to the 28th (figure 45).

Figure (see Caption) Figure 45. Steam plumes at Karangetang rose over 100 m above both summit craters multiple times during March, including on 26 March 2020. Courtesy of PVMBG and Oystein Anderson.

The Darwin VAAC reported a continuous ash emission on 4 April 2020 that rose to 2.1 km altitude and drifted SW for a few hours before dissipating. Incandescence visible 25 m above both craters on 13 April was the only April activity reported by PVMBG other than steam plumes from the Main Crater that rose 50-500 m on most days. Steam plumes of 50-100 m were reported from Second Crater during 11-13 April. Activity remained sporadic throughout May 2020. Steam plumes from the Main Crater rose 50-300 m each day. Satellite imagery identified steam plumes and incandescence from both summit craters on 3 May (figure 46). Faint incandescence was observed at the Main Crater on 12 and 27 May. Steam plumes rose 25-50 m from Second Crater on a few days; a 200-m-high plume was reported on 27 May. Bluish emissions were observed on the S and SW flanks on 28 May.

Figure (see Caption) Figure 46. Dense steam plumes and thermal anomalies were present at both summit craters of Karangetang on 3 May 2020. Sentinel 2 satellite image with Natural Color (bands 4, 3, 2) (left) and Atmospheric Penetration rendering (bands 12, 11, 8a) (right); courtesy of Sentinel Hub Playground.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com); Bobyson Lamanepa, Yogyakarta, Indonesia, (URL: https://twitter.com/BobyLamanepa/status/1214165637028728832).


Shishaldin (United States) — June 2020 Citation iconCite this Report

Shishaldin

United States

54.756°N, 163.97°W; summit elev. 2857 m

All times are local (unless otherwise noted)


Intermittent thermal activity and a possible new cone at the summit crater during February-May 2020

Shishaldin is located near the center of Unimak Island in Alaska, with the current eruption phase beginning in July 2019 and characterized by ash plumes, lava flows, lava fountaining, pyroclastic flows, and lahars. More recently, in late 2019 and into January 2020, activity consisted of multiple lava flows, pyroclastic flows, lahars, and ashfall events (BGVN 45:02). This report summarizes activity from February through May 2020, including gas-and-steam emissions, brief thermal activity in mid-March, and a possible new cone within the summit crater. The primary source of information comes from the Alaska Volcano Observatory (AVO) reports and various satellite data.

Volcanism during February 2020 was relatively low, consisting of weakly to moderately elevated surface temperatures during 1-4 February and occasional small gas-and-steam plumes (figure 37). By 6 February both seismicity and surface temperatures had decreased. Seismicity and surface temperatures increased slightly again on 8 March and remained elevated through the rest of the reporting period. Intermittent gas-and-steam emissions were also visible from mid-March (figure 38) through May. Minor ash deposits visible on the upper SE flank may have been due to ash resuspension or a small collapse event at the summit, according to AVO.

Figure (see Caption) Figure 37. Photo of a gas-and-steam plume rising from the summit crater at Shishaldin on 22 February 2020. Photo courtesy of Ben David Jacob via AVO.
Figure (see Caption) Figure 38. A Worldview-2 panchromatic satellite image on 11 March 2020 showing a gas-and-steam plume rising from the summit of Shishaldin and minor ash deposits on the SE flank (left). Aerial photo showing minor gas-and-steam emissions rising from the summit crater on 11 March (right). Some erosion of the snow and ice on the upper flanks is a result of the lava flows from the activity in late 2019 and early 2020. Photo courtesy of Matt Loewen (left) and Ed Fischer (right) via AVO.

On 14 March, lava and a possible new cone were visible in the summit crater using satellite imagery, accompanied by small explosion signals. Strong thermal signatures due to the lava were also seen in Sentinel-2 satellite data and continued strongly through the month (figure 39). The lava reported by AVO in the summit crater was also reflected in satellite-based MODIS thermal anomalies recorded by the MIROVA system (figure 40). Seismic and infrasound data identified small explosions signals within the summit crater during 14-19 March.

Figure (see Caption) Figure 39. Sentinel-2 thermal satellite images (bands 12, 11, 8A) show a bright hotspot (yellow-orange) at the summit crater of Shishaldin during mid-March 2020 that decreases in intensity by late March. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 40. MIROVA thermal data showing a brief increase in thermal anomalies during late March 2020 and on two days in late April between periods of little to no activity. Courtesy of MIROVA.

AVO released a Volcano Observatory Notice for Aviation (VONA) stating that seismicity had decreased by 16 April and that satellite data no longer showed lava or additional changes in the crater since the start of April. Sentinel-2 thermal satellite imagery continued to show a weak hotspot in the crater summit through May (figure 41), which was also detected by the MIROVA system on two days. A daily report on 6 May reported a visible ash deposit extending a short distance SE from the summit, which had likely been present since 29 April. AVO noted that the timing of the deposit corresponds to an increase in the summit crater diameter and depth, further supporting a possible small collapse. Small gas-and-steam emissions continued intermittently and were accompanied by weak tremors and occasional low-frequency earthquakes through May (figure 42). Minor amounts of sulfur dioxide were detected in the gas-and-steam emissions during 20 and 29 April, and 2, 16, and 28 May.

Figure (see Caption) Figure 41. Sentinel-2 thermal satellite images (bands 12, 11, 8A) show occasional gas-and-steam emissions rising from Shishaldin on 26 February (top left) and 24 April 2020 (bottom left) and a weak hotspot (yellow-orange) persisting at the summit crater during April and early May 2020. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 42. A Worldview-1 panchromatic satellite image showing gas-and-steam emissions rising from the summit of Shishaldin on 1 May 2020 (local time) (left). Aerial photo of the N flank of Shishaldin with minor gas-and-steam emissions rising from the summit on 8 May (right). Photo courtesy of Matt Loewen (left) and Levi Musselwhite (right) via AVO.

Geologic Background. The beautifully symmetrical Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." A steam plume often rises from its small summit crater. Constructed atop an older glacially dissected volcano, it is largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the W and NE sides at 1,500-1,800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Masaya (Nicaragua) — June 2020 Citation iconCite this Report

Masaya

Nicaragua

11.985°N, 86.165°W; summit elev. 594 m

All times are local (unless otherwise noted)


Lava lake level drops but remains active through May 2020; weak gas plumes

Masaya, which is about 20 km NW of the Nicaragua’s capital of Managua, is one of the most active volcanoes in that country and has a caldera that contains a number of craters (BGVN 43:11). The Santiago crater is the one most currently active and it contains a small lava lake that emits weak gas plumes (figure 85). This report summarizes activity during February through May 2020 and is based on Instituto Nicaragüense de Estudios Territoriales (INETER) monthly reports and satellite data. During the reporting period, the volcano was relatively calm, with only weak gas plumes.

Figure (see Caption) Figure 85. Satellite images of Masaya from Sentinel-2 on 18 April 2020, showing and a small gas plume drifting SW (top, natural color bands 4, 3, 2) and the lava lake (bottom, false color bands 12, 11, 4). Courtesy of Sentinel Hub Playground.

According to INETER, thermal images of the lava lake and temperature data in the fumaroles were taken using an Omega infrared gun and a forward-looking infrared (FLIR) SC620 thermal camera. The temperatures above the lava lake have decreased since November 2019, when the temperature was 287°C, dropping to 96°C when measured on 14 May 2020. INETER attributed this decrease to subsidence in the level of the lava lake by 5 m which obstructed part of the lake and concentrated the gas emissions in the weak plume. Convection continued in the lava lake, which in May had decreased to a diameter of 3 m. Many landslides had occurred in the E, NE, and S walls of the crater rim due to rock fracturing caused by the high heat and acidity of the emissions.

During the reporting period, the MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system recorded numerous thermal anomalies from the lava lake based on MODIS data (figure 86). Infrared satellite images from Sentinel-2 regularly showed a strong signature from the lava lake through 18 May, after which the volcano was covered by clouds.

Figure (see Caption) Figure 86. Thermal anomalies at Masaya during February through May 2020. The larger anomalies with black lines are more distant and not related to the volcano. Courtesy of MIROVA.

Measurements of sulfur dioxide (SO2) made by INETER in the section of the Ticuantepe - La Concepción highway (just W of the volcano) with a mobile DOAS system varied between a low of just over 1,000 metric tons/day in mid-November 2019 to a high of almost 2,500 tons/day in late May. Temperatures of fumaroles in the Cerro El Comalito area, just ENE of Santiago crater, ranged from 58 to 76°C during February-May 2020, with most values in the 69-72°C range.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Historical lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Krakatau (Indonesia) — June 2020 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 155 m

All times are local (unless otherwise noted)


Strombolian explosions, ash plumes, and crater incandescence during April 2020

Krakatau, located in the Sunda Strait between Indonesia’s Java and Sumatra Islands, experienced a major caldera collapse around 535 CE, forming a 7-km-wide caldera ringed by three islands. On 22 December 2018, a large explosion and flank collapse destroyed most of the 338-m-high island of Anak Krakatau (Child of Krakatau) and generated a deadly tsunami (BGVN 44:03). The near-sea level crater lake inside the remnant of Anak Krakatau was the site of numerous small steam and tephra explosions. A larger explosion in December 2019 produced the beginnings of a new cone above the surface of crater lake (BGVN 45:02). Recently, volcanism has been characterized by occasional Strombolian explosions, dense ash plumes, and crater incandescence. This report covers activity from February through May 2020 using information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, also known as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), the Darwin Volcanic Ash Advisory Center (VAAC), and various satellite data.

Activity during February 2020 consisted of dominantly white gas-and-steam emissions rising 300 m above the crater, according to PVMBG. According to the Darwin VAAC, a ground observer reported an eruption on 7 and 8 February, but no volcanic ash was observed. During 10-11 February, a short-lived eruption was detected by seismograms which produced an ash plume up to 1 km above the crater drifting E. MAGMA Indonesia reported two eruptions on 18 March, both of which rose to 300 m above the crater. White gas-and-steam emissions were observed for the rest of the month and early April.

On 10 April PVMBG reported two eruptions, at 2158 and 2235, both of which produced dark ash plumes rising 2 km above the crater followed by Strombolian explosions ejecting incandescent material that landed on the crater floor (figures 108 and 109). The Darwin VAAC issued a notice at 0145 on 11 April reporting an ash plume to 14.3 km altitude drifting WNW, however this was noted with low confidence due to the possible mixing of clouds. During the same day, an intense thermal hotspot was detected in the HIMAWARI thermal satellite imagery and the NASA Global Sulfur Dioxide page showed a strong SO2 plume at 11.3 km altitude drifting W (figure 110). The CCTV Lava93 webcam showed new lava flows and lava fountaining from the 10-11 April eruptions. This activity was evident in the MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data (figure 111).

Figure (see Caption) Figure 108. Webcam (Lava93) images of Krakatau on 10 April 2020 showing Strombolian explosions, strong incandescence, and ash plumes rising from the crater. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 109. Webcam image of incandescent Strombolian explosions at Krakatau on 10 April 2020. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 110. Strong sulfur dioxide emissions rising from Krakatau and drifting W were detected using the TROPOMI instrument on the Sentinel-5P satellite on 11 April 2020 (top row). Smaller volumes of SO2 were visible in Sentinel-5P/TROPOMI maps on 13 (bottom left) and 19 April (bottom right). Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 111. Thermal activity at Anak Krakatau from 29 June-May 2020 shown on a MIROVA Log Radiative Power graph. The power and frequency of the thermal anomalies sharply increased in mid-April. After the larger eruptive event in mid-April the thermal anomalies declined slightly in strength but continued to be detected intermittently through May. Courtesy of MIROVA.

Strombolian activity rising up to 500 m continued into 12 April and was accompanied by SO2 emissions that rose 3 km altitude, drifting NW according to a VAAC notice. PVMBG reported an eruption on 13 April at 2054 that resulted in incandescence as high as 25 m above the crater. Volcanic ash, accompanied by white gas-and-steam emissions, continued intermittently through 18 April, many of which were observed by the CCTV webcam. After 18 April only gas-and-steam plumes were reported, rising up to 100 m above the crater; Sentinel-2 satellite imagery showed faint thermal anomalies in the crater (figure 112). SO2 emissions continued intermittently throughout April, though at lower volumes and altitudes compared to the 11th. MODIS satellite data seen in MIROVA showed intermittent thermal anomalies through May.

Figure (see Caption) Figure 112. Sentinel-2 thermal satellite images showing the cool crater lake on 20 March (top left) followed by minor heating of the crater during April and May 2020. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 23, Number 03 (March 1998)

Managing Editor: Richard Wunderman

Arenal (Costa Rica)

Relatively quiet in December but lavas still venting in March

Atmospheric Effects (1995-2001) (Unknown)

Lidar data from Germany and Virginia

Bezymianny (Russia)

Fumarolic plumes observed often

Chiginagak (United States)

Gray clouds and sulfur smell indicate vigorous fumarolic activity

Fournaise, Piton de la (France)

Geophysical portrayal of the March fissure eruptions

Guagua Pichincha (Ecuador)

Series of phreatic explosions during 1997

Irazu (Costa Rica)

The 26-27 December seismic swarm 20 km from summit (220 earthquakes)

Karymsky (Russia)

Gas-and-steam explosions and above-background seismicity

Kilauea (United States)

Steady eruption but low seismicity, sparse surface flows

Klyuchevskoy (Russia)

Earthquakes and frequent fumarolic plumes

Llaima (Chile)

Small explosions, seismicity, and ash output increased during early April 1998

Momotombo (Nicaragua)

Higher-than-normal fumarole temperatures

Negro, Cerro (Nicaragua)

February observations show decreasing fumarole temperatures

Poas (Costa Rica)

Fumarolic vigor, tremor, and earthquakes high during February

Rabaul (Papua New Guinea)

Ash emissions, pyroclastic flows, and inflation during March

Rincon de la Vieja (Costa Rica)

Phreatic eruptions on 15-17 February thrust steam to 2 km

Sheveluch (Russia)

Several gas-and-steam plumes seen during March

Soufriere Hills (United Kingdom)

Heavy ashfalls and rapid dome growth in February

Spurr (United States)

Unusual plume observed from Anchorage

Telica (Nicaragua)

February visit reveals slight increase in fumarolic activity and collapse zone

Turrialba (Costa Rica)

Fumarolic condensate data and monthly earthquakes to March 1998

Villarrica (Chile)

Escalating seismic amplitudes in March prelude to more explosions and ash



Arenal (Costa Rica) — March 1998 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Relatively quiet in December but lavas still venting in March

During December [1997], lavas emitted beginning in September continued to flow down Arenal's W flank. They reached 1,400 m elevation and mass wasting carried some material to as low as 1,000 m elevation. December eruptive rates and intensities were low; also, the number of earthquakes and hours of tremor were both at or near the minimum values seen during the course of the year. This pattern continued into January 1998. Still, on infrequent occasions the active crater (Crater C) discharged plumes reaching at least 1 km in height above the crater.

Lavas vented in late January continued to flow in February, descending to 1,100 m elevation, and branching near 1,300 m elevation to form a new arm directed to the NW down the Tabacón river valley. During March, this new arm flowed down to reach 1,200 m elevation; the main channel extended to 1,000 m elevation; another arm branched off to the W at 1,400 m elevation and descended about 100 m.

Observers noted two pyroclastic flows during January-February. The first reached 1,100 m elevation on the SE flank. The second followed a similar path and reached 900 m elevation.

The number of low-frequency earthquakes (<4.0 Hz) during January and February, while still low, rose more than 25% over the number during December. The hours of tremor during January-February also remained low; during the latter month the dedicated seismic station (VACR) registered only 58 hours, the lowest monthly record in at least two years. During March, seismicity appeared to rise again, but the seismic system only functioned 18 days of the month. During this time the system recorded 80 hours of tremor.

OVSICORI-UNA scientists noted fumarolic activity in crater D as well as acid rain on the volcano's leeward flanks (towards the NW, W, and SE). In these sectors, some species of plants sustained visible leaf damage.

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: E. Fernandez, V. Barboza, R. Van der Laat, R. Saenz, E. Duarte, E. Malavassi, T. Marino, M. Martinez, and E. Hernandez, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; Mauricio Mora Fernandez, Sección de Sismologia, Vulcanologia y Exploración Geofisica, Escuela Centroamericana de Geología, Universidad de Costa Rica, P.O. Box 35-2060, San José, Costa Rica.


Atmospheric Effects (1995-2001) (Unknown) — March 1998 Citation iconCite this Report

Atmospheric Effects (1995-2001)

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


Lidar data from Germany and Virginia

Table 13 lists atmospheric lidar data from Hampton, Virginia for 8 April 1997 through 26 February 1998, and from Garmisch-Partenkirchen, Germany for 3 November 1997 to 14 April 1998. The aerosol backscatter measured at Hampton on 26 February 1998 shows a typical winter increase in stratospheric aerosol compared to measurements made the previous summer. The increase from summer to winter is generally a function of the difference in tropopause height between the two seasons. In this case there is a significant decrease in integrated stratospheric aerosol compared to measurements obtained during the winter of 1997 (Bulletin v. 22, nos. 1, 3).

Table 13. Lidar data collected for Virginia (April 1997-February 1998) and Germany (November 1997-April 1998) showing altitudes of aerosol layers. Backscattering rations from Hampton are for the ruby wavelength of 0.69 µm; those from Garmisch-Partenkirchen are for the Nd-YAG wavelength of 0.53 µm, with equivalent ruby values in parentheses. The integrated value shows total backscatter, expressed in steradians-1, integrated over 300-m intervals from the tropopause to 30 km for both Virginia and Germany. Courtesy of Mary Osborne and Horst Jäger.

DATE LAYER ALTITUDE (km) (peak) BACKSCATTERING RATIO BACKSCATTERING INTEGRATED
Hampton, Virginia (37.1°N, 76.3°W)
08 Apr 1997 17-27 (20.5) 1.12 5.02 x 10-5
16 Apr 1997 17-27 (19.6) 1.17 6.90 x 10-5
07 May 1997 17-27 (20.3) 1.14 4.90 x 10-5
22 May 1997 15-28 (20.5) 1.13 4.76 x 10-5
11 Jun 1997 15-25 (20.6) 1.12 3.01 x 10-5
15 Jul 1997 15-27 (18.1) 1.14 3.73 x 10-5
01 Aug 1997 15-28 (23.6) 1.11 3.53 x 10-5
05 Sep 1997 14-30 (21.7) 1.11 4.06 x 10-5
26 Feb 1998 12-28 (16.4) 1.10 4.28 x 10-5
Garmisch-Partenkirchen, Germany (47.5°N, 11.0°E)
03 Nov 1997 13-26 (17.4) 1.07 (1.13) --
08 Nov 1997 10-26 (19.9) 1.06 (1.13) --
10 Nov 1997 9-25 (18.9) 1.08 (1.15) --
19 Nov 1997 10-24 (20.3) 1.06 (1.12) --
27 Nov 1997 10-23 (16.0) 1.07 (1.13) --
09 Jan 1998 10-26 (21.9) 1.08 (1.15) --
30 Jan 1998 11-28 (14.7) 1.07 (1.13) --
13 Feb 1998 12-30 (18.1) 1.08 (1.16) --
18 Feb 1998 12-27 (18.3) 1.09 (1.18) --
10 Mar 1998 11-33 (17.3) 1.10 (1.20) --
25 Mar 1998 10-28 (17.0) 1.05 (1.09) --
14 Apr 1998 11-32 (16.3) 1.07 (1.13) --

A graph of integral stratospheric aerosol backscatter (figure 5) shows how the stratospheric aerosol load had declined by the end of 1997 to pre-Pinatubo values. More observations are needed to decide whether a new background level has been reached or will be reached in the near future.

Figure with caption Figure 5. Graph showing the log of the lidar backscatter versus time at Garmisch-Partenkirchen, Germany for the latter two-thirds of 1991 through end-1997. The plotted data are preliminary 532 nm integral values of stratospheric aerosol backscatter (integrated from the tropopause or cirrus to the top of the aerosol layer) versus time. Labeled arrows indicate the eruptions of Pinatubo and Kliuchevskoi. Courtesy of Horst Jäger.

Geologic Background. The enormous aerosol cloud from the March-April 1982 eruption of Mexico''s El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin thorugh 1989. Lidar data and other atmospheric observations were again published intermittently between 1995 and 2001; those reports are included here.

Information Contacts: Mary Osborn, NASA Langley Research Center (LaRC), Hampton, VA 23665 USA; Horst Jäger, Fraunhofer -- Institut für Atmosphärische Umweltforschung, Kreuzeckbahnstrasse 19, D-82467 Garmisch-Partenkirchen, Germany.


Bezymianny (Russia) — March 1998 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Fumarolic plumes observed often

No seismicity registered under the volcano during 2 March-5 April. On 5-7, 10, and 12-14 March, fumarolic plumes rose 50-300 m above the volcano. Fumarolic plumes on 16-20 and 22 March rose 50-200 m above the volcano and moved 5-10 km SSE. On 30-31 March and 1-4 April fumarolic plumes rose 100-500 m above the volcano.

Geologic Background. Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Vladimir Kirianov, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Chiginagak (United States) — March 1998 Citation iconCite this Report

Chiginagak

United States

57.135°N, 156.99°W; summit elev. 2221 m

All times are local (unless otherwise noted)


Gray clouds and sulfur smell indicate vigorous fumarolic activity

When scientists from the Alaska Volcano Observatory (AVO) conducted an overflight to Chiginagak on 11 March, the summit was visible but a thin cloud layer at about 1,700-1,900 m altitude obscured the fumarolic areas. Above the fumaroles, however, bulbous gray clouds penetrated through the thin cloud layer and extended to about 2,100 m altitude.

A strong sulfur smell was noticed 16-49 km downwind of the volcano. The gray clouds and sulfur smell supported observations from Pilot Point (60 km NW) that indicated continued vigorous fumarolic activity. Increased fumarolic activity has been reported at the volcano beginning as early as mid-1997 (BGVN 22:11 and 23:01). According to AVO, the increased activity did not imply an imminent eruption.

Geologic Background. The symmetrical, calc-alkaline Chiginagak stratovolcano located about 15 km NW of Chiginagak Bay contains a small summit crater, which is breached to the south, and one or more summit lava domes. Satellitic lava domes occur high on the NW and SE flanks of the glacier-mantled volcano. An unglaciated lava flow and an overlying pyroclastic-flow deposit extending east from the summit are the most recent products of Chiginagak. They most likely originated from a lava dome at 1687 m on the SE flank, 1 km from the summit of the volcano, which has variably been estimated to be from 2075 to 2221 m high. Brief ash eruptions were reported in July 1971 and August 1998. Fumarolic activity occurs at 1600 m elevation on the NE flank of the volcano, and two areas of hot-spring travertine deposition are located at the NW base of the volcano near Volcano Creek.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Piton de la Fournaise (France) — March 1998 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


Geophysical portrayal of the March fissure eruptions

The following is a summary of observations from scientists at the Observatoire du Piton de la Fournaise and Observatoires Volcanologiques (OVPF), Institut de Physique du Globe de Paris, and the Laboratoire des Sciences de la Terre, Université de la Réunion.

Narrative. An eruption broke out on Piton de la Fournaise (PdF) at 1505 on 9 March 1998, after an unusually long period of 63 months rest. PdF (figure 41) had an average eruption rate of more than one per year in the last several decades. For a time three fissure vents were simultaneously active. The eruption continued at one fissure vent (Piton Kapor) at least as late as 20 April 1998.

Figure (see Caption) Figure 41. Schematic map of Piton de la Fournaise showing the 9 and 11-12 March vents, newly named scoria cones and related features, and the extent of lava flows as of 15 March. Courtesy of Thomas Staudacher, OVPF.

Following escalating seismicity seen over the past two years, a seismic swarm developed at 0338 on 9 March (figures 42, 43, 44, and 45). The swarm was under the edifice, centered slightly W of the small Bory crater, a feature that lies immediately W of the larger Dolomieu crater. In the first observation of its kind at PdF, hypocenters progressed towards the surface prior to the eruption (figure 44).

Figure (see Caption) Figure 42. The number of seismic events accumulated annually at Piton de la Fournaise during 1996, 1997, and early 1998 (three separate curves). The seismic swarm at the end of November 1996 was not followed by an eruption. A significant change in the earthquake rate started in July 1997 and accelerated in early 1998. Courtesy of OVPF.
Figure (see Caption) Figure 43. Located earthquakes at Piton de la Fournaise from 1957 on 6 March through 1857 on 10 March (top) and a vertical, E-W cross section showing hypocenters from 0000 on 8 March through 1200 on 9 March (bottom). Coordinates (labeled tic marks) for horizontal distances on the map and cross section are 5 km apart; this scale differs from the vertical scale on the cross section. Courtesy of OVPF.
Figure (see Caption) Figure 44. During the seismic crisis on PdF hypocenters migrated upward during the pre-eruptive 36-hour period shown (0000 on 6 March-1200 on 9 March). This was the first observation of its kind at PdF; pre-eruptive seismicity had usually remained diffusely distributed within the whole edifice. Courtesy of Jean Battaglia and Nelly Rousseau, OVPF.
Figure (see Caption) Figure 45. Pre-eruptive earthquake counts at Piton de la Fournaise and seismic moments for 8-9 March 1998 (times are GMT). Noteworthy points are labeled as follows: at A, focal depths of the volcano-tectonic events started at ~5 km below sea-level; at B they reached 3 km; at C, 2 km; and at D, 1 km. At E, there occurred the first long-period (near 1 Hz) event since 1993. Venting started at 1505 (1105 GMT). Courtesy of OVPF.

The summit deformed rapidly beginning around 1400. An example of clear and sudden inflation appears in figure 46, documenting changes in radial and tangential inflation at station "Bory." Another multi-component station ("Soufriere"; immediately N of Dolomieu crater) underwent similarly rapid, though larger amplitude, displacement beginning at 1410 and peaking at 1424 to 1429 (undergoing up to 200 µrad of tilt). Inflation at Soufriere station indicated migration of magma towards the N eruptive fissures. Surface venting started there at 1505.

Figure (see Caption) Figure 46. Ground deformation at the summit of Piton de la Fournaise on 9 March during 1200-1700 (0800-1300 GMT). Surface venting began at 1505 (1105 GMT). The Bory two-component inclinometer, ~200 m S of Bory crater, measures tilt aligned radial and tangential to the volcano. The rapid inflation at 1011 GMT was linked to near-surface dike emplacement. Contact the authors for collateral inclinometer and extensometer data at other summit stations. Courtesy of OVPF.

EDM and GPS measurements showed concordant displacements at points around the summit (figures 47 and 48). The time-sequence of EDM data indicated that essentially all deformation occurred at the time of eruption. Consistent with the deformation, eruptive fissures developed between the reflectors to the NE and NW of the summit.

Figure (see Caption) Figure 47. Automated electronic distance meter (EDM) measurements at Piton de la Fournaise taken from an instrument on the NW rim of the Enclos Fouqué caldera (star, labeled 1B10). The EDM computed distances and azimuths to 13 reflectors (triangles) on the flanks of the terminal cone. The numbers indicate centimeters of total displacement between 1000 and 1400 GMT on 9 March. Weather permitting, these measurements were made every hour and telemetered to the observatory in near real-time. Only reflectors E of the fissures underwent measurable relative motion, moving E up to 34 cm. Courtesy of OVPF.
Figure (see Caption) Figure 48. GPS measurements at Piton de la Fournaise showing horizontal displacements in centimeters from GPS positioning in November 1997 and 15 March 1998. Courtesy of OVPF.

At 1505 on 9 March tilt on the northern summit inclinometer reversed and seismic tremor commenced, indicating the final stages of dyke emplacement and the onset of venting. Although at the time, bad weather impaired visual observation, venting was recognized, starting on a 150-m-long N-S fissure around 2,450 m elevation on the N flank of the terminal cone (figure 41). The fissure system quickly developed in an en echelon pattern stretching downslope to approximately 2,100 m elevation. Major venting migrated to the fissure's lower stretches where lava fountaining up to 50 m high fed a flow that descended E (towards an area of the N caldera called the Plaine des Osmondes). Vigorous venting continued through the night of 9 March.

A few discrete seismic events were observed through the tremor during the next two days (10-11 March). The approximate locations of the events were SW of Bory crater. During 10-11 March venting continued in the N along two 100-m-long fissures. At the time, scientists lacked visual observations of the flow front due to cloud cover. Earthquakes at Piton de la Fournaise generally cease after an eruption has broken out, but in this case they continued, hence the impending opening of a new eruption fissure was forecast for the next few hours or days.

In accord with this forecast, during the night of 11 March until 0245 the next morning, a new, isolated eruptive fissure opened WSW of the Bory crater. The vent established itself S of the other erupting fissures, at ~2,200 m elevation (figure 41). Although lava escaped at a much lower rate here than along the northern vents, this southern fissure emitted lava along a zone ~100 m in length. Fountaining lava reached ~10 m high and fed a flow that by 0800 on 11 March had traveled 200-300 m downslope.

During the following days, eruptions continued at both the two northern fissures as well as the southern fissure. Estimated emission rates on the N were 30-50 m3/s and on the S at 5-10 m3/s. Issuing from the northern fissures, E-traveling lava descended to ~1,100 m elevation by 15 March. Here, ~4 km away from the vents, the flow front became stationary. Around the same time, lava issuing at the southern fissure reached an estimated length of 1,500 m. Maximum lava temperatures reached 1,167°C at the northern vents and 1,157°C at the southern vent.

Venting was progressively restricted to limited stretches of the three fissures where scoria cones started to grow. By 19 March the scoria cones were ~40 m high and 120 m long at the upper-elevation northern site, ~35 m high at the lower-elevation northern site, and 15 m high at the southwestern site.

Features at these cones were designated as the Maurice and Katia Krafft crater, Piton Kapor, and the Fred Hudson crater (figure 41). Activity at the three cones continued, but progressively decreased until venting was restricted to Piton Kapor by 31 March. Piton Kapor was still quite active as of 20 April 1998.

Preliminary petrography indicated that the lavas were mostly aphyric basalts carrying a small but variable number of millimeter-sized olivine crystals. Under the assumption that their composition lay close to the so-called "stationary basalts," modeling indicated that they vented at temperatures close to their liquidus.

Premonitory geophysical observations. Clear-cut long-term observations on the various surveillance networks that signaled an impending eruption were, as is customary at PdF, discrete and few. Increasing seismicity late in 1997 and accelerating in early 1998 were signs that an abnormal situation was developing. However, other crises, albeit of smaller intensities, occurred in November 1996 and July 1997 and did not result in an eruption. Small perturbations were seen on the deformation (inclinometry, geodesy, and extensometry) networks months before the present event but were not interpreted as premonitory. These signs most probably corresponded to magma intrusions within the edifice.

Surveillance network observations. It was only a few hours before the 9 March outbreak that short-term signs definitely signaled an impending eruption and civil authorities were warned of a maximum alert. Critical signs included seismic, tilt, and deformation data (summarized on figures 42 to 48). In addition, a total-field magnetometer network provided clear pre- and syn-eruptive signals that remain under interpretation. Measurements on about 50 of the approximately 100 microgravity-benchmark and GPS-array stations were repeated between 18 and 31 March with two Scintrex CG-3M gravimeters. The array was last surveyed in December 1997. A few stations showed variations of relatively small amplitude. Interpretations must await correction of the elevation changes and comparison with the recordings provided by the two permanent monitoring stations installed in December 1997. Radon stations did not show any unusual pattern either before or during the first stages of the outbreak as was hoped from previous behavior during intrusive events (BGVN 21:12).

The Observatoire Volcanologique du Piton de la Fournaise(OVPF) was built in 1979 after the devastation of the 1977 eruption owing to the financial help of the Institut National des Siences de l'Univers, France. The Observatory became operational in 1980; since then, tens of eruption have been closely observed and, most often, forecast sufficiently in advance to alleviate possible personal and material damages.

Besides the information contacts listed below, report contributors also included Kei Aki, Valérie Ferazzini, Louis-Philippe Ricard, Nelly Rousseau, Jean Battaglia, Nicolas Villeneuve, Philippe Kowalski, Philippe Catherine, Denis Wégerlé, Grégory Durand, Nadia Talibart, Jacques Lebreton, Maolidi Assoumani, Massimo Bonfiglio, Bernard Robineau, Jean-Lambert Join, Eric Delcher, Jean-Luc Folio, Jean-Luc Hoareau, Cécile Savin, Hamidou Nassor, Evelyn Maillot, Jean-Claude Lépine, Martine Hirn-Sapin, Christine Deplus, Pierre Briole, Sylvain Bonvalot, Jacques Zlotnicki, Germinal Gabalda, Philippe Labazuy, Alfred Hirn, Jean-Claude Delmond, Guy Aubert, Michel Diament, and Janine Gouin.

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Thomas Staudacher, Observatoire Volcanologique du Piton de la Fournaise (OVPF), 14 RN3, le 27Km, 97418 La Plaine des Cafres, La Réunion, France; Patrick Bachèlery, Département des Sciences de la Terre, Université de la Réunion, BP 7151, 15 Avenue Rene Cassin, 97715 Saint Denis Cedex 9, La Réunion, France; Michel P. Semet and Jean-Louis Cheminée, Observatoires Volcanologiques, Institut de Physique du Globe de Paris, 4 Place Jussieu, 75252 Paris Cedex 05, France (URL: http://www.ipgp.jussieu.fr/).


Guagua Pichincha (Ecuador) — March 1998 Citation iconCite this Report

Guagua Pichincha

Ecuador

0.171°S, 78.598°W; summit elev. 4784 m

All times are local (unless otherwise noted)


Series of phreatic explosions during 1997

During March-October 1997 a series of phreatic explosions took place within Guagua Pichincha's caldera (figure 5). No precursory signals were detected prior to the activity. The intensity of these explosions peaked in May 1997; the last explosive signal was detected on 18 October 1997. This activity resembled phreatic explosions that occurred in 1981, 1990, and 1993.

Figure (see Caption) Figure 5. Monthly counts of explosion signals at Guagua Pichincha detected by Instituto Geofisico seismic stations during 1997. Courtesy of the Instituto Geofisico.

Larger explosions on 15, 16, 18, 20, and 22 May, 22 and 23 July, and 18 October were detected by four short-period seismic stations located around the volcano. Tremor signals following these explosions had reduced displacements of 2. The largest explosion occurred on 29 May at 0654; its signal was recorded at eight sites, including seismic stations at the volcanoes Cotopaxi (58 km away), Cotacachi (60 km away), and Cayambe (70 km away). The accompanying tremor signal had a reduced displacement of 8.9 cm2. An A-type fracture event located just outside the E caldera rim at 3 km depth preceded the explosion.

Following the 20 May explosion, volcanologists observed two new, white, 250-m-tall fumarolic plumes rising from the explosion crater. The crater showed evidence of recent collapses on its interior S and SW sides. Fine pulverized rock deposits covered more than 2 km2 in the N part of the caldera bottom. Blocks up to 50 cm across were scattered over the caldera floor as far as 1 km from the crater; impact craters up to 2 m in diameter were formed. No juvenile material was found.

During 1997, the number of events at stations close to the caldera remained at normal values except during September-October, when a large number of events were detected at stations 1.0-1.2 km from the crater. However, at stations over 10 km away, the number of events remained at normal values. Low seismicity preceded phreatic activity in 1990 and 1993. The hypocenter locations of high-frequency events were at depths <5 km beneath the caldera floor (figure 6).

Figure (see Caption) Figure 6. Epicenter map (top) and E-W cross-section (bottom) of high-frequency events at Guagua Pichincha during 1997. Courtesy of Instituto Geofisico.

A swarm of 26 local earthquakes (M <3) lasted less than 1 hour on 16 December 1997. This was the first such swarm detected at Guagua Pichincha since continuous seismic monitoring began in 1981. EDM deformation monitoring of the phreatic crater and outer flanks of the dome revealed no change with regard to the baseline established in 1988.

Thermocouple measurements of fumarole temperatures on the dome showed values of 120-120.7°C, the same as during prior measurements in 1995, but lower than those detected in February 1994 (138-139°C). Prior to 1994, fumarole temperatures were constant at 87°C. Analyses of spring water from the caldera and the surrounding area gave essentially the same results as in 1988.

Geologic Background. Guagua Pichincha and the older Pleistocene Rucu Pichincha stratovolcanoes form a broad volcanic massif that rises immediately to the W of Ecuador's capital city, Quito. A lava dome is located at the head of a 6-km-wide breached caldera that formed during a late-Pleistocene slope failure ~50,000 years ago. Subsequent late-Pleistocene and Holocene eruptions from the central vent in the breached caldera consisted of explosive activity with pyroclastic flows accompanied by periodic growth and destruction of the central lava dome. One of Ecuador's most active volcanoes, it is the site of many minor eruptions since the beginning of the Spanish era. The largest historical eruption took place in 1660, when ash fell over a 1000 km radius, accumulating to 30 cm depth in Quito. Pyroclastic flows and surges also occurred, primarily to then W, and affected agricultural activity, causing great economic losses.

Information Contacts: Mario Ruiz Romero, Instituto Geofísico de la Escuela Politécnica Nacional.


Irazu (Costa Rica) — March 1998 Citation iconCite this Report

Irazu

Costa Rica

9.979°N, 83.852°W; summit elev. 3432 m

All times are local (unless otherwise noted)


The 26-27 December seismic swarm 20 km from summit (220 earthquakes)

During 26-27 December a small seismic swarm at Irazú consisted of 220 earthquakes. At the swarm's peak 109 earthquakes occurred in 15 hours. The epicenters fell 20 km NNW of the summit, originating on a local fault. The largest earthquake, at 0154 on 27 December, was M 2.9. It had a focal depth of 5 km and an epicenter 20 km NW of the summit. For comparison, during the months of January, February, and March 1998, the respective counts consisted of 58, 59, and 70 local earthquakes.

During 20 and 22 February seven earthquakes took place, including one of M 2.3 and another of M 1.8. Both of these events had epicenters within 7 km of the summit; their respective focal depths were at 8 km and 1 km.

During January the lake in the active crater remained greenish yellow and lacked bubbling along its shores. These areas were not mentioned as active again during February-March, although the lake's color was later described as light green. The monthly fluctuations in lake level noted for December to March were under a meter. During early 1998 small landslides continued to occur along the crater's N, E, and W walls. During February, fumaroles remained active on the volcano's NW flanks; their visible outputs remained moderate and their temperatures measured 91°C.

Geologic Background. Irazú, one of Costa Rica's most active volcanoes, rises immediately E of the capital city of San José. The massive volcano covers an area of 500 km2 and is vegetated to within a few hundred meters of its broad flat-topped summit crater complex. At least 10 satellitic cones are located on its S flank. No lava flows have been identified since the eruption of the massive Cervantes lava flows from S-flank vents about 14,000 years ago, and all known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the W towards the historically active crater, which contains a small lake of variable size and color. Although eruptions may have occurred around the time of the Spanish conquest, the first well-documented historical eruption occurred in 1723, and frequent explosive eruptions have occurred since. Ashfall from the last major eruption during 1963-65 caused significant disruption to San José and surrounding areas.

Information Contacts: E. Fernandez, V. Barboza, R. Van der Laat, R. Saenz, E. Duarte, E. Malavassi, T. Marino, M. Martinez, and E. Hernandez, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; Mauricio Mora Fernandez, Sección de Sismologia, Vulcanologia y Exploración Geofisica, Escuela Centroamericana de Geología, Universidad de Costa Rica, P.O. Box 35-2060, San José, Costa Rica.


Karymsky (Russia) — March 1998 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Gas-and-steam explosions and above-background seismicity

Seismicity remained above background level during 2 March-5 April and low-level Strombolian activity continued. As many as 70-100 gas-and-ash or gas-and-steam explosions occurred daily. Ash and steam rose 300-400 m above the crater during the first week of March.

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: Vladimir Kirianov, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry; Tom Miller, Alaska Volcano Observatory.


Kilauea (United States) — March 1998 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Steady eruption but low seismicity, sparse surface flows

The E rift zone eruption at Kilauea remained steady during March. Seismicity was low, little inflation or deflation occurred at the summit, and magma moved through shallow conduits towards the E rift zone without disturbing the ground surface. The eruption has continued in this fashion since a brief surge in January (BGVN 22:12).

On 11 March glowing holes were observed in the Pu`u `O`o crater floor and in the crater vent; however, no lava escaped from the area. Researchers at the University of Hawaii also observed several large fissures and cracks within the cone edifice. Fumes issued from the cracks and surrounding area; during the last two weeks of March, profuse fumes obscured views of the crater vent. Skylights S of Pu`u `O`o cone revealed lava flowing toward the sea.

Although lava continued to travel in tubes from the Pu`u `O`o vent area to the ocean, surface flows have been sparse since early February (BGVN 23:02). Lava broke out of tubes on the Pulama Pali on 2 and 10 March, but both flows lasted less than a day. Small flows issued from weak points in the lava tubes on the coastal plain on 3-7, 10, and 14 March. Most of the breakouts were near the Waha`ula ocean entry.

Kilauea is one of five coalescing volcanoes that comprise the island of Hawaii. Historically its eruptions originated primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the summit caldera to the sea. This latest Kilauea eruption began in January 1983 along the E rift zone. The eruption's early phases, or episodes, occurred along a portion of the rift zone that extends from Napau Crater on the uprift end to ~8 km E on the downrift end. Activity eventually centered on what was later named Pu`u `O`o. More than 223 hectares of new land have been added to the island and local communities have suffered more than $100 million in damages since the beginning of the eruption.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawaii Volcanoes National Park, HI 96718, USA (URL: https://volcanoes.usgs.gov/observatories/hvo/); Ken Rubin and Mike Garcia, Hawaii Center for Volcanology, University of Hawaii, Dept. of Geology & Geophysics, 2525 Correa Rd., Honolulu, HI 96822 USA (URL: http://www.soest.hawaii.edu/GG/hcv.html).


Klyuchevskoy (Russia) — March 1998 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Earthquakes and frequent fumarolic plumes

During 2 March-5 April, seismicity under the volcano remained above background level and earthquakes at 25-30 km depth were recorded. Surface earthquakes were detected on 14 March from 0040-0105.

Fumarolic plumes rose 50-100 m above the volcano on 5, 7, 10, 13-15, 16, 18-20, and 22 March. On 30-31 March, and 1, 3, and 5 April the fumarolic plume rose 50-400 m above the volcano and moved 3-10 km SE. A gas-and-steam plume on 12 March rose 200-1,000 m and traveled more than 5 km ESE. On 17 March, a gas-and-steam plume rose 2-3 km above the volcano and drifted 5-10 km SE.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Vladimir Kirianov, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Llaima (Chile) — March 1998 Citation iconCite this Report

Llaima

Chile

38.692°S, 71.729°W; summit elev. 3125 m

All times are local (unless otherwise noted)


Small explosions, seismicity, and ash output increased during early April 1998

An 8 April 1998 report stated that during the past week Llaima increased its output of small explosions and ash emissions. The amplitude of seismic signals also increased, although the frequency of signals remained fixed at 1.5 Hz. Seismic amplitude (RSAM) values during March averaged about 25% above those of February. Daily RSAM estimates in March jumped to nearly 30 RSAM units on a few days but more frequently only reached about 10 RSAM units. A sample of the seismic record is shown on figure 9.

Figure (see Caption) Figure 10. Sample seismic record at Llaima (Meli station) on 22 April 1998 beginning at 0400. The tic marks are at 1-minute intervals. Courtesy of OVDAS.

Geologic Background. Llaima, one of Chile's largest and most active volcanoes, contains two main historically active craters, one at the summit and the other, Pichillaima, to the SE. The massive, dominantly basaltic-to-andesitic, stratovolcano has a volume of 400 km3. A Holocene edifice built primarily of accumulated lava flows was constructed over an 8-km-wide caldera that formed about 13,200 years ago, following the eruption of the 24 km3 Curacautín Ignimbrite. More than 40 scoria cones dot the volcano's flanks. Following the end of an explosive stage about 7200 years ago, construction of the present edifice began, characterized by Strombolian, Hawaiian, and infrequent subplinian eruptions. Frequent moderate explosive eruptions with occasional lava flows have been recorded since the 17th century.

Information Contacts: Gustavo Fuentealba1 and Paola Peña S., Observatorio Volcanológico de Los Andes del Sur (OVDAS), Manantial 1710-Carmino del Alba, Temuco, Chile; 1Universidad de La Frontera (UFRO), Departamento Ciencias Fisicas, Universidad de la Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile.


Momotombo (Nicaragua) — March 1998 Citation iconCite this Report

Momotombo

Nicaragua

12.423°N, 86.539°W; summit elev. 1270 m

All times are local (unless otherwise noted)


Higher-than-normal fumarole temperatures

Measurements during a 28 February visit revealed higher-than-normal fumarolic temperatures in the summit area. The high temperatures were associated with a recent period of aridity, during which time fumarolic activity increased. Temperatures ranged from 318-748°C (figure 7).

Figure (see Caption) Figure 7. Sketch of Momotombo's active crater showing fumarole temperatures on 28 February. Areas of fumarolic activity are gray. View is towards the S; the crater is ~150 m wide. Courtesy of A. Creusot.

Geologic Background. Momotombo is a young stratovolcano that rises prominently above the NW shore of Lake Managua, forming one of Nicaragua's most familiar landmarks. Momotombo began growing about 4500 years ago at the SE end of the Marrabios Range and consists of a somma from an older edifice that is surmounted by a symmetrical younger cone with a 150 x 250 m wide summit crater. Young lava flows extend down the NW flank into the 4-km-wide Monte Galán caldera. The youthful cone of Momotombito forms an island offshore in Lake Managua. Momotombo has a long record of Strombolian eruptions, punctuated by occasional stronger explosive activity. The latest eruption, in 1905, produced a lava flow that traveled from the summit to the lower NE base. A small black plume was seen above the crater after a 10 April 1996 earthquake, but later observations noted no significant changes in the crater. A major geothermal field is located on the south flank.

Information Contacts: Alain Creusot, Instituto Nicaraguense de Energía, Managua, Nicaragua.


Cerro Negro (Nicaragua) — March 1998 Citation iconCite this Report

Cerro Negro

Nicaragua

12.506°N, 86.702°W; summit elev. 728 m

All times are local (unless otherwise noted)


February observations show decreasing fumarole temperatures

A 14 February visit to Cerro Negro's crater revealed a general decrease in fumarole temperatures since Alain Creusot last measured temperatures there on 23 December 1996 (BGVN 21:12). The highest temperature found on his latest visit was 340°C. For comparison, in October 1996 fumarole temperatures were as high as 700°C.

Geologic Background. Nicaragua's youngest volcano, Cerro Negro, was created following an eruption that began in April 1850 about 2 km NW of the summit of Las Pilas volcano. It is the largest, southernmost, and most recent of a group of four youthful cinder cones constructed along a NNW-SSE-trending line in the central Marrabios Range. Strombolian-to-subplinian eruptions at intervals of a few years to several decades have constructed a roughly 250-m-high basaltic cone and an associated lava field constrained by topography to extend primarily NE and SW. Cone and crater morphology have varied significantly during its short eruptive history. Although it lies in a relatively unpopulated area, occasional heavy ashfalls have damaged crops and buildings.

Information Contacts: Alain Creusot, Instituto Nicaraguense de Energía, Managua, Nicaragua.


Poas (Costa Rica) — March 1998 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Fumarolic vigor, tremor, and earthquakes high during February

Poás monthly reports from OVSICORI-UNA since November 1997, and as recently as March, have noted that its N crater lake has remained turquoise green and continued to host rafts of suspended sulfur. The lake's surface normally sits at ~2,300 m elevation. Although during 1997 the lake's surface reached a high stand, it descended during early 1998, dropping 3 m due to lack of rain. Mauricio Mora Fernandez provided plots of the lake water's pH, temperature, sulfate, and chlorine for the past several years (figures 67 and 68). Fernandez also reported that during February 1998 fumarolic activity continued in five areas within the active crater (figure 69). During April, he found a sixth fumarolic area on the dome's N slope.

Figure (see Caption) Figure 67. Water pH and temperature measured in the N crater lake at Poás (right- and left-hand scales, respectively), 1993 to early 1998. The time scale is not linear. OVSICORI-UNA staff collected the lake geochemistry data. Courtesy of M. Mora Fernandez.
Figure (see Caption) Figure 68. Aqueous sulfate and chlorine in the N crater lake at Poás, 1993 to early 1998. Time scale is not linear. OVSICORI-UNA staff collected the lake geochemistry data. Courtesy of M. Mora Fernandez.
Figure (see Caption) Figure 69. The active crater at Poás viewed from the S. Numbers 1-5 correspond to areas with fumaroles active during February 1998; a sixth area, located N of the dome (on the side away from the view, not labeled), became active in April 1998. Courtesy of M. Fernandez.

Area 1, the fumarolic field located at the crater's S end, became active in May 1995 and remained comparatively stable thermally until at least March. During 1997-early 1998, the field extended S, SW, and W within the larger crater. During February 1998, the area's average temperature remained constant at ~92°C; during April, it attained 93°C. Steam and high concentrations of SO2 and Cl gas escaped from the fumaroles; sulfur crystals were deposited around the vents. Mora noted that in the time since the fumaroles appeared, hydrothermal alteration became more rapid and reduced competency of the rock, leading up to two landslides in the area.

In area 2, the field W of the crater lake, a large landslide occurred during February. It took place at a spot where hydrothermal alteration resulted from three fumaroles that sent white gas plumes dominantly toward the SW. More fumaroles sprung up in this field during April.

In area 3, the field at the lake's N end, new fumaroles appeared during roughly the second half of 1997. These continued without important changes through April 1998; their emissions were white and not very vigorous.

In area 4, a field on the dome's E slope, small fumaroles produced white plumes. The emissions were not vigorous but their average February-April temperatures were 92-93°C. Some new fumaroles noted in this area during April had temperatures averaging 93°C.

In areas 5 and 6, fields located respectively on the dome's E and N slopes, vigorous fumaroles gave off mainly white plumes. During April, area 5 plumes had temperatures of 92°C and ascended to tens of meters before dispersing. Area 6, which became active in April, gave off plumes that covered the nearby slope with sulfur deposits.

OVSICORI-UNA reported that the pyroclastic cone in the crater discharged a plume that during January rose 400 m above the crater rim. They also noted that during February the rain collection network located around the active crater yielded samples with increased acidity. During this same month, residents 5.5 km SE of the crater reported occasional sulfur odors.

Seismic data from an OVSICORI-UNA station 2.7 km SW of the active crater revealed a noticeable rise in the duration of tremor during February and March 1998. Tremor generally occurred in discontinuous episodes, although one episode on 21 February carried on for 2.5 hours. Also, an anomalously large number of low-frequency earthquakes took place during February 1998 (figure 70)—a count of this magnitude was last seen in January 1996. In contrast, medium and high frequency earthquakes were not particularly abundant in February or March 1998 (figure 70). Many of the low-frequency earthquakes were attributed to continuous degassing.

Figure (see Caption) Figure 70. Seismicity at Poás during January 1997-March 1998. Number of low-frequency earthquakes and hours of tremor (top); number of high- and medium-frequency earthquakes (bottom). Note that the scales are different. Courtesy of OVSICORI-UNA.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: E. Fernandez, V. Barboza, R. Van der Laat, R. Saenz, E. Duarte, E. Malavassi, T. Marino, M. Martinez, and E. Hernandez, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; Mauricio Mora Fernandez, Sección de Sismologia, Vulcanologia y Exploración Geofisica, Escuela Centroamericana de Geología, Universidad de Costa Rica, P.O. Box 35-2060, San José, Costa Rica.


Rabaul (Papua New Guinea) — March 1998 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Ash emissions, pyroclastic flows, and inflation during March

Eruptive activity at Tavurvur persisted during March following the 3 February eruption (BGVN 23:02), producing ash emissions, small pyroclastic flows, and relatively low but fluctuating seismicity. Seismicity peaked around20 March, when eruptions became more energetic, and was probably related to near-surface eruptive activity.

Deformation monitoring indicated steady inflation at Tavurvur. Readings from the Sulphur Creek water tube (3.5 km NW of Tavurvur) revealed a change of ~3 µrad tilt away from the volcano during March. Leveling and real-time GPS also showed continuing inflation.

Tavurvur continued to erupt throughout March and emitted ash at intervals of ~10 minutes to several hours; the rapidly convecting column sometimes rose 2-4 km. After emissions had ceased for more than 10-20 minutes, activity would often recommence with explosions that threw large numbers of blocks from the vent. Blocks up to 1 m in diameter were regularly thrown 1 km S and W of the vent, landing out to sea. Large blocks (~3-4 m across) littered the rim and upper slopes of Tavurvur, probably produced during larger-than-usual explosions on 7 and 8 March.

The 8 March explosion sent red oxide-covered lava blocks and boulders over the S crater rim and down the S flank of Tavurvur, where the flow traveled ~1 km. This mass was described as being "pushed" from the vent immediately prior to the explosion. At other times the ash plume underwent partial column collapse and sent short, billowing flows randomly down the cone's flanks. The flows deposited light gray dust ~50-150 m downslope in well-defined tongues.

During 18-26 March night glow became more evident; occasionally lava fountains sent glowing fragments 200-300 m above the crater rim for up to 5 minutes at a time. During 26-31 March intermittent ash emissions with discrete explosions after longer periods of quiescence resumed.

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: Ben Talai, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.


Rincon de la Vieja (Costa Rica) — March 1998 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Phreatic eruptions on 15-17 February thrust steam to 2 km

Beginning at 1428 on 15 February, Rincón de la Vieja volcano discharged phreatic eruptions from the main crater. Ten eruptions took place in the first 15 hours of activity; only two followed in the subsequent 13 hours. During the course of the outburst subsidiary fumarolic activity also became more vigorous; it remained elevated until 18 February.

During 15-17 February numerous steam plumes rose hundreds of meters above the volcano. On 17 February one outburst sent a steam plume to a height of 2 km above the crater. This plume was seen by residents on the N and NE flanks of the volcano. A dozen eruptions around this time were small and lacked associated mudflows. An exception, at 0514 on 16 February, produced a modest mudflow that traveled about 9 km/hour and left a capping deposit of mud 30-cm thick in the upper reaches of the Pénjamo and Azul rivers. Rivers had been low in the region, attributed to the El Niño phenomena, with the result that the mudflow was relatively dry. The mudflow had a large impact on local fish and other stream organisms. Sediment from the mudflow was found 12.3 km from the main crater.

Inspecting the 16 February deposit near the summit on 1 March, scientists inferred from the scorching, burning, and other damage to vegetation on the NE flanks that there must have been several smaller eruptions around that time as well. Mudflows failed to develop due to the paucity of surface water in local drainages.

The 1 March visit also revealed the lake's temperature, 48°C, its color, light gray, the presence of suspended sulfur in the lake, and a haze of condensed gases above the lake. An outgassing fumarole on the SW wall made loud hissing noises (similar to gases exiting a high pressure valve) audible from the crater's rim. Columns of gas rose about 200 m above the crater before being blown E. Those inspecting the scene noted strong sulfurous odors, and experienced irritated skin and eyes. The material erupted was uniformly fine- to medium-grained, lacking either bombs, blocks, or impact craters. This contrasted with deposits left by previous eruptions in 1991 and 1995.

The local seismic station (RIN3) lies 5 km SW of the active crater. The station registered microearthquakes as follows: during January, 18 (including 3 of high frequency and 9 of low frequency); during February, 48 (including 1 of high frequency, 21 of low frequency); during March, 7. In assessing their records of the 48 February microearthquakes, seismologists recognized 20 eruptions including 11 comparatively high-intensity phreatic eruptions mainly registered on 15-18 February. Banded tremor occurred on 15 and 16 February during the main eruptive interval; the tremor prevailed for a total of ~6.5 hours. Low in frequency, the tremor had amplitudes that ranged between 1.0 and 37 mm. The larger amplitude registered during the eruption's initial phase, at 1428 on 15 February. Tremor amplitudes later declined to the 1-4 mm range. As with the 1991 and 1995 eruptions, seismic precursors were absent.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: E. Fernandez, V. Barboza, R. Van der Laat, R. Sáenz, E. Duarte, E. Malavassi, T. Marino, M. Martinez, and E. Hernandez, Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; Mauricio Mora Fernandez, Sección de Sismologia, Vulcanologia y Exploración Geofisica, Escuela Centroamericana de Geología, Universidad de Costa Rica, P.O. Box 35-2060, San José, Costa Rica.


Sheveluch (Russia) — March 1998 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Several gas-and-steam plumes seen during March

Seismicity was about at background level during 2 March-5 April. Gas-and-steam plumes rose 100 m above the volcano on 7 and 13-15 March. On 16-18, 22, and 30-31 March, and 1 and 3 April, gas-and-steam plumes rose 100-500 m above the volcano. Clouds obscured observations of the volcano on several days in early April.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Vladimir Kirianov, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Soufriere Hills (United Kingdom) — March 1998 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Heavy ashfalls and rapid dome growth in February

This report condenses Scientific Reports of the Montserrat Volcano Observatory (MVO) covering February. During 1-14 February, seismic activity increased, heavy ashfalls reached the N part of the island, and dome growth continued. Activity during 15-28 February was dominated by rapid dome growth and elevated seismicity.

Visual observations. Low clouds during the first two weeks of February often hampered dome observations. However, on 6 February observers on a police boat reported continued growth in the 26 December collapse scar above the White River. By 10 February the growing dome almost completely filled the 26 December scar, approaching the volume prior to the collapse. In addition, two spines were observed on the dome's S side, and the talus slope below the growth area had grown considerably. Steam-and-ash venting continued and was vigorous during periods of elevated seismicity and rockfall.

Rockfalls and small pyroclastic flows occurred mainly on the Galways side of the dome, but a few small rockfalls were observed in the upper part of Tuitt's Ghaut. Fresh pyroclastic-flow deposits in the upper part of the White River were probably emplaced during the elevated activity of 5-6 February.

On 15 February several rockfalls and small pyroclastic flows traveled down the White River valley. Visibility was poor until 25 February when vigorous ash venting, rockfalls in the White River valley, and several stubby spines atop the dome were observed.

Seismicity. Earthquake activity during 1-14 February mainly consisted of rockfalls and hybrid earthquakes with some tremor. Most swarm events, including 21 locatable volcano-tectonic earthquakes, were concentrated below the dome complex's N sector and had shallow focal depths (2-4 km below the summit). During 15-28 February fewer rockfalls but comparatively more earthquakes and seismic swarms (table 27) occurred than in preceding weeks. The swarms were not followed by surface activity.

Table 27. Number of hybrid, long-period (LP), and volcano-tectonic (VT) events detected during earthquake swarms at Soufriere Hills during February 1998. Courtesy of MVO.

Date Start time Duration (hours) Hybrid Long-period Volcano-tectonic
10 Feb 1998 1154 2.40 21 3 12
11 Feb 1998 1402 2.93 15 3 13
11 Feb 1998 2319 0.40 1 -- 7
17 Feb 1998 0452 2.42 10 0 4
21 Feb 1998 1853 6.48 31 3 8
23 Feb 1998 0823 3.90 11 5 9
23 Feb 1998 1350 1.78 14 1 1
24 Feb 1998 2138 1.87 13 2 1
25 Feb 1998 1059 2.95 17 3 0
26 Feb 1998 0536 5.36 82 2 33
27 Feb 1998 1312 13.12 24 0 0
28 Feb 1998 1033 10.33 28 0 1
28 Feb 1998 1457 14.57 48 0 4

At the beginning of February, seismicity displayed a cyclic pattern with peak amplitudes occurring every 6-8 hours; by 14 February, the cycle had lengthened to 8-12 hours. By 22 February, the cycle was ~14 hours long. Peak amplitudes increased during 1-14 February; these peaks generally coincided with elevated rockfall activity. Towards the end of February, the peaks were dominated by hybrid earthquakes and tremor.

Ground deformation. Two GPS occupations of LEESNET (includes sites at Old Towne, Waterworks, St. Georges Hill, and Lees Yard) were made during 1-14 February. No movement within this network was detected. Meanwhile, GPS surveys at Harris, Hermitage, Lees Yard, Perches, St. Georges Hill, Old Towne, Blakes, and Lookout Yard North confirmed that the Hermitage and Perches sites continued to move NNE. Sites on the volcano's N and NW flanks remained relatively stable.

Electronic tiltmeters were installed at Hermitage and on Gages Mountain to provide data on deformation of the volcano's NE flank. The EDM reflector on the N crater wall (Peak B) was shot from Windy Hill during 15-28 February. During 25 January-late February a 5-cm shortening occurred on this line. Lines between the Lees Yard reflector and sites at MVO south and the Waterworks Estate did not show any movement.

Volume measurements. A 10 February theodolite survey of the dome from Garibaldi Hill and the Delta petrol station revealed that the dome's highest point was 970 m. On 27 February, theodolite measurements from Garibaldi Hill and the old observatory in Old Towne showed that the highest point on the dome had reached 997 m. More theodolite measurements on 1 March from South Soufriere Hills and Perches Mountain gave a height of 1011 m, revealing 14 m of vertical growth in only 2 days.

Environmental monitoring. Sulfur dioxide diffusion tube measurements during 1-14 February showed raised (10-12 ppb) SO2 levels in Plymouth and at St. Georges Hill and low (0-0.6 ppb) levels at Weekes, MVO south, and Lawyers. During 15-28 February SO2 levels at Plymouth, MVO south, and Lawyers were higher than earlier in the month, but levels at St. Georges Hill were reduced by half. The site in Plymouth showed very high values (30.2 ppb) because it was surrounded by ~30-cm-thick tephra deposits and redeposited debris from nearby pyroclastic-flow deposits.

The mass of fine ash deposited in N Montserrat during several 28 January-7 February ashfalls was calculated using an array of ash collection trays. The mass totaled more than 1 kg/m2; most of this ash was produced during episodes of ash venting and rockfall activity. At most locations the ash collected during 3-5 February accounted for more than 50% of the local monthly ash accumulation.

Dust Trak monitoring at four fixed sites to measure airborne particles revealed elevated values (0.05-0.38 mg/m3) during ashfalls on 4-5 February. Levels were even higher (0.11-0.43 mg/m3) on 7 February due to resuspension of the ash. Sites in the S part of the island showed higher concentrations than in the N. During 15-28 February, no major ash fall occurred and levels were low (3) at all sites; however, a diffuse volcanic plume was occasionally blown N, causing light ash fall and hazy conditions.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), c/o Chief Minister's Office, P. O. Box 292, Plymouth, Montserrat (URL: http://www.mvo.ms/).


Spurr (United States) — March 1998 Citation iconCite this Report

Spurr

United States

61.299°N, 152.251°W; summit elev. 3374 m

All times are local (unless otherwise noted)


Unusual plume observed from Anchorage

Beginning at about 0900 on 26 March, an unusual cloud or steam plume in the vicinity of Spurr volcano was observed from Anchorage (125 km E). However, seismicity remained at normal levels and nothing unusual was noted in satellite images of the area. The level of concern remained at green, indicating normal seismic and fumarolic activity.

Geologic Background. The summit of Mount Spurr, the highest volcano of the Aleutian arc, is a large lava dome constructed at the center of a roughly 5-km-wide horseshoe-shaped caldera open to the south. The volcano lies 130 km W of Anchorage and NE of Chakachamna Lake. The caldera was formed by a late-Pleistocene or early Holocene debris avalanche and associated pyroclastic flows that destroyed an ancestral edifice. The debris avalanche traveled more than 25 km SE, and the resulting deposit contains blocks as large as 100 m in diameter. Several ice-carved post-caldera cones or lava domes lie in the center of the caldera. The youngest vent, Crater Peak, formed at the breached southern end of the caldera and has been the source of about 40 identified Holocene tephra layers. Eruptions from Crater Peak in 1953 and 1992 deposited ash on the city of Anchorage.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Telica (Nicaragua) — March 1998 Citation iconCite this Report

Telica

Nicaragua

12.606°N, 86.84°W; summit elev. 1036 m

All times are local (unless otherwise noted)


February visit reveals slight increase in fumarolic activity and collapse zone

Scientists visited Telica's crater on 7 February. They observed a slight increase in fumarolic activity and an active collapse zone on the S crater rim. Light incandescence seen at night had an estimated temperature of 550°C.

Geologic Background. Telica, one of Nicaragua's most active volcanoes, has erupted frequently since the beginning of the Spanish era. This volcano group consists of several interlocking cones and vents with a general NW alignment. Sixteenth-century eruptions were reported at symmetrical Santa Clara volcano at the SW end of the group. However, its eroded and breached crater has been covered by forests throughout historical time, and these eruptions may have originated from Telica, whose upper slopes in contrast are unvegetated. The steep-sided cone of Telica is truncated by a 700-m-wide double crater; the southern crater, the source of recent eruptions, is 120 m deep. El Liston, immediately E, has several nested craters. The fumaroles and boiling mudpots of Hervideros de San Jacinto, SE of Telica, form a prominent geothermal area frequented by tourists, and geothermal exploration has occurred nearby.

Information Contacts: Alain Creusot, Instituto Nicaraguense de Energía, Managua, Nicaragua.


Turrialba (Costa Rica) — March 1998 Citation iconCite this Report

Turrialba

Costa Rica

10.025°N, 83.767°W; summit elev. 3340 m

All times are local (unless otherwise noted)


Fumarolic condensate data and monthly earthquakes to March 1998

OVSICORI-UNA scientists have taken sporadic samples of the chemistry, pH, and temperature of Turrialba's fumaroles (figures 2 and 3). During January, fumaroles had low emissions but the temperature of one fumarole remained fixed at 90°C (figure 3). Small landslides down the N and S sides of the crater walls covered fumaroles on the crater floor during January; however, during this time new fumaroles also appeared on the crater floor as well.

Figure (see Caption) Figure 2. Chlorine and sulfate in Turrialba fumarolic condensate at [nine] sampling dates during late 1996-early [1997]. For sampling and analytical methods, contact the authors. Courtesy of OVSICORI-UNA.
Figure (see Caption) Figure 3. The pH and temperature of Turrialba fumarolic condensate at four sampling dates during the interval late 1996 to early 1998. Courtesy of OVSICORI-UNA.

The local seismic station ("VTU," located 500 m S of the active crater) was out of service during September-December 1997. After that, the station registered microearthquakes as follows: January, 53; February, 83; and March 96. Two of the February earthquakes, one high- and one low-frequency, also registered on the more distant seismic station IRZ2, ~15 km from the active crater. Besides the 96 microearthquakes registered during March, several more low- and high-frequency earthquakes also took place.

Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Information Contacts: E. Fernandez, V. Barboza, R. Van der Laat, R. Saenz, E. Duarte, E. Malavassi, T. Marino, M. Martinez, and E. Hernandez, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; Mauricio Mora Fernandez, Sección de Sismologia, Vulcanologia y Exploración Geofisica, Escuela Centroamericana de Geología, Universidad de Costa Rica, P.O. Box 35-2060, San José, Costa Rica.


Villarrica (Chile) — March 1998 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Escalating seismic amplitudes in March prelude to more explosions and ash

Luis Hernan Ecueñique, a manager in charge of "Las Cavernas," a tourist attraction 8 km from Villarrica's active crater, noted that during late March through at least early April there had been an ascent of magma in the central crater. Erupted material reached ~100 m from the crater's edge. Local tour guides had also informed him that explosions had deposited tephra on the N flanks. Measurements within "Las Cavernas" (which are lava tubes) indicated the air temperature rose by about 2°C.

A digital seismic station 21 km from the crater failed to detect either an increase in the number of seismic events or a shift in their character; the system did register a minor increase in event amplitude.

Geologic Background. Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: Gustavo Fuentealba1 and Paola Peña S., Observatorio Volcanológico de Los Andes del Sur (OVDAS), Manantial 1710-Carmino del Alba, Temuco, Chile; 1Universidad de La Frontera (UFRO), Departamento Ciencias Fisicas, Universidad de la Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports