Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Erebus (Antarctica) Lava lake remains active; most thermal alerts recorded since 2019

Rincon de la Vieja (Costa Rica) Frequent phreatic explosions during July-December 2023

Bezymianny (Russia) Explosion on 18 October 2023 sends ash plume 8 km high; lava flows and incandescent avalanches

Kilauea (United States) Low-level lava effusions in the lava lake at Halema’uma’u during July-December 2022

Nyamulagira (DR Congo) Lava flows and thermal activity during May-October 2023

Bagana (Papua New Guinea) Explosions, ash plumes, ashfall, and lava flows during April-September 2023

Mayon (Philippines) Lava flows, pyroclastic flows, ash emissions, and seismicity during April-September 2023

Nishinoshima (Japan) Eruption plumes and gas-and-steam plumes during May-August 2023

Krakatau (Indonesia) White gas-and-steam plumes and occasional ash plumes during May-August 2023

Villarrica (Chile) Strombolian activity, gas-and-ash emissions, and crater incandescence during April-September 2023

Merapi (Indonesia) Frequent incandescent avalanches during April-September 2023

Ebeko (Russia) Moderate explosive activity with ash plumes continued during June-November 2023



Erebus (Antarctica) — January 2024 Citation iconCite this Report

Erebus

Antarctica

77.53°S, 167.17°E; summit elev. 3794 m

All times are local (unless otherwise noted)


Lava lake remains active; most thermal alerts recorded since 2019

The lava lake in the summit crater of Erebus has been active since at least 1972. Located in Antarctica overlooking the McMurdo Station on Ross Island, it is the southernmost active volcano on the planet. Because of the remote location, activity is primarily monitored by satellites. This report covers activity during 2023.

The number of thermal alerts recorded by the Hawai'i Institute of Geophysics and Planetology’s MODVOLC Thermal Alerts System increased considerably in 2023 compared to the years 2020-2022 (table 9). In contrast to previous years, the MODIS instruments aboard the Aqua and Terra satellites captured data from Erebus every month during 2023. Consistent with previous years, the lowest number of anomalous pixels were recorded in January, November, and December.

Table 9. Number of monthly MODIS-MODVOLC thermal alert pixels recorded at Erebus during 2017-2023. See BGVN 42:06 for data from 2000 through 2016. The table was compiled using data provided by the HIGP – MODVOLC Thermal Alerts System.

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec SUM
2017 0 21 9 0 0 1 11 61 76 52 0 3 234
2018 0 21 58 182 55 17 137 172 103 29 0 0 774
2019 2 21 162 151 55 56 75 53 29 19 1 0 624
2020 0 2 16 18 4 4 1 3 18 3 1 6 76
2021 0 9 1 0 2 56 46 47 35 52 5 3 256
2022 1 13 55 22 15 32 39 19 31 11 0 0 238
2023 2 33 49 82 41 32 70 64 42 17 5 11 448

Sentinel-2 infrared images showed one or two prominent heat sources within the summit crater, accompanied by adjacent smaller sources, similar to recent years (see BGVN 46:01, 47:02, and 48:01). A unique image was obtained on 25 November 2023 by the OLI-2 (Operational Land Imager-2) on Landsat 9, showing the upper part of the volcano surrounded by clouds (figure 32).

Figure (see Caption) Figure 32. Satellite view of Erebus with the summit and upper flanks visible above the surrounding weather clouds on 25 November 2023. Landsat 9 OLI-2 (Operational Land Imager-2) image with visible and infrared bands. Thermal anomalies are present in the summit crater. The edifice is visible from about 2,000 m elevation to the summit around 3,800 m. The summit crater is ~500 m in diameter, surrounded by a zone of darker snow-free deposits; the larger circular summit area is ~4.5 km diameter. NASA Earth Observatory image by Lauren Dauphin, using Landsat data from the U.S. Geological Survey.

Geologic Background. Mount Erebus, the world's southernmost historically active volcano, overlooks the McMurdo research station on Ross Island. It is the largest of three major volcanoes forming the crudely triangular Ross Island. The summit of the dominantly phonolitic volcano has been modified by one or two generations of caldera formation. A summit plateau at about 3,200 m elevation marks the rim of the youngest caldera, which formed during the late-Pleistocene and within which the modern cone was constructed. An elliptical 500 x 600 m wide, 110-m-deep crater truncates the summit and contains an active lava lake within a 250-m-wide, 100-m-deep inner crater; other lava lakes are sometimes present. The glacier-covered volcano was erupting when first sighted by Captain James Ross in 1841. Continuous lava-lake activity with minor explosions, punctuated by occasional larger Strombolian explosions that eject bombs onto the crater rim, has been documented since 1972, but has probably been occurring for much of the volcano's recent history.

Information Contacts: Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: https://earthobservatory.nasa.gov/images/152134/erebus-breaks-through).


Rincon de la Vieja (Costa Rica) — January 2024 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Frequent phreatic explosions during July-December 2023

Rincón de la Vieja is a volcanic complex in Costa Rica with a hot convecting acid lake that exhibits frequent weak phreatic explosions, gas-and-steam emissions, and occasional elevated sulfur dioxide levels (BGVN 45:10, 46:03, 46:11). The current eruption period began June 2021. This report covers activity during July-December 2023 and is based on weekly bulletins and occasional daily reports from the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA).

Numerous weak phreatic explosions continued during July-December 2023, along with gas-and-steam emissions and plumes that rose as high as 3 km above the crater rim. Many weekly OVSICORI-UNA bulletins included the previous week's number of explosions and emissions (table 9). For many explosions, the time of explosion was given (table 10). Frequent seismic activity (long-period earthquakes, volcano-tectonic earthquakes, and tremor) accompanied the phreatic activity.

Table 9. Number of reported weekly phreatic explosions and gas-and-steam emissions at Rincón de la Vieja, July-December 2023. Counts are reported for the week before the Weekly Bulletin date; not all reports included these data. Courtesy of OVSICORI-UNA.

OVSICORI Weekly Bulletin Number of explosions Number of emissions
28 Jul 2023 6 14
4 Aug 2023 10 12
1 Sep 2023 13 11
22 Sep 2023 12 13
29 Sep 2023 6 11
6 Oct 2023 12 5
13 Oct 2023 7 9
20 Oct 2023 1 15
27 Oct 2023 3 23
3 Nov 2023 3 10
17 Nov 2023 0 Some
24 Nov 2023 0 14
8 Dec 2023 4 16
22 Dec 2023 8 18

Table 10. Summary of activity at Rincón de la Vieja during July-December 2023. Weak phreatic explosions and gas emissions are noted where the time of explosion was indicated in the weekly or daily bulletins. Height of plumes or emissions are distance above the crater rim. Courtesy of OVSICORI-UNA.

Date Time Description of Activity
1 Jul 2023 0156 Explosion.
2 Jul 2023 0305 Explosion.
4 Jul 2023 0229, 0635 Event at 0635 produced a gas-and-steam plume that rose 700 m and drifted W; seen by residents in Liberia (21 km SW).
9 Jul 2023 1843 Explosion.
21 Jul 2023 0705 Explosion.
26 Jul 2023 1807 Explosion.
28 Jul 2023 0802 Explosion generated a gas-and-steam plume that rose 500 m.
30 Jul 2023 1250 Explosion.
31 Jul 2023 2136 Explosion.
11 Aug 2023 0828 Explosion.
18 Aug 2023 1304 Explosion.
21 Aug 2023 1224 Explosion generated gas-and-steam plumes rose 500-600 m.
22 Aug 2023 0749 Explosion generated gas-and-steam plumes rose 500-600 m.
24 Aug 2023 1900 Explosion.
25 Aug 2023 0828 Event produced a steam-and-gas plume that rose 3 km and drifted NW.
27-28 Aug 2023 0813 Four small events; the event at 0813 on 28 August lasted two minutes and generated a steam-and-gas plume that rose 2.5 km.
1 Sep 2023 1526 Explosion generated plume that rose 2 km and ejected material onto the flanks.
2-3 Sep 2023 - Small explosions detected in infrasound data.
4 Sep 2023 1251 Gas-and-steam plume rose 1 km and drifted W.
7 Nov 2023 1113 Explosion.
8 Nov 2023 0722 Explosion.
12 Nov 2023 0136 Small gas emissions.
14 Nov 2023 0415 Small gas emissions.

According to OVSICORI-UNA, during July-October the average weekly sulfur dioxide (SO2) flux ranged from 68 to 240 tonnes/day. However, in mid-November the flux increased to as high as 334 tonnes/day, the highest value measured in recent years. The high SO2 flux in mid-November was also detected by the TROPOMI instrument on the Sentinel-5P satellite (figure 43).

Figure (see Caption) Figure 43. Sulfur dioxide (SO2) maps from Rincón de la Vieja recorded by the TROPOMI instrument aboard the Sentinel-5P satellite on 16 November (left) and 20 November (right) 2023. Mass estimates are consistent with measurements by OVSICORI-UNA near ground level. Some of the plume on 20 November may be from other volcanoes (triangle symbols) in Costa Rica and Nicaragua. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanológico Sismológica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard MD 20771, USA (URL: https://so2.gsfc.nasa.gov/).


Bezymianny (Russia) — November 2023 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Explosion on 18 October 2023 sends ash plume 8 km high; lava flows and incandescent avalanches

Bezymianny, located on Russia’s Kamchatka Peninsula, has had eruptions since 1955 characterized by dome growth, explosions, pyroclastic flows, ash plumes, and ashfall. Activity during November 2022-April 2023 included gas-and-steam emissions, lava dome collapses generating avalanches, and persistent thermal activity. Similar eruptive activity continued from May through October 2023, described here based on information from weekly and daily reports of the Kamchatka Volcano Eruptions Response Team (KVERT), notices from Tokyo VAAC (Volcanic Ash Advisory Center), and from satellite data.

Overall activity decreased after the strong period of activity in late March through April 2023, which included ash explosions during 29 March and 7-8 April 2023 that sent plumes as high as 10-12 km altitude, along with dome growth and lava flows (BGVN 48:05). This reduced activity can be seen in the MIROVA thermal detection system graph (figure 56), which was consistent with data from the MODVOLC thermal detection system and with Sentinel-2 satellite images that showed persistent hotspots in the summit crater when conditions allowed observations. A renewed period of strong activity began in mid-October 2023.

Figure (see Caption) Figure 56. The MIROVA (Log Radiative Power) thermal data for Bezymianny during 20 November 2022 through October 2023 shows heightened activity in the first half of April and second half of October 2023, with lower levels of thermal anomalies in between those times. Courtesy of MIROVA.

Activity increased significantly on 17 October 2023 when large collapses began during 0700-0830 on the E flanks of the lava dome and continued to after 0930 the next day (figure 57). Ash plumes rose to an altitude of 4.5-5 km, extending 220 km NNE by 18 October. A large explosion at 1630 on 18 October produced an ash plume that rose to an altitude of 11 km (8 km above the summit) and drifted NNE and then NW, extending 900 km NW within two days at an altitude of 8 km. Minor ashfall was noted in Kozyrevsk (45 km WNW). At 0820 on 20 October an ash plume was identified in satellite images drifting 100 km ENE at altitudes of 4-4.5 km.

Figure (see Caption) Figure 57. Sentinel-2 satellite images of Bezymianny from 1159 on 17 October 2023 (2359 on 16 October UTC) showing a snow-free S and SE flank along with thermal anomalies in the crater and down the SE flank. Left image is in false color (bands 8, 4, 3); right image is thermal infrared (bands 12, 11, 8A). Courtesy of Copernicus Browser.

Lava flows and hot avalanches from the dome down the SE flank continued over the next few days, including 23 October when clear conditions allowed good observations (figures 58 and 59). A large thermal anomaly was observed over the volcano through 24 October, and in the summit crater on 30 October (figure 60). Strong fumarolic activity continued, with numerous avalanches and occasional incandescence. By the last week of October, volcanic activity had decreased to a level consistent with that earlier in the reporting period.

Figure (see Caption) Figure 58. Daytime photo of Bezymianny under clear conditions on 23 October 2023 showing a lava flow and avalanches descending the SE flank, incandescence from the summit crater, and a small ash plume. Photo by Yu. Demyanchuk, courtesy of IVS FEB RAS, KVERT.
Figure (see Caption) Figure 59. Night photo of Bezymianny under cloudy conditions on 23 October 2023 showing an incandescent lava flow and avalanches descending the SE flank. Photo by Yu. Demyanchuk, courtesy of IVS FEB RAS, KVERT.
Figure (see Caption) Figure 60. Sentinel-2 satellite images of Bezymianny from 1159 on 30 October 2023 (2359 on 29 October UTC) showing a plume drifting SE and thermal anomalies in the summit crater and down multiple flanks. Left image is in true color (bands 4, 3, 2); right image is thermal infrared (bands 12, 11, 8A). Courtesy of Copernicus Browser.

Aviation warnings were frequently updated during 17-20 October. KVERT issued a Volcano Observatory Notice for Aviation (VONA) on 17 October at 1419 and 1727 (0219 and 0527 UTC) raising the Aviation Color Code (ACC) from Yellow to Orange (second highest level). The next day, KVERT issued a VONA at 1705 (0505 UTC) raising the ACC to Red (highest level) but lowered it back to Orange at 2117 (0917 UTC). After another decrease to Yellow and back to Orange, the ACC was reduced to Yellow on 20 October at 1204 (0004 UTC). In addition, the Tokyo VAAC issued a series of Volcanic Ash Advisories beginning on 16 October and continuing through 30 October.

Geologic Background. The modern Bezymianny, much smaller than its massive neighbors Kamen and Kliuchevskoi on the Kamchatka Peninsula, was formed about 4,700 years ago over a late-Pleistocene lava-dome complex and an edifice built about 11,000-7,000 years ago. Three periods of intensified activity have occurred during the past 3,000 years. The latest period, which was preceded by a 1,000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large open crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Kamchatka Volcanological Station, Kamchatka Branch of Geophysical Survey, (KB GS RAS), Klyuchi, Kamchatka Krai, Russia (URL: http://volkstat.ru/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).chr


Kilauea (United States) — January 2023 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Low-level lava effusions in the lava lake at Halema’uma’u during July-December 2022

Kīlauea is the southeastern-most volcano in Hawaii and overlaps the E flank of the Mauna Loa volcano. Its East Rift Zone (ERZ) has been intermittently active for at least 2,000 years. An extended eruption period began in January 1983 and was characterized by open lava lakes and lava flows from the summit caldera and the East Rift Zone. During May 2018 magma migrated into the Lower East Rift Zone (LERZ) and opened 24 fissures along a 6-km-long NE-trending fracture zone that produced lava flows traveling in multiple directions. As lava emerged from the fissures, the lava lake at Halema'uma'u drained and explosions sent ash plumes to several kilometers altitude (BGVN 43:10).

The current eruption period started during September 2021 and has recently been characterized by lava effusions, spatter, and sulfur dioxide emissions in the active Halema’uma’u lava lake (BGVN 47:08). Lava effusions, some spatter, and sulfur dioxide emissions have continued during this reporting period of July through December 2022 using daily reports, volcanic activity notices, and abundant photo, map, and video data from the US Geological Survey's (USGS) Hawaiian Volcano Observatory (HVO).

Summary of activity during July-December 2022. Low-level effusions have continued at the western vent of the Halema’uma’u crater during July through early December 2022. Occasional weak ooze-outs (also called lava break outs) would occur along the margins of the crater floor. The overall level of the active lava lake throughout the reporting period gradually increased due to infilling, however it stagnated in mid-September (table 13). During September through November, activity began to decline, though lava effusions persisted at the western vent. By 9 December, the active part of the lava lake had completely crusted over, and incandescence was no longer visible.

Table 13. Summary of measurements taken during overflights at Kīlauea that show a gradual increase in the active lava lake level and the volume of lava effused since 29 September 2021. Lower activity was reported during September-October. Data collected during July-December 2022. Courtesy of HVO.

Date: Level of the active lava lake (m): Cumulative volume of lava effused (million cubic meters):
7 Jul 2022 130 95
19 Jul 2022 133 98
4 Aug 2022 136 102
16 Aug 2022 137 104
12 Sep 2022 143 111
5 Oct 2022 143 111
28 Oct 2022 143 111

Activity during July 2022. Lava effusions were reported from the western vent in the Halema’uma’u crater, along with occasional weak ooze-outs along the margins of the crater floor. The height of the lava lake was variable due to deflation-inflation tilt events; for example, the lake level dropped approximately 3-4 m during a summit deflation-inflation event reported on 1 July. Webcam images taken during the night of 6-12 July showed intermittent low-level spattering at the western vent that rose less than 10 m above the vent (figure 519). Measurements made during an overflight on 7 July indicated that the crater floor was infilled about 130 m and that 95 million cubic meters of lava had been effused since 29 September 2021. A single, relatively small lava ooze-out was active to the S of the lava lake. Around midnight on 8 July there were two brief periods of lava overflow onto the lake margins. On 9 July lava ooze-outs were reported near the SE and NE edges of the crater floor and during 10-11 July they occurred near the E, NE, and NW edges. On 16 July crater incandescence was reported, though the ooze-outs and spattering were not visible. On 18 July overnight webcam images showed incandescence in the western vent complex and two ooze-outs were reported around 0000 and 0200 on 19 July. By 0900 there were active ooze-outs along the SW edge of the crater floor. Measurements made from an overflight on 19 July indicated that the crater floor was infilled about 133 m and 98 million cubic meters of lava had erupted since 29 September 2021 (figure 520). On 20 July around 1600 active ooze-outs were visible along the N edge of the crater, which continued through the next day. Extensive ooze-outs occurred along the W margin during 24 July until 1900; on 26 July minor ooze-outs were noted along the N margin. Minor spattering was visible on 29 July along the E margin of the lake. The sulfur dioxide emission rates ranged 650-2,800 tons per day (t/d), the higher of which was measured on 8 July (figure 519).

Figure (see Caption) Figure 519. Minor spattering rising less than 10 m was visible at the E end of the lava lake within Halema‘uma‘u, at the summit of Kīlauea on 8 July 2022. Sulfur dioxide is visible rising from the lake surface (bluish-colored fume). A sulfur dioxide emission rate of approximately 2,800 t/d was measured on 8 July. Courtesy of K. Mulliken, USGS.
Figure (see Caption) Figure 520. A helicopter overflight on 19 July 2022 allowed for aerial visible and thermal imagery to be taken of the Halema’uma’u crater at Kīlauea’s summit crater. The active part of the lava lake is confined to the western part of the crater. The scale of the thermal map ranges from blue to red, with blue colors indicative of cooler temperatures and red colors indicative of warmer temperatures. Courtesy of USGS, HVO.

Activity during August 2022. The eruption continued in the Halema’uma’u crater at the western vent. According to HVO the lava in the active lake remained at the level of the bounding levees. Occasional minor ooze-outs were observed along the margins of the crater floor. Strong nighttime crater incandescence was visible after midnight on 6 August over the western vent cone. During 6-7 August scattered small lava lobes were active along the crater floor and incandescence persisted above the western vent through 9 August. During 7-9 August HVO reported a single lava effusion source was active along the NW margin of the crater floor. Measurements from an overflight on 4 August indicated that the crater floor was infilled about 136 m total and that 102 million cubic meters of lava had been erupted since the start of the eruption. Lava breakouts were reported along the N, NE, E, S, and W margins of the crater during 10-16 August. Another overflight survey conducted on 16 August indicated that the crater floor infilled about 137 m and 104 million cubic meters of lava had been erupted since September 2021. Measured sulfur dioxide emissions rates ranged 1,150-2,450 t/d, the higher of which occurred on 8 August.

Activity during September 2022. During September, lava effusion continued from the western vent into the active lava lake and onto the crater floor. Intermittent minor ooze-outs were reported through the month. A small ooze-out was visible on the W crater floor margin at 0220 on 2 September, which showed decreasing surface activity throughout the day, but remained active through 3 September. On 3 September around 1900 a lava outbreak occurred along the NW margin of the crater floor but had stopped by the evening of 4 September. Field crews monitoring the summit lava lake on 9 September observed spattering on the NE margin of the lake that rose no higher than 10 m, before falling back onto the lava lake crust (figure 521). Overflight measurements on 12 September indicated that the crater floor was infilled a total of 143 m and 111 million cubic meters of lava had been erupted since September 2021. Extensive breakouts in the W and N part of the crater floor were reported at 1600 on 20 September and continued into 26 September. The active part of the lava lake dropped by 10 m while other parts of the crater floor dropped by several meters. Summit tiltmeters recorded a summit seismic swarm of more than 80 earthquakes during 1500-1800 on 21 September, which occurred about 1.5 km below Halema’uma’u; a majority of these were less than Mw 2. By 22 September the active part of the lava lake was infilled about 2 m. On 23 September the western vent areas exhibited several small spatter cones with incandescent openings, along with weak, sporadic spattering (figure 522). The sulfur dioxide emission rate ranged from 930 t/d to 2,000 t/d, the higher of which was measured on 6 September.

Figure (see Caption) Figure 521. Photo of spattering occurring at Kīlauea's Halema’uma’u crater during the morning of 9 September 2022 on the NE margin of the active lava lake. The spatter material rose 10 m into the air before being deposited back on the lava lake crust. Courtesy of C. Parcheta, USGS.
Figure (see Caption) Figure 522.The active western vent area at Kīlauea's Halema’uma’u crater consisted of several small spatter cones with incandescent openings and weak, sporadic spattering. Courtesy of M. Patrick, USGS.

Activity during October 2022. Activity during October declined slightly compared to previous months, though lava effusions persisted from the western vent into the active lava lake and onto the crater floor during October (figure 523). Slight variations in the lava lake were noted throughout the month. HVO reported that around 0600 on 3 October the level of the lava lake has lowered slightly. Overflight measurements taken on 5 October indicated that the crater floor was infilled a total of about 143 m and that 111 million cubic meters of lava had been effused since September 2021. During 6-7 October the lake gradually rose 0.5 m. Sulfur dioxide measurements made on 22 October had an emission rate of 700 t/d. Another overflight taken on 28 October showed that there was little to no change in the elevation of the crater floor: the crater floor was infilled a total of 143 m and 111 million cubic meters of lava had erupted since the start of the eruption.

Figure (see Caption) Figure 523. Photo of the Halema’uma’u crater at Kīlauea looking east from the crater rim showing the active lava lake, with active lava ponds to the SE (top) and west (bottom middle) taken on 5 October 2022. The western vent complex is visible through the gas at the bottom center of the photo. Courtesy of N. Deligne, USGS.

Activity during November 2022. Activity remained low during November, though HVO reported that lava from the western vent continued to effuse into the active lava lake and onto the crater floor throughout the month. The rate of sulfur dioxide emissions during November ranged from 300-600 t/d, the higher amount of which occurred on 9 November.

Activity during December 2022. Similar low activity was reported during December, with lava effusing from the western vent into the active lava lake and onto the crater floor. During 4-5 December the active part of the lava lake was slightly variable in elevation and fluctuated within 1 m. On 9 December HVO reported that lava was no longer erupting from the western vent in the Halema’uma’u crater and that sulfur dioxide emissions had returned to near pre-eruption background levels; during 10-11 December, the lava lake had completely crusted over, and no incandescence was visible (figure 524). Time lapse camera images covering the 4-10 December showed that the crater floor showed weak deflation and no inflation. Some passive events of crustal overturning were reported during 14-15 December, which brought fresh incandescent lava to the lake surface. The sulfur dioxide emission rate was approximately 200 t/d on 14 December. A smaller overturn event on 17 December and another that occurred around 0000 and into the morning of 20 December were also detected. A small seismic swarm was later detected on 30 December.

Figure (see Caption) Figure 524. Photo of Halema’uma’u crater at Kīlauea showing a mostly solidified lake surface during the early morning of 10 December 2022. Courtesy of J. Bard, USGS.

Geologic Background. Kilauea overlaps the E flank of the massive Mauna Loa shield volcano in the island of Hawaii. Eruptions are prominent in Polynesian legends; written documentation since 1820 records frequent summit and flank lava flow eruptions interspersed with periods of long-term lava lake activity at Halemaumau crater in the summit caldera until 1924. The 3 x 5 km caldera was formed in several stages about 1,500 years ago and during the 18th century; eruptions have also originated from the lengthy East and Southwest rift zones, which extend to the ocean in both directions. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1,100 years old; 70% of the surface is younger than 600 years. The long-term eruption from the East rift zone between 1983 and 2018 produced lava flows covering more than 100 km2, destroyed hundreds of houses, and added new coastline.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI 96718, USA (URL: http://hvo.wr.usgs.gov/).


Nyamulagira (DR Congo) — November 2023 Citation iconCite this Report

Nyamulagira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Lava flows and thermal activity during May-October 2023

Nyamulagira (also known as Nyamuragira) is a shield volcano in the Democratic Republic of Congo with the summit truncated by a small 2 x 2.3 km caldera with walls up to about 100 m high. Documented eruptions have occurred within the summit caldera, as well as from numerous flank fissures and cinder cones. The current eruption period began in April 2018 and has more recently been characterized by summit crater lava flows and thermal activity (BGVN 48:05). This report describes lava flows and variable thermal activity during May through October 2023, based on information from the Observatoire Volcanologique de Goma (OVG) and various satellite data.

Lava lake activity continued during May. The MIROVA (Middle InfraRed Observation of Volcanic Activity) system recorded moderate-to-strong thermal activity throughout the reporting period; activity was more intense during May and October and relatively weaker from June through September (figure 95). The MODVOLC thermal algorithm, detected a total of 209 thermal alerts. There were 143 hotspots detected during May, eight during June, nine during September, and 49 during October. This activity was also reflected in infrared satellite images, where a lava flow was visible in the NW part of the crater on 7 May and strong activity was seen in the center of the crater on 4 October (figure 96). Another infrared satellite image taken on 12 May showed still active lava flows along the NW margin of the crater. According to OVG lava effusions were active during 7-29 May and moved to the N and NW parts of the crater beginning on 9 May. Strong summit crater incandescence was visible from Goma (27 km S) during the nights of 17, 19, and 20 May (figure 97). On 17 May there was an increase in eruptive activity, which peaked at 0100 on 20 May. Notable sulfur dioxide plumes drifted NW and W during 19-20 May (figure 98). Drone footage acquired in partnership with the USGS (United States Geological Survey) on 20 May captured images of narrow lava flows that traveled about 100 m down the W flank (figure 99). Data from the Rumangabo seismic station indicated a decreasing trend in activity during 17-21 May. Although weather clouds prevented clear views of the summit, a strong thermal signature on the NW flank was visible in an infrared satellite image on 22 May, based on an infrared satellite image. On 28 May the lava flows on the upper W flank began to cool and solidify. By 29 May seismicity returned to levels similar to those recorded before the 17 May increase. Lava effusion continued but was confined to the summit crater; periodic crater incandescence was observed.

Figure (see Caption) Figure 95. Moderate-to-strong thermal anomalies were detected at Nyamulagira during May through October 2023, as shown on this MIROVA graph (Log Radiative Power). During late May, the intensity of the anomalies gradually decreased and remained at relatively lower levels during mid-June through mid-September. During mid-September, the power of the anomalies gradually increased again. The stronger activity is reflective of active lava effusions. Courtesy of MIROVA.
Figure (see Caption) Figure 96. Infrared (bands B12, B11, B4) satellite images showing a constant thermal anomaly of variable intensities in the summit crater of Nyamulagira on 7 May 2023 (top left), 21 June 2023 (top right), 21 July 2023 (bottom left), and 4 October 2023 (bottom right). Although much of the crater was obscured by weather clouds on 7 May, a possible lava flow was visible in the NW part of the crater. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 97. Photo of intense nighttime crater incandescence at Nyamulagira as seen from Goma (27 km S) on the evening of 19 May 2023. Courtesy of Charles Balagizi, OVG.
Figure (see Caption) Figure 98. Two strong sulfur dioxide plumes were detected at Nyamulagira and drifted W on 19 (left) and 20 (right) May 2023. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 99. A map (top) showing the active vents (yellow pins) and direction of active lava flows (W) at Nyamulagira at Virunga National Park on 20 May 2023. Drone footage (bottom) also shows the fresh lava flows traveling downslope to the W on 20 May 2023. Courtesy of USGS via OVG.

Low-level activity was noted during June through October. On 1 June OVG reported that seismicity remained at lower levels and that crater incandescence had been absent for three days, though infrared satellite imagery showed continued lava effusion in the summit crater. The lava flows on the flanks covered an estimated 0.6 km2. Satellite imagery continued to show thermal activity confined to the lava lake through October (figure 96), although no lava flows or significant sulfur dioxide emissions were reported.

Geologic Background. Africa's most active volcano, Nyamulagira (also known as Nyamuragira), is a massive high-potassium basaltic shield about 25 km N of Lake Kivu and 13 km NNW of the steep-sided Nyiragongo volcano. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Documented eruptions have occurred within the summit caldera, as well as from the numerous flank fissures and cinder cones. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Recent lava flows extend down the flanks more than 30 km from the summit as far as Lake Kivu; extensive lava flows from this volcano have covered 1,500 km2 of the western branch of the East African Rift.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Charles Balagizi, Goma Volcano Observatory, Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo.


Bagana (Papua New Guinea) — October 2023 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Explosions, ash plumes, ashfall, and lava flows during April-September 2023

The remote volcano of Bagana is located in central Bougainville Island, Papua New Guinea. Recorded eruptions date back to 1842 and activity has consisted of effusive activity that has built a small lava dome in the summit crater and occasional explosions that produced pyroclastic flows. The most recent eruption has been ongoing since February 2000 and has produced occasional explosions, ash plumes, and lava flows. More recently, activity has been characterized by ongoing effusive activity and ash emissions (BGVN 48:04). This report updates activity from April through September 2023 that has consisted of explosions, ash plumes, ashfall, and lava flows, using information from the Darwin Volcanic Ash Advisory Center (VAAC) and satellite data.

An explosive eruption was reported on 7 July that generated a large gas-and-ash plume to high altitudes and caused significant ashfall in local communities; the eruption plume had reached upper tropospheric (16-18 km altitude) altitudes by 2200, according to satellite images. Sulfur dioxide plumes were detected in satellite images on 8 July and indicated that the plume was likely a mixture of gas, ice, and ash. A report issued by the Autonomous Bougainville Government (ABG) (Torokina District, Education Section) on 10 July noted that significant ash began falling during 2000-2100 on 7 July and covered most areas in the Vuakovi, Gotana (9 km SW), Koromaketo, Laruma (25 km W) and Atsilima (27 km NW) villages. Pyroclastic flows also occurred, according to ground-based reports; small deposits confined to one drainage were inspected by RVO during an overflight on 17 July and were confirmed to be from the 7 July event. Ashfall continued until 10 July and covered vegetation, which destroyed bushes and gardens and contaminated rivers and streams.

RVO reported another eruption on 14 July. The Darwin VAAC stated that an explosive event started around 0830 on 15 July and produced an ash plume that rose to 16.5 km altitude by 1000 and drifted N, according to satellite images. The plume continued to drift N and remained visible through 1900, and by 2150 it had dissipated.

Ashfall likely from both the 7 and 15 July events impacted about 8,111 people in Torokina (20 km SW), including Tsito/Vuakovi, Gotana, Koromaketo, Kenaia, Longkogari, Kenbaki, Piva (13 km SW), and Atsinima, and in the Tsitovi district, according to ABG. Significant ashfall was also reported in Ruruvu (22 km N) in the Wakunai District of Central Bougainville, though the thickness of these deposits could not be confirmed. An evacuation was called for the villages in Wakunai, where heavy ashfall had contaminated water sources; the communities of Ruruvu, Togarau, Kakarapaia, Karauturi, Atao, and Kuritaturi were asked to evacuate to a disaster center at the Wakunai District Station, and communities in Torokina were asked to evacuate to the Piva District station. According to a news article, more than 7,000 people needed temporary accommodations, with about 1,000 people in evacuation shelters. Ashfall had deposited over a broad area, contaminating water supplies, affecting crops, and collapsing some roofs and houses in rural areas. Schools were temporarily shut down. Intermittent ash emissions continued through the end of July and drifted NNW, NW, and SW. Fine ashfall was reported on the coast of Torokina, and ash plumes also drifted toward Laruma and Atsilima.

A small explosive eruption occurred at 2130 on 28 July that ejected material from the crater vents, according to reports from Torokina, in addition to a lava flow that contained two lobes. A second explosion was detected at 2157. Incandescence from the lava flow was visible from Piva as it descended the W flank around 2000 on 29 July (figure 47). The Darwin VAAC reported that a strong thermal anomaly was visible in satellite images during 30-31 July and that ash emissions rose to 2.4 km altitude and drifted WSW on 30 July. A ground report from RVO described localized emissions at 0900 on 31 July.

Figure (see Caption) Figure 47. Infrared (bands B12, B11, B4) satellite images showed weak thermal anomalies at the summit crater of Bagana on 12 April 2023 (top left), 27 May 2023 (top right), 31 July 2023 (bottom left), and 19 September 2023 (bottom right). A strong thermal anomaly was detected through weather clouds on 31 July and extended W from the summit crater. Courtesy of Copernicus Browser.

The Darwin VAAC reported that ash plumes were identified in satellite imagery at 0800 and 1220 on 12 August and rose to 2.1 km and 3 km altitude and drifted NW and W, respectively. A news report stated that aid was sent to more than 6,300 people that were adversely affected by the eruption. Photos taken during 17-19 August showed ash emissions rising no higher than 1 km above the summit and drifting SE. A small explosion generated an ash plume during the morning of 19 August. Deposits from small pyroclastic flows were also captured in the photos. Satellite images captured lava flows and pyroclastic flow deposits. Two temporary seismic stations were installed near Bagana on 17 August at distances of 7 km WSW (Vakovi station) and 11 km SW (Kepox station). The Kepox station immediately started to record continuous, low-frequency background seismicity.

Satellite data. Little to no thermal activity was detected during April through mid-July 2023; only one anomaly was recorded during early April and one during early June, according to MIROVA (Middle InfraRed Observation of Volcanic Activity) data (figure 48). Thermal activity increased in both power and frequency during mid-July through September, although there were still some short gaps in detected activity. MODVOLC also detected increased thermal activity during August; thermal hotspots were detected a total of five times on 19, 20, and 27 August. Weak thermal anomalies were also captured in infrared satellite images on clear weather days throughout the reporting period on 7, 12, and 17 April, 27 May, 1, 6, 16, and 31 July, and 19 September (figure 48); a strong thermal anomaly was visible on 31 July. Distinct sulfur dioxide plumes that drifted generally NW were intermittently captured by the TROPOMI instrument on the Sentinel-5P satellite and sometimes exceeded two Dobson Units (DUs) (figure 49).

Figure (see Caption) Figure 48. Low thermal activity was detected at Bagana during April through mid-July 2023, as shown on this MIROVA graph. In mid-July, activity began to increase in both frequency and power, which continued through September. There were still some pauses in activity during late July, early August, and late September, but a cluster of thermal activity was detected during late August. Courtesy of MIROVA.
Figure (see Caption) Figure 49. Distinct sulfur dioxide plumes rising from Bagana on 15 July 2023 (top left), 16 July 2023 (top right), 17 July 2023 (bottom left), and 17 August 2023 (bottom right). These plumes all generally drifted NW; a particularly notable plume exceeded 2 Dobson Units (DUs) on 15 July. Data is from the TROPOMI instrument on the Sentinel-5P satellite. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.0

Geologic Background. Bagana volcano, in a remote portion of central Bougainville Island, is frequently active. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although occasional explosive activity produces pyroclastic flows. Lava flows with tongue-shaped lobes up to 50 m thick and prominent levees descend the flanks on all sides.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Autonomous Bougainville Government, P.O Box 322, Buka, AROB, PNG (URL: https://abg.gov.pg/); Andrew Tupper (Twitter: @andrewcraigtupp); Simon Carn, Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: http://www.volcarno.com/, Twitter: @simoncarn); Radio NZ (URL: https://www.rnz.co.nz/news/pacific/494464/more-than-7-000-people-in-bougainville-need-temporary-accommodation-after-eruption); USAID, 1300 Pennsylvania Ave, NW, Washington DC 20004, USA (URL: https://www.usaid.gov/pacific-islands/press-releases/aug-08-2023-united-states-provides-immediate-emergency-assistance-support-communities-affected-mount-bagana-volcanic-eruptions).


Mayon (Philippines) — October 2023 Citation iconCite this Report

Mayon

Philippines

13.257°N, 123.685°E; summit elev. 2462 m

All times are local (unless otherwise noted)


Lava flows, pyroclastic flows, ash emissions, and seismicity during April-September 2023

Mayon is located in the Philippines and has steep upper slopes capped by a small summit crater. Historical eruptions date back to 1616 CE that have been characterized by Strombolian eruptions, lava flows, pyroclastic flows, and mudflows. Eruptions mostly originated from a central conduit. Pyroclastic flows and mudflows have commonly descended many of the approximately 40 drainages that surround the volcano. The most recent eruption occurred during June through October 2022 and consisted of lava dome growth and gas-and-steam emissions (BGVN 47:12). A new eruption was reported during late April 2023 and has included lava flows, pyroclastic density currents, ash emissions, and seismicity. This report covers activity during April through September 2023 based on daily bulletins from the Philippine Institute of Volcanology and Seismology (PHIVOLCS).

During April through September 2023, PHIVOLCS reported near-daily rockfall events, frequent volcanic earthquakes, and sulfur dioxide measurements. Gas-and-steam emissions rose 100-900 m above the crater and drifted in different directions. Nighttime crater incandescence was often visible during clear weather and was accompanied by incandescent avalanches of material. Activity notably increased during June when lava flows were reported on the S, SE, and E flanks (figure 52). The MIROVA graph (Middle InfraRed Observation of Volcanic Activity) showed strong thermal activity coincident with these lava flows, which remained active through September (figure 53). According to the MODVOLC thermal algorithm, a total of 110 thermal alerts were detected during the reporting period: 17 during June, 40 during July, 27 during August, and 26 during September. During early June, pyroclastic density currents (PDCs) started to occur more frequently.

Figure (see Caption) Figure 52. Infrared (bands B12, B11, B4) satellite images show strong lava flows descending the S, SE, and E flanks of Mayon on 13 June 2023 (top left), 23 June 2023 (top right), 8 July 2023 (bottom left), and 7 August 2023 (bottom right). Courtesy of Copernicus Browser.
Figure (see Caption) Figure 53. Strong thermal activity was detected at Mayon during early June through September, according to this MIROVA graph (Log Radiative Power) due to the presence of active lava flows on the SE, S, and E flanks. Courtesy of MIROVA.

Low activity was reported during much of April and May; gas-and-steam emissions rose 100-900 m above the crater and generally drifted in different directions. A total of 52 rockfall events and 18 volcanic earthquakes were detected during April and 147 rockfall events and 13 volcanic events during May. Sulfur dioxide flux measurements ranged between 400-576 tons per day (t/d) during April, the latter of which was measured on 29 April and between 162-343 t/d during May, the latter of which was measured on 13 May.

Activity during June increased, characterized by lava flows, pyroclastic density currents (PDCs), crater incandescence and incandescent rockfall events, gas-and-steam emissions, and continued seismicity. Weather clouds often prevented clear views of the summit, but during clear days, moderate gas-and-steam emissions rose 100-2,500 m above the crater and drifted in multiple directions. A total of 6,237 rockfall events and 288 volcanic earthquakes were detected. The rockfall events often deposited material on the S and SE flanks within 700-1,500 m of the summit crater and ash from the events drifted SW, S, SE, NE, and E. Sulfur dioxide emissions ranged between 149-1,205 t/d, the latter of which was measured on 10 June. Short-term observations from EDM and electronic tiltmeter monitoring indicated that the upper slopes were inflating since February 2023. Longer-term ground deformation parameters based on EDM, precise leveling, continuous GPS, and electronic tilt monitoring indicated that the volcano remained inflated, especially on the NW and SE flanks. At 1000 on 5 June the Volcano Alert Level (VAL) was raised to 2 (on a 0-5 scale). PHIVOLCS noted that although low-level volcanic earthquakes, ground deformation, and volcanic gas emissions indicated unrest, the steep increase in rockfall frequency may indicate increased dome activity.

A total of 151 dome-collapse PDCs occurred during 8-9 and 11-30 June, traveled 500-2,000 m, and deposited material on the S flank within 2 km of the summit crater. During 8-9 June the VAL was raised to 3. At approximately 1947 on 11 June lava flow activity was reported; two lobes traveled within 500 m from the crater and deposited material on the S (Mi-isi), SE (Bonga), and E (Basud) flanks. Weak seismicity accompanied the lava flow and slight inflation on the upper flanks. This lava flow remained active through 30 June, moving down the S and SE flank as far as 2.5 km and 1.8 km, respectively and depositing material up to 3.3 km from the crater. During 15-16 June traces of ashfall from the PDCs were reported in Sitio Buga, Nabonton, City of Ligao and Purok, and San Francisco, Municipality of Guinobatan. During 28-29 June there were two PDCs generated by the collapse of the lava flow front, which generated a light-brown ash plume 1 km high. Satellite monitors detected significant concentrations of sulfur dioxide beginning on 29 June. On 30 June PDCs primarily affected the Basud Gully on the E flank, the largest of which occurred at 1301 and lasted eight minutes, based on the seismic record. Four PDCs generated between 1800 and 2000 that lasted approximately four minutes each traveled 3-4 km on the E flank and generated an ash plume that rose 1 km above the crater and drifted N and NW. Ashfall was recorded in Tabaco City.

Similar strong activity continued during July; slow lava effusion remained active on the S and SE flanks and traveled as far as 2.8 km and 2.8 km, respectively and material was deposited as far as 4 km from the crater. There was a total of 6,983 rockfall events and 189 PDCs that affected the S, SE, and E flanks. The volcano network detected a total of 2,124 volcanic earthquakes. Continuous gas-and-steam emissions rose 200-2,000 m above the crater and drifted in multiple directions. Sulfur dioxide emissions averaged 792-4,113 t/d, the latter of which was measured on 28 July. During 2-4 July three PDCs were generated from the collapse of the lava flow and resulting light brown plumes rose 200-300 m above the crater. Continuous tremor pulses were reported beginning at 1547 on 3 July through 7 July at 1200, at 2300 on 8 July and going through 0300 on 10 July, and at 2300 on 16 July, as recorded by the seismic network. During 6-9 July there were 10 lava flow-collapse-related PDCs that generated light brown plumes 300-500 m above the crater. During 10-11 July light ashfall was reported in some areas of Mabinit, Legazpi City, Budiao and Salvacion, Daraga, and Camalig, Albay. By 18 July the lava flow advanced 600 m on the E flank as well.

During 1733 on 18 July and 0434 on 19 July PHIVOLCS reported 30 “ashing” events, which are degassing events accompanied by audible thunder-like sounds and entrained ash at the crater, which produced short, dark plumes that drifted SW. These events each lasted 20-40 seconds, and plume heights ranged from 150-300 m above the crater, as recorded by seismic, infrasound, visual, and thermal monitors. Three more ashing events occurred during 19-20 July. Short-term observations from electronic tilt and GPS monitoring indicate deflation on the E lower flanks in early July and inflation on the NW middle flanks during the third week of July. Longer-term ground deformation parameters from EDM, precise leveling, continuous GPS, and electronic tilt monitoring indicated that the volcano was still generally inflated relative to baseline levels. A short-lived lava pulse lasted 28 seconds at 1956 on 21 July, which was accompanied by seismic and infrasound signals. By 22 July, the only lava flow that remained active was on the SE flank, and continued to extend 3.4 km, while those on the S and E flanks weakened markedly. One ashing event was detected during 30-31 July, whereas there were 57 detected during 31 July-1 August; according to PHIVOLCS beginning at approximately 1800 on 31 July eruptive activity was dominated by phases of intermittent ashing, as well as increased in the apparent rates of lava effusion from the summit crater. The ashing phases consisted of discrete events recorded as low-frequency volcanic earthquakes (LFVQ) typically 30 seconds in duration, based on seismic and infrasound signals. Gray ash plume rose 100 m above the crater and generally drifted NE. Shortly after these ashing events began, new lava began to effuse rapidly from the crater, feeding the established flowed on the SE, E, and E flanks and generating frequent rockfall events.

Intensified unrest persisted during August. There was a total of 4,141 rockfall events, 2,881 volcanic earthquakes, which included volcanic tremor events, 32 ashing events, and 101 PDCs detected throughout the month. On clear weather days, gas-and-steam emissions rose 300-1,500 m above the crater and drifted in different directions (figure 54). Sulfur dioxide emissions averaged 735-4,756 t/d, the higher value of which was measured on 16 August. During 1-2 August the rate of lava effusion decreased, but continued to feed the flows on the SE, S, and E flanks, maintaining their advances to 3.4 km, 2.8 km, and 1.1 km from the crater, respectively (figure 55). Rockfall and PDCs generated by collapses at the lava flow margins and from the summit dome deposited material within 4 km of the crater. During 3-4 August there were 10 tremor events detected that lasted 1-4 minutes. Short-lived lava pulse lasted 35 seconds and was accompanied by seismic and infrasound signals at 0442 on 6 August. Seven collapses were recorded at the front of the lava flow during 12-14 August.

Figure (see Caption) Figure 54. Photo of Mayon showing a white gas-and-steam plume rising 800-1,500 m above the crater at 0645 on 25 August. Courtesy of William Rogers.
Figure (see Caption) Figure 55. Photo of Mayon facing N showing incandescent lava flows and summit crater incandescence taken at 1830 on 25 August 2023. Courtesy of William Rogers.

During September, similar activity of slow lava effusion, PDCs, gas-and-steam emissions, and seismicity continued. There was a total of 4,452 rockfall events, 329 volcanic earthquakes, which included volcanic tremor events, two ashing events, and 85 PDCs recorded throughout the month. On clear weather days, gas-and-steam emissions rose 100-1,500 m above the crater and drifted in multiple directions. Sulfur dioxide emissions averaged 609-2,252 t/d, the higher average of which was measured on 6 September. Slow lava effusion continued advancing on the SE, S, and E flanks, maintaining lengths of 3.4 km, 2.8 km, and 1.1 km, respectively. Rockfall and PDC events generated by collapses along the lava flow margins and at the summit dome deposited material within 4 km of the crater.

Geologic Background. Symmetrical Mayon, which rises above the Albay Gulf NW of Legazpi City, is the most active volcano of the Philippines. The steep upper slopes are capped by a small summit crater. Recorded eruptions since 1616 CE range from Strombolian to basaltic Plinian, with cyclical activity beginning with basaltic eruptions, followed by longer periods of andesitic lava flows. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic density currents and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often damaged populated lowland areas. A violent eruption in 1814 killed more than 1,200 people and devastated several towns.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, University of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); William Rogers, Legazpi City, Albay Province, Philippines.


Nishinoshima (Japan) — October 2023 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 100 m

All times are local (unless otherwise noted)


Eruption plumes and gas-and-steam plumes during May-August 2023

Nishinoshima, located about 1,000 km S of Tokyo, is a small island in the Ogasawara Arc in Japan. The island is the summit of a massive submarine volcano that has prominent submarine peaks to the S, W, and NE. Eruptions date back to 1973 and the current eruption period began in October 2022. Recent activity has consisted of small ash plumes and fumarolic activity (BGVN 48:07). This report covers activity during May through August 2023, using information from monthly reports of the Japan Meteorological Agency (JMA) monthly reports and satellite data.

Activity during May through June was relatively low. The Japan Coast Guard (JCG) did overflights on 14 and 22 June and reported white gas-and-steam emissions rising 600 m and 1,200 m from the central crater of the pyroclastic cone, respectively (figure 125). In addition, multiple white gas-and-steam emissions rose from the inner rim of the W side of the crater and from the SE flank of the pyroclastic cone. Discolored brown-to-green water was observed around almost the entire perimeter of the island; on 22 June light green discolored water was observed off the S coast of the island.

Figure (see Caption) Figure 125. A white gas-and-steam plume rising 600 m above the crater of Nishinoshima at 1404 on 14 June 2023 (left) and 1,200 m above the crater at 1249 on 22 June 2023 (right). Courtesy of JCG via JMA (monthly reports of activity at Nishinoshima, June, 2023).

Observations from the Himawari meteorological satellite confirmed an eruption on 9 and 10 July. An eruption plume rose 1.6 km above the crater and drifted N around 1300 on 9 July. Satellite images acquired at 1420 and 2020 on 9 July and at 0220 on 10 July showed continuing emissions that rose 1.3-1.6 km above the crater and drifted NE and N. The Tokyo VAAC reported that an ash plume seen by a pilot and identified in a satellite image at 0630 on 21 July rose to 3 km altitude and drifted S.

Aerial observations conducted by JCG on 8 August showed a white-and-gray plume rising from the central crater of the pyroclastic cone, and multiple white gas-and-steam emissions were rising from the inner edge of the western crater and along the NW-SE flanks of the island (figure 126). Brown-to-green discolored water was also noted around the perimeter of the island.

Figure (see Caption) Figure 126. Aerial photo of Nishinoshima showing a white-and-gray plume rising from the central crater taken at 1350 on 8 August 2023.

Intermittent low-to-moderate power thermal anomalies were recorded in the MIROVA graph (Middle InfraRed Observation of Volcanic Activity), showing an increase in both frequency and power beginning in July (figure 127). This increase in activity coincides with eruptive activity on 9 and 10 July, characterized by eruption plumes. According to the MODVOLC thermal alert algorithm, one thermal hotspot was recorded on 20 July. Weak thermal anomalies were also detected in infrared satellite imagery, accompanied by strong gas-and-steam plumes (figure 128).

Figure (see Caption) Figure 127. Low-to-moderate power thermal anomalies were detected at Nishinoshima during May through August 2023, showing an increase in both frequency and power in July, according to this MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 128. Infrared (bands B12, B11, B4) satellite images showing a small thermal anomaly at the crater of Nishinoshima on 30 June 2023 (top left), 3 July 2023 (top right), 7 August 2023 (bottom left), and 27 August 2023 (bottom right). Strong gas-and-steam plumes accompanied this activity, extending NW, NE, and SW. Courtesy of Copernicus Browser.

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Multiple eruptions that began in 2013 completely covered the previous exposed surface and continued to enlarge the island. The island is the summit of a massive submarine volcano that has prominent peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the ocean surface 9 km SSE.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Krakatau (Indonesia) — October 2023 Citation iconCite this Report

Krakatau

Indonesia

6.1009°S, 105.4233°E; summit elev. 285 m

All times are local (unless otherwise noted)


White gas-and-steam plumes and occasional ash plumes during May-August 2023

Krakatau is located in the Sunda Strait between Java and Sumatra, Indonesia. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan cones and left only a remnant of Rakata. The post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones; it has been the site of frequent eruptions since 1927. The current eruption period began in May 2021 and has recently consisted of Strombolian eruptions and ash plumes (BGVN 48:07). This report describes lower levels of activity consisting of ash and white gas-and-steam plumes during May through August 2023, based on information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, referred to as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), MAGMA Indonesia, and satellite data.

Activity was relatively low during May and June. Daily white gas-and-steam emissions rose 25-200 m above the crater and drifted in different directions. Five ash plumes were detected at 0519 on 10 May, 1241 on 11 May, 0920 on 12 May, 2320 on 12 May, and at 0710 on 13 May, and rose 1-2.5 km above the crater and drifted SW. A webcam image taken on 12 May showed ejection of incandescent material above the vent. A total of nine ash plumes were detected during 6-11 June: at 1434 and 00220 on 6 and 7 June the ash plumes rose 500 m above the crater and drifted NW, at 1537 on 8 June the ash plume rose 1 km above the crater and drifted SW, at 0746 and at 0846 on 9 June the ash plumes rose 800 m and 3 km above the crater and drifted SW, respectively, at 0423, 1431, and 1750 on 10 June the ash plumes rose 2 km, 1.5 km, and 3.5 km above the crater and drifted NW, respectively, and at 0030 on 11 June an ash plume rose 2 km above the crater and drifted NW. Webcam images taken on 10 and 11 June at 0455 and 0102, respectively, showed incandescent material ejected above the vent. On 19 June an ash plume at 0822 rose 1.5 km above the crater and drifted SE.

Similar low activity of white gas-and-steam emissions and few ash plumes were reported during July and August. Daily white gas-and-steam emissions rose 25-300 m above the crater and drifted in multiple directions. Three ash plumes were reported at 0843, 0851, and 0852 on 20 July that rose 500-2,000 m above the crater and drifted NW.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data showed intermittent low-to-moderate power thermal anomalies during May through August 2023 (figure 140). Although activity was often obscured by weather clouds, a thermal anomaly was visible in an infrared satellite image of the crater on 12 May, accompanied by an eruption plume that drifted SW (figure 141).

Figure (see Caption) Figure 140. Intermittent low-to-moderate power thermal anomalies were detected at Krakatau during May through August 2023, based on this MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 141. A single thermal anomaly (bright yellow-orange) was visible at Krakatau in this infrared (bands B12, B11, B4) satellite image taken on 12 May 2023. An eruption plume accompanied the thermal anomaly and drifted SW. Courtesy of Copernicus Browser.

Geologic Background. The renowned Krakatau (frequently mis-named as Krakatoa) volcano lies in the Sunda Strait between Java and Sumatra. Collapse of an older edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of that volcano are preserved in Verlaten and Lang Islands; subsequently the Rakata, Danan, and Perbuwatan cones were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption caused more than 36,000 fatalities, most as a result of tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Villarrica (Chile) — October 2023 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Strombolian activity, gas-and-ash emissions, and crater incandescence during April-September 2023

Villarrica, in central Chile, consists of a 2-km-wide caldera that formed about 3,500 years ago and is located at the base of the presently active cone at the NW margin of a 6-km-wide caldera. Historical eruptions eruptions date back to 1558 and have been characterized by mild-to-moderate explosive activity with occasional lava effusions. The current eruption period began in December 2014 and has recently consisted of nighttime crater incandescence, ash emissions, and seismicity (BGVN 48:04). This report covers activity during April through September 2023 and describes occasional Strombolian activity, gas-and-ash emissions, and nighttime crater incandescence. Information for this report primarily comes from the Southern Andes Volcano Observatory (Observatorio Volcanológico de Los Andes del Sur, OVDAS), part of Chile's National Service of Geology and Mining (Servicio Nacional de Geología y Minería, SERNAGEOMIN) and satellite data.

Seismicity during April consisted of long period (LP) events and tremor (TRE); a total of 9,413 LP-type events and 759 TR-type events were detected throughout the month. Nighttime crater incandescence persisted and was visible in the degassing column. Sulfur dioxide data was obtained using Differential Absorption Optical Spectroscopy Equipment (DOAS) that showed an average value of 1,450 ± 198 tons per day (t/d) during 1-15 April and 1,129 ± 201 t/d during 16-30 April, with a maximum daily value of 2,784 t/d on 9 April. Gas-and-steam emissions of variable intensities rose above the active crater as high as 1.3 km above the crater on 13 April. Strombolian explosions were not observed and there was a slight decrease in the lava lake level.

There were 14,123 LP-type events and 727 TR-type events detected during May. According to sulfur dioxide measurements taken with DOAS equipment, the active crater emitted an average value of 1,826 ± 482 t/d during 1-15 May and 912 ± 41 t/d during 16-30 May, with a daily maximum value of 5,155 t/d on 13 May. Surveillance cameras showed continuous white gas-and-steam emissions that rose as high as 430 m above the crater on 27 May. Nighttime incandescence illuminated the gas column less than 300 m above the crater rim was and no pyroclastic emissions were reported. A landslide was identified on 13 May on the E flank of the volcano 50 m from the crater rim and extending 300 m away; SERNAGEOMIN noted that this event may have occurred on 12 May. During the morning of 27 and 28 May minor Strombolian explosions characterized by incandescent ejecta were recorded at the crater rim; the last reported Strombolian explosions had occurred at the end of March.

Seismic activity during June consisted of five volcano-tectonic (VT)-type events, 21,606 LP-type events, and 2,085 TR-type events. The average value of sulfur dioxide flux obtained by DOAS equipment was 1,420 ± 217 t/d during 1-15 June and 2,562 ± 804 t/d, with a maximum daily value of 4,810 t/d on 17 June. White gas-and-steam emissions rose less than 480 m above the crater; frequent nighttime crater incandescence was reflected in the degassing plume. On 12 June an emission rose 100 m above the crater and drifted NNW. On 15 June one or several emissions resulted in ashfall to the NE as far as 5.5 km from the crater, based on a Skysat satellite image. Several Strombolian explosions occurred within the crater; activity on 15 June was higher energy and ejected blocks 200-300 m on the NE slope. Surveillance cameras showed white gas-and-steam emissions rising 480 m above the crater on 16 June. On 19 and 24 June low-intensity Strombolian activity was observed, ejecting material as far as 200 m from the center of the crater to the E.

During July, seismicity included 29,319 LP-type events, 3,736 TR-type events, and two VT-type events. DOAS equipment recorded two days of sulfur dioxide emissions of 4,220 t/d and 1,009 t/d on 1 and 13 July, respectively. Constant nighttime incandescence was also recorded and was particularly noticeable when accompanied by eruptive columns on 12 and 16 July. Minor explosive events were detected in the crater. According to Skysat satellite images taken on 12, 13, and 16 July, ashfall deposits were identified 155 m S of the crater. According to POVI, incandescence was visible from two vents on the crater floor around 0336 on 12 July. Gas-and-ash emissions rose as high as 1.2 km above the crater on 13 July and drifted E and NW. A series of gas-and-steam pulses containing some ash deposited material on the upper E flank around 1551 on 13 July. During 16-31 July, average sulfur dioxide emissions of 1,679 ± 406 t/d were recorded, with a maximum daily value of 2,343 t/d on 28 July. Fine ash emissions were also reported on 16, 17, and 23 July.

Seismicity persisted during August, characterized by 27,011 LP-type events, 3,323 TR-type events, and three VT-type events. The average value of sulfur dioxide measurements taken during 1-15 August was 1,642 ± 270 t/d and 2,207 ± 4,549 t/d during 16-31 August, with a maximum daily value of 3,294 t/d on 27 August. Nighttime crater incandescence remained visible in degassing columns. White gas-and-steam emissions rose 480 m above the crater on 6 August. According to a Skysat satellite image from 6 August, ash accumulation was observed proximal to the crater and was mainly distributed toward the E slope. White gas-and-steam emissions rose 320 m above the crater on 26 August. Nighttime incandescence and Strombolian activity that generated ash emissions were reported on 27 August.

Seismicity during September was characterized by five VT-type events, 12,057 LP-type events, and 2,058 TR-type events. Nighttime incandescence persisted. On 2 September an ash emission rose 180 m above the crater and drifted SE at 1643 (figure 125) and a white gas-and-steam plume rose 320 m above the crater. According to the Buenos Aires VAAC, periods of continuous gas-and-ash emissions were visible in webcam images from 1830 on 2 September to 0110 on 3 September. Strombolian activity was observed on 2 September and during the early morning of 3 September, the latter event of which generated an ash emission that rose 60 m above the crater and drifted 100 m from the center of the crater to the NE and SW. Ashfall was reported to the SE and S as far as 750 m from the crater. The lava lake was active during 3-4 September and lava fountaining was visible for the first time since 26 March 2023, according to POVI. Fountains captured in webcam images at 2133 on 3 September and at 0054 on 4 September rose as high as 60 m above the crater rim and ejected material onto the upper W flank. Sulfur dioxide flux of 1,730 t/d and 1,281 t/d was measured on 3 and 4 September, respectively, according to data obtained by DOAS equipment.

Figure (see Caption) Figure 125. Webcam image of a gray ash emission rising above Villarrica on 2 September 2023 at 1643 (local time) that rose 180 m above the crater and drifted SE. Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, Volcan Villarrica, 02 de septiembre de 2023, 17:05 Hora local).

Strong Strombolian activity and larger gas-and-ash plumes were reported during 18-20 September. On 18 September activity was also associated with energetic LP-type events and notable sulfur dioxide fluxes (as high as 4,277 t/d). On 19 September Strombolian activity and incandescence were observed. On 20 September at 0914 ash emissions rose 50 m above the crater and drifted SSE, accompanied by Strombolian activity that ejected material less than 100 m SSE, causing fall deposits on that respective flank. SERNAGEOMIN reported that a Planet Scope satellite image taken on 20 September showed the lava lake in the crater, measuring 32 m x 35 m and an area of 0.001 km2. Several ash emissions were recorded at 0841, 0910, 1251, 1306, 1312, 1315, and 1324 on 23 September and rose less than 150 m above the crater. The sulfur dioxide flux value was 698 t/d on 23 September and 1,097 t/d on 24 September. On 24 September the Volcanic Alert Level (VAL) was raised to Orange (the third level on a four-color scale). SENAPRED maintained the Alert Level at Yellow (the middle level on a three-color scale) for the communities of Villarrica, Pucón (16 km N), Curarrehue, and Panguipulli.

During 24-25 September there was an increase in seismic energy (observed at TR-events) and acoustic signals, characterized by 1 VT-type event, 213 LP-type events, and 124 TR-type events. Mainly white gas-and-steam emissions, in addition to occasional fine ash emissions were recorded. During the early morning of 25 September Strombolian explosions were reported and ejected material 250 m in all directions, though dominantly toward the NW. On 25 September the average value of sulfur dioxide flux was 760 t/d. Seismicity during 25-30 September consisted of five VT-type events, 1,937 LP-type events, and 456 TR-type events.

During 25-29 September moderate Strombolian activity was observed and ejected material as far as the crater rim. In addition, ash pulses lasting roughly 50 minutes were observed around 0700 and dispersed ENE. During 26-27 September a TR episode lasted 6.5 hours and was accompanied by discrete acoustic signals. Satellite images from 26 September showed a spatter cone on the crater floor with one vent that measured 10 x 14 m and a smaller vent about 35 m NE of the cone. SERNAGEOMIN reported an abundant number of bomb-sized blocks up to 150 m from the crater, as well as impact marks on the snow, which indicated explosive activity. A low-altitude ash emission was observed drifting NW around 1140 on 28 September, based on webcam images. Between 0620 and 0850 on 29 September an ash emission rose 60 m above the crater and drifted NW. During an overflight taken around 1000 on 29 September scientists observed molten material in the vent, a large accumulation of pyroclasts inside the crater, and energetic degassing, some of which contained a small amount of ash. Block-sized pyroclasts were deposited on the internal walls and near the crater, and a distal ash deposit was also visible. The average sulfur dioxide flux measured on 28 September was 344 t/d. Satellite images taken on 29 September ashfall was deposited roughly 3 km WNW from the crater and nighttime crater incandescence remained visible. The average sulfur dioxide flux value from 29 September was 199 t/d. On 30 September at 0740 a pulsating ash emission rose 1.1 km above the crater and drifted NNW (figure 126). Deposits on the S flank extended as far as 4.5 km from the crater rim, based on satellite images from 30 September.

Figure (see Caption) Figure 126. Webcam image of a gray ash plume rising 1.1 km above the crater of Villarrica at 0740 (local time) on 30 September 2023. Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, Volcan Villarrica, 30 de septiembre de 2023, 09:30 Hora local).

Infrared MODIS satellite data processed by MIROVA (Middle InfraRed Observation of Volcanic Activity) showed intermittent thermal activity during April through September, with slightly stronger activity detected during late September (figure 127). Small clusters of thermal activity were detected during mid-June, early July, early August, and late September. According to the MODVOLC thermal alert system, a total of four thermal hotspots were detected on 7 July and 3 and 23 September. This activity was also intermittently captured in infrared satellite imagery on clear weather days (figure 128).

Figure (see Caption) Figure 127. Low-to-moderate power thermal anomalies were detected at Villarrica during April through September 2023, according to this MIROVA graph (Log Radiative Power). Activity was relatively low during April through mid-June. Small clusters of activity occurred during mid-June, early July, early August, and late September. Courtesy of MIROVA.
Figure (see Caption) Figure 128. Consistent bright thermal anomalies (bright yellow-orange) were visible at the summit crater of Villarrica in infrared (bands B12, B11, B4) satellite images, as shown on 17 June 2023 (top left), 17 July 2023 (top right), 6 August 2023 (bottom left), and 20 September 2023 (bottom right). Courtesy of Copernicus Browser.

Geologic Background. The glacier-covered Villarrica stratovolcano, in the northern Lakes District of central Chile, is ~15 km south of the city of Pucon. A 2-km-wide caldera that formed about 3,500 years ago is located at the base of the presently active, dominantly basaltic to basaltic andesite cone at the NW margin of a 6-km-wide Pleistocene caldera. More than 30 scoria cones and fissure vents are present on the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Eruptions documented since 1558 CE have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); Proyecto Observación Villarrica Internet (POVI) (URL: http://www.povi.cl/); Sistema y Servicio Nacional de Prevención y Repuesta Ante Desastres (SENAPRED), Av. Beauchef 1671, Santiago, Chile (URL: https://web.senapred.cl/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Merapi (Indonesia) — October 2023 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Frequent incandescent avalanches during April-September 2023

Merapi, located just north of the major city of Yogyakarta in central Java, Indonesia, has had activity within the last 20 years characterized by pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome. The current eruption period began in late December 2020 and has more recently consisted of ash plumes, intermittent incandescent avalanches of material, and pyroclastic flows (BGVN 48:04). This report covers activity during April through September 2023, based on information from Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG which specifically monitors Merapi. Additional information comes from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), MAGMA Indonesia, the Darwin Volcanic Ash Advisory Centre (VAAC), and various satellite data.

Activity during April through September 2023 primarily consisted of incandescent avalanches of material that mainly affected the SW and W flanks and traveled as far as 2.3 km from the summit (table 25) and white gas-and-steam emissions that rose 10-1,000 m above the crater.

Table 25. Monthly summary of avalanches and avalanche distances recorded at Merapi during April through September 2023. The number of reported avalanches does not include instances where possible avalanches were heard but could not be visually confirmed as a result of inclement weather. Data courtesy of BPPTKG (April-September 2023 daily reports).

Month Average number of avalanches per day Distance avalanches traveled (m)
Apr 2023 19 1,200-2,000
May 2023 22 500-2,000
Jun 2023 18 1,200-2,000
Jul 2023 30 300-2,000
Aug 2023 25 400-2,300
Sep 2023 23 600-2,000

BPPTKG reported that during April and May white gas-and-steam emissions rose 10-750 m above the crater, incandescent avalanches descended 500-2,000 m on the SW and W flanks (figure 135). Cloudy weather often prevented clear views of the summit, and sometimes avalanches could not be confirmed. According to a webcam image, a pyroclastic flow was visible on 17 April at 0531. During the week of 28 April and 4 May a pyroclastic flow was reported on the SW flank, traveling up to 2.5 km. According to a drone overflight taken on 17 May the SW lava dome volume was an estimated 2,372,800 cubic meters and the dome in the main crater was an estimated 2,337,300 cubic meters.

Figure (see Caption) Figure 135. Photo showing an incandescent avalanche affecting the flank of Merapi on 8 April 2023. Courtesy of Øystein Lund Andersen.

During June and July similar activity persisted with white gas-and-steam emissions rising 10-350 m above the crater and frequent incandescent avalanches that traveled 300-2,000 m down the SW, W, and S flanks (figure 136). Based on an analysis of aerial photos taken on 24 June the volume of the SW lava dome was approximately 2.5 million cubic meters. A pyroclastic flow was observed on 5 July that traveled 2.7 km on the SW flank. According to the Darwin VAAC multiple minor ash plumes were identified in satellite images on 19 July that rose to 3.7 km altitude and drifted S and SW. During 22, 25, and 26 July a total of 17 avalanches descended as far as 1.8 km on the S flank.

Figure (see Caption) Figure 136. Photo showing an incandescent avalanche descending the flank of Merapi on 23 July 2023. Courtesy of Øystein Lund Andersen.

Frequent white gas-and-steam emissions continued during August and September, rising 10-450 m above the crater. Incandescent avalanches mainly affected the SW and W flanks and traveled 400-2,300 m from the vent (figure 137). An aerial survey conducted on 10 August was analyzed and reported that estimates of the SW dome volume was 2,764,300 cubic meters and the dome in the main crater was 2,369,800 cubic meters.

Figure (see Caption) Figure 137. Photo showing a strong incandescent avalanche descending the flank of Merapi on 23 September 2023. Courtesy of Øystein Lund Andersen.

Frequent and moderate-power thermal activity continued throughout the reporting period, according to a MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data (figure 138). There was an increase in the number of detected anomalies during mid-May. The MODVOLC thermal algorithm recorded a total of 47 thermal hotspots: six during April, nine during May, eight during June, 15 during July, four during August, and five during September. Some of this activity was captured in infrared satellite imagery on clear weather days, sometimes accompanied by incandescent material on the SW flank (figure 139).

Figure (see Caption) Figure 138. Frequent and moderate-power thermal anomalies were detected at Merapi during April through September 2023, as shown on this MIROVA plot (Log Radiative Power). There was an increase in the number of anomalies recorded during mid-May. Courtesy of MIROVA.
Figure (see Caption) Figure 139. Infrared (bands B12, B11, B4) satellite images showed a consistent thermal anomaly (bright yellow-orange) at the summit crater of Merapi on 8 April 2023 (top left), 18 May 2023 (top right), 17 June 2023 (middle left), 17 July 2023 (middle right), 11 August 2023 (bottom left), and 20 September 2023 (bottom right). Incandescent material was occasionally visible descending the SW flank, as shown in each of these images. Courtesy of Copernicus Browser.

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2,000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequent growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities.

Information Contacts: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, Twitter: @BPPTKG); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Øystein Lund Andersen (URL: https://www.oysteinlundandersen.com/, https://twitter.com/oysteinvolcano).


Ebeko (Russia) — December 2023 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Moderate explosive activity with ash plumes continued during June-November 2023

Ebeko, located on the N end of Paramushir Island in Russia’s Kuril Islands just S of the Kamchatka Peninsula, consists of three summit craters along a SSW-NNE line at the northern end of a complex of five volcanic cones. Observed eruptions date back to the late 18th century and have been characterized as small-to-moderate explosions from the summit crater, accompanied by intense fumarolic activity. The current eruptive period began in June 2022, consisting of frequent explosions, ash plumes, and thermal activity (BGVN 47:10, 48:06). This report covers similar activity during June-November 2023, based on information from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.

Moderate explosive activity continued during June-November 2023 (figures 50 and 51). According to visual data from Severo-Kurilsk, explosions sent ash 2-3.5 km above the summit (3-4.5 km altitude) during most days during June through mid-September. Activity after mid-September was slightly weaker, with ash usually reaching less than 2 km above the summit. According to KVERT the volcano in October and November was, with a few exceptions, either quiet or obscured by clouds that prevented satellite observations. KVERT issued Volcano Observatory Notices for Aviation (VONA) on 8 and 12 June, 13 and 22 July, 3 and 21 August, and 31 October warning of potential aviation hazards from ash plumes drifting 3-15 km from the volcano. Based on satellite data, KVERT reported a persistent thermal anomaly whenever weather clouds permitted viewing.

Figure (see Caption) Figure 50. Ash explosion from the active summit crater of Ebeko on 18 July 2023; view is approximately towards the W. Photo provided by I. Bolshakov and M.V. Lomonosov MGU; courtesy of KVERT.
Figure (see Caption) Figure 51. Ash explosion from the active summit crater of Ebeko on 23 July 2023 with lightning visible in the lower part of the plume. Photo provided by I. Bolshakov and M.V. Lomonosov MGU; courtesy of KVERT.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 25, Number 09 (September 2000)

Managing Editor: Richard Wunderman

Bezymianny (Russia)

Fluctuating thermal anomaly; gas-and-steam and ash(?)-gas explosions

Chichon, El (Mexico)

Warming and solute concentration rises detected during December 1999 visit

Concepcion (Nicaragua)

No activity through April following December 1999 eruption

Copahue (Chile-Argentina)

Continued ash explosions and tremor during August-October

Etna (Italy)

Additional descriptions of April-May eruptions and an aircraft damaged by tephra-fall

Gorely (Russia)

Low seismicity from December 1999 through mid-October 2000

Karymsky (Russia)

Likely pyroclastic flow on 25 June; increase in seismic events and explosions

Klyuchevskoy (Russia)

Seismic swarms, fumarolic activity, and gas-and-ash explosions

Masaya (Nicaragua)

Small ash eruptions in March; decreasing levels of degassing

Miyakejima (Japan)

Gravity and synthetic-aperature radar data; volcanism through October 2000

Mutnovsky (Russia)

Small phreatic(?) eruption on 30 June and continued fumarolic activity

Negro, Cerro (Nicaragua)

Low seismicity; fumarole temperatures in March-April 2000

Ruapehu (New Zealand)

Intermittent periods of increased seismicity; new monitoring system plans

Sheveluch (Russia)

Low-frequency tremor; gas-and-ash explosions cause ash advisories

Soufriere Hills (United Kingdom)

Rockfalls and pyroclastic flows, dome growth rate increases

Telica (Nicaragua)

Gas-and-ash emissions in early 2000; fumarole temperature measurements



Bezymianny (Russia) — September 2000 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Fluctuating thermal anomaly; gas-and-steam and ash(?)-gas explosions

This report summarizes activity during June-mid-October 2000. KVERT (Kamchatkan Volcanic Eruption Response Team) resumed reports on 9 June after a shutdown due to funding deficiencies. Early June seismicity was at background levels. On 3-4 and 7-8 June, fumarolic plumes rose 50-300 m above the summit crater and drifted up to 10 km to the W, NW, E, and S. Similar activity continued throughout June, with fumarolic plumes reaching 200 m above the volcano on 21 June and 100 m on 28 June.

Fumarolic activity persisted in July when a continuous plume reached 50-100 m above the summit on 2-5 July. On 16-17 July, a gas-and-steam plume rose 100 m above the dome and extended 25-30 km to the W. On the morning of 19 July, a similar plume rose 50 m above the crater and extended to the SW. Visual observations from the nearby village of Kozirevsk at 1700 on 18 July indicated a weak short-lived explosive eruption and an ash-gas(?) plume that rose about 300 m above the volcano. The plume extended 20 km to the NW. No seismicity was recorded under the volcano. By 0700 on 25 July the thermal anomaly detected on 13 April completely disappeared according to the Alaska Volcano Observatory (AVO). The hazard status for Bezymianny was upgraded from Green to Yellow on 28 July.

Seismicity in early August was above background levels, and shallow earthquakes continued to occur. By 11 August, the number of shallow earthquakes decreased, and the hazard status was downgraded from Yellow to Green. Weak fumarolic activity was observed on 17 August and 20 August, accompanied by an increase in seismicity. On 30 August, a gas-and-steam explosion rose 100 m above Bezymianny and drifted E.

During 2-4 September, a fumarolic plume reached 50 m above the summit, extending S and E. On 12 September weak fumarolic activity was not accompanied by any seismicity above background levels. Bezymianny remained quiet until 17-20 September, when weak fumarolic activity was observed. A gas-and-steam plume rose 100 m above the volcano and drifted W on 21 September. Gas-and-steam plumes seen again on 22-23 and 26-27 September rose to 50 m above the summit, extending to the E and to the W and SW respectively. Weak fumarolic activity continued on 25 September. AVO detected a new, weak 1-pixel thermal anomaly in satellite imagery at 0730 on 21 September. The anomaly persisted and grew to 4 pixels in size by 0709 on 27 September. No eruptions occurred and seismicity was rarely above background levels, so the KVERT Level of Concern Color Code remained at Green throughout the month.

Seismicity increased slightly at the beginning of October. Weak fumarolic activity was observed on 7 October. The thermal anomaly first detected by AVO on 21 September was reconfirmed on 9-10 October. By 0710 on 13 October, satellite imagery revealed that anomaly intensity had increased. The 4-pixel thermal anomaly was observed in a nighttime AVHRR image at 0704 on 18 October. One pixel was saturated at 50°C, and a recovery pixel was also present, indicating intense thermal activity. Background temperature values varied from -10 to -15°C. Thermal anomalies detected in satellite data preceded explosive eruptions of Bezymianny in 1995-2000 by days to weeks. June 1998 was an exception, however, as no explosive event occurred despite intense thermal activity. Only small earthquakes were recorded under the volcano from 14-18 October. Weak fumarolic emissions were detected on 16 October. As a result of the growing and intensifying thermal anomaly, the hazard status was increased from Green to Yellow.

Geologic Background. The modern Bezymianny, much smaller than its massive neighbors Kamen and Kliuchevskoi on the Kamchatka Peninsula, was formed about 4,700 years ago over a late-Pleistocene lava-dome complex and an edifice built about 11,000-7,000 years ago. Three periods of intensified activity have occurred during the past 3,000 years. The latest period, which was preceded by a 1,000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large open crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


El Chichon (Mexico) — September 2000 Citation iconCite this Report

El Chichon

Mexico

17.3602°N, 93.2297°W; summit elev. 1150 m

All times are local (unless otherwise noted)


Warming and solute concentration rises detected during December 1999 visit

Since the eruptions of 1982, observations at El Chichón have indicated decreasing magmatic fluids. However, sampling in December 1999 revealed that this is no longer the case. On 24 April 2000, water in El Chichón's crater lake had a temperature of 47°C. Previous temperatures had not exceeded 38°C since January 1983 when the lake reached 56°C. Boron concentrations, at 66 mg/L, were also the highest recorded values since January 1983. SiO2 values were 357 mg/L; this is the highest concentration since August of 1992. Sulfide, which had not been present in samples since 1993, was at 3.22 mg/L, the highest concentration ever recorded. At the time of the 24 April sampling, the crater lake covered approximately half of the bottom of the crater. This apparent increase in the level of the crater lake was the only significant change in El Chichón's morphology.

Further Reference. Armienta M.A., De la Cruz-Reyna S., and Macías, J.L., 2000, Chemical characteristics of the crater lakes of Popocatepetl, El Chichón, and Nevado de Toluca volcanoes, Mexico: JVGR 97, p. 105-125.

Geologic Background. El Chichón is a small trachyandesitic tuff cone and lava dome complex in an isolated part of the Chiapas region in SE México. Prior to 1982, this relatively unknown volcano was heavily forested and of no greater height than adjacent non-volcanic peaks. The largest dome, the former summit of the volcano, was constructed within a 1.6 x 2 km summit crater created about 220,000 years ago. Two other large craters are located on the SW and SE flanks; a lava dome fills the SW crater, and an older dome is located on the NW flank. More than ten large explosive eruptions have occurred since the mid-Holocene. The powerful 1982 explosive eruptions of high-sulfur, anhydrite-bearing magma destroyed the summit lava dome and were accompanied by pyroclastic flows and surges that devastated an area extending about 8 km around the volcano. The eruptions created a new 1-km-wide, 300-m-deep crater that now contains an acidic crater lake.

Information Contacts: Silvia Ramos, Monitoreo Volcanológioc y Sismológico, Chiapas, México, Río Cantela 221, Fracc Paraíso II, Tuxtla Gutierrez, Chiapas, México; M. Aurora Armienta, Instituto de Geofisica, UNAM, México 04510, D.F., México.


Concepcion (Nicaragua) — September 2000 Citation iconCite this Report

Concepcion

Nicaragua

11.538°N, 85.622°W; summit elev. 1700 m

All times are local (unless otherwise noted)


No activity through April following December 1999 eruption

After the eruptive activity of December 1999 (BGVN 25:02), seismicity dropped to low levels and the volcano remained quiet. During January only 24 seismic events were registered, followed by nine events in February, nine in March, and 20 in April. Seismic tremor levels also stayed low.

Geologic Background. Volcán Concepción is one of Nicaragua's highest and most active volcanoes. The symmetrical basaltic-to-dacitic stratovolcano forms the NW half of the dumbbell-shaped island of Ometepe in Lake Nicaragua and is connected to neighboring Madera volcano by a narrow isthmus. A steep-walled summit crater is 250 m deep and has a higher western rim. N-S-trending fractures on the flanks have produced chains of spatter cones, cinder cones, lava domes, and maars located on the NW, NE, SE, and southern sides extending in some cases down to Lake Nicaragua. Concepción was constructed above a basement of lake sediments, and the modern cone grew above a largely buried caldera, a small remnant of which forms a break in slope about halfway up the N flank. Frequent explosive eruptions during the past half century have increased the height of the summit significantly above that shown on current topographic maps and have kept the upper part of the volcano unvegetated.

Information Contacts: Wilfried Strauch and Virginia Tenorio, Dirección General de Geofísica, Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado 1761, Managua, Nicaragua (URL: http://www.ineter.gob.ni/).


Copahue (Chile-Argentina) — September 2000 Citation iconCite this Report

Copahue

Chile-Argentina

37.856°S, 71.183°W; summit elev. 2953 m

All times are local (unless otherwise noted)


Continued ash explosions and tremor during August-October

The most vigorous eruptive activity at Copahue in the last century began on 1 July 2000 (BGVN 25:06). Lapilli, ash, and sporadic bombs fell within 9 km of the crater, and ash was dispersed as far as 100 km away on the second day of eruptions. Frequent explosions throughout July generated ash columns that often caused ashfall over the villages of Copahue to the N and Caviahue to the E.

Between 0700 and 1200 on 4 August, Ramon Ortíz and technician Erwin Medel (OVDAS) installed a portable seismic station in the Queuco river valley, 16 km N of Copahue. The instrument detected a fracture-type earthquake that probably originated from the volcano, but the depth could not be determined. During 3-5 August, explosions were not noted in the Trapatrapa sector, and acidic rainfall in the Queuco river valley has not occurred since mid-July. According to residents of Caviahue, on 5 August gray spots were observed on the snow, possibly caused by fine ashfall. Apparently, eruptive activity during the previous two weeks included a greater amount of steam as a result of melting snow. A strong sulfur odor was detected in Caviahue on the night of 7 August, but there was no ashfall.

Seismic data and observations from Caviahue indicated increased activity starting on 9 August. Explosions that morning generated columns up to 4,500 m altitude that dispersed W over Chilean territory, into the Trapatrapa valley area, and during afternoon towards the Lomín river valley. The elevated activity continued through at least 1600 on 10 August, with small explosions at intervals of 5-10 or more minutes. On the night of 15 August incandescence in the crater was observed from Caviahue. Up to fist-sized fragments ejected during explosions fell back into the crater. People who approached the crater reported steam explosions composed of white clouds alternating with dark-gray ash emissions. Explosions occurred every 4-5 minutes.

A ski instructor from Caviahue, Daniel Maniero, observed the volcano under clear conditions on the evening of 17 August. Around 2100 that night intermittent incandescence in the crater was followed by thundering noises at intervals of 5 minutes. Clouds reflected crater incandescence on the night of 19 August. Maniero also reported that loud explosions every 8-10 seconds were heard near the crater on 20 August. During 20-21 August intermittent black ash clouds rose not more than 300 m, causing local ashfall around the crater.

Scientists from SERNAGEOMIN-OVDAS, Eliza Calder and Ramon Ortiz, monitored seismicity in the Trapatrapa area, ~16 km NNW of the volcano, from the afternoon of 18 August to 1100 on 19 August. They observed low and weak gray clouds. Between 1839 on 18 August and 0940 on 19 August one long-period earthquake was detected at 0036 on 19 August. According to the Argentina Gendarmerie, during that night there was a strong explosion. Seismic registries showed low-level seismicity without high-frequency earthquakes.

On 19, 21, and 23 August there were strong explosions with dark ash clouds. On the morning of 22 August an observer using binoculars on a commercial flight noted steam clouds extending 5 km N and S of the crater area as well as explosions that rose up to 500 m above the cloud layer located at ~3,000 m altitude. Direct observations carried out at 1000 on 1 September indicated the development of small explosions in the interior of the crater, where an increase in both ash accumulation and the diameter of the explosion crater were observed. The crater measured ~50 m across. Another eruptive cloud was observed from a commercial aircraft (LAN flight 991) on the morning of 2 September; it dispersed toward the N at a height of 700-1,000 m above the crater (3,700-4,000 m altitude).

Data registered by the MEQ-800 seismic station maintained by Instituto Nacional de Prevención Sísmica (INPRES) of San Juan, Argentina during 11 August-4 September, and registries obtained by a digital seismic station at the Volcanólogico Observatory (OVDAS) of SERNAGEOMIN, Chile, in the locality of Caviahue, Argentina, were used to correlate seismic and volcanic activity. Correlations were made between some periods of tremor, or periods of intense tremor separated by quiescent periods, that corresponded with later ash emissions. On 15 August rockfall events were detected. Long-period events were registered on 20 (140 seconds) and 21 August (120 and 104 seconds).

The new OVDAS station consists of an L4C seismometer with an analog-digital card converter, and a portable HP 2000 XL computer. The station was installed in Caviahue, 7 km from the crater, and buried to a depth of 70 cm to protect it from wind effects. The registered microseismic activity in Caviahue was significantly better than data obtained in Trapatrapa, over 15 km NW of the volcano in Chile. Data collection began at 0900 on 26 September. The activity consisted of short-period events associated with volcanic activity. Some events were associated with small crater explosions. A long-period event at 1946 on 23 September was followed approximately 4 hours later by a small ash emission. Although it is not always possible to directly correlate the recorded seismicity with eruptive events, it is evident that there is a close correlation between long-period events and later ash emissions. The appearance of tremor bands is also important and considered precursory to ash emission.

At dawn on 23 September, observers in Caviahue saw intense gaseous emissions in pulses of 30-60 seconds that rose up to 150 m above the crater and dispersed NNE. During that night the crater appeared incandescent. On 24 September the presence of snow was verified in the crater interior, indicating a reduction in temperature. Activity with similar characteristics occurred during the first half of October. Seismographs installed in the area detected microseismic tremors on 17 October. Between 1145 and 1245 of 18 October, constant steam emission occurred along with some denser emanations of brown color and fine ash. The inner crater diameter had not changed noticeably since mid-September, except for a new levee that resulted from wall collapse. On 19 October a thermal anomaly was detected by the GOES satellite, but there were no explosions.

Geologic Background. Volcán Copahue is an elongated composite cone constructed along the Chile-Argentina border within the 6.5 x 8.5 km wide Trapa-Trapa caldera that formed between 0.6 and 0.4 million years ago near the NW margin of the 20 x 15 km Pliocene Caviahue (Del Agrio) caldera. The eastern summit crater, part of a 2-km-long, ENE-WSW line of nine craters, contains a briny, acidic 300-m-wide crater lake (also referred to as El Agrio or Del Agrio) and displays intense fumarolic activity. Acidic hot springs occur below the eastern outlet of the crater lake, contributing to the acidity of the Río Agrio, and another geothermal zone is located within Caviahue caldera about 7 km NE of the summit. Infrequent mild-to-moderate explosive eruptions have been recorded since the 18th century. Twentieth-century eruptions from the crater lake have ejected pyroclastic rocks and chilled liquid sulfur fragments.

Information Contacts: José Antonio Naranjo, Jefe, Departamento Geología Aplicada, Servicio Nacional de Geología y Minería (URL: http://www.sernageomin.cl/); Gustavo Fuentealba, Paola Peña, Eliza Calder, and Ramón Ortíz, Servicio Nacional de Geología y Minería, OVDAS (URL: http://www.sernageomin.cl/); Adriana M. Bermúdez, Investigadora Científica, CONICET, Argentina; Daniel H. Delpino, Asesor Dirección Provincial de Defensa Civil de la Provincia del Neuqué.


Etna (Italy) — September 2000 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3357 m

All times are local (unless otherwise noted)


Additional descriptions of April-May eruptions and an aircraft damaged by tephra-fall

Activity at Etna during March-June 2000 was previously reported with a focus on the overall eruptive pattern (BGVN 25:06). Additional details about the eruptions on 16 April, 26 April, 5 May, and 15 May provided here by J-C. Tanguy and colleagues present a different perspective on the activity. Following the 26 April eruption a commercial aircraft encountered fallout from the plume; Boris Behncke compiled a summary of this event based on local observers and news sources.

Southeast Crater eruption on16 April. In the late afternoon of 15 April, Etna guides noticed increased fumes, and at 1920 observed a small lava flow from the Sudestino, the large spatter cone at the southern base of the SE cone. Views of the upper S flank from the summit craters were obscured by heavy fumes, but by about 2300 the lava flow could be seen barely extending to a few tens of meters E. It increased during the night to an approximate length of 500-600 m, without explosive activity at the vent. On 16 April, fumes from Sudestino continued to increase, becoming thicker with a very dense, whitish color. At about 1115 a brilliant red lava fountain 20-30 m high supplied lava flows that traveled W and E. A calm wind allowed the bluish fumes of the lava flows and the white plumes from the Sudestino and Bocca Nuova to rise more than 1,000 m above the summit. At 1255 the Sudestino lava fountain stopped, although the lava outflow continued, and loud rumblings from the SEC main vent were accompanied by the crashing of bombs.

At 1305 a strong detonation and column of brownish ash (probably old material) rose ~1,500 m above the SE cone. Shortly afterwards the Sudestino lava fountain reappeared with a considerable increase of effusive activity. Lava flows spread rapidly W and E, and the whole summit zone became obscured by bluish fumes, as well as the increasing amount of dust rising from the flanks of the main SE cone from the impact of falling bombs and detritus. During the following hour there was a succession of increasing explosions at the SEC with dark jets of pyroclasts accompanied by loud rumblings, and periods of lower, though still significant, explosive activity. A sustained lava fountain rose 30-40 m high at the Sudestino.

At about 1430 the culmination began, which lasted less than 20 minutes. Some powerful jets of cinders and large bombs from the SEC shot obliquely to the SW while a large eruption column rose ~5 km above the summit. At one point, a small pyroclastic surge extended very rapidly toward the 1971 cone but stopped before reaching it, and the whole central cone suffered a heavy rain of large bombs, some of which reached the Torre del Filosofo building, forcing several bystanders to retreat hastily. At probably the same time, the SEC opened on its NE side (concealed by ashfall and dust), where still larger pyroclastic surges and lava flows were seen (also observed by the guide Alfio Carbonaro). The climax seems to have been reached during the following ten minutes (figure 84), with larger pyroclasts hurled to a maximum of 1,000-1,500 m above the vent. At 1450 explosive activity decreased and ceased within a few minutes. Lava flows continued to spread as large tongues several tens of meters across and 30-40 cm thick, notably to the S and the SW (a flow to the NE could not be observed). These flows were still advancing at a fast rate around 1600 (0.5-1.0 m/minute), but had stopped by nightfall. Activity at that time consisted of very small rare lava bursts at the Sudestino and a continuously glowing point near the E summit of the SE cone, probably fumaroles.

Figure (see Caption) Figure 84. Eruption column from the Southeast Crater of Etna at about 1437 on 16 April 2000. White plumes are coming from Bocca Nuova on the left and the Sudestino spatter cone in the middle foreground. The Southeast Crater cone is completely obscured by the dark eruption plume. Photo courtesy of Jean-Claude Tanguy.

Southeast Crater eruption on 26 April. On the morning of 25 April, whitish fumes occurred intermittently at the SEC, changing after 1340 to small emissions of brownish ash. At nightfall a small glow was seen at the N foot of the SE cone, heralding a sluggish lava flow that had slightly increased after midnight. At 0615 on 26 April the SEC showed strong emissions of white vapors and brownish ash, and a new eruption began at 0655. It culminated towards 0705 with lava fountains several hundred meters high, and ended at 0720. Although the jet of material was apparently vertical, bombs up to 0.5-1.0 m in diameter fell S of the Torre del Filosofo refuge. The fissure on the S flank of the SE cone reopened and emitted a fast lava flow that rapidly reached the area around the 1971 cone and was still active at 0845, but the Sudestino vent remained inactive. A large plume of cinders and juvenile ash drifted towards Monterosso and Fleri on the SE flank.

Aircraft encounters tephra-fall on 26 April. Additional information about this eruption was furnished by Charles Rivière and Robert Clocchiatti, who witnessed the event from a small distance, Giuseppe Scarpinati, who lives in Acireale on the SE flank, and other sources. According to Rivière, the strongest portion of the eruption began at 0655, when lava fountains rose hundreds of meters. A tall eruption column rapidly rose several kilometers above the summit, forming a dark mushroom-shaped cloud of gas and ash. The plume was then carried to the SE, in the direction of Viagrande (which received a heavy shower of scoriaceous lapilli) and Acireale (where abundant pea-sized lapilli fell). From Catania the plume passing just slightly to the N filled about half the sky and blotted out the rising sun.

At 0739 on 26 April, shortly after the end of the main eruptive phase, an Air Europa Airbus 320, which had departed from the Fontanarossa International Airport of Catania in the direction of Milan, entered the fallout zone of the plume at an altitude of ~1,000 m. Apparently the aircraft received windshield damage (scratches but no breaks) caused by impacts of scoriaceous lapilli and was forced to return immediately to the airport in Catania. Passengers told news reporters that it seemed that the airplane entered a zone of turbulence, causing it to vibrate strongly, and then it seemed as though something was scratching one of the side windows, "as if it were hit by a sharp object." According to some news reports the pilot soon informed the passengers about a "technical problem" and told them everything was under control, and that they were to return to Catania. Other sources reported that the passengers did not note anything unusual until the pilot advised them of the return. It is not clear why the airliner ended up under the plume. The eruption had been visible from the airport as well as from all over eastern Sicily, and it occurred quite some time before departure. The pilot said that he did not see the plume ("It was invisible, certainly not a black cloud"), and to his knowledge it had been drifting in the opposite direction. However, the plume was reportedly quite dark as seen from Catania by residents.

This incident is the first of its kind reported at Etna, which is mainly known for low-explosivity emission of voluminous lava flows during flank eruptions. Summit activity on the other hand, is often much more explosive, and this has been the case particularly during the past five years, a period of intense summit activity. In this period nearly 100 episodes of powerful explosive activity generating significant tephra columns have occurred at all four summit craters. SEC generated 51 in the previous three months.

Southeast Crater eruption on 5 May. In the early morning of 5 May, the gaseous emissions of the SEC occurred in pulses similar to those preceding the previous emission. After a small brownish cloud erupted at 1050, weak Strombolian explosions began deep within the SEC main vent, throwing bombs 30-40 m above the crater rim. Soon after 1700 the explosions gradually increased in strength, sending bombs 100 m high. Lava fountains rose to more than 600 m between 1940 and 1955, burying the entire cone under a layer of incandescent material. The eruption stopped abruptly a few minutes later. Lava flows appear to have erupted only on the N side. The tephra fall covered a large sector of the SE part of the mountain. Most of the largest bombs, up to 1 m across, fell in a direction 120° from the SE cone as revealed by a field study of impacts of ballistic projectiles. The Belvedere zone on the rim of the Valle del Bove depression, at 2,760 m elevation and 2 km away from the SEC, was covered by a 10-cm-thick layer of lapilli, cinders, and bombs up to 30-40 cm in diameter. According to R. Basile, bystanders near Monte Zoccolaro, ~7 km from the SEC, had to protect their heads from scoriae, some of which exceeded 10 cm in diameter.

Southeast Crater eruptions on 15 May. According to Etna guide Alfio Ponte, lava began again to flow from the N side of the SE cone late in the evening of 14 May, while Northeast Crater (NEC) displayed Strombolian activity. A fissure seemed to have opened between the NEC and SEC in the early morning of 15 May. At about 1200 the SEC erupted lava fountains for 20 minutes. In the meantime and afterwards the NEC continued its Strombolian explosions mixed with brown ash clouds. Later on 15 May the SEC erupted again at about 2200, with activity culminating about 2315 and then decreasing during the following hours. Lava fountains and flows occurred on the N side. As of 23 May, other eruptions were known to have occurred during the nights of 17-18 May (about 2300-2400), 19-20 May (2200-0300), and 22-23 May (0300-0535), with lava mainly flowing N from the SE cone (observations by Boris Behncke and Giuseppe Scarpinati).

Geologic Background. Mount Etna, towering above Catania on the island of Sicily, has one of the world's longest documented records of volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Jean-Claude Tanguy, Université de Paris 6 and IPGP, Observatoire de Saint-Maur, 4, avenue de Neptune, 94107 Saint-Maur des Fossés Cedex, France; Giuseppe Patané and Santo La Delfa, Università di Catania, Corso Italia 55, 95129 Catania, Italy; Roberto Clocchiatti, Lab. Pierre Sue, C.E.N., Saclay, France; Charles Rivière, C.G.E., France; Boris Behncke, Dipartimento di Scienze Geologiche, Palazzo delle Scienze, Università di Catania (DSGUC), Corso Italia 55, 95129 Catania, Italy.


Gorely (Russia) — September 2000 Citation iconCite this Report

Gorely

Russia

52.5549°N, 158.0358°E; summit elev. 1799 m

All times are local (unless otherwise noted)


Low seismicity from December 1999 through mid-October 2000

No volcanic activity was reported at Gorely from December 1999 through mid-October 2000. Seismicity, however, occasionally rose above background levels. On April 26, two small local events were recorded on seismic station GRL. On 22 July, two small volcano-tectonic earthquakes occurred between Gorely and neighboring Mutnovsky volcano. Seismicity returned to near-background levels until 24 September, when microseismic signals were registered on seismic station GRL. These signals continued to be recorded into early October. By 14 October, Gorely was quiet.

Geologic Background. Gorely volcano consists of five small overlapping stratovolcanoes constructed along a WNW-ESE line within a large 9 x 13 km caldera. The caldera formed about 38,000-40,000 years ago accompanied by the eruption of about 100 km3 of tephra. The massive complex includes about 40 cinder cones, some of which contain acid or freshwater crater lakes; three major rift zones cut the complex. Another Holocene stratovolcano is located on the SW flank. Activity during the Holocene was characterized by frequent mild-to-moderate explosive eruptions along with a half dozen episodes of major lava extrusion. Early Holocene explosive activity, along with lava flows filled in much of the caldera. Quiescent periods became longer between 6,000 and 2,000 years ago, after which the activity was mainly explosive. About 600-650 years ago intermittent strong explosions and lava flow effusion accompanied frequent eruptions. Historical eruptions have consisted of moderate Vulcanian and phreatic explosions.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Karymsky (Russia) — September 2000 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Likely pyroclastic flow on 25 June; increase in seismic events and explosions

This report covers Karymsky's activity from June through mid-October 2000. KVERT (Kamchatkan Volcanic Eruption Response Team) resumed reports at the beginning of June after a month-long shutdown due to funding deficiencies. The seismic events per day and number of explosions varied throughout the period, but decreased to background levels by the end of September. On 10 June, 25 short-lived weak explosions occurred, although the average number of explosions per day during that week remained low. During 19-29 June, seismicity increased when up to 17 events occurred per day. The number of weak explosions also increased during 19-29 June when up to six explosions occurred per day. On the afternoon of 25 June intense explosions were recorded that suggested a pyroclastic flow. Other than this, no significant volcanic activity occurred. KVERT maintained the Level of Concern Color Code at Green for the entire interval.

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Klyuchevskoy (Russia) — September 2000 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Seismic swarms, fumarolic activity, and gas-and-ash explosions

This report covers the period June-mid-October 2000. KVERT (Kamchatkan Volcanic Eruption Response Team) resumed operations at the beginning of June, after being shut down due to lack of funding. Reports indicated that fumarolic activity occurred through 23 June, sending plumes up to 700 m above the summit crater. The week of 23-29 June was entirely quiet, with no seismicity above normal or activity from fumaroles.

Weak fumarolic activity began anew on 2 July and continued to the middle of the month. A fumarolic plume rose 100-200 m above the volcano on 15-18 July, and extended 2-5 km to NW, W, and S. On 21 July, a M2 earthquake occurred, and at 0330 on 24 July, continuous volcanic tremor began. Strong tremor occurred from 1550 to 1730, but afterward returned to background levels although shallow earthquakes continued to be registered. No thermal anomaly was detected in satellite imagery during that time. On 28 July at 0815, residents in Kliuchi, a town 30 km NE of the summit, observed a short-lived explosive eruption that sent a gas-and-ash plume to 3 km above the volcano. The plume extended to the S, and increased seismicity occurred. The eruption caused KVERT to increase the Level of Concern Code for Kliuchevskoi to Yellow. At 0703 on 31 July, seismic data indicated that an even more vigorous short-lived gas-and-ash explosion occurred, because a series of shallow earthquakes was registered with a greater signal amplitude than those on 28 July.

Seismicity during the first week of August was above background levels with both shallow and deep earthquakes. Seismic data indicated a possible short-lived gas-and-ash explosion at 1047 on 8 August. Estimates of the plume height using seismic data suggest that it was no higher than the 28 July eruption. Shallow seismic activity was recorded during the middle of August, but no visual data were available because the volcano was largely obscured by clouds. KVERT decreased the Level of Concern Color Code from Yellow to Green on 18 August. At the end of August, weak fumarolic activity was observed above Kliuchevskoi's summit crater. On 29 August, a gas-and-steam explosion sent a plume 100 m above the crater and was blown SE.

The beginning of September was marked by heightened seismicity. A continuous fumarolic plume rose to a height of 50-100 m during 1-5 September. Fumarolic and seismic activity decreased on 6 September. On 11 September, another fumarolic plume from the summit crater rose 200-300 m. Activity diminished to weak fumarolic emanations a day later. KVERT recorded several shallow and weak seismic events on the night of 12 September, indicating a small gas-and-ash explosion. Kliuchi residents observed a darkened crater rim and a new zone of ashfall the next morning.

A fumarolic plume rose to 100-200 m above the volcano on the night of 16 September and into the next morning. Seismic activity increased significantly at 1230 on 17 September with a swarm of intense shallow earthquakes until 1300; these were registered at a station more than 130 km away. Although no volcanic activity was observed visually, the KVERT Level of Concern Color Code for Kliuchevskoi was increased from Green to Yellow. Seismic activity decreased in intensity for the rest of the week. Weak fumarolic activity occurred on 20-21 September, but otherwise the volcano was quiet.

On 22 September, the residents of Kliuchi observed a 500-m-high ash plume at 1715, which drifted toward the S. Fumarolic emissions during 22-27 September sent plumes up to 100 m above the summit. Seismicity was at background levels and the eruptions ceased for the remainder of the month, causing KVERT to decrease the hazard status back to Green on 29 September. Near-background level seismicity continued into October. Minor fumarolic discharges occurred into mid-October with no further significant volcanic activity.

Geologic Background. Klyuchevskoy is the highest and most active volcano on the Kamchatka Peninsula. Since its origin about 6,000 years ago, this symmetrical, basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during approximately the past 3,000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 and 3,600 m elevation. Eruptions recorded since the late 17th century have resulted in frequent changes to the morphology of the 700-m-wide summit crater. These eruptions over the past 400 years have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Masaya (Nicaragua) — September 2000 Citation iconCite this Report

Masaya

Nicaragua

11.9844°N, 86.1688°W; summit elev. 594 m

All times are local (unless otherwise noted)


Small ash eruptions in March; decreasing levels of degassing

A previous report (BGVN 25:07) reviewed evidence for steam-and-ash emissions between November 1999 and January 2000, seismicity during April 1999-March 2000, and increased seismicity in the vicinity of both Masaya and Laguna de Apoyo in July 2000. Previously unreported observations and information from March-April 2000 regarding an ongoing international degassing study, and fumarole temperature measurements from INETER, are included below.

Degassing studies during March-April 2000. The current degassing crisis at Masaya began in mid-1993 with the brief formation of a lava pond and gradual increase in degassing (BGVN 18:04 and 18:07). Canadian, Belgian, British, and Nicaraguan scientists returned to Masaya caldera between March and April 2000 to continue the study of the ongoing degassing crisis (BGVN 23:09 and 24:04). Significant amounts of Pele's hair around the W and S rims of Santiago crater (first noted by Alvaro Aleman, Masaya Park guard) were likely the result of a gas-rich explosion one night either at the end of February or during the first week of March 2000. Two minor explosions, which produced small ash plumes, were witnessed at Santiago crater on 2 March at about 1545 and 1645.

A large gas plume was still being emitted from a vent (15-20 m in diameter) at the bottom of Santiago crater. Incandescence of the vent walls was visible only at night. Temperatures recorded at the vent with an infrared thermometer ranged between 200 and 380°C, and were highly dependent upon the opacity of the gas plume. COSPEC measurements of SO2 revealed decreasing but nevertheless high emission rates, ranging from 740 ± 200 t/d to 1,850 ± 300 t/d. Remote sensing of the gas plume composition using an open-path Fourier transform infrared spectrometer (OP-FTIR) in a variety of modes revealed an average SO2/HCl molar ratio of 1.7, comparable to that obtained in February-April 1998 and February-March 1999. The acid emissions continued to affect a vast area downwind of the volcano, and the rural population subsisting on soil cultivation has been severely impacted.

Microgravity measurements between March and April 2000 appeared to show a leveling off of the previous (1993-94 and 1997-99) decreasing gravity change immediately beneath the Santiago pit crater. These values are essentially the same (within error, ± 20 microgals) as those measured at Masaya in June 1999. This leveling off of gravity change and apparent decrease in gas flux is similar to a cycle of activity between 1994 and 1997 and may suggest that Masaya is entering the waning period of the current degassing crisis.

Fumarole temperatures during December 1999-April 2000. Fumaroles from the Cerro El Comalito area (table 3) showed uniform variations in their monthly average temperatures between December 1999 and April 2000. The fumaroles are close to one another, so this outcome was expected. Fumaroles in the Filete San Fernando area exhibited more variation, with some increasing in temperature and others decreasing.

Table 3. Average fumarole temperatures from the Cerro El Comalito (CEC) and Filete San Fernando (FSF) areas of Masaya during December 1999-April 2000. All the measurements were carried out with a thermocouple. Courtesy of INETER.

Fumarole Dec 1999 Jan 2000 Feb 2000 Mar 2000 Apr 2000
CEC 1 72.8°C 67.3°C 74.6°C 73.2°C 74.7°C
CEC 2 74.0°C 68.2°C 72.9°C 74.8°C 73.1°C
CEC 3 77.6°C 69.0°C 77.0°C 76.3°C 75.3°C
CEC 4 76.2°C 69.5°C 76.5°C 76.5°C 76.5°C
CEC 5 68.6°C 63.3°C 69.8°C 68.2°C 69.8°C
CEC 6 61.3°C 56.5°C 60.2°C 59.0°C 60.8°C
FSF 1 61.4°C 60.7°C 60.0°C 59.7°C 59.1°C
FSF 2 61.2°C 57.2°C 59.2°C 58.9°C 58.7°C
FSF 3 60.2°C 69.2°C 59.2°C 59.3°C 59.4°C
FSF 4 58.6°C 64.7°C 55.8°C 55.3°C 55.4°C

INETER also noted that there were no reports of landslides or incandescence from the lava lake in Santiago crater during March-April 2000. Seismic tremor was low throughout that period, and there were only six microearthquakes registered in March, followed by 12 in April.

Geologic Background. Masaya volcano in Nicaragua has erupted frequently since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold" until it was found to be basalt rock upon cooling. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of observed eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Recent lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: Glyn Williams-Jones, Dave Rothery, Hazel Rymer, Department of Earth Sciences, The Open University, Milton Keynes, United Kingdom; Pierre Delmelle, Unité des Sciences du Sol, Université Catholique de Louvain, Louvain-la-Neuve, Belgium; Clive Oppenheimer and Hayley Duffell, Dept. of Geography, University of Cambridge, Cambridge, United Kingdom; José Garcia Alavarez and Wilfried Strauch, INETER, Apartado Postal 2110, Managua, Nicaragua.


Miyakejima (Japan) — September 2000 Citation iconCite this Report

Miyakejima

Japan

34.094°N, 139.526°E; summit elev. 775 m

All times are local (unless otherwise noted)


Gravity and synthetic-aperature radar data; volcanism through October 2000

Volcanism at Miyake-jima began on 27 June 2000 with a series of underwater eruptions (BGVN 25:05-25:07). The continuing activity since then has given scientists the opportunity to conduct multi-faceted visual, geochemical, geodetic, and geophysical observations. This report covers June-October, and within this interval several stages of activity occurred including intrusive events, collapse of the summit crater, explosive phreatic events, and degassing (figure 10). During September to mid-October, SO2 emissions were high and low levels of ash were intermittently emitted.

Figure (see Caption) Figure 10. Time table summarizing the eruption at Miyake-jima during June-September 2000. Under the Phenomena column the abbreviation CTJ refers to an eruption with cock's tail jet. Under the Ejecta column the expression Cl/SO4 refers to the ratio of water soluble chloride to sulfur-dioxide ions attached on the surface of ash, a parameter whose increase is considered a good indicator of the hydrothermal water contribution. Courtesy of ERI, University of Tokyo.

Gravity variation during June-August 2000. The ERI Gravity Group conducted a study on the spatio-temporal gravity variation during June-September 2000. They used a microgal gravimeter, which senses mass anomalies and movements beneath the Earth's surface. A change of 1.1 microgals ( µgal) is equal to about one part per billion of the gravitational acceleration at the Earth's surface. This is approximately the change in gravitational acceleration that would be expected from a 3 mm change in vertical position.

The group observed gravity changes among the five surveys around the volcano during June 1998 to August 2000 (figure 11). The geophysicists found that from the beginning of the activity to just before the crater collapse on 8 June 2000 gravity decreased ~140 microgals at the summit (figure 11a). This decrease could be explained by the creation of a cavity that was ~1.5 km deep and had a volume of 6 x 108 m3. Gravity increased by 111 microgals in the SW part of the island due to the intrusion of a dyke that had a tensile opening of 1.7 m. The approximately 60 microgal increase along the coast resulted from subsidence of the entire island caused by deflation of the deep magma chamber.

Figure (see Caption) Figure 11. Differentials in gravity (µgal) shown for designated stations and shaded over larger areas resulting from five sequential surveys at Miyake-jima. The figures show differentials between: a) June 1998 to 6 July 2000 (dyke intrusion occurred on the W coast), b) 6 July-11 July 2000 (crater collapse began on 8 July), c) 14 July-31 July 2000 (crater collapse continued and summit explosions occurred on 14 and 15 July), and d) 31 July-12 August 2000 (crater collapse continued and a summit explosion occurred on 10 August). Courtesy of the ERI Gravity Group.

From just before the 6 July crater collapse to just after the 11-14 July collapse the crater's cavity had a volume of 1.5 x 108 m3 (figure 11b). During this time the gravity dramatically decreased by 1,135 microgals at the summit due to the mass deficiency associated with the crater collapse (dark band just outside the new crater). Gravity increased from ~50-130 microgals along the inner circular path. This increase was due to the loss of the upward-directed attraction associated with the pre-collapse summit morphology. The concentric gravity change suggested cylindrical conduits beneath the summit. If the collapse and drain-back/flow out of magma were to continue, the gravity at the center of the island (high elevations) would decrease and it would increase around the coast (low elevations).

Several events occurred during 11-31 July. The summit crater became deeper, reaching 450 m depth and larger with a crater cavity volume of 3 x 108 m3. Steam explosions occurred on 14 and 15 July. The station SW of the summit (figure 11b) showed a gravity change of +129 microgals; by 31 July this station's differential decreased to -118 microgals. This decrease occurred because the center of gravity of the summit crater descended below the height of the seismic station due to the progressive collapse of the summit crater. Figure 11c portrays the gravity change spread in the form of concentric circles.

During 28 July to 12 August, the crater became even deeper reaching 500 m and larger with a crater cavity volume that was over 3.5 x 108 m3 (figure 11d). Steam explosions occurred on 10, 14, and 15 August. Gravity decreased as much as 680 microgals around the summit because the expanding crater rim was approaching the stations. Gravity increased from 58 to 91 microgals in the E portion of the edifice, which indicated that the crater was extending to the E. As the center of collapse descended, the area of neutral change (white in figure 11d) also descended and approached the coastal area. Despite ongoing crater collapse, the center of mass of the crater remained above the height of the stations along the coast, so an increase in gravity was detected there.

Overall, during the course of the five gravity surveys, gravity steadily increased in the western section of the island. This increase suggested that magma was traveling through a channel from the volcano to the seismic swarm off the W coast of the island. There was also an unexplained gravity increase in the SSE part of the island. The gravity decrease in the island's center was mostly due to the collapse of the summit caldera. The gravity decrease appeared to be less dramatic after late-July because some observation points were destroyed. Gravity variation data for the period after the large phreatic eruption on 18 August were not available.

Measurement of the size of the summit crater using PI-SAR. The Environment Information Technology Section used an airborne high-resolution multiparameter synthetic aperture radar (PI-SAR) to capture images of the volcano and determine the change in the size of the summit crater during 6 July-30 August. The Pi-SAR was developed by the Communications Research Laboratory (CRL) of the Ministry of Posts and Telecommunications of Japan and the National Space Development Agency of Japan (NASDA). It is a dual-frequency radar operating at L-band and X-band frequencies with polarimetric functions. Although not discussed here, the X-band system also has an interferometric function by which topographic mapping of the ground surface is achieved.

The increase in size of the summit crater is evident by comparing three PI-SAR images of Miyake-jima (figure 12). Figure 12a was taken two days before the crater collapse on 8 July and the effects of the latter event appear on figure 12b. Figure 12c shows the effect on the size of the crater after a relatively small phreatic eruption on 10 August sent an ash cloud to an altitude of ~3 km and after a larger phreatic eruption occurred on 18 August sending an ash cloud to an altitude of ~15 km. Analysis of close-up views of the summit crater revealed that the eruptions caused the crater to grow from 1,380 x 1,370 m on 2 August, to 1,550 x 1,620 m on 30 August (figure 13).

Figure (see Caption) Figure 12. Images of Miyake-jima from the airborne high-resolution multiparameter synthetic aperture radar (PI-SAR) taken on (a) 6 July 2000, (b) 2 August 2000, and (c) 30 August 2000. The X band used: VV=Red, HV=Green, HH=Blue. The flight direction was from S to N, and illumination was from W to E. The images represent a 9 x 9.5 km area. Courtesy of the Environment Information Technology Section of CRL.
Figure (see Caption) Figure 13. Enlarged images of Miyake-jima's summit crater made from airborne high-resolution multiparameter synthetic aperture radar (PI-SAR) taken on a) 2 August, and b) 30 August 2000 (close-up views of figure 12b and c). Courtesy of the Environment Information Technology Section of CRL.

Activity during mid-August through mid-October 2000. According to the Volcano Research Center (VRC), subsidence of Miyake-jima's summit crater was not clearly observed after mid-August. Partial collapse of the northern cliff of the caldera was seen in late-September. Ash was emitted continuously in early September and intermittently in late September. A large pyroclastic cone with steaming craters was present on the southern cliff of the crater. On 16 October the crater floor was at an elevation of 230 m according to a laser distance-meter survey performed from a helicopter by Earthquake Research Institute (ERI).

The Japan Meteorological Agency, the Geological Survey of Japan, and the Tokyo Institute of Technology reported that in mid-October the SO2 flux from Miyake-jima's summit caldera was at a high level with 30,000-50,000 metric tons/day emitted. Since the SO2 flux was so high, officials decided that no one could stay on the island during the night. In early October public workers and researchers stayed on a ship near the harbor and landed on the island in the daytime. After a short period of time officials decided that it was too dangerous for people to live on the ship so they began to commute by small boats between Miyake-jima and the nearest island, Kozu-shima. Since power company workers were not on the island, electricity was cut, halting volcano data collection from electrically powered instruments on the transmission grid.

Geologic Background. The circular, 8-km-wide island of Miyakejima forms a low-angle stratovolcano that rises about 1,100 m from the sea floor in the northern Izu Islands about 200 km SSW of Tokyo. The basaltic volcano is truncated by small summit calderas, one of which, 3.5 km wide, was formed during a major eruption about 2,500 years ago. Numerous craters and vents, including maars near the coast and radially oriented fissure vents, are present on the flanks. Frequent eruptions have been recorded since 1085 CE at vents ranging from the summit to below sea level, causing much damage on this small populated island. After a three-century-long hiatus ending in 1469 CE, activity has been dominated by flank fissure eruptions sometimes accompanied by minor summit eruptions. A 1.6-km-wide summit crater was slowly formed by subsidence during an eruption in 2000.

Information Contacts: ERI Gravity Group, Shuhei Okubo; Masato Furuya, Sun Wenke, Yoshiyuki Tanaka, Hidefumi Watanabe, Jun Oikawa, and Tokumitsu Maekawa (URL: http://www.eri.u-tokyo.ac.jp/); Environment Information Technology Section, Global Environment Division, Communications Research Laboratory (CRL), Japan (URL: https://www.nict.go.jp/en/); S. Nakada and Hedifumi Watanabe, Volcano Research Center, Earthquake Research Institute, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan (URL: http://www.eri.u-tokyo.ac.jp/VRC/index_E.html); Geological Survey of Japan, 1-1-3 Higashi, Ibaraki, Tsukuba 305, Japan (URL: https://www.gsj.jp/); Japan Meteorological Agency, Volcanological Division, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan (URL: http://www.jma.go.jp/); Tokyo Institute of Technology, 2-12-1 Okayama, Meguro-ku, Tokyo, Japan (URL: http://www.titech.ac.jp/).


Mutnovsky (Russia) — September 2000 Citation iconCite this Report

Mutnovsky

Russia

52.449°N, 158.196°E; summit elev. 2288 m

All times are local (unless otherwise noted)


Small phreatic(?) eruption on 30 June and continued fumarolic activity

Fumarolic activity continued from June through mid-October 2000. Volcanic tremor was slightly above background levels until it increased markedly at 1800 on 26 June. At 0751 on 30 June, seismicity indicated a short-lived vigorous phreatic(?) eruption. By 4 July, volcanic tremor decreased to background levels. Weak fumarolic activity continued to be observed, and on 22 July, a fumarolic plume rose 200-300 m above the volcano. On the same day, two small volcano-tectonic earthquakes occurred between Mutnovsky and neighboring Gorely volcano. Near noon on 31 July, a fumarolic plume rose 500 m above the summit.

A single volcano-tectonic earthquake occurred under the volcano on 9 August. A gas-and-steam plume rose to a height of 200-300 m and drifted 5 km E. On 30-31 August, a gas-and-steam plume rose 100-500 m above the volcano and moved 1 km NW. Fumarolic plumes rose 200-500 m above the summit on 1 and 7 September. Occasional fumarolic activity continued throughout September with plumes reaching up to 300 m above the volcano. On 8 October, gas-and-steam explosions rose 800-1,000 m above Mutnovsky and drifted NW. The following day, similar explosions rose 300-600 m and the plume extended 2 km E.

Geologic Background. Massive Mutnovsky, one of the most active volcanoes of southern Kamchatka, is formed of four coalescing stratovolcanoes of predominantly basaltic composition. Multiple summit craters cap the volcanic complex. Growth of Mutnovsky IV, the youngest cone, began during the early Holocene. An intracrater cone was constructed along the northern wall of the 1.3-km-wide summit crater. Abundant flank cinder cones were concentrated on the SW side. Holocene activity was characterized by mild-to-moderate phreatic and phreatomagmatic eruptions from the summit crater. Explosive eruptions have been common since the 17th century, with lava flows produced during the 1904 eruption.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Cerro Negro (Nicaragua) — September 2000 Citation iconCite this Report

Cerro Negro

Nicaragua

12.506°N, 86.702°W; summit elev. 728 m

All times are local (unless otherwise noted)


Low seismicity; fumarole temperatures in March-April 2000

Following the eruptive activity of 5-7 August 1999 (BGVN 24:11), seismicity dropped to low levels, with no more than 12 events/month detected through November 1999. The monthly earthquake totals increased to 31 and 32 events, respectively, during December 1999 and January 2000. These numbers continued to slowly increase, reaching 41 events in February and 46 events in March 2000. Total monthly earthquakes in April dropped to 20 events. Low-level tremor was constant throughout the September 1999-April 2000 period.

Fieldwork during March and April 2000 allowed observations of the August 1999 cones and vent, but no changes were noted. New temperature measurements of fumaroles located in the interior of the main crater were also taken during March and April (table 2). Fumaroles 1, 2, and 3 exhibited a consistent temperature increase. The much hotter fumaroles in March (4, 5, and 6) were more variable, and had cooled by late April.

Table 2. Fumarole temperatures from the main crater area at Cerro Negro, July 1999-April 2000. Measurements were made with a thermocouple in July 1999, December 1999, and March 2000; an infrared pistol was used in April 2000. Courtesy of INETER.

Date Fumarole 1 Fumarole 2 Fumarole 3 Fumarole 4 Fumarole 5 Fumarole 6
Jul 1999 45.0°C 72.0°C -- -- -- 85.0°C
Dec 1999 69.8°C 60.5°C 58.0°C 69.7°C 232°C 147°C
Mar 2000 73.3°C 60.5°C 97.0°C 318°C 201°C 206°C
27 Apr 2000 91.0°C 236°C 110°C 193°C 176°C --

Geologic Background. Nicaragua's youngest volcano, Cerro Negro, was created following an eruption that began in April 1850 about 2 km NW of the summit of Las Pilas volcano. It is the largest, southernmost, and most recent of a group of four youthful cinder cones constructed along a NNW-SSE-trending line in the central Marrabios Range. Strombolian-to-subplinian eruptions at intervals of a few years to several decades have constructed a roughly 250-m-high basaltic cone and an associated lava field constrained by topography to extend primarily NE and SW. Cone and crater morphology have varied significantly during its short eruptive history. Although it lies in a relatively unpopulated area, occasional heavy ashfalls have damaged crops and buildings.

Information Contacts: Wilfried Strauch and Virginia Tenorio, Dirección General de Geofísica, Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado 1761, Managua, Nicaragua (URL: http://www.ineter.gob.ni/).


Ruapehu (New Zealand) — September 2000 Citation iconCite this Report

Ruapehu

New Zealand

39.28°S, 175.57°E; summit elev. 2797 m

All times are local (unless otherwise noted)


Intermittent periods of increased seismicity; new monitoring system plans

Following increased volcanic tremor levels during the first 2-3 weeks of September 1999 (BGVN 24:08), Ruapehu had about 6 months of low seismic activity. However, on 10 April 2000, a period of moderate volcanic tremor occurred followed by a period of weaker tremors. An increase in seismicity took place during the week ending 28 April. After 28 April, seismic activity remained low until 16 July. At 1232 an intense period of volcanic tremor began and lasted until 0635 on 17 July. Other weak volcanic tremor episodes were recorded during the weeks ending 25 August, 1 September, 22 September, and 29 September. No surface activity was observed during any of these episodes.

Two volcanic earthquakes and steam plumes were recorded during the week ending 8 September, but there was no evidence of eruptive activity. The temperature of the crater lake was measured during this week at 39°C. This is the lowest recorded temperature since late September 1996, when the new lake began to form.

In mid-March a network of 20 seismic stations was installed at Whakapapa skifield on the NE flank of Ruapehu. This network recorded seismic data through mid-May. In addition, plans for a new warning system were announced during the week of 12 May. As part of this warning system, sensors will be placed around the crater rim and along the Whangaehu River to the W of Ruapehu. The Whangaehu River valley was the site of several lahars during eruptions in 1995 and 1996 (BGVN 20:10 and 21:05). Because of concern over a rim collapse as the crater lake fills, these monitors will detect drops in water level at the crater lake. In addition, the new warning system will upgrade the current monitoring system. In the past, it has taken up to two weeks for data to be analyzed after a seismic episode. The new system will use seismic monitors and satellites to create real-time warnings. Ruapehu remains at alert level 1.

Geologic Background. Ruapehu, one of New Zealand's most active volcanoes, is a complex stratovolcano constructed during at least four cone-building episodes dating back to about 200,000 years ago. The dominantly andesitic 110 km3 volcanic massif is elongated in a NNE-SSW direction and surrounded by another 100 km3 ring plain of volcaniclastic debris, including the NW-flank Murimoto debris-avalanche deposit. A series of subplinian eruptions took place between about 22,600 and 10,000 years ago, but pyroclastic flows have been infrequent. The broad summait area and flank contain at least six vents active during the Holocene. Frequent mild-to-moderate explosive eruptions have been recorded from the Te Wai a-Moe (Crater Lake) vent, and tephra characteristics suggest that the crater lake may have formed as recently as 3,000 years ago. Lahars resulting from phreatic eruptions at the summit crater lake are a hazard to a ski area on the upper flanks and lower river valleys.

Information Contacts: Institute of Geological & Nuclear Sciences (IGNS), Private Bag 2000, Wairakei, New Zealand (URL: http://www.gns.cri.nz/).


Sheveluch (Russia) — September 2000 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Low-frequency tremor; gas-and-ash explosions cause ash advisories

Volcanic ash advisory statements were issued to aviators for the 23 and 28 August eruptions at Shiveluch (BGVN 25:08), indicating that aircraft needed to ascend to a higher altitude or to navigate around the potentially dangerous ash clouds. The ash clouds on both dates were carried E or SE from the volcano at speeds of up to 93 km/hour, and drifted up to an altitude of ~10 km.

Volcanic unrest continued throughout September 2000, and a hazard status of Yellow was maintained. At 1417 on 2 September, seismic data indicated a possible short-lived gas-and-ash explosion. Estimates of cloud height based on seismicity suggested that the plume reached ~1,500 m. After this explosion, activity ceased until 6 September, when a fumarolic plume rose 200 m above the volcano.

The volcano remained quiet until 0715 on 13 September when seismic data indicated another gas-and-ash explosion. Following the explosion, strong spasmodic low-frequency tremor was recorded. Visual reports at 0800 from the residents of Kliuchi, 50 km SW of the summit crater, indicated that the ash plume rose 3,000 m above the dome and extended more than 10 km E. By 1000 the plume became ash-poor and decreased in height to 2,000 m. By 1130 the plume had diminished to only 200 m above the dome. Satellite imagery showed the ash cloud extending ~300 km E of Shiveluch by 1242. As a result of this activity, a volcanic ash advisory was issued. At 1530 the summit was obscured, but a fumarolic plume emerged from the E foot of the dome to a height of 100 m. The low-frequency tremor gradually decreased to background level by 1100 on 14 September.

On 17-18 and 20-21 September, gas-and-steam plumes with heights of 200-400 m were observed at the E end of the dome. Seismic activity was close to background levels, with some low-frequency tremor until 0249 on 18 September, when seismic data evidenced another gas-and-ash explosion. Plume height was estimated at ~1,700 m based on seismic data. On September 22-23 and 25-28, gas-and-steam plumes emanated from the E portion of the dome. Seismicity then decreased to background levels.

On 8 and 10 October, gas-and-steam plumes rose 200-400 m from the summit and extended 3-5 km to the east. On 9 October, weak fumarolic activity was observed. Weak continuous volcanic tremor was registered during 5-12 October. A gas-and-ash explosion was indicated by seismicity at 0318 on 10 October; cloud height based on seismic data was ~1,700 m. Intensive spasmodic low-frequency tremor was recorded until about 0400 following the explosive event. On 15 October, weak fumarolic activity was observed. The following day, a gas-and-steam plume rose 250 m above the dome. An episode of strong shallow seismic events during 0512-0532 on 14 October suggested a gas-and-ash explosion with a plume height of 4,200 m. Continuous weak volcanic tremor was recorded from 13-19 October. Shiveluch's hazard status remained at Yellow.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1,300 km3 andesitic volcano is one of Kamchatka's largest and most active volcanic structures, with at least 60 large eruptions during the Holocene. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes occur on its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large open caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA; Anchorage VAAC (Volcanic Ash Advisory Center), NOAA Alaska Aviation Weather Unit, 6930 Sand Lake Road, Anchorage, AK 99502-1845, USA (URL: http://www.alaska.net/ ~aawu/vaac.html); Tokyo VAAC, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/).


Soufriere Hills (United Kingdom) — September 2000 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Rockfalls and pyroclastic flows, dome growth rate increases

Dome growth continued throughout 21 July-6 October 2000 largely on the S and E flanks of the volcano. Poor weather hampered observations in late July, but during the week of 4-11 August a large ~30-m-high spine was visible on top of a conical mound of new lava. The top of the spine was at ~980 m elevation, substantially higher than the remnants of the 1995-98 dome. By 19 August, the top attained a peak elevation of 1,043 m. When observed again on 20 September, the spine was no longer steeply inclined but was gently inclined to the E. On 24 September a large new spine with near-vertical inclination was seen. A smaller spine on 27 September had an elevation of 1,032 m, and on 28 September a very large, near-vertical spine was seen on the E side of the summit. The latter dominated the E part of the summit during the following week, changing its size and shape throughout that period. By 30 September the top had an elevation of 1,054 m, the highest measurement taken on the dome to date.

The level of seismicity increased substantially after 4 August (table 35) with rockfalls and long-period earthquakes being dominant. Rockfalls were concentrated on the E and S sides of the dome and were almost continuous at times. Subsequent to the increased seismicity, rockfalls caused small ash clouds, reaching up to 3,000 m in height and drifting W. Following the passage of a tropical storm on 21-22 August, unusual wind directions blew some ash to the N of the island. A mudflow down the Belham valley during the early afternoon of 22 August followed two main paths in the lower reaches of the valley, N and S of the golf course. Debris was deposited on the Belham bridge, and the beach at Old Rod Bay was extended further out to sea.

Table 35. Seismic and gas data for Soufriere Hills during 21 July to 6 October 2000. The HCL/SO2 ratio was determined from FTIR data; SO2 flux (metric tons/day) is from COSPEC (* indicates data from specific days of the indicated week). Courtesy of MVO.

Week Rockfall Hybrid Volcano-tectonic Long-period Total Ratio HCl/SO2 Avg. Daily SO2 (tons/day)
21 Jul-28 Jul 2000 217 45 5 17 284 -- --
28 Jul-04 Aug 2000 220 44 2 14 280 -- --
04 Aug-11 Aug 2000 296 24 2 42 364 1.5-2.5 ~400
11 Aug-18 Aug 2000 257 41 19 119 436 -- --
18 Aug-25 Aug 2000 277 39 4 63 383 -- ~280
25 Aug-01 Sep 2000 390 71 1 55 517 -- 1460-2240*
01 Sep-08 Sep 2000 872 106 43 110 1131 -- 1390-2570*
08 Sep-15 Sep 2000 411 21 7 44 483 -- 541-890*
15 Sep-22 Sep 2000 386 50 5 50 491 2.37 446-630*
22 Sep-29 Sep 2000 665 28 -- 66 759 -- 369*
29 Sep-06 Oct 2000 169 29 16 25 239 -- 790-948*

Small pyroclastic flows were reported on 27 July, 6-7 August, and during the weeks of 15-22 September and 29 September-6 October. The resulting deposits were mostly confined to the Tar River Valley on the E flank, although minor new deposits were seen in the upper reaches of the White River valley. Several small explosions also occurred during the week of 15-22 September. On 19 August a small burst of incandescent gas was observed near the summit of the dome followed by glowing rocks that tumbled down the E face. On 8 and 14 September, a near-continuous rockfall of incandescent material was observed going down the E face of the dome above the Tar River valley; this activity continued to be observed through early October.

Gas monitoring resumed during the week of 4 August using the Cambridge FTIR instrument to measure the ratios of gases in the volcanic plume (table 35). The measured ratio of HCl to SO2, between 1.5 and 2.5, was about twice the values measured earlier in the year. This is indicative of an increase in extrusion rate since January 2000 and corroborates evidence from visual observations suggesting an increase in the dome growth rate. Gas monitoring also resumed on 24 August with the COSPEC on loan from the Geological Survey of Canada.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), Mongo Hill, Montserrat, West Indies (URL: http://www.mvomrat.com/).


Telica (Nicaragua) — September 2000 Citation iconCite this Report

Telica

Nicaragua

12.606°N, 86.84°W; summit elev. 1036 m

All times are local (unless otherwise noted)


Gas-and-ash emissions in early 2000; fumarole temperature measurements

Seismic and eruptive activity consisting of gas-and-ash explosions continued during January and through 17 February 2000, after which the activity began to gradually decline (BGVN 25:03). Observers near the summit on 13 January witnessed moderate explosions every five minutes from a new vent in the NNW part of the crater. In January the number of volcanic earthquakes was 3,950, and seismicity stayed high in February with 3,670 events. The volcano maintained constant tremor during March, but despite the continued high number of detected earthquakes (2,892) there were no gas or ash explosions.

Weak gas-and ash emissions occurred in April. Fumarole temperatures in the interior of the main crater and SW of the seismic station were moderate (table 1). In the main crater, fumaroles 1 and 4 (internal crater and on the NW wall, respectively) exhibited temperature increases compared to the last measurement in both February and April. Near the seismic station, between December 1999 and January 2000 the fumarole temperatures changed by less than 3°C, whereas by February temperatures had apparently changed by as much as 14°C compared to January values. However, measurements in February were made using an infrared pistol, a change from the thermocouple used previously.

Table 1. Fumarole temperatures at Telica measured at the Main Crater and SW of the seismic station (500 m E of the crater) during June 1999-April 2000. The measurements in December 1999 and January 2000 near the seismic station were made using a thermocouple; all others were made with an infrared pistol. Courtesy of INETER.

Fumarole Jun 1999 Jul 1999 Dec 1999 Jan 2000 Feb 2000 Apr 2000
Main Crater
1 107°C 55°C -- -- 60°C 66°C
2 58°C -- -- -- 59°C --
4 104°C 60°C -- -- 71°C 91°C
6 69°C 41°C -- -- 67°C 56°C
SW of the seismic station (500 m E of the crater)
1 -- -- 84°C 85°C 99°C --
2 -- -- 84°C 84°C 73°C --
3 -- -- 81°C 84°C 81°C --
4 -- -- 84°C 83°C 96°C --
5 -- -- 83°C 84°C 98°C --

Geologic Background. Telica, one of Nicaragua's most active volcanoes, has erupted frequently since the beginning of the Spanish era. This volcano group consists of several interlocking cones and vents with a general NW alignment. Sixteenth-century eruptions were reported at symmetrical Santa Clara volcano at the SW end of the group. However, its eroded and breached crater has been covered by forests throughout historical time, and these eruptions may have originated from Telica, whose upper slopes in contrast are unvegetated. The steep-sided cone of Telica is truncated by a 700-m-wide double crater; the southern crater, the source of recent eruptions, is 120 m deep. El Liston, immediately E, has several nested craters. The fumaroles and boiling mudpots of Hervideros de San Jacinto, SE of Telica, form a prominent geothermal area frequented by tourists, and geothermal exploration has occurred nearby.

Information Contacts: Wilfried Strauch and Virginia Tenorio, Dirección General de Geofísica, Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado 1761, Managua, Nicaragua (URL: http://www.ineter.gob.ni/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports