Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Tinakula (Solomon Islands) Thermal anomalies in satellite data December 2018-June 2019; ship visit January 2019

Piton de la Fournaise (France) Eruptive episodes in February-March and June 2019; multiple fissures and lava flows

Semeru (Indonesia) Decreased activity after October 2018

Heard (Australia) Thermal hotspots continue during October 2018-March 2019 at the summit and on the upper flanks

Dukono (Indonesia) Numerous ash explosions from October 2018 through March 2019

Rincon de la Vieja (Costa Rica) Occasional weak phreatic explosions continue through February 2019

Turrialba (Costa Rica) Frequent passive ash emissions continue through February 2019

San Cristobal (Nicaragua) Weak ash explosions in January and March 2019

Semisopochnoi (United States) Minor ash explosions during September and October 2018

Asosan (Japan) Multiple brief ash emission events during April and May 2019; minor ashfall in adjacent villages

Nyamuragira (DR Congo) Lava lake reappears in central crater in April 2018; activity tapers off during April 2019

Tengger Caldera (Indonesia) New explosions with ash plumes from Bromo Cone mid-February-April 2019



Tinakula (Solomon Islands) — July 2019 Citation iconCite this Report

Tinakula

Solomon Islands

10.386°S, 165.804°E; summit elev. 796 m

All times are local (unless otherwise noted)


Thermal anomalies in satellite data December 2018-June 2019; ship visit January 2019

Remote Tinakula lies 100 km NE of the Solomon Trench at the N end of the Santa Cruz Islands, which are part of the country of the Solomon Islands located 400 km to the W. It has been uninhabited since an eruption with lava flows and ash explosions in 1971 when the small population was evacuated (CSLP 87-71). The nearest communities live on Te Motu (Trevanion) Island (about 30 km S), Nupani (40 km N), and the Reef Islands (60 km E); residents occasionally report noises from explosions at Tinakula. Ashfall from larger explosions has historically reached these islands. The most recent eruptive episode was a large ash explosion and substantial SO2 plume during 21-26 October 2017; satellite imagery suggested that a flow of some type traveled down the scarp on the W flank. Renewed thermal activity that was recognized in satellite imagery beginning in December 2018 continued intermittently through June 2019 and is covered in this report. Satellite imagery and thermal data are the primary sources of information for this volcano. It is occasionally visited by members of the National Disaster Management Office (NDMO) of the Solomon Islands Government, tourists, and research vessels who are able to capture ground-based information.

Satellite images from December 2018 to February 2019 show thermal anomalies at the summit vent. Excellent ship-based photographs of the island on 24-25 January 2019 provided by a crewmember from the R/V Petrel identify numerous volcanic features and show a steam-and-gas plume at the vent. Satellite images from April and May 2019 show thermal anomalies at both the summit vent and along the W flank scarp suggesting flow activity during that time.

A stream of incandescence on the NW flank of Tinakula in a Sentinel 2 satellite image on 24 October 2017 confirmed that some type of high-temperature flow accompanied the explosions and eruptive activity of 21-25 October 2017 (BGVN 43:02). Satellite imagery during most of 2018 recorded steam plumes drifting in several directions from the summit, but no thermal activity (figure 24). There was no further evidence of activity in satellite visible or thermal data until almost exactly one year later when the MIROVA project recorded two thermal alerts in the third week of October 2018 (figure 25). Satellite images from that week were cloudy and did not confirm any surface activity.

Figure (see Caption) Figure 24. Sentinel-2 satellite imagery of Tinakula provides valuable information about activity at this remote volcano in the South Pacific. A large explosion with ash plumes and flows occurred during 21-26 October 2017. Top left: a strong E-W linear thermal anomaly suggesting a flow event from the summit was evident on the NW flank on 24 October 2017. Top right: a small steam plume rose from the summit vent on a cloudless 11 February 2018. Bottom left: a dense steam plume drifted SE from the summit vent on 4 September 2018. Bottom right: clouds and dense steam obscure the summit on 24 October 2018, about the same time that MIROVA reported a thermal anomaly. Top left image uses bands 12, 11, 8A, others use 12, 4, 2. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 25. The MIROVA project recorded the first thermal anomaly in a year from Tinakula during the third week of October 2018. Courtesy of MIROVA.

The first satellite imagery confirming renewed thermal activity appeared on 8 December 2018, around the same time as a small MIROVA anomaly. After that, several images during January and February 2019 confirmed moderately strong thermal activity at the summit (figure 26). Whether the anomalies were the result of active lava effusion or strong incandescent gases from the summit vent is uncertain.

Figure (see Caption) Figure 26. Thermal anomalies at the summit vent of Tinakula were recorded six times between early December 2018 and early February 2019 with Sentinel-2 satellite images. Top row: 8 December 2018 and 2 January 2019. Middle row: 12 (anomaly is just below date) and 27 January 2019. Bottom row: 1 and 6 February 2019. All images are bands 12, 4, 2. Courtesy of Sentinel Hub Playground.

Visual confirmation of activity at Tinakula is rare, but the research vessel R/V Petrel sailed past the volcano on 24 and 25 January 2019 and a crewmember provided detailed images of the W flank and vent area. The summit vent is located at the top of a W facing scarp, and steam is frequently observed rising from the vent (figures 27). Recent flows and volcaniclastic deposits were visible in the ravine on the W flank (figures 28 and 29). Fresh-looking lava was also visible near the summit vent on top of older deposits (figure 30). Eroded volcaniclastic deposits near the base of the scarp on the W flank were visible on top of older veined and layered volcanic rocks (figure 31). Crewmembers on the vessel R/V Petrel could clearly see an incandescent glow from the summit crater at night (figure 32).

Figure (see Caption) Figure 27. A view from the SW of the W flank of Tinakula on 24-25 January 2019. The summit vent is at the top of a W facing scarp, the steam plume drifted E. Used with permission from Paul G Allen's Vulcan Inc.
Figure (see Caption) Figure 28. The W flank of Tinakula as seen from the W on 24-25 January 2019. The steam plume drifted E. Recent flows and volcaniclastic deposits appeared dark in the steep ravine on the W face (left side). Used with permission from Paul G Allen's Vulcan Inc.
Figure (see Caption) Figure 29. Steam and gas rose from the summit vent at Tinakula on 24-25 January 2019. Recent lava deposits are visible in front of the plume and in the ravine on the left (the W flank). Used with permission from Paul G Allen's Vulcan Inc.
Figure (see Caption) Figure 30. The edge of the summit vent of Tinakula on 24-25 January 2019 had recent lava on older deposits; steam and gas is rising from the vent in the background. Used with permission from Paul G Allen's Vulcan Inc.
Figure (see Caption) Figure 31. The W flank of Tinakula on 24-25 January 2019. Eroded volcaniclastic deposits overlie older veined and layered volcanic rocks. Used with permission from Paul G Allen's Vulcan Inc.
Figure (see Caption) Figure 32. Incandescence was clearly visible from the summit vent at Tinakula on 24-25 January 2019. Used with permission from Paul G Allen's Vulcan Inc.

During April and May 2019, both the MIROVA project and MODVOLC measured a number of thermal anomalies (figure 33) using MODIS satellite data. MODVOLC alerts were issued on 4 and 20 April, and 11, 18, and 27 May. Sentinel-2 satellite images during the period confirmed that a flow on the W flank was a likely source of the thermal energy in addition to the summit vent (figure 34). Thermal anomalies appeared again at the end of June in MIROVA data, but no satellite images showed anomalies at that time.

Figure (see Caption) Figure 33. The number and intensity of MIROVA thermal anomalies increased at Tinakula during April and May 2019. After a short pause, they returned at the end of June. Courtesy of MIROVA.
Figure (see Caption) Figure 34. Sentinel-2 satellite images captured thermal anomalies at the summit and on the W flank of Tinakula during April and May 2019 suggesting the presence of an incandescent flow down the W scarp. Top row: 7 and 22 April 2019 (bands 12, 8, 4). Bottom row: 27 April and 12 May 2019 (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Geologic Background. The small 3.5-km-wide island of Tinakula is the exposed summit of a massive stratovolcano at the NW end of the Santa Cruz islands. Similar to Stromboli, it has a breached summit crater that extends from the summit to below sea level. Landslides enlarged this scarp in 1965, creating an embayment on the NW coast. The satellitic cone of Mendana is located on the SE side. The dominantly andesitic volcano has frequently been observed in eruption since the era of Spanish exploration began in 1595. In about 1840, an explosive eruption apparently produced pyroclastic flows that swept all sides of the island, killing its inhabitants. Frequent historical eruptions have originated from a cone constructed within the large breached crater. These have left the upper flanks and the steep apron of lava flows and volcaniclastic debris within the breach unvegetated.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Vulcan Inc. (URL: https://www.vulcan.com/), additional details about the R/V Petrel (URL: https://www.paulallen.com/).


Piton de la Fournaise (France) — July 2019 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


Eruptive episodes in February-March and June 2019; multiple fissures and lava flows

Short pulses of intermittent eruptive activity have characterized Piton de la Fournaise, the large basaltic shield volcano on La Réunion Island in the western Indian Ocean, for several thousand years. For the last 20 years, frequent effusive basaltic eruptions have occurred on average twice per year. The activity is characterized by lava fountains and lava flows, and occasional explosive eruptions that shower blocks over the summit area and produce ash plumes. Almost all of the recent activity has occurred within the Enclos Fouqué caldera, although past eruptions in 1977, 1986, and 1998 have occurred at vents outside of the caldera. Four separate eruptive episodes were reported during 2018; from 3-4 April, 27 April-1 June, 13 July, and 15 September-1 November (BGVN 43:12, 43:09). Two episodes from 2019 during February-March and June are covered in this report, with information provided primarily by the Observatoire Volcanologique du Piton de la Fournaise (OVPF) as well as satellite instruments.

Piton de la Fournaise experienced two eruptions during November 2018-June 2019. The first lasted from 18 February to 10 March 2019, and the second episode was 11-13 June. The episode in February-March started consisted of multiple fissures opening on the E flank of the Dolomieu crater on 18 February with lava flows that traveled several hundred meters. After a brief pause, one new fissure opened nearby on 19 February and produced up to 3 million m3 of lava in a little over four days. Although the flow rate then declined, the eruption continued until 10 March. During the last three days, 7-10 March, two new fissures opened nearby and produced large volumes of lava, bringing the total eruptive volume to about 14.5 million m3. After little activity during April and May, a small eruption occurred on the SSE outer slope of Dolomieu crater that lasted for about 48 hours on 11-13 June; multiple small flows traveled about 1,000 m down the steep flank before ceasing. The MIROVA thermal anomaly graph of log radiative power clearly showed the abruptness of the beginning and ends of the last three eruptive episodes at Piton de la Fournaise from August 2018 through June 2019 (figure 165).

Figure (see Caption) Figure 165. The MIROVA graph of thermal energy from Piton de la Fournaise from 30 July 2018 through June 2019 shows the last three eruptive episodes at the volcano. From 15 September through 1 November 2018 fissures and flows were active on the SW flank of Dolomieu crater near Rivals crater (BGVN 43:12). Fissures opened on the E flank of the crater on 18 February 2019, and after a brief pause resumed on 19 February at the foot of Piton Madoré. Lava flows remained active until 10 March 2019. A short episode of lava effusion occurred on 11-12 June 2019 on the SSE outer slope of Dolomieu crater. Courtesy of MIROVA.

Activity during November 2018-March 2019. Following the end of the 15 September-1 November 2018 eruption, seismic activity immediately below the summit remained low (with only 20 shallow and two deep earthquakes during November). The inflationary signal recorded since the beginning of September stopped, and the OVPF deformation networks did not record any significant deformation. There were 35 shallow earthquakes (0-2 km depth) below the summit crater during December, and one deep earthquake. Only 12 shallow earthquakes and one deep earthquake (greater than 2 km below the surface) were reported in January.

OVPF reported an increase in CO2 concentrations beginning in December 2018, and noted the beginning of inflation on 13 February 2019. A seismic swarm of 379 earthquakes accompanied by minor but rapid deformation (less than 1 cm) was reported on 16 February 2019. A new seismic swarm of 208 earthquakes began early on 18 February with a much larger ground deformation (10 cm of elongation of the summit zone). A volcanic tremor indicative of the arrival of magma near the surface began at 0948 that morning. Webcams indicated that eruptive fissures had opened in the NE part of the Enclos Fouqué caldera. The onset of the eruption was marked by a sudden drop in CO2 flux which then stabilized. The eruptive sites were confirmed visually around 1130. Three fissures with actively flowing lava opened on the E flank of Dolomieu Crater; the fountains of lava were less than 30 m high. The front of the longest flow had reached 1,900 m elevation after one hour. The eruption lasted a little over 12 hours and was over by 2200 that evening; it covered about 150-200 m of the hiking trail to the summit.

Seismicity remained high after the event ended, and at 1500 on 19 February 2019 another seismic swarm of 511 deep earthquakes located under the E flank at about 2.5 km depth occurred. It was not accompanied by a significant amount of deformation. At 1710 tremor signals appeared on the observatory seismographs and the first gas plumes and lava ejection were observed at 1750 and 1912, respectively. During an overflight the next day (20 February), OVPF team members observed the new eruptive site at an elevation of 1,800 m at the foot of Piton Madoré. One fissure and one fountain were active at 0620 on 20 February and the flow front was at 1,300 m elevation (figure 166). During the night of 20-21 February the flow front crossed over the "Grandes Pentes" area in the eastern half of the Enclos Fouque (figure 167).

Figure (see Caption) Figure 166. The eruption which began on 19 February 2019 on the E flank of Dolomieu crater at Piton de la Fournaise produced a lava fountain and flow which traveled down at least 500 m of elevation by the next morning when this photo was taken at 0620 local time. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du mercredi 20 février 2019 à 11h00, Heure locale).
Figure (see Caption) Figure 167. The active fissure at Piton de la Fournaise was producing lava fountains and an active flow during the evening of 20 February 2019. Overnight the flow crossed over the "Grandes Pentes" area of the caldera. Photo courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du jeudi 21 février 2019 à 14H00, Heure locale).

OVPF reported on 22 February 2019 that 22 shallow earthquakes had been reported since the eruption began on 19 February. Surface flow rates estimated from satellite data, via the HOTVOLC system (OPGC - University of Auvergne), were between 2.5 and 15 m3/s. The quantity of lava emitted between 19 and 22 February was between 1 and 3 million m3. OVPF observed the growth of an eruptive cone that was filled with a small lava lake producing ejecta during a morning overflight on 22 February. A channelized flow moved downstream from the cone and split into two lobes about 1 km from (and 200 m below) the cone (figure 168). The split in the flow occurred near the Guyanin crater. The N flowing lobe, about 50 m wide, had an actively flowing front located at 1,320 m elevation; the incandescent flow was travelling over a recent flow (likely from the previous night). The S-flowing lobe spread to 200 m wide and split into two tongues 300 m SE of Guyanin crater.

Figure (see Caption) Figure 168. During an overflight on the morning of 22 February 2019 scientists from OVPF observed a growing spatter cone with a small lava lake at Piton de la Fournaise. A channelized flow moved downstream from the fissure and split into two flows. Photo courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du vendredi 22 février 2019 à 13h30, Heure locale).

Incandescent ejecta from the cone was captured in a webcam image overnight on 22-23 February 2019 (figure 169). The rate of advance of the flow slowed significantly by 24 February, but the intensity of the eruptive tremor remained relatively constant. Mapping of the lava flow on 28 February carried out by the OI2 platform (OPGC - University Clermont Auvergne) from satellite data confirmed the slow progress of the flow after 24 February (300 m in 5 days) (figure 170). The flow front was located at 1,200 m elevation, and only the N arm was active; the lava had traveled about 2.2 km from the vent by 28 February.

Figure (see Caption) Figure 169. Incandescent ejecta from the eruptive cone at Piton de la Fournaise was captured in the webcam in the early hours of 23 February 2019. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du samedi 23 février 2019 à 13h30, Heure locale).
Figure (see Caption) Figure 170. Contours of the lava flows at Piton de la Fournaise from 18-28 February 2019 were determined from satellite data by the OI2 platform (Université Clermont Auvergne), dated 18 (red) and 19 (blue) February (top image); 20 (green), 21 (red), 22 (blue), 27 (turquoise), and 28 (pink) February (bottom image). Courtesy of and copyright by OVPF/IPGP. Top: Bulletin d'activité du vendredi 22 février 2019 à 13h30 (Heure locale); bottom: Bulletin d'activité du jeudi 28 février 2019 à 16h30 (Heure locale).

Between 28 February and 1 March 2019 a third lobe of lava appeared flowing NE from the vent on the N side of the new flow area; it split into two lobes sometime on 1 March. Very little new lava was recorded on the other lobes. By 4 March the flow rate estimated by satellite data was about 7.5 m3/s. During a site visit on the morning of 5 March OVPF scientists sampled the N lobe of the flow and bombs and tephra near the cone, and acquired infrared and visible images. They noted the continued growth of the cone which still had an open vent at the summit and a base 100 m in diameter. It was 25 m high with a 50-m-wide eruptive vent at the top (figure 171). High-temperature gas emissions and strong Strombolian activity issued from the vent. Steam emissions were present around the base of the cone, suggesting the presence of lava tunnels. A single lobe of lava flowed N from the cone.

Figure (see Caption) Figure 171. The eruptive cone at Piton de la Fournaise on 5 March 2019 had a 100-m-diameter base, 25 m of vertical height, and 50-m-wide vent at the summit. Courtesy of and copyright by OVPF/IPGP, (Bulletin d'activité du mardi 5 mars 2019 à 17h30, Heure locale).

A new fissure that opened about 150 m from the main vent on the NW flank of Piton Madoré was first observed on the morning of 6 March (figure 172); OVPF concluded that it had opened late on 5 March. A small cone was forming and a new flow traveled N from the main eruptive site. At least six new emission points were noted the following morning (7 March) around the Piton Madoré. Poor weather prevented confirmation by aerial reconnaissance that day, but in a site visit on 8 March OVPF scientists determined that the new fissure from 5 March remained active; a small cone about 10 m high had two flow lobes on the W and N sides (figure 173). A fissure that opened on 7 March was located 300 m S of the 19 February vent and oriented E-W. It was very active on the morning of 8 March with two 50-m-high lava fountains (figure 174). Samples collected by OVPF indicated that the vents of 5 and 7 March produced lava of different compositions.

Figure (see Caption) Figure 172. A new fissure that opened about 150 m from the main vent on the NW flank of Piton Madoré at Piton de la Fournaise was first observed on the morning of 6 March 2019; OVPF concluded that it had opened late on 5 March. A small cone was forming on the flank of an old one and a new flow traveled N from the main eruptive site. Courtesy of OVPF/IPGP, copyright by Helicopter Coral (Bulletin d'activité du jeudi 7 mars 2019 à 15h00 Heure locale).
Figure (see Caption) Figure 173. The 5 March 2019 fissure at Piton de la Fournaise on the NW flank of Piton Madoré still had two active flow lobes emerging from it and heading N and W on 8 March 2019. Courtesy of and copyright by OVPF/IPGP (Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, March 2019).
Figure (see Caption) Figure 174. A fissure that opened on 7 March 2019 at Piton de la Fournaise was located 300 m S of the 19 February vent and oriented E-W. It was very active on the morning of 8 March 2019 with two 50-m-high lava fountains. Courtesy of and copyright by OVPF/IPGP (Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, March 2019).

There was a strong increase in the eruptive tremor intensity on 7 March, related to the opening of the two new fissures on 5 and 7 March (figure 175). As a result, the surface flow estimates made from satellite data increased significantly to high values greater than 50 m3/s, with the average values on 7-8 March of around 20-25 m3/s. The increased flow rates resulted in the flows traveling much greater distances. By the morning of 9 March the active flow had reached 650-700 m above sea level. The flow front had traveled about 1 km in 24 hours. Strong seismicity had been increasing under the summit zone for the previous 48 hours. After a phase of very strong surface activity observed overnight on 9-10 March that included lava fountains 50-100 m high (figure 176), surface activity ceased around 0630 on 10 March, and seismic activity decreased significantly. OVPF noted that sudden increases in seismicity and flow rates near the end of an eruption have occurred at about half of the eruptions at Piton de la Fournaise in recent years. Lava volumes emitted on the surface between 18 February and 10 March 2019 were estimated at about 14.5 million m3 (figure 177).

Figure (see Caption) Figure 175. An infrared view of the eruptive site on the E flank of Dolomieu crater at Piton de la Fournaise on 8 March 2019 clearly showed the original fissure from 19 February (bottom right of center), the fissure on Piton Madore that opened on 5 March (right) and the fissures that opened on 7 March (upper, right of center). The combined activity produced significant thermal and seismic activity at the volcano. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du vendredi 8 mars 2019 à 17h00, Heure locale).
Figure (see Caption) Figure 176. Lava fountains 50-100 m high were the result of very strong surface activity observed overnight on 9-10 March 2019 at Piton de la Fournaise. Surface activity ceased around 0630 on 10 March, and seismic activity decreased significantly. Photo taken on 9 March 2019 around midnight from the RN2. Courtesy of OVPF/IPGP, copyright by A. Finizola LGSR/IPGP (Bulletin d'activité du dimanche 10 mars 2019 à 19h30 Heure locale).
Figure (see Caption) Figure 177. A sudden increase in the flow rate at the end of the 18 February-10 March 2019 eruption at Piton de la Fournaise was recorded by researchers at the Université Clermont Auvergne. OVPF noted this was typical of about half of the eruptions at Piton de la Fournaise. Courtesy of OVPF/IPGP, copyright by HOTVOLC, Université Clermont Auvergne (OVPF Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, March 2019).

Significant SO2 plumes were captured by the TROPOMI instrument on the Sentinel 5-P satellite throughout the 18 February-10 March eruption (figure 178). After the surface eruption ceased, shallow seismicity continued at a lower rate of about 12 earthquakes per day. The end of the eruption (7-10 March) was accompanied by a marked deflation, interpreted by OVPF as the rapid emptying of the magma reservoir. Following the end of the eruption, inflation resumed for the rest of March but then ceased. Seismicity continued at a lower level during April with an average of six shallow earthquakes per day.

Figure (see Caption) Figure 178. Multiple days of high DU value SO2 plumes were recorded by the TROPOMI instrument on the Sentinel 5-P satellite during the 18 February-10 March 2019 eruption at Piton de la Fournaise. Top row: during 18, 21, and 22 February SO2 plumes drifted SE. Middle row: during 23, 24, and 25 February the wind direction changed from SE through S to SW and left a curling trail of SO2. Bottom row: 5, 7, and 8 March showed an increase in SO2 emissions that corresponded with increased seismicity and lava flow output before the eruption ceased.

Activity during May-June 2019. OVPF reported slight inflation near the summit beginning in early May, and an increase in CO2 concentration in the soil near Plaine des Cafres and Plaine des Palmistes. Strong shallow seismicity reappeared on 27 May 2019 and recurred on 30 and 31 May. Two small seismic swarms were measured on 31 May in the early morning. A new seismic swarm beginning at 0603 on 11 June accompanied by rapid deformation suggested a new eruption was imminent. A tremor near the summit area was first noted at 0635 local time; the webcams indicated a plume of gas, but poor visibility prevented evidence of fresh lava. Around 0930 that morning OVPF confirmed that five fissures had opened on the outer SSE slope of Dolomieu crater at elevations ranging from 2480 to 2025 m (figure 179). The flow fronts were not visible due to weather. Lava fountains under 30 m in height and lava flows were present in the three lowest fissures. The flows traveled rapidly down the steep flank of the crater (figure 180).

Figure (see Caption) Figure 179. Around 0930 on the morning of 11 June 2019 OVPF confirmed that five fissures had opened on the outer SSE slope of Dolomieu crater at Piton de la Fournaise at elevations ranging from 2480 to 2025 m. Courtesy of and copyright by OVPF-IPGP and Imazpress (Bulletin d'activité du mardi 11 juin 2019 à 11h00).
Figure (see Caption) Figure 180. Thermal imaging of the 11-12 June 2019 eruptive site at Piton de la Fournaise showed multiple streams of lava traveling rapidly down the steep flank from several fissures on 11 June 2019. Courtesy of and copyright by OVPF-IPGP (Bulletin d'activité du mardi 11 juin 2019 à 11h00).

The intensity of the eruptive tremor decreased throughout the day, and by 1530 only the lowest elevation fissure was still active (figure 181). The next afternoon (12 June) images in the OVPF webcam located in Piton des Cascades indicated the flow front was at about 1,200-1,300 m elevation. Seismographs indicated that the eruption stopped around 1200 on 13 June. Poor weather obscured visibility of the flow activity. Seismic activity decreased following the eruption, but appeared to increase again beginning on 21 June, with 10 events detected on 30 June. SO2 plumes were recorded in satellite data on 11 and 12 June 2019.

Figure (see Caption) Figure 181. The intensity of the eruptive activity at Piton de la Fournaise on 11 June 2019 decreased throughout the day, and by 1530 only the lowest elevation fissure was still active. Courtesy of and copyright by OVPF-IPGP (Bulletin d'activité du mardi 11 juin 2019 à 17h45 Heure locale).

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Observatoire Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris, 14 route nationale 3, 27 ème km, 97418 La Plaine des Cafres, La Réunion, France (URL: http://www.ipgp.fr/fr); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Semeru (Indonesia) — April 2019 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Decreased activity after October 2018

The ongoing eruption at Semeru has been characterized by numerous ash explosions and thermal anomalies, but activity apparently diminished in 2018 (BGVN 43:01 and 43:09); this decreased activity continued through at least February 2019. The current report summarizes activity from 24 August 2018 to 28 February 2019.

The Indonesian volcano monitoring agency, Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), reported ongoing daily seismicity, dominated by explosion earthquakes and emission-related events from late November through February (figure 35). Ash plumes resulting in aviation advisories by the Darwin Volcanic Ash Advisory Centre (VAAC) were reported on 4, 6-7, and 19 September, and 12 October 2018. The next significant ash plume reported by the VAAC wasn't until 24 February 2019 (table 23).

Figure (see Caption) Figure 35. Seismicity recorded at Semeru during 28 November 2018-26 February 2019. Plot shows explosion earthquakes ('Letusan'), emission-related events ('Hembusan'), felt earthquakes ('Gempa Terasa'), local tectonic events ('Tektonic Lokal'), and distant tectonic events ('Tektonic Jauh'). Courtesy of PVMBG and MAGMA Indonesia.

Table 23. Summary of ash plumes at Semeru during 25 August 2018 through February 2019. The summit is at 3,657 m elevation. Data courtesy of Darwin VAAC.

Date Plume altitude (km) Plume drift Remarks
04 Sep 2018 4.3 W --
06-07 Sep 2018 4.3 SW --
19 Sep 2018 4 SSW Possible ash-and-steam plume.
12 Oct 2018 4.5 W Discrete eruption.
24 Feb 2019 4.3 W Discrete volcanic ash eruption.

Thermal anomalies using MODIS satellite instruments processed by the MODVOLC algorithm were only recorded on 26, 28, and 30 August 2018, and 22 and 31 October 2018. The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected numerous hotspots within 5 km of the volcano during August and early September, with a significant decrease in frequency through October (figure 36); only a few scattered hotspots were recorded from November 2018 through February 2019.

Figure (see Caption) Figure 36. MIROVA plot of thermal anomalies (Log Radiative Power) at Semeru during July 2018-February 2019. Courtesy of MIROVA.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Heard (Australia) — April 2019 Citation iconCite this Report

Heard

Australia

53.106°S, 73.513°E; summit elev. 2745 m

All times are local (unless otherwise noted)


Thermal hotspots continue during October 2018-March 2019 at the summit and on the upper flanks

Heard Island, in the Southern Indian Ocean, includes the large Big Ben stratovolcano and the smaller, apparently inactive, Mt. Dixon. Because of the island's remoteness, satellites are the primary monitoring tool. Big Ben has been active intermittently since 1910, and was active during October 2017-September 2018 (BGVN 43:10). Activity continued during October 2018-March 2019.

Satellite photos using Sentinel Hub showed hotspots every month between October 2018 and March 2019. Because the area was frequently covered by a heavy cloud layer, most of the hotspot signals were partially obscured. Though thermal anomalies are usually seen at summit vents, on 18 October 2018 an anomaly was present about 300 m down the E flank. Similarly, on 1 January 2019, a weak anomaly beginning about 200 m down the NW flank was about 300 m long (figure 40).

The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected three hotspots, two in October and one in early November 2018, all of low radiative power. There were no MODVOLC alert pixels during this period.

Figure (see Caption) Figure 40. Sentinel-2 L1C image of Heard Island's Big Ben volcano on 1 January 2019 one summit hotspot and an elongated thermal anomaly to the NW. Scale bar (bottom right) is 200 m. The photo was taken in atmospheric penetration view (bands 12, 11, and 8A), courtesy of Sentinel Hub Playground.

Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon volcano lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben volcano because of its extensive ice cover. The historically active Mawson Peak forms the island's 2745-m high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported in historical time at this isolated volcano, but observations are infrequent and additional activity may have occurred.

Information Contacts: Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Dukono (Indonesia) — April 2019 Citation iconCite this Report

Dukono

Indonesia

1.693°N, 127.894°E; summit elev. 1229 m

All times are local (unless otherwise noted)


Numerous ash explosions from October 2018 through March 2019

The eruption at Dukono that began in 1933 has showered the area with ash from frequent explosions (BGVN 43:04, 43:12). The Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), also known as the Center for Volcanology and Geological Hazard Mitigation (CVGHM), is responsible for monitoring this volcano.

This long-term pattern of intermittent ash explosions continued during October 2018-March 2019, with ash plumes rising to between 1.5 and 2.7 km altitude, or about 300-1,500 m above the summit (table 19). Although meteorological clouds often obscured views, satellite imagery captured typical ash plumes on 28 September 2018 (figure 10) and 5 February 2019 (figure 11). Instruments aboard NASA satellites (TROPOMI and OMPS) detected high levels of sulfur dioxide near or directly above the volcano on multiple days during January-March 2019. The Alert Level remained at 2 (on a scale of 1-4), and visitors were warned to remain outside of the 2-km exclusion zone.

Table 19. Monthly summary of reported ash plumes from Dukono for October 2018-March 2019. The direction of drift for the ash plume through each month was highly variable. Data courtesy of the Darwin VAAC and PVMBG.

Month Plume Altitude (km) Notable Plume Drift
Oct 2018 1.5-2.1 --
Nov 2018 1.5-2.1 --
Dec 2018 1.5-2.4 --
Jan 2019 1.8-2.1 --
Feb 2019 1.8-2.7 --
Mar 2019 1.5-2.4 --
Figure (see Caption) Figure 10. Satellite image from Sentinel-2 (LC1 natural color) of an ash plume at Dukono on 28 September 2018 with the plume blowing towards the NE. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 11. Satellite image from Sentinel-2 (LC1 natural color) of an ash plume at Dukono on 5 February 2019, with the plume blowing SW. Courtesy of Sentinel Hub Playground.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Rincon de la Vieja (Costa Rica) — April 2019 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Occasional weak phreatic explosions continue through February 2019

Intermittent small phreatic explosions from the acid lake of Rincón de la Vieja's active crater has most recently occurred since 2011 (BGVN 42:08, 43:03, and 43:09). This activity continued through at least February 2019. The volcano is monitored by the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), and the information below comes from its weekly bulletins between 18 August 2018 and 28 February 2019. Weather conditions often prevented webcam views and estimates of plume heights. The volcano was in Activity Level 3 throughout the reporting period (volcano erupting, steady state).

According to OVSICORI-UNA, two distinct, 2-minute-long explosions occurred on 31 August 2018 beginning at 0434 and 1305. Several hours after the eruption tremor became continuous but low-frequency long-period (LP) earthquakes ceased. OVSICORI-UNA reported a gas emission late on 7 September. An unconfirmed small phreatic explosion occurred on 11 September at 0634, and another on 17 September at 1014. The seismic record showed continuous background tremor and very sporadic LP earthquakes.

Intermittent background tremor was recorded during the first half of October, along with a few emissions and phreatic explosions. Deformation measurements during October showed a contraction between the N and S of the volcano, with subsidence. On 17 October there was another phreatic explosion, and thereafter tremor disappeared and seismicity decreased. On 23 and 27 October seismic stations signaled additional possible phreatic explosions.

OVSICORI-UNA reported that a series of explosions began at 1945 on 4 November and consisted of at least three 2-minute-long episodes. The next day at 1511 a plume of water vapor and diffuse gas, recorded by a webcam and visible to residents to the N, rose about 100 m above the crater rim and drifted W. On 9 November a 2-minute-long explosion began at 1703. Another explosion on 27 November at 0237 produced a plume of water vapor and gas that rose 600 m above the crater rim and drifted SW. A short 1-minute explosion began at 1054 on 3 December.

Based on OVSICORI-UNA weekly bulletins, activity remained stable in January 2019 with small-amplitude phreatic explosions on 11, 12, and 14 January. More energetic phreatomagmatic explosions on 17 and 20 January produced lahars. Several small-amplitude explosions were detected at the end of the month. During January, a few LPs, no VTs, and intermittent tremor were recorded.

OVSICORI-UNA reported that two small-scale explosions occurred on 1 February, along with possible events at 1906 and 1950 on 5 February and at 0120 on 6 February. An event at 0000 on 6 February was also recorded; the report noted that poor weather conditions prevented visual observations of the crater. On 16 and 17 February strong degassing was observed. No LPs were recorded, but two significant VTs were detected on 17 and 22 February near or under the crater.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/).


Turrialba (Costa Rica) — April 2019 Citation iconCite this Report

Turrialba

Costa Rica

10.025°N, 83.767°W; summit elev. 3340 m

All times are local (unless otherwise noted)


Frequent passive ash emissions continue through February 2019

This report summarizes activity at Turrialba during September 2018-February 2019. During this period there was similar activity as described earlier in 2018 (BGVN 43:09), with occasional ash explosions and numerous, sometimes continuous, periods of gas-and-ash emissions (table 8). Data were provided by the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA).

Table 8. Ash emissions at Turrialba, September 2018-February 2019. Cloudy weather sometimes obscured observations. Maximum plume height is above the crater rim. Information courtesy of OVSICORI-UNA.

Date Time Max plume height Plume drift Remarks
27 Aug-05 Sep 2018 -- 100 m SW, W Continuous gas-and-ash emissions.
06 Sep 2018 -- -- -- Mostly gas, punctuated by small sporadic ash plumes.
10 Sep 2018 1210 300 m NW --
01-13 Sep 2018 -- -- -- Continuous gas-and-ash emissions.
17-18 Sep 2018 -- 300 m SW, NW --
27 Sep 2018 0915 200 m NW --
30 Sep-01 Oct 2018 -- 500 m NW, NE --
03 Oct 2018 -- -- -- Incandescence.
08 Oct 2018 0800 500 m N --
10-16 Oct 2018 -- 1,000 m Various Intermittent emissions; some explosions, including an energetic one on 14 Oct at 1712. Clouds prevented estimate of plume height.
17-23 Oct 2018 -- 200-500 m E, NW, SW Periodic gas-and-ash emissions. Frequent Strombolian events since 5 Oct.
25-30 Oct 2018 -- -- -- Periodic ash emissions when weather conditions allowed observations.
26 Oct 2018 0134 500 m NE Ashfall in neighborhoods of Coronado (San José, 35 km WSW) and San Isidro de Heredia (Heredia, 38 km W).
29 Oct 2018 0231 500 m NW --
30 Oct 2018 1406 500 m W --
24 Oct-01 Nov 2018 -- 500 m -- Continuous emissions.
01-06 Nov 2018 0530-0640 500 m SW --
02 Nov 2018 1523, 1703 500 m -- --
03 Nov 2018 0109 500 m -- Short (2-3 minutes) duration events. Ashfall reported in Coronado.
05 Nov 2018 0620 600 m NW --
06-11 Nov 2018 -- 500 m -- Low-level, continuous gas-and-ash emissions occasionally punctuated by energetic explosions that sent plumes as high as 500 m and caused ashfall in several areas downwind, including Cascajal de Coronado, Desamparados (35 km WSW), San Antonio, Guadalupe (32 km WSW), Sabanilla, San Pedro Montes de Oca, Moravia (31 km WSW), Heredia, and Coronado (San José, 35 km WSW). Weather prevented observations on 12 Nov.
13-19 Nov 2018 -- -- -- Periodic, passive ash emissions visible in webcam images or during cloudy conditions inferred from the seismic data.
22 Nov 2018 0710 100 m W --
23 Nov 2018 -- -- -- Frequent pulses of ash.
23-25 Nov 2018 -- 500 m -- Occasional Strombolian explosions ejected lava bombs deposited near the crater; residents of Cascajal de Coronado reported hearing several booming sounds.
26-27 Nov 2018 -- -- -- Passive emissions with small quantities of ash visible. Minor ashfall in San Jose (Cascajal de Coronado and Dulce Nombre), San Pedro Montes de Oca, and neighborhoods of Heredia.
28 Nov-03 Dec 2018 -- 500 m N, NW, SW Ashfall in Santo Domingo (36 km WSW) on 2 Dec.
05 Dec 2018 -- -- -- Minor emission.
06 Dec 2018 -- -- S Emission.
08 Dec 2018 0749 500 m NW --
09 Dec 2018 -- 1,000 m -- Ashfall in areas of Valle Central.
10 Dec 2018 -- -- -- Emissions periodically observed during periods of clear viewing. Ashfall in Moravia (31 km WSW) and Santa Ana, and residents of Heredia noted a sulfur odor.
11-12 Dec 2018 -- 500 m NW, SW The Tico Times stated some flights were delayed at San Jose airport, 67 km away.
13 Dec 2018 -- -- -- Pulsing ash emissions; ashfall in Guadalupe (32 km WSW) and Valle Central.
14-16 Dec 2018 -- -- W, SW Emissions with diffuse amounts of ash.
05-06 Jan 2019 0815 -- -- Increased after midnight on 6 Jan.
28 Jan-04 Feb 2019 -- -- -- Minor, sporadic ash emissions rose to low heights during most days.
01 Feb 2019 0640 1,500 m NW --
08 Feb 2019 0540 200 m -- Sporadic ash emissions for more than one hour.
11 Feb 2019 -- -- -- Very small ash emission.
13-15 Feb 2019 200-300 m NW, W, SW Almost continuous gas emissions with minor ash content.
15 Feb 2019 1330 1,000 m W --
18 Feb 2019 1310 500 m W --
21 Feb 2019 -- 300 m NW Frequent ash pulses.
22-24 Feb 2019 -- 300 m NW, SW Frequent ash emissions of variable intensity and duration. On 22 Feb ash fell in Santa Cruz (31 km WSW) and Santa Ana, and a sulfur odor was evident in Moravia.
28 Feb 2019 1050 500 m SW Ash pulses.

According to OVSICORI-UNA's annual summary for 2018, a slow decline in activity occurred after the volcano reached its highest emission rate during 2016. Activity during 2018 was consistent with an open system, generating frequent passive ash emissions. The volcano emitted ash on 58% of the days during the year. Some explosions were large enough to eject ballistics more than 400 m around the crater. Typical activity can be seen in a photo from 11 September 2018 (figure 50) and satellite imagery on 7 November 2018 (figure 51).

Figure (see Caption) Figure 50. Photo of an ash explosion at Turrialba taken on 11 September 2018. Courtesy of Red Sismologica Nacional (RSN: UCR-ICE), Universidad de Costa Rica.
Figure (see Caption) Figure 51. Sentinel-2 satellite image of an ash emission from Turrialba on 7 November 2018, taken in natural color (gamma adjusted). Courtesy of Sentinel Hub Playground.

During January into early February 2019, passive ash emissions continued irregularly and with less intensity and duration. Emissions sometimes lacked ash. In their report of 4 February 2019, OVSICORI-UNA indicated that passive ash emissions were weak and slow. For the rest of February, they characterized ash emissions as frequent, but of low intensity.

Seismic activity. On 1 November 2018 OVSICORI-UNA reported that seismicity remained high, and involved low-amplitude banded volcanic tremor along with long-period (LP) and volcano-tectonic (VT) earthquakes. In late January-early February 2019, OVSICORI-UNA reported that seismicity remained relatively stable, although a small increase was associated with the hydrothermal system. VT earthquakes were absent, and tremors had decreased in both energy and duration. The number of low-frequency LP volcanic earthquakes remained stable, although they had decreasing amplitudes. No explosions were documented, and emissions were weak and had short durations and very dilute ash content.

Thermal anomalies. No thermal anomalies were recorded during the reporting period using MODIS satellite instruments processed by MODVOLC algorithm. The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected five scattered hotspots during September-October 2018, none during November-December 2018, and two during January-February 2019. All were within 2 km of the volcano and of low radiative power.

Gas measurements. Significant sulfur dioxide levels near the volcano were recorded by NASA's satellite-borne ozone instruments only on 29 September 2018 (both NPP/OMPS and Aura/OMI instruments) and on 11 February 2019 (Sentinel 5P/TROPOMI instrument). OVSICORI-UNA's gas measuring instruments were compromised in September 2018 through January 2019 due to vandalism. In early February, however, they detected hydrogen sulfide for the first time since 2016.

Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); Red Sismologica Nacional (RSN) a collaboration between a) the Sección de Sismología, Vulcanología y Exploración Geofísica de la Escuela Centroamericana de Geología de la Universidad de Costa Rica (UCR), and b) the Área de Amenazas y Auscultación Sismológica y Volcánica del Instituto Costarricense de Electricidad (ICE), Costa Rica (URL: https://rsn.ucr.ac.cr/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Costa Rica Star (URL: https://news.co.cr); The Tico Times (URL: https://ticotimes.net).


San Cristobal (Nicaragua) — April 2019 Citation iconCite this Report

San Cristobal

Nicaragua

12.702°N, 87.004°W; summit elev. 1745 m

All times are local (unless otherwise noted)


Weak ash explosions in January and March 2019

San Cristóbal has produced occasional weak explosions since 1999, with intermittent gas-and-ash emissions. The only reported explosion during the first half of 2018 was on 22 April, the first since November 2017 (BGVN 43:03). The current report covers activity between 1 August 2018 and 1 May 2019. The volcano is monitored by the Instituto Nicaragüense de Estudios Territoriales (INETER).

According to INETER, a series of explosions occurred on 9 January 2019 that lasted several hours. INETER stated that one explosion occurred at 1643; the Washington VAAC's first advisory stated that an explosion occurred at 1145 (local time). The weak explosions, which occurred after a period of heightened seismic activity, generated an ash plume that reached 200 m above the edge of the crater and drifted W. The Washington VAAC reported volcanic ash plumes on 10-11 January extending about 92 km SW, and on 24-25 January extending about 185 km WSW. A low-energy explosion was detected by the seismic network at 1550 on 4 March 2019. The event produced a gas-and-ash plume that rose 400 m above the crater rim and drifted SW.

Monitoring data reported by INETER (table 6) showed elevated levels of seismicity during October 2018 through January 2019. Sulfur dioxide was also measured at higher levels in January 2019.

Table 6. Monthly sulfur dioxide measurements and seismicity reported at San Cristóbal during August 2018-March 2019. "Most" indicates that type of seismicity was dominant that month. Data courtesy of INETER.

Month Average SO2 Total earthquakes Degassing-type earthquakes Volcano-tectonic (VT) earthquakes
Aug 2018 461 t/d 6,464 6,147 251
Sep 2018 893 t/d 9,659 9,586 73
Oct 2018 269 t/d 11,698 3,509 8,189
Nov 2018 -- 19,593 19,586 7
Dec 2018 -- 30,901 -- Most
Jan 2019 1,286 t/d 11,504 Most Very few
Feb 2019 695 t/d 3,470 Most Very few
Mar 2019 -- 3,882 Most Very few

Geologic Background. The San Cristóbal volcanic complex, consisting of five principal volcanic edifices, forms the NW end of the Marrabios Range. The symmetrical 1745-m-high youngest cone, named San Cristóbal (also known as El Viejo), is Nicaragua's highest volcano and is capped by a 500 x 600 m wide crater. El Chonco, with several flank lava domes, is located 4 km W of San Cristóbal; it and the eroded Moyotepe volcano, 4 km NE of San Cristóbal, are of Pleistocene age. Volcán Casita, containing an elongated summit crater, lies immediately east of San Cristóbal and was the site of a catastrophic landslide and lahar in 1998. The Plio-Pleistocene La Pelona caldera is located at the eastern end of the complex. Historical eruptions from San Cristóbal, consisting of small-to-moderate explosive activity, have been reported since the 16th century. Some other 16th-century eruptions attributed to Casita volcano are uncertain and may pertain to other Marrabios Range volcanoes.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://webserver2.ineter.gob.ni/vol/dep-vol.html); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html).


Semisopochnoi (United States) — February 2019 Citation iconCite this Report

Semisopochnoi

United States

51.93°N, 179.58°E; summit elev. 1221 m

All times are local (unless otherwise noted)


Minor ash explosions during September and October 2018

The remote Semisopochnoi comprises the uninhabited volcanic island of the same name, ~20 km in diameter, in the Rat Islands group of the western Aleutians (figure 1). Plumes had been reported several times in the 18th and 19th centuries, and most recently observed in April 1987 from Sugarloaf Peak (SEAN 12:04). The volcano is dominated by an 8-km diameter caldera that contains a small lake (Fenner Lake) and a number of post-caldera cones and craters. Monitoring is done by the Alaska Volcano Observatory (AVO) using an on-island seismic network along with satellite observations and lightning sensors. An infrasound array on Adak Island, about 200 km E, may detect explosive emissions with a 13 minute delay if atmospheric conditions permit.

On 16 September 2018 increased seismicity was detected at 0831, prompting AVO to raise the Aviation Color Code (ACC) to Yellow and Volcano Alert Level (VAL) to Advisory. Retrospective analysis of satellite data acquired on 10 September revealed small ash deposits on the N flank of Mount Cerberus, possibly associated with two bursts of tremor recorded on 8 September (figure 5). This new information, coupled with intensifying seismicity and a strong tremor signal recorded at 1249 on 17 September, resulted in AVO raising the ACC to Orange and the VAL to Watch. Seismicity remained elevated on 18 September with nearly constant tremor recorded by local sensors. At the same time, no ash emissions were observed in cloudy satellite images and no eruptive activity was recorded on regional pressure sensors at Adak.

Figure (see Caption) Figure 1. Minor ash deposits can be seen on the south and west flanks of the N cone of Mount Cerberus, Semisopochnoi Island, in this ESA Sentinel-2 image from 1200 on 10 September 2018. Also note probable minor steam emissions obscuring the crater of the N cone. Image courtesy of AVO.

During 19-25 September 2018 seismicity remained elevated, alternating between periods of continuous and intermittent bursts of tremor. Tremor bursts at 1319 on 21 September and at 1034 on 22 September produced airwaves detected on a regional infrasound array on Adak Island; no ash emissions were identified above the low cloud deck in satellite data, and the infrasound detections likely reflected an atmospheric change instead of volcanic activity.

Seismicity remained elevated during 3-9 October 2018, with intermittent bursts of tremor. No volcanic activity was detected in infrasound or satellite data. On 11 October satellite data indicated partial erosion of a tephra cone in the crater of Cerberus's N cone. A crater lake about 90 m in diameter filled the vent. The data also suggested that the vent had not erupted since 1 October. Seismicity remained elevated and above background levels. The next day AVO lowered the Aviation Color Code to Yellow and the Volcano Alert Level to Advisory, noting the recent satellite data results and lack of tremor recorded during the previous week. AVO reported that unrest continued during 11-24 October.

An eruptive event began at 2047 on 25 October 2018, identified based on seismic data; strong volcanic tremor lasted about 20 minutes and was followed by 40 minutes of weak tremor pulses. A weak infrasound signal was detected by instruments on Adak Island. The Aviation Color Code was raised to Orange (the second highest level on a four-color scale) and Volcano Alert Level was raised to Watch (the second highest level on a four-level scale). A dense meteorological cloud deck prevented observations below 3 km, but a diffuse cloud was observed in satellite data rising briefly above the cloud deck, though it was unclear if it was related to eruptive activity. Tremor ended after the event, and seismicity returned to low levels.

Small explosions were detected by the seismic network at 2110 and 2246 on 26 October 2018, and 0057 and 0603 on 27 October. No ash clouds were identified in satellite data, but the volcano was obscured by high meteorological clouds. Additional small explosions were detected in seismic and infrasound data during 28-29 October; no ash clouds were observed in partly-cloudy-to-cloudy satellite images.

AVO reported on 31 October 2018 that unrest continued. Two small explosions were detected, one just before 0400 and the other around 1000. Satellite views were obscured by clouds at the time, and no ash clouds were observed. Unrest continued through 1 November, at which time the satellite link and the seismic line failed. On 21 November the ACC was lowered to Yellow and the VAL was lowered to Advisory.

Geologic Background. Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is 1221-m-high Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked 774-m-high Mount Cerberus volcano was constructed during the Holocene within the caldera. Each of the peaks contains a summit crater; lava flows on the northern flank of Cerberus appear younger than those on the southern side. Other post-caldera volcanoes include the symmetrical 855-m-high Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented historical eruptions have originated from Cerberus, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone within the caldera could have been active during historical time.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).


Asosan (Japan) — July 2019 Citation iconCite this Report

Asosan

Japan

32.884°N, 131.104°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Multiple brief ash emission events during April and May 2019; minor ashfall in adjacent villages

Japan's 24-km-wide Asosan caldera on the island of Kyushu has been active throughout the Holocene. Nakadake has been the most active of 17 central cones within the caldera for 2,000 years. Historical eruptions have been primarily basaltic to basaltic-andesitic ash eruptions, with periodic Strombolian activity, all from Nakadake Crater 1. The most recent major eruptive episode began in late November 2014 and continued through 1 May 2016. Another eruption, with the largest ash plume in 20 years, occurred on 8 October 2016. Asosan remained quiet until renewed activity from Crater 1 began in mid-April 2019; it is covered in this report, through the end of June 2019. The Japan Meteorological Agency (JMA) provides monthly reports of activity; the Tokyo Volcanic Ash Advisory Center (VAAC) issues aviation alerts reporting on possible ash plumes.

Asosan remained quiet during 2017 and 2018 with steam plumes rising a few hundred meters from Crater 1 and low levels of SO2 emissions; a warm acidic lake was present within the crater. Fumarolic activity from two areas on the S and SW wall of the crater rim generated occasional thermal anomalies in satellite data and incandescence at night. A brief period of increased seismicity was reported in mid-March 2019. An increase in seismic amplitude on 14 April 2019 preceded a small explosion on 16 April; it produced an ash plume which rose 200 m above the crater rim and drifted NW. It was followed by additional small explosions on 19 April. A new explosion on 3 May produced minor ashfall in adjacent communities; ash emissions were reported multiple times during May with plumes reaching 1,400 m above the crater rim. No additional ash emissions were reported in June.

Activity during 2017 and 2018. JMA reported that no eruptions occurred during 2017. Amplitudes of volcanic tremor increased somewhat during March but were generally low for the rest of the year. The earthquake hypocenters were mostly located near the active crater at around sea level. SO2 emissions were slightly less than 1,000 tons per day (t/d) from January through April; for the rest of the year they ranged from 600 to 2,500 t/d. The Alert Level had been lowered from 2 to 1 on 7 February 2017 where it remained throughout the year. Steam plumes generally rose no more than 600 m above the active crater rim (figure 42). JMA noted that from January to June they often observed crater incandescence at night with a high-sensitivity surveillance camera; Sentinel-2 satellite images also captured thermal anomalies a few times (figure 43). The green lake inside the crater persisted throughout the year with water temperatures of 50-60°C. Two fumaroles were present with high-temperature gas emissions on the SW and S crater walls. Temperatures at the S crater wall were over 600°C from February to May; they decreased to 320-560°C during the rest of the year (figure 44). Sulfur deposits were visible around the SW crater wall fumarole during July.

Figure (see Caption) Figure 42. Steam plumes that rose around 600 m above Nakadake Crater 1 at Asosan were typical activity throughout 2017. Images taken with JMA webcam on 9 June (top left), 22 August (top right), 12 November (bottom left), and 20 December (bottom right) 2017. Courtesy of JMA (Aso volcano monthly activity reports, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 43. Sentinel-2 images captured thermal anomalies at the S rim of the green lake at Asosan's Nakadake Crater 1 on 16 February (left) and 27 May 2017 (right). JMA reported that incandescence was occasionally visible during the night from January-June from the same area. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 44. High-temperature gas and steam from fumaroles on the S wall of the Nakadake Crater 1 at Asosan on 24 August (top) and 17 November 2017 (bottom) were persistent all year, with temperatures ranging from 300 to over 600°C. The green lake inside the crater persisted throughout the year as well with water temperatures of 50-60°C. Courtesy of JMA (Aso volcano monthly activity reports, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).

The Alert Level did not change at Asosan during 2018, and no eruptions were reported. Sulfur dioxide emissions fluctuated between 400 and 1,800 t/d throughout the year. Steam plumes generally rose less than 500 m above the active crater (figure 45); incandescence was observed at night during May-October and sometimes observed in satellite imagery as thermal anomalies (figure 46). The temperature of the green lake inside the crater ranged from 58 to 75°C throughout the year. The thermal anomaly on the S wall of the crater was consistently in the 300-500°C range, and had a high temperature in April of 580°C; in December the high temperature had risen to 738°C (figure 47). A brief increase in the number of isolated tremors occurred during March, with 1,044 reported on 4 March, exceeding the previous maximum of 1,000 on 27 October 2014. Seismicity also increased briefly during June, with more than 400 events reported each day on 8, 18, and 20 June. The Minami Aso village Yoshioka fumarole zone, located about 5 km W of Nakadake Crater 1, continued to produce modest steam plumes throughout 2017 and 2018 (figure 48).

Figure (see Caption) Figure 45. Typical steam plumes at Asosan during 2018 rose around 500 m above the Nakadake Crater 1. Images are from 4 March (top left), 22 July (top right), 17 August (lower left), and 13 September 2018 (lower right). Courtesy of JMA (Aso volcano monthly activity reports, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 46. Nighttime incandescence was reported by JMA during May-October 2018 from the S rim of Nakadake Crater 1 at Asosan; Sentinel-2 satellite images (bands 12, 4, 2) captured thermal anomalies from the same area numerous times during 2018 including on 16 June (top left), 26 July and 19 September (middle row), and 18 and 23 November (bottom row). JMA photographed incandescence at night on 17 July 2018 at the S fumarole area (top right). Courtesy of Sentinel Hub Playground and JMA (Aso volcano Monthly Report for July 2018).
Figure (see Caption) Figure 47. The "Green Tea Pond" inside Nakadake Crater 1 at Asosan had temperatures that ranged from 58 to 75°C during 2018 (top row, 26 March 2018); the thermal anomaly on the S wall of the crater consistently had temperatures measured in the 300-500°C range and the SW fumarole area had somewhat lower temperatures (bottom row, 22 June 2018). Courtesy of JMA (monthly Asosan reports for March, May, and June 2018).
Figure (see Caption) Figure 48. The Minami Aso village Yoshioka fumarole zone, located about 5 km W of Nakadake Crater 1 at Asosan, continued to produce modest steam plumes throughout 2017 and 2018. It is shown here on 20 December 2017 (top) and 12 March 2018 (bottom). Courtesy of JMA (December 2017 and March 2018 monthly volcano reports).

Activity during 2019. Steam plumes rose to 800 m above the crater rim during January 2019. Overall activity increased slightly during February; SO2 emissions peaked at 2,200 t/d early in the month; they ranged from 800 to 1,800 t/d for most of the month. The amplitude of volcanic tremor also increased slightly during February. A further increase in tremor amplitude on 11 March 2019 prompted JMA to raise the Alert Level from 1 to 2 the following morning. Volcanic tremor amplitude decreased on 15 March; JMA determined that activity had decreased, and the Alert Level was lowered back to 1 on 29 March 2019. The amount of water in the crater decreased significantly between 27 February and 20 March, exposing part of the crater floor.

The surface temperature of the lake rose during the first part of 2019; it was 78°C in February and 84°C in March. Steam plumes rose to 1,200 m above the crater rim during March and April. SO2 emissions rose to 4,500 t/d on 12 March but dropped to a lower range of 1,300-2,400 for the rest of the month. Another surge in SO2 emissions on 12 April 2019 to 3,600 t/d prompted a special report from JMA the following day. SO2 emissions varied from about 1,700 to 4,100 t/d during the month; values remained high during the second half of the month. JMA noted that the color of the water in the lake inside Nakadake Crater 1 changed from green to gray after 4 April. Fountains of muddy water were periodically observed; they reached 15 m high on 9 April. The temperatures of both the lake (82°C) and around the two fumarole areas (S area about 530°C, SW area about 310°C) remained constant during April and similar to March.

A large increase in the amplitude of volcanic tremor early on 14 April 2019 prompted JMA to raise the Alert Level from 1 to 2 later in the day. The epicenters of the earthquakes were very shallow, located within 1 km beneath the crater. A small eruption occurred at 1828 on 16 April at Nakadake Crater 1; it produced a gray and white plume that rose 200 m above the crater rim and was the first eruption since 8 October 2016 (figure 49). Incandescence was observed inside the crater on 3 and 17 April. The amplitude of seismic tremors decreased on 18 April. Three very small eruptions on 19 April produced ash and steam plumes that rose 500 m above the crater rim. During a site visit that day JMA measured a high-temperature area that produced incandescence from the bottom of the crater at night (figure 50).

Figure (see Caption) Figure 49. The first eruption since October 2016 at Nakadake Crater 1 at Asosan on 16 April 2019 sent an ash plume 200 m above the crater rim (top). Incandescent gas appeared on the crater floor the next day (bottom). Courtesy of JMA (Aso volcano monthly activity reports, April 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 50. Three small explosions on 19 April 2019 at Asosan's Nakadake Crater 1 produced small ash emissions that rose 500 m above the crater rim (top). A strong thermal signal also appeared from the bottom of the crater. Courtesy of JMA (Aso volcano monthly activity reports, April 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).

A new eruption began at 1540 on 3 May that lasted until 0620 on 5 May (figure 51). Initially the ash plume rose 600 m above the crater rim, but a few hours later the volume of ash increased, and the plume reached 2 km above the crater rim for a brief period. Incandescence was visible from the webcam. The Tokyo VAAC reported the ash plume at 3 km altitude drifting SE on 3 May. Later in the day it rose to 3.7 km altitude and drifted SW. During a field survey the following day (4 May) JMA reported a steam and ash plume rising from the center of the active crater. The infrared thermal imaging camera recorded the temperature of the plume at about 500°C (figure 52).

Figure (see Caption) Figure 51. An explosion at Asosan's Nakadake Crater 1 on 3 May 2019 produced an ash plume that reached 2 km above the crater rim (top) and incandescence visible from the webcam (bottom). Courtesy of JMA (Aso volcano monthly activity reports, April 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 52. During a site visit on 4 May 2019, staff from JMA witnessed an ash and steam plume rising from the bottom of Nakadake Crater 1 at Asosan (top). The infrared thermal imaging camera recorded the temperature of the plume at about 500°C (bottom). Courtesy of JMA (Aso volcano monthly activity reports, May 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).

Ash fell on the S flank, and a small amount of ashfall on 4 May was confirmed by evidence on a car windshield in Takamori Town (6 km S), Kumamoto Prefecture (figure 53). Ashfall was also reported in Takamori-machi, Minami Aso village (9 km SW), and part of Yamato-cho (25 km SW), also in the Kumamoto Prefecture. SO2 emissions were measured as high as 4,000 t/d on 4 May. Additional explosions with ash plumes were reported from Asosan on 9, 12-16, 29, and 31 May; the plumes rose from 200 to 1,400 m above the crater rim but were not visible in satellite imagery. The TROPOMI instrument on the Sentinel-5 satellite captured SO2 plumes on 3 and 26 May 2019 (figure 54).

Figure (see Caption) Figure 53. Ashfall was reported on 4 May 2019 in Takamori Town, Kumamoto Prefecture, from the eruption at Asosan's Nakadake Crater 1 on 3 May 2019. Courtesy of JMA (Aso volcano monthly activity reports, May 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 54. Plumes of SO2 from Asosan were recorded by the TROPOMI instrument on the Sentinel-5P satellite on 3 (left) and 26 (right) May 2019. Courtesy of NASA Goddard Space Flight Center.

Steam plumes rose to 1,700 m above the crater rim during June 2019 (figure 55). During field visits on 6 and 25 June diffuse ash emissions were observed rising from the center of the active crater, but they did not extend significantly above the crater rim (figure 56). The maximum temperature of the plume was measured at about 340°C with a thermal imaging camera. Almost all of the water in the crater bottom had evaporated since early May; incandescence continued to be observed within the crater at night with the high-resolution webcam (figure 57).

Figure (see Caption) Figure 55. Steam plumes rose to 1,700 m above the crater rim at Asosan's Nakadake Crater 1 on 10 June 2019. Courtesy of JMA (Aso volcano monthly activity reports, June 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 56. Plumes of gas and minor ash were visible at Asosan's Nakadake Crater 1 during site visits by JMA on 6 (left) and 25 (right) June 2019. Courtesy of JMA (Aso volcano monthly activity reports, June 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 57. Incandescent gas was visible from the vent at Asosan's Nakadake Crater 1 on 18 (left) and 25 (right) June 2019. Courtesy of JMA (Aso volcano monthly activity reports, June 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Nyamuragira (DR Congo) — May 2019 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Lava lake reappears in central crater in April 2018; activity tapers off during April 2019

The Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo is part of the western branch of the East African Rift System. Nyamuragira (or Nyamulagira), a high-potassium basaltic shield volcano on the W edge of VVP, includes a lava field that covers over 1,100 km2 and contains more than 100 flank cones in addition to a large central crater (see figure 63, BGVN 42:06). A lava lake that had been active for many years emptied from the central crater in 1938. Numerous flank eruptions were observed after that time, the most recent during November 2011-March 2012 on the NE flank. This was followed by a period of degassing with unusually SO2-rich plumes from April 2012 through April 2014 (BGVN 42:06). The lava lake reappeared during July 2014-April 2016 and November 2016-May 2017, producing a strong thermal signature. After a year of quiet, a new lava lake appeared in April 2018, reported below (through May 2019) with information provided by the Observatoire Volcanologique de Goma (OVG), MONUSCO (the United Nations Organization working in the area), and satellite data and imagery from multiple sources.

Fresh lava reappeared inside the summit crater in mid-April 2018 from a lava lake and adjacent spatter cone. Satellite imagery and very limited ground-based observations suggested that intermittent pulses of activity from both sources produced significant lava flows within the summit crater through April 2019 when the strength of the thermal signal declined significantly. Images from May 2019 showed a smaller but persistent thermal anomaly within the crater.

Activity from October 2017-May 2019. Indications of thermal activity tapered off in May 2017 (BGVN 42:11). On 20 October 2017 OVG released a communication stating that a brief episode of unspecified activity occurred on 17 and 18 October, but the volcano returned to lower activity levels on 20 October. There was no evidence of thermal activity during the month. The volcano remained quiet with no reports of thermal activity until April 2018 (figure 73).

Figure (see Caption) Figure 73. Sentinel-2 satellite images (bands 12, 4, 2) indicated no thermal activity at Nyamuragira on 19 November (top left), 14 December 2017 (top right) and 18 January 2018 (bottom). However, Nyiragongo (about 13 km SE) had an active lava lake with a gas plume drifting SW on 18 January 2018 (bottom right). Courtesy of Sentinel Hub Playground.

OVG reported the new lava emissions beginning on 14 April 2018 as appearing from both the lava lake and a small adjacent spatter cone (figure 74). The first satellite image showing thermal activity at the summit appeared on 18 April 2018 (figure 75) and coincided with the abrupt beginning of strong MIROVA thermal signals (figure 76). MODVOLC thermal alerts also first appeared on 18 April 2018. An image of the active crater taken on 9 May 2018 showed the lake filled with fresh lava and two adjacent incandescent spatter cones (figure 77).

Figure (see Caption) Figure 74. Fresh lava reappeared at Nyamuragira's crater during April 2018 from the lava lake (left) and the adjacent small spatter cone (right). Courtesy of OVG (Republique Democratique du Congo, Ministere de la Recherche Scientifique, Observatoire Volcanologique de Goma, Direction Generale Goma, Rapport Avril 2018).
Figure (see Caption) Figure 75. The first satellite image (bands 12, 4, 2) indicating renewed thermal activity at the Nyamuragira crater appeared on 18 April 2018; the signal remained strong a few weeks later on 3 May 2018. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 76. A strong thermal signal appeared in the MIROVA graph of Log Radiative Power on 18 April 2018 for Nyamuragira, indicating a return of the lava lake at the summit crater. Courtesy of MIROVA.
Figure (see Caption) Figure 77. Fresh lava filled the lake inside the crater at Nyamuragira on 9 May 2018. Two spatter cones were incandescent with gas emissions. Courtesy of OVG (Republique Democratique du Congo, Ministere de la Recherche Scientifique, Observatoire Volcanologique de Goma, Direction Generale Goma, Rapport Mai 2018).

Satellite images confirmed that ongoing activity from the lava lake remained strong during June -September 2018 (figure 78). A mission to Nyamuragira was carried out by helicopter provided by MONUSCO on 20 July 2018; lava lake activity was observed along with gas emissions from the small spatter cone (figure 79). OVG reported increased volcanic seismicity during 1-3 and 10-17 September 2018, and also during October, located in the crater area, mostly at depths of 0-5 km.

Figure (see Caption) Figure 78. Sentinel-2 satellite images (bands 12, 4, 2) confirmed that ongoing activity from the lava lake at Nyamuragira remained strong during June-September 2018, likely covering the crater floor with a significant amount of fresh lava. Image are from 12 June (top left), 7 July (top right), 17 July (middle left), 22 July (middle right), 11 August (bottom left), and 20 September (bottom right). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 79. The crater at Nyamuragira on 20 July 2018 had an active lava lake and adjacent incandescent spatter cone with gas emissions. Courtesy of OVG (Republique Democratique du Congo, Ministere de la Recherche Scientifique, Observatoire Volcanologique de Goma, Direction Generale Goma, Rapport Juillet 2018).

Personnel from OVG and MONUSCO (United Nations Organization Stabilization Mission in DR Congo) made site visits on 11 October and 2 November 2018 and concluded that the level of the active lava lake had increased during that time (figure 80). On 2 November OVG measured the height from the base of the active cone to the W rim of the crater as 58 m (figure 81).

Figure (see Caption) Figure 80. OVG scientists reported a rise in the lake level between site visits to the Nyamuragira crater on 11 October (top) and 2 November 2018 (bottom). Top image courtesy of MONUSCO and Culture Vulcan, bottom image courtesy of OVG (Republique Democratique du Congo, Ministere de la Recherche Scientifique, Observatoire Volcanologique de Goma, Direction Generale Goma, Rapport Octobre 2018).
Figure (see Caption) Figure 81. On 2 November 2018 scientists from OVG measured the height from the base of the active cone to the W rim of the crater as 58 m. Courtesy of OVG (Republique Democratique du Congo, Ministere de la Recherche Scientifique, Observatoire Volcanologique de Goma, Direction Generale Goma, Rapport Octobre 2018).

Seismicity remained high during November 2018 but decreased significantly during December. Instrument and access issues in January 2019 prevented accurate assessment of seismicity for the month. The lava lake remained active with periodic surges of thermal activity during November 2018-March 2019 (figure 82). Multiple images show incandescence in multiple places within the crater, suggesting significant fresh overflowing lava.

Figure (see Caption) Figure 82. The active lava lake at Nyamuragira produced strong thermal signals from November 2018 through March 2019 that were recorded in Sentinel-2 satellite images (bands 12, 4, 2). Several images suggest fresh lava cooling around the rim of the crater in addition to the active lake. A relatively cloud-free day on 19 November 2018 (top left) revealed no clear thermal signal, but a strong signal was recorded on 29 November (top right) despite significant cloud cover. Images from 13 and 28 January 2019 (second row) both showed evidence of incandescent lava in multiple places within the crater. The thermal signal was smaller and focused on the center of the crater on 12 and 27 February 2019 (third row). Images taken on 9 and 19 March 2019 clearly showed incandescent material at the center of the crater and around the rim (bottom row). Courtesy of Sentinel Hub Playground.

On 12 April 2019 a Ukrainian Aviation Unit supported by MONUSCO provided support for scientists visiting the crater for observations and seismic analysis. Satellite data confirmed ongoing thermal activity into May, although the strength of the signal appeared to decrease (figure 83). MODVOLC thermal alerts ceased after 8 April, and the MIROVA thermal data also confirmed a decrease in the strength of the thermal signal during April 2019 (figure 84).

Figure (see Caption) Figure 83. Sentinel-2 satellite data (bands 12, 4, 2) confirmed ongoing thermal activity at Nyamuragira into May 2019. The thermal anomalies on 18 April (left) and 3 May (right) 2019 were smaller than those recorded during previous months. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 84. The MIROVA graph of thermal activity (log radiative power) at Nyamuragira from 16 July 2018 through April 2019 showed near-constant levels of high activity through April 2019 when it declined. This corresponded well with satellite and ground-based observations. Courtesy of MIROVA.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; Katcho Karume, Director; Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MONUSCO, United Nations Organization Stabilization Mission in the DR Congo (URL: https://monusco.unmissions.org/en/, Twitter: @MONUSCO); Cultur Volcan, Journal d'un volcanophile (URL: https://laculturevolcan.blogspot.com), Twitter: @CultureVolcan).


Tengger Caldera (Indonesia) — May 2019 Citation iconCite this Report

Tengger Caldera

Indonesia

7.942°S, 112.95°E; summit elev. 2329 m

All times are local (unless otherwise noted)


New explosions with ash plumes from Bromo Cone mid-February-April 2019

The 16-km-wide Tengger Caldera in East Java, Indonesia is a massive volcanic complex with numerous overlapping stratovolcanos (figure 11). Mount Bromo is a pyroclastic cone that lies within the large Sandsea Caldera at the northern end of the complex (figure 12) and has erupted more than 20 times during each of the last two centuries. It is part of the Bromo Tengger Semeru National Park (also a UNESCO Biosphere Reserve) and is frequently visited by tourists. The last eruption from November 2015 to November 2016 produced hundreds of ash plumes that rose as high as 4 km altitude; some of them drifted for hundreds of kilometers before dissipating and briefly disrupted air traffic. Only steam and gas plumes were observed at Mount Bromo from December 2016 to February 2018 when a new series of explosions with ash plumes began; they are covered in this report with information provided by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) and the Darwin Volcanic Ash Advisory Centre (VAAC). Copyrighted ground and drone-based images from Øystein Lund Andersen have been used with permission of the photographer.

Figure (see Caption) Figure 11. The Tengger Caldera viewed from the north Mount Bromo issuing steam in the foreground and Semeru volcano in the background on 30 September 2018. Courtesy of Øystein Lund Andersen, used with permission.
Figure (see Caption) Figure 12. Aerial view of the Bromo Cone in Tengger Caldera seen from the west on 30 September 2018. Courtesy of Øystein Lund Andersen, used with permission.

PVMBG lowered the Alert Level at Bromo on 21 October 2016 from III to II near the end of an eruptive episode lasting nearly a year. The last VAAC report was issued on 12 November 2016 (BGVN 41:12) noting that the last ash emission had been observed the previous day drifting NW at 3 km altitude. Throughout 2017 and 2018 Bromo remained at Alert Level II, with no unusual activity described by PVMBG. During 1-2 September 2018, a wildfire in the Bromo Tengger Semeru National Park burned 65 hectares of savannah (figure 13); the fire produced 12 MODVOLC thermal alerts around the Tengger Caldera rim. No reports of increased volcanic activity were issued by PVMBG during the period.

Figure (see Caption) Figure 13. A wall of fire in the Bromo Tengger Semeru National Park savanna during 1-2 September 2018 produced thermal alerts that were not related to volcanic activity at the Bromo Cone in Tengger Caldera. Image courtesy of the park authority, reported by Mongabay. MODVOLC thermal alerts courtesy of Hawai'i Institute of Geophysics and Planetology (HIGP).

After slightly more than two years of little activity other than gas and steam plumes, ash emissions resumed from the Bromo Cone on 18 February 2019. After a brief pause, a new explosion on 10 March marked the beginning of a series of near-daily ash emissions that lasted for the rest of March, producing ash plumes that rose to altitudes ranging from 3.0 to 5.2 km and drifted in many different directions. A new series of ash emissions began on 6 April, rising to 3 km and also drifting in multiple directions. Ash emission density decreased during the month; plumes were only rising a few hundred meters above the summit by the end of April and consisted of mostly steam and moderate amounts of ash.

Activity during February-April 2019. PVMBG reported that at 0600 on 18 February 2019 an eruption at Tengger Caldera's Bromo Cone generated a dense white-and-brown ash plume that rose 600 m and drifted WSW. The plume was not visible in satellite imagery, according to the Darwin VAAC. The Alert Level remained at 2 (on a scale of 1-4). After a few weeks of quiet a new explosion on 10 March (local time) produced a white, brown, and gray ash plume that rose 600 m above the summit; the plume was visible in satellite imagery extending SW. Increased tremor amplitude was also reported on 10 March. A new emission the next morning produced similar ash plumes that drifted S, SW, and W at 3 km altitude. On the morning of 12 March (local time) a continuous ash plume was observed in satellite imagery at 3.4 km altitude drifting SW. The plume drifted counterclockwise towards the S, E, and NE throughout the day and continued to drift NE and SE on 13 March. The altitude of the plume was reported at 4.3 km later that day based on a pilot report.

Continuous brown, gray, and black ash emissions were reported by PVMBG during 14-19 March at altitudes ranging from 3 to 3.9 km; they drifted generally NE to NW. Ashfall was noted around the crater and downwind a short distance. The Darwin VAAC reported continuous ash emissions to 5.2 km altitude drifting SE on 20 March. It was initially reported by a pilot and partially discernable in satellite imagery before dissipating. Ongoing ash emissions of variable densities and colors ranging from white to black were intermittently visible in satellite imagery and confirmed in webcam and ground reports at around 3.0 km altitude during 21-25 March (figures 14-17). Ashfall impacted the closest villages to Bromo, including Cemara Lawang (30 km NW), which was covered by a thin layer of ash. A few trees in the area were toppled over by the weight of the ash. The plume altitude increased slightly on 26 March to 3.7-3.9 km, drifting N and NE. The higher altitude plume dissipated early on 28 March, but ash emissions continued at 3.0 km for the rest of the day.

Figure (see Caption) Figure 14. Ash drifted NNE from the Bromo Cone in Tengger Caldera on 23 March 2019. Courtesy of Øystein Lund Andersen (drone image), used with permission.
Figure (see Caption) Figure 15. Ash drifted N from the Bromo Cone in Tengger Caldera on 23 March 2019. The Batok Cone is on the right, Segera Wedi is behind Bromo, and Semeru is in the far background. Courtesy of Øystein Lund Andersen, used with permission.
Figure (see Caption) Figure 16. A few trees toppled from ashfall in the vicinity of the Bromo Cone in Tengger Caldera on 24 March 2019. Courtesy of Øystein Lund Andersen, used with permission.
Figure (see Caption) Figure 17. Ash plumes from the Bromo Cone in Tengger Caldera on 24 March 2019 caused ashfall in communities as far as 30 km away. View is from the floor of the Sandsea Caldera. Courtesy of Øystein Lund Andersen, used with permission.

After just a few days of quiet, new ash emissions rising to 3.0 km altitude and drifting SE were reported by both PVMBG (from the webcam) and the Darwin VAAC on 6 April 2019. By the next day the continuous ash emissions were drifting N, then E during 8-10 April, and S during 11 and 12 April. A new emission seen in the webcam was reported by the Darwin VAAC on 15 April (UTC) that rose to 3.0 km and drifted W. Ash plumes were intermittently visible in either webcam or satellite imagery until 17 April rising 500-1,000 m above the crater; from 19-25 April only steam plumes were reported rising 300-500 m above the summit. A minor ash emission was reported from the webcam on 26 April that rose to 3.0 km altitude and drifted NE for a few hours before dissipating. PVMBG reported medium density white to gray ash plumes that rose 400-600 m above the crater for the remainder of the month.

Geologic Background. The 16-km-wide Tengger caldera is located at the northern end of a volcanic massif extending from Semeru volcano. The massive volcanic complex dates back to about 820,000 years ago and consists of five overlapping stratovolcanoes, each truncated by a caldera. Lava domes, pyroclastic cones, and a maar occupy the flanks of the massif. The Ngadisari caldera at the NE end of the complex formed about 150,000 years ago and is now drained through the Sapikerep valley. The most recent of the calderas is the 9 x 10 km wide Sandsea caldera at the SW end of the complex, which formed incrementally during the late Pleistocene and early Holocene. An overlapping cluster of post-caldera cones was constructed on the floor of the Sandsea caldera within the past several thousand years. The youngest of these is Bromo, one of Java's most active and most frequently visited volcanoes.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com); Mongabay, URL: https://news.mongabay.com/2018/09/fires-tear-through-east-java-park-threatening-leopard-habitat/.

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 26, Number 08 (August 2001)

Managing Editor: Richard Wunderman

Etna (Italy)

Strombolian activity during May and June 2001

Fuego (Guatemala)

Seismic activity during April and December, eruption in September 2000

Jackson Segment (Undersea Features)

Additional investigations show no evidence of April eruption

Karymsky (Russia)

Increased seismicity from December 2000 through September 2001

Lopevi (Vanuatu)

June 2001 lavas, debris avalanches, <= 1.5 m ashfall, and 7.5-km-high plume

Mayon (Philippines)

Two main episodes in 2001; quiet seen in late August

Okmok (United States)

Small earthquake swarm during 11-15 May 2001

Popocatepetl (Mexico)

Steam-and-ash emissions, periods of dome growth during 2001

Semeru (Indonesia)

Continuous seismic activity, plumes to ~11.6 km

Sheveluch (Russia)

Eruption on 15 July, pyroclastic flows and explosion on 23 August 2001



Etna (Italy) — August 2001 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3295 m

All times are local (unless otherwise noted)


Strombolian activity during May and June 2001

During 14-20 May 2000, lava emission continued from the N fissure of the Southeast Crater (SEC). At about 1900 on 17 May there was an increase in the intensity of Strombolian activity and lava began to flow in several directions, forming two sub-parallel tongues toward the E. On 18 May observers noted that the lava flow emerged from a single vent at 3,156 m elevation, with an effusion rate of 2.5-4.5 m3/s. A short distance below the effusive vent, the flow divided into three branches: one to the NE, whose front flowed at about 2,700 m and reached a distance of about 1 km from the vent; the central branch flowing to the E, widest of the three with some points wider than 20 m; and one to the S, flowing below 3,000 m elevation at about 700 m from the vent. The farthest lava front was estimated to reach ~2,700 m elevation, 1.2 km from the vent. During this period, the Bocca Nuova (BN) crater continued to degas, accompanied by occasional emissions of brown ash. Also noted were a further deepening and widening of the internal crater in the BN's SE quadrant.

During 21-27 May, lava flows from the N fissure of SEC continued intermittent and variably intense Strombolian activity. Sporadic emissions of brownish-reddish ash came from the N crater of BN. Problems with surveillance cameras precluded continuous observation of the summit craters; however, on the morning of 24 May, renewed explosive activity was seen. Observations from Belevedere showed three hornitos on the N flank of the SEC, which emitted pulsing pressurized gas. The lava flow was active and well fed, with branches of ~1.5-2 km in length.

Activity at SEC increased considerably during 28 May-3 June. On 28 May, the presence of a small cinder cone, possibly having formed slowly over recent months, was discovered at the base of Northeast Crater (NEC), occupying about 2/3 of the crater floor and at least 20 m high.

At SEC, evidence of Strombolian activity was masked by discrete flows of gas and steam. The active lava field on the N flank, emerged from a main vent at about 3155 m elevation, which fed two principal flows, one to the E and one to the NE (then turning E). The latter flow formed a lava tube and then re-emerged ~100 m downstream from a small tumulus from which spewed other lava flows, the longest of which extended more than 1.5 km. The S-most branch also initially flowed partly inside a lava tube.

During the evening of 28 May, between 2222 and 2242, Strombolian activity at SEC rose sharply, with ejecta reaching as high as 50 m above the crater rim and with materials occasionally falling on other flanks of the cone. Lava flow rates on 29 and 30 May were estimated at 6-8 m3/s. Temperatures measured using a K-type (Cr/Al) thermocouple showed a maximum temperature on the inside of an expansion bulb to be of 1,065°C at 5 cm depth. Intense degassing continued at SEC for the next several days.

On the evening of 3 June two sub-parallel lava flows descended to the E, of which the northernmost was the longest and reached at least 2,600 m elevation. A few hundred meters ahead of its front, a small branch flowed N but stopped soon after. The other flow was directed toward the Valle del Bove and its advances were discontinuous. Further deepening of the two interior Voragine vents was observed. Eruptive activity was not continuous.

The W rim of BN had a very warm fissure that ran to the N. The N vent was much widened, but it was not possible to observe the base. During observations, gas explosions occurred about every 15 minutes, but it was not possible to observe the fall of ejecta. The S vent had also widened and deepened. On its SE flank, a small semi-circular vent emitted rumbling explosions every 3-10 minutes, accompanied by mostly blue-colored gas mixed with brown ash.

Although intense degassing did not permit views of the interior of the NEC, an apparently recent fissure on the N side of the cone was very warm.

During 4-10 June, two episodes of lava fountaining occurred at the SEC. The first began during the night of 5-6 June, with modest Strombolian activity at the SEC's secondary vent. At 2136 on 6 June, Strombolian activity at the secondary vent reached a frequency of about one explosion per minute, which in successive hours included the main vent as well. The activity eventually climaxed at 0145 on 7 June, when the secondary vent produced a lava fountain whose altitude reached 50 m. Falling to the ground, the stream of lava formed a primary lava flow, which immediately divided into three branches and stopped at about 3,000 m elevation. A second stream flowed to the N before turning E, reaching 2,600 m and superimposing in part on earlier lava flows. The eruptive episode concluded about 0340, with copious ash emissions from the SEC and the BN.

On the night of 8-9 June, a new eruptive episode occurred at the SEC, also beginning with Strombolian activity at 2011 at the principal and secondary vents. The activity evolved into lava fountains which reached a maximum altitude of about 200 m at the principal vent and about 80 m at the secondary vent. The strong activity continued until about 0322 and was accompanied by sustained lava emissions from the secondary vent, which gave rise to two flows which spread to the E and N respectively, superimposing themselves over preceding lava flows.

Activity at the other craters during this period was characterized by continuous degassing at the Voragine and NEC, accompanied, as in the case of the BN, by frequent ash emissions in the SE sector of the crater.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sistema Poseidon, a cooperative project supported by both the Italian and the Sicilian regional governments, and operated by several scientific institutions (URL: http://www.ct.ingv.it/en/chi-siamo/la-sezione.html).


Fuego (Guatemala) — August 2001 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Seismic activity during April and December, eruption in September 2000

Ash venting began at Fuego on 5 April 2000, followed by increased ash emissions and strong seismic signals during 7 and 8 April, according to the Guatemala Volcano Observatory and the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH) of Guatemala. On 8 April at 0215 a hot spot was visible in multi-spectral imagery. More hot spots were occasionally noted but there were no further reports of ash.

A news article from La Hora reported that a column of ash reached 1 km on 29 August 2000. According to the Guatemala Volcano Observatory, an eruption beginning on 6 September emitted an ash-and-steam plume that reached ~800 m. On 21 September a large amount of ash was emitted, blanketing nearby communities. Authorities considered evacuating residents and issued an Orange Alert for the area near the volcano.

Satellite imagery on 7 December showed an ash plume to the SW of the summit, extending 39 km and 11 km wide. According to ground observations the ash was centered at ~4.9 km elevation. INSIVUMEH reported that the volcano was producing loud rumbling sounds and a more significant eruption was likely. On 9 December 2000 satellite imagery confirmed a small eruption at about 1645. The eruption sent an ash cloud to ~4.5 km altitude, near the summit level. The ash cloud was initially dense, about 8 km wide, and drifted W and NW. By 2345, the cloud had dissipated and was no longer visible on satellite imagery. Occasional strong hot spots were visible on GOES-8 multi-spectral imagery throughout the day. That evening, volcanologists in Guatemala indicated that the volcano had become increasingly unstable with several explosions occurring within a few hours. Since then, no major activity has occurred.

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3763-m-high Fuego and its twin volcano to the north, Acatenango. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at Acatenango. In contrast to the mostly andesitic Acatenango, eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Otoniel Matías and Eddie Sánchez, Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH), Ministero de Communicaciones, Transporto, Obras Públicas y Vivienda, 7a. Av. 14-57, zona 13, Guatemala City 01013, Guatemala (URL: http://www.insivumeh.gob.gt/); Washington Volcanic Ash Advisory Center, NOAA Satellite Services Division, NESDIS E/SP23, NOAA Science Center, Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/); La Hora (URL: http://www.lahora.com.gt/).


Jackson Segment (Undersea Features) — August 2001 Citation iconCite this Report

Jackson Segment

Undersea Features

42.15°N, 127.05°W; summit elev. -3100 m

All times are local (unless otherwise noted)


Additional investigations show no evidence of April eruption

After a 3-9 April 2001 seismic swarm that was traced to the Jackson Segment of the Gorda Ridge (BGVN 26:03), seismically inferred volcanism remained unconfirmed. The signals detected on 3 April 2001 were located on the S side of the segment, and continued through 9 April. During a six-day period instruments detected over 3,500 earthquakes; 548 epicenters were located. By 11 April seismic activity was at very low levels, possibly below the detection threshold of the T-phase monitoring system.

On 10 April, an NSF- and NOAA-funded response team departed on the ship RV New Horizon to search for mega-plumes from the event, but no plumes were detected. On 26 April the U.S. Coast Guard ship Healy conducted conductivity, temperature, and depth (CTD) probes and took dredge samples on the site. A report made available in late May indicated that investigations from the Healy also failed to find evidence of an eruption at the Jackson Segment and detected no significant thermal anomalies from hydrothermal plumes. Rocks recovered by dredge from the sea floor were clearly old. The entire segment was also resurveyed with multibeam sonar to compare with bathymetry collected before the earthquake swarm. The early April earthquake swarm may have indicated moving magma that never made it up to the sea floor to erupt.

Geologic Background. The Jackson Segment of the Gorda Ridge more than 200 km off the coast of Oregon lies immediately SSW of the North Gorda Ridge, the northermost of five segments forming the Gorda Ridge spreading center. The first recorded activity took place in April 2001, when volcanic seismicity was detected by hydroacoustic monitoring. The seismicity indicated possible dike propagation to the south and was similar to that which was documented at the time of the eruption of a submarine lava flow from the adjacent North Gorda Ridge segment in 1996. The 2001 activity originated from the central axial valley of the Jackson Segment, near the "narrowgate" on the southern part of the segment. Later surveys, however, revealed no evidence for submarine eruptive activity in April 2001.

Information Contacts: Bob Embley (NOAA/PMEL) and Jim Cowen (SOEST, Univ. of Hawaii), NOAA Pacific Marine Environmental Laboratory (PMEL), 2115 SE Osu Drive, Newport, OR 97365 USA (URL: https://www.pmel.noaa.gov/).


Karymsky (Russia) — August 2001 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Increased seismicity from December 2000 through September 2001

Since the activity reported from June through mid-October 2000 (BGVN 25:09), the Kamchatkan Volcanic Eruption Response Team (KVERT) reported that seismic activity at Karymsky remained mostly at background levels, with a few episodes of increased seismicity.

On 20 December 2000 around 0915 shallow earthquakes under the volcano were accompanied by short-lived explosions. At 2150 the same day a pilot confirmed the presence of ash at the summit of the volcano and mud traces from melting snow on the edifice slopes. The Concern Color Code was increased from Green (volcano is dormant; normal seismicity and fumarolic activity) to Yellow (volcano is restless; eruption may occur) until 29 December.

On 2 and 28 February several shallow seismic events took place, including a 5-minute-long series of weak shallow earthquakes on 28 February. During March, small shallow earthquakes and one episode of weak high-frequency spasmodic tremor were registered. On 12 March a high-frequency signal lasted for 90 minutes. On 28 March, from 1205 to 1300, an intense series of earthquakes with magnitudes up to ~3 was registered. Several local low-frequency earthquakes occurred during the end of March and beginning of April. Around 20 April, more than 40 earthquakes with magnitudes up to ~2.5 occurred. Since then through at least September 2001, seismic activity at Karymsky has remained at background levels with the exception of 23 August, when 30 earthquakes were registered.

General Reference. Khrenov, A.P., and others, 1982, Eruptive activity of Karymsky Volcano over the period of 10 Years (1970-1980): Volcanology and Seismology, no. 4, p. 29-48. Tokarev, P.I., 1990, Eruptions and seismicity at Karymskii volcano in 1965-1986: Volcanology and Seismology, v. 11, p. 117-134 (in English).

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Lopevi (Vanuatu) — August 2001 Citation iconCite this Report

Lopevi

Vanuatu

16.507°S, 168.346°E; summit elev. 1413 m

All times are local (unless otherwise noted)


June 2001 lavas, debris avalanches, <= 1.5 m ashfall, and 7.5-km-high plume

Lopevi erupted explosively on 8 June 2001, with additional eruptions at least through the 19th. The current eruptive period, which started in July 1998, continued during 1999 and 2000 (BGVN 24:02, 24:07, 25:04, and 26:06). This report covers June and July 2001.

The explosive eruption that began around 1100 on 8 June generated an eruptive plume, a lava flow on the NW flank, and two debris avalanches on the W flank (figure 12). During the explosive activity, a crater opened at ~200 m elevation on the NW flank along the SE-NW crack. The ash plume rose to ~7,500 m (as determined by NOAA satellite data analysis). The ash blew NW, carried by ~35-45 km/hour winds; tephra-fall deposits on Lopevi reached ~0.5-1.5 m thick. As much as 7 cm of ash fell on the E coast and middle of Paama Island, 5 km WNW with ~1,700 residents, reaching a thickness of 7 cm.

Figure (see Caption) Figure 12. Sketch map of Lopevi showing the location of June 2001 deposits on the NW and NNW flanks. One lava flow and two debris avalanche deposits date from the 8 June 2001 eruption. Farther N, two lava flows date from the 15 June 2001 eruption. Produced from an original map by A-J. Warden including observations by A-J. Warden and R. Priam (Archive Service de Mines); revised and updated by S. Wallez and D. Charley; drafted by A. Mabonlala. Courtesy of IRD.

About 11 hours after the eruption the Along-Track Scanning Radiometer (ATSR-2) research instrument on the European Remote-Sensing Satellite (ERS-2) obtained data from which an image of the plume could be derived (figure 13). The instrument has infrared detection channels at ~11 and ~12 µm, which are used to discriminate ash from meteorological clouds. The image shows the temperature difference between the 11 and 12 µm channels. The greater this negative difference, the greater the likelihood that there is ash; larger negative differences usually mean more ash. A possible explanation of the complex plume structure shown on figure 13 is the presence of atmospheric water vapor, which would mask the ash signal over some parts of the plume. Water vapor has the opposite effect of ash on the image: a positive difference is created because water vapor tends to make the 11µm temperature larger than the 12 µm temperature.

Figure (see Caption) Figure 13. Lopevi ash plume as imaged by the ATSR-2 instrument on 8 June 2001 at 1134Z. The unlabeled island SW of the plume is Lopevi. The areas with the most ash are in the center of the shaded plume area. Courtesy of Fred Prata, CSIRO.

The 8 June explosion caused instability on the W flank that produced two debris avalanches-unsorted deposits composed of older material (figures 14 and 15). The smaller of the two avalanches was composed of fine gray debris. It occurred next to the lava flow from the NW-flank crater. The larger avalanche, which reached the sea, was beige in color and included basaltic lava fragments, unburned vegetation, and red and black scoria of the sort commonly found on the steep (45°) upper slopes. The scoria and other observations were consistent with this debris avalanche resulting from a partial collapse of the active cone. Aa lava from the NW-flank crater spread out along the coastline (figure 14) on the SW side of the 2000 lava flows (figure 16). This flow had cooled by the time of a field visit on 11 June.

Figure (see Caption) Figure 14. Lopevi's NW coastline showing the 8 June aa lavas and debris avalanches (barely visible); older lavas from 2000 also appear. The photograph was taken on 9 June 2001. Courtesy of S. Wallez.
Figure (see Caption) Figure 15. Lopevi's two W-flank debris avalanches produced during the 8 June 2001 eruption (photographed 9 June 2001). Courtesy of S. Wallez.
Figure (see Caption) Figure 16. Sub-vertical aerial photograph showing lava flows that reached the NNW coast of Lopevi during 2000. Additional lava flows from the June 2001 eruptions covered parts of the SW and NE areas of this delta. N is to the right. Courtesy of S. Wallez.

On a second visit during 14-17 June, geologists saw two new NW-flank flows, which they mapped and photographed (figures 12 and 17). Their guide said the lava flows were emplaced on 15 June 2001. These flows began at a height of ~400 m and added to a delta with a width of ~350 m at the coast.

Figure (see Caption) Figure 17. View of Lopevi from the ocean looking towards the NW coast towards the lava flows from 2000 and both 8 and 15 June 2001. Courtesy of S. Wallez.

According to United Nations reports, the strong SE trade winds had deposited ~18 cm of ash on Paama Island as of 20 June, and lesser ashfall on Ambrym and Malekula islands. The worst affected villages were Luli, Lulep, and Liro on Paama. Overall, it was estimated that 4,000-5,000 people were directly affected by the ashfall on Paama and SE Ambrym. The ashfall on Paama polluted open water-supplies, bringing the pH to 3-4, and caused darkness for a few hours beginning at about 1500 on 8 June. The 12 June report noted that the government of Vanuatu had approached the Australian High Commission in Port Vila and in response an Australian ship in the area, HMAS Kanimbla, was deployed to deliver drinking water from Red Cross stocks. The Vanuatu Red Cross Society provided water, blankets, and soap, as well as participating in assessment activities with government officials and scientists. The National Disaster Management Office reported to the UN that more ashfall occurred on the night of 19 June. As of 20 June sources of potable water had been identified, but there remained a shortage of cooking and wash water. As a precaution, 105 students and five teachers from Paama were evacuated to schools on other islands, but most residents remained and were occupied with clearing ash from roofs, water tanks, and gardens.

Geologic Background. The small 7-km-wide conical island of Lopevi, known locally as Vanei Vollohulu, is one of Vanuatu's most active volcanoes. A small summit crater containing a cinder cone is breached to the NW and tops an older cone that is rimmed by the remnant of a larger crater. The basaltic-to-andesitic volcano has been active during historical time at both summit and flank vents, primarily along a NW-SE-trending fissure that cuts across the island, producing moderate explosive eruptions and lava flows that reached the coast. Historical eruptions at the 1413-m-high volcano date back to the mid-19th century. The island was evacuated following major eruptions in 1939 and 1960. The latter eruption, from a NW-flank fissure vent, produced a pyroclastic flow that swept to the sea and a lava flow that formed a new peninsula on the western coast.

Information Contacts: Sandrine Wallez and Douglas Charley, Department of Geology, Mines & Water Resources (DGMWR), PMB 01, Port-Vila, Vanuatu; Michel Lardy, Institut de Recherche pour le Développement (IRD), Bondy, Paris, France; Fred Prata, Senior Principal Research Scientist, Commonwealth Scientific and Industrial Research Organization (CSIRO), Atmospheric Research, PB 1 Aspendale, Victoria 3195, Australia; United Nations Office for the Coordination of Humanitarian Affairs (OCHA), New York, NY 10017 USA (URL: https://reliefweb.int/).


Mayon (Philippines) — August 2001 Citation iconCite this Report

Mayon

Philippines

13.257°N, 123.685°E; summit elev. 2462 m

All times are local (unless otherwise noted)


Two main episodes in 2001; quiet seen in late August

Mayon has undergone two eruptive episodes thus far in 2001. The first episode began in January 2001 and involved a period of unrest that culminated in explosive eruptions on 24 and 29 June. The second episode took place on 20 July, climaxing on 26 July. Low-level lava spattering and active degassing continued for days after the latter climax but activity dropped in early August.

The stratovolcano was last reported on through 31 May 2001 (BGVN 26:05); the present report covers through mid-August 2001. The volcano's Alert Levels are discussed in more detail in the last section.

Precursors and minor explosive activity. Unrest during the year 2001 was first recognized on 8 January when the Lignon Hill Observatory (LHO) in Legaspi City (11.5 km SE of the summit) reported a blocky lava dome growing on top of the summit. Lava dome extrusions occurred before an explosive eruption the previous year, so the January 2001 dome was an ominous sign of renewed activity. From January to April 2001, the dome slowly grew and sporadic ash explosions accompanied or followed periods of seismic unrest. The hazard status was set at Alert Level 2, signifying the ascent of magma.

During the second week of May, LHO staff noticed that the growing summit lava dome overlapped the unconfined side of the SE crater rim. At 1752 on 11 May a minor explosion ejected ash and vapor to 50 m above the summit. A series of similar small explosions followed on 12 May that were likely triggered by magma intruding into the dome. As a result, the SE portion of the dome partially collapsed.

Subsequently, the SE flank of the dome facing the observatory glowed conspicuously and lava fragments began to detach from the summit lava dome. Rockfalls were episodic at first and it was not clear initially whether detaching lava was caused by instability of the growing dome or due to the effects of increased internal pressure.

In time, observations from Bonga, ~8 km SE of the summit, indicated that incandescent rockfalls were apparently caused by slowly ascending magma entering the dome. The magma was degassed but hot, presumably a remnant of magma erupted during 2000. PHIVOLCS later postulated that ascending magma punched an exit point on the SE flank of the growing lava dome. This material then spilled into the Bonga Gully, with hot lava boulders as big as trucks falling, rolling, and sliding to form a pyroclastic apron on slopes at 1,800-2,000 m elevation. Rockfall activity, monitored via the seismic network, progressively increased in frequency until magma discharge was sufficient to form a stubby lava flow on 17 June. By 20 June, the seismograms displayed more or less merging codas of high-frequency tremor, which suggested that lava extrusion dominated earlier rockfall activity. As seen earlier, the lava flow was thought to represent relatively fresh but still degassed magma.

Lava fills crater then extends 5 km. By 22 June, lava had already buried the summit dome and partially filled the crater. Lava was no longer exiting from a single patch at the side of the dome but from the whole breadth of the SE summit.

Episodes of conspicuous summit glow began on 23 June, and intensified to a pulsating light-yellow incandescence by early evening. The summit did not stay quiet for long because the crater began to vent voluminous gases and to shower spatter around the summit. COSPEC readings indicated an SO2 flux of ~7,000 metric tons per day (t/d), well above the baseline of ~500 t/d. At about 1909 on 23 June, a period of low-level lava fountaining began to feed lava flows that eventually descended from the summit elevation to ~500 m elevation-a distance of ~5 km.

When lava fountaining commenced the Alert Level rose from 3 to 4. This status meant that PHIVOLCS considered a hazardous eruption imminent, within hours to days. The corresponding Level 4 Bulletin carried with it a recommendation to evacuate areas within the 6-km-radius Permanent Danger Zone (PDZ) and a 7-km-radius Extended Danger Zone (EDZ) in the SE sector. The EDZ provided a buffer zone to the Bonga Gully, which descends from near the crater mouth to the lower mid-slopes (~600 m elevation) to the SE, a distance of ~4 km. By 0100 on 24 June the PDZ and EDZ were fully evacuated through the efforts of a group called "Task Force Mayon," a military and civilian organization charged with implementing the evacuation of the danger zones. Temporary shelters received ~25,000 people.

At 0317 on 24 June a series of explosions fed an ash column that rose to ~1 km above the volcano's summit. A thin blanket of ash fell mainly on the northern half of the volcano in the vicinity of barangays (hamlets) Amtic and Tambo of Ligao City and San Vicente, San Antonio, Quinastillojan, Bantayan, Tabiguian, and Buang of Tabaco City.

First substantial pyroclastic flows. Although lava fountaining and small ash puffs signaled the start of explosive activity, it was not until 1245 on 24 June that the first major pyroclastic flow occurred. It followed the eastern branch of the Bonga Gully in the general direction of Barangay Buyuan. PHIVOLCS promptly raised the status to the highest Alert Level, 5, first verbally to provincial disaster-mitigation officials shortly after 1245, followed by an official bulletin released by 1300. Alert Level 5 provided a reminder that hazardous eruptions were taking place. Although the 1245 pyroclastic flow was short-lived and ran down to the middle slopes only (~700-1,000 m elevation), this again-elevated status emphasized that more explosive eruptions were expected.

At 1444 on 24 June, large explosions commenced and generated multiple pyroclastic flows around the cone. Ash clouds from the eruption column and pyroclastic flows enveloped the volcano in ash and rose to ~10 km altitude. Although the volcano seemed to disappear within its own eruption clouds, giving the impression of massive explosions that might have threatened the lowlands, the pyroclastic flows and lava flows were all contained within the PDZ, with maximum runouts to only ~5.5 km.

Considerable airfall ash blanketed the northern areas, particularly the cities of Ligao and Tabaco, but this was chiefly a function of wind velocity and direction, because the wind mostly comes from the SW this time of the year.

Eruptions continued until 1921 on 24 June when seismographs began to record diminishing eruption intensity as indicated by decreasing harmonic tremor amplitudes. However, sporadic explosive eruptions continued throughout the evening as LHO noted light ashfall in Legaspi up to about 2135 that day. Thereafter, during 25-28 June, Mayon remained quiet, although Alert Level 5 was maintained in anticipation of more explosions.

At around 1605 and 1702 on 29 June, Mayon erupted again and sent relatively small pyroclastic flows down the Bonga Gully to the SE. Over the period 30 June to 19 July, Mayon's apparent activity waned and the hazard status was eventually lowered to level 3 (which states that an eruption may still be expected within the coming weeks). Observations in support of reduced activity included a general deflation of the edifice, decreased seismic activity, lowered gas emission rates, and the disappearance of summit incandescence. The first eruptive episode ended and scientists inferred that intrusions into the cone had ceased.

Activity during late July 2001. Mayon's eruptive episode during July 2001 was essentially a continuation of June's activity. On 20 July seismographs around the volcano recorded high-frequency, short-duration tremor associated with rockfalls. The number of seismically detected rockfalls had already declined from the pre-June 24 eruption level of more than 200 events per day to (by 19 July 2001) a post-eruption level of less than ~10 events per day. The latter number was attributed to unstable, freshly deposited lavas on steep upper slopes.

Scientists were alerted when the S-flank seismic station at ~800 m elevation registered an abrupt increase, from 5 rockfall events on 19 January to 48 events on 20 January. Over the same time period an upper seismic station (at 1,700 m elevation) recorded a jump from 25 to 142 events. Incandescent rockfalls became persistent.

Other striking changes soon occurred. On 21 July the SO2 flux tripled, to 7,400 t/d. The uppermost electronic tiltmeter (at 1,700 m elevation) fluctuated by ~20 µrad. Crater glow increased and rockfall occurrences peaked.

PHIVOLCS inferred that Mayon had again entered a mild eruptive stage. The character of unrest resembled activity observed between mid May and 20 June, prior to explosive eruptions on 24 June. Scientists recognized that an explosive and hazardous eruption could occur anytime. By 23 July, PHIVOLCS gave the Albay provincial government a notice of increasing unrest and by 25 July, the Municipal Mayors were informed of reactivation and possible explosive eruption of Mayon.

Overall, unrest was accelerating. On the morning on 25 July, the bulletin also added that the current extrusion of lava was clear evidence of eruption and that more explosive eruptions were expected. At 0418 on 25 July seismometers detected more or less continuous high-frequency tremor. Although clouds shrouded Mayon, volcanologists believed these signals indicated that a lava flow had extruded from the dome, an idea confirmed when observers saw a short lava tongue draping the SE slope just below the summit crater.

During 0219-0315 on 26 July, LHO staff saw mild lava fountaining that reached to ~70 m high. This prompted the return to Alert Level 4 at 0400 on 26 July and a rapid evacuation. During quiet times, farmers work portions of land within the 6-km-radius PDZ, but at Alert 4, people in this zone are required to evacuate as quickly as possible. As in the previous 24 June eruption, a 7-km-radius SE-flank EDZ was also declared (to include river gullies upstream of barangays Mabinit, Bonga, Buyuan and Matanag). But, lava fountaining declined at about 0400 and the volcano seemed quiet. This led some people to be initially lax, and some farmers viewed the lull as an opportunity to gather their livestock near the Bonga Gully. PHIVOLCS firmly advised not to proceed. This warning proved justified when at 0538 a brief burst from the crater sent an ash cloud to ~500 m above the summit. This was accompanied by a low-frequency type earthquake that lasted for about a minute. A lack of urgency towards evacuating may have been widespread. Legaspi City Mayor Rosal made the following admission, which appeared in The Philippine Star the next day. "We were surprised by its sudden explosion. We were told to evacuate last night but we did not know it would explode so fast."

At 0745 on 26 July there occurred another ash explosion with similar seismic signature. In retrospect, sequences of low-frequency seismic events were detected by the Mayon Resthouse station (780 m elevation) before the onset of explosive eruptions at 0756 on 26 July. These events were not detected at other stations or were obscured by high-frequency tremor associated with both lava flowing out at the uppermost elevations and lava fragments detaching from the advancing lava flow.

The 0756 eruption produced a turbulent head of steam and ash, followed by a column of roiling dark-gray ash clouds. The column convected to ~10 km altitude while pyroclastic flows descended the Bonga (SE flank) and Basud (E flank) gullies. Upper-level winds conveyed the topmost eruption column to the SW. Lower-level winds carried fine ash lofted upwards (elutriated) from pyroclastic flows to the SE. Accordingly, the main ashfall deposit reached ~7 mm or more in thickness to the SW (in Camalig); it included scoria up to 10 cm diameter and perhaps larger. Most scoria fragments broke up upon impact with hard surfaces such as concrete and asphalt, but scoria clasts that landed on softer ground were preserved. A second ashfall deposit occurred to the S, SE, and ESE (in Legazpi, Daraga, and Lidong, respectively), amounting to ~5 mm thickness during this initial eruption. Additional lighter ashfalls occurred to the S (in Daraga) and to the SW (in Guinobatan).

A brief helicopter flight over Albay Gulf looking at Legaspi and Santo Domingo showed the dark curtain of ash progressively blanketing these localities. Pyroclastic flows remained well within the PDZ, a fact used to conclude that additional areas were not endangered. Only small-volume pyroclastic flows were seen descending the S-flank regions (Mi-isi and Anoling gullies).

The eruption that began on 0756 on 26 July lasted for about an hour. Ash clouds remained suspended throughout the day, even when Typhoon Feria's rains swept over Mayon. At 1420 that day another episode of eruptions began. Although the suspended ash and rain clouds covered Mayon, harmonic tremor and booming sounds signified explosive discharge until about 1500. A third and final eruption episode occurred from 1749 until 1810. Like the second period of eruptions, ash and rain clouds obscured much of the volcano from Legaspi. From Santo Domingo, however, pyroclastic flows were seen descending the Basud Gully. A ground survey to Bonga, facing this gully in the SE indicated that very small pyroclastic flows were passing here, yet there were large pyroclastic flows to the E.

When the eruption cleared the following day, observers recognized that the septum between the Bonga and Basud Gullies near the summit had breached. It is therefore very likely that late-stage pyroclastic flows during the third eruptive episode were funneled through Basud and little material was channeled along the Bonga Gully. This demonstrates the high probability that subsequent flows will also affect the eastern sector and not just the SE. Fortunately, flow runouts remained within defined danger zones.

On 27 July Mayon entered an effusive state as lava from the summit fed a flow that eventually reached ~3.75 km to the SE at an elevation of ~650 m. This was smaller than the lava flow extruded in June; it traveled farther and eventually reached ~5.5 km down the SE slope at ~500 m elevation. Hazy conditions in the SE foothills were caused by ash-and-steam plumes from the summit and from pyroclastic-and lava-flow deposits. Seismicity remained active, with signals from sporadic explosions and persistent background tremor related to lava flows and other surface events. Numerous (206) discrete rockfall signatures, for example, were detected by the seismic network and many of these were visually confirmed from LHO. The resumption of rockfalls was interpreted to not result from another intrusion but from loosened lava debris on steep slopes.

The SO2 flux at 6,450 t/d remained very high on 27 July and even on the following days, SO2 emission rates varied between 3,265 and 9,915 t/d. Voluminous degassing coincided with loud roaring from the crater, which caused some residents of Santo Domingo, at least 8 km E of the crater, to evacuate. According to residents, the last time they heard the crater degas loudly was prior to the resurgence on 23 September 1984, so that they were troubled when they heard another explosive eruption after 26 July 2001. The concern was not at all unfounded. Although incandescence of the summit already diminished to faint conditions as observed from LHO, some low-level fountaining became evident on video cameras with night vision. The cameras clearly showed blobs of lava thrown 100 m above the crater rim. This new observation, along with elevated seismic and SO2 levels, and other monitored parameters, kept the alert status at Level 5.

Waning activity. It was not until there were clearer signals of gradual decline of activity that PHIVOLCS lowered the Alert Level 5 status to Level 4. A bulletin on 9 August 2001 explicitly noted the cessation of explosive eruptions.

After 10 August seismic activity decreased. Background tremor associated with active magma transport had stopped and rockfall occurrences had become insignificant. The number of low-frequency volcanic earthquakes occurring daily was still above baseline, up to 22 events, but this is not unusual after an eruption of Mayon and was probably related to shallow magma degassing. The SO2 fluxes, up to 6,600 t/d, were still very high, presumably for the same reason. Electronic tiltmeters supported the idea of substantial degassing, showing a general deflation episode following the 26 July eruption. In summary, while various monitoring parameters continued to show significant unrest of Mayon, the general trend was one of declining activity. This information may be used to eventually lower alerts over the volcano and allow the return of evacuees to their homes by the end of August 2001.

June and July eruptions compared. The eruptions in June appeared to be more voluminous and produced more lavas than tephra. The estimated volume of 15 x 106 m3 was in the ratio 2/3 lava and 1/3 pyroclastics. The June eruptions also produced pyroclastic flows that ran through many gullies radiating around the cone. The 26 July eruption produced roughly similar proportions of lava and tephra (namely, 5 x 106 m3 lava; 6 x 106 m3 tephra).

When the 26 July pyroclastic flows poured down the SE and E flanks, the low-altitude SE winds caused Legaspi City to be enveloped in ashfall. Legaspi City generally remains ash-free due to seasonal wind patterns. Not fully prepared to cope with ashfall, many residents panicked even though the threats to life were virtually nil. Phone lines jammed and vehicle traffic was backed up for several kilometers on the highway from Rawis, Legaspi City to Padang, and Santo Domingo. Busy communication networks also prevented PHIVOLCS from relaying real-time information by telephone to the central office in Quezon City. Fortunately, anticipation of explosive eruptions earlier that day meant that warnings to local and national authorities were already sent out. A notice to the Volcanic Ash Advisory Center in Tokyo was also made that morning.

Another marked difference between the June and July 2001 unrest was the time interval between perceived disquiet to the day of explosive eruption. The 24 June eruption was preceded by over a month of seemingly increasing rockfall activity. In a sense, rockfalls were an indicator of magma-discharge rates and the number of rockfalls per day progressively increased up until lava-flow extrusion. In contrast, the period between the onset of rockfalls and the 26 July eruption was barely a week, so that magma-discharge rates jumped abruptly before the onset of lava extrusion and explosive discharge.

Background provided by PHIVOLCS. The towering Mayon stratovolcano is famous for its highly conical shape and its symmetry. It is the most active volcano in the Philippines, with 47 historical eruptions since 1616. The typical eruption episode lasting from a few days to about a month produces a sequence of basaltic andesite lava flows, pyroclastic flows, and tephra falls. Based on geological studies on the nature and extent of deposits, a 6-km-radius "Permanent Danger Zone" (PDZ) has been defined to discourage people from permanently occupying hazardous areas.

Table 6 shows the Mayon warning scheme devised by PHIVOLCS. It is similar to the one employed at Pinatubo. Six alert levels provide the general activity status.

Table 6. A simplified version of the current warning scheme used at Mayon. Courtesy of PHIVOLCS.

Alert Level Meaning
0 Volcano is quiet; no eruption in foreseeable future
1 Little unrest, possibly of hydrothermal, magmatic or tectonic activity
2 Moderate unrest of magmatic origin; may lead to an eruption
3 High unrest; tendency towards an eruption within weeks
4 Eruption imminent within days
5 Hazardous eruption in progress

It has been suggested that Mayon erupts every 10 years, referring to the eruptions of 1928, 1938, and 1947. Then there were the eruptions of 1968 and 1978 as well as the interval between 1984 and 1993 events. Yet in recent years, it seems that this general periodicity has changed. The Millennium eruption, 24 February to 7 March 2000, occurred just 7 years after the 1993 outbursts. A similar period of repose is evident in the interval 1978-84. In fact, close inspection of the historical record suggests other intervals with eruption repose periods of less than 10 years.

Geologic Background. Beautifully symmetrical Mayon, which rises above the Albay Gulf NW of Legazpi City, is the Philippines' most active volcano. The structurally simple edifice has steep upper slopes averaging 35-40 degrees that are capped by a small summit crater. Historical eruptions date back to 1616 and range from Strombolian to basaltic Plinian, with cyclical activity beginning with basaltic eruptions, followed by longer term andesitic lava flows. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic flows and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often devastated populated lowland areas. A violent eruption in 1814 killed more than 1,200 people and devastated several towns.

Information Contacts: Ernesto Corpuz, Philippine Institute of Volcanology and Seismology, C.P. Garcia Ave., Univ. Philippines Campus, U.P. Diliman, 1101 Quezon City.


Okmok (United States) — August 2001 Citation iconCite this Report

Okmok

United States

53.43°N, 168.13°W; summit elev. 1073 m

All times are local (unless otherwise noted)


Small earthquake swarm during 11-15 May 2001

Since the February 1997 eruption (BGVN 22:04) until at least September 2001, Okmok has remained relatively quiet, with one period of increased seismic activity. On 11 May 2001, from about 0800 to at least 1700, the Alaska Volcano Observatory (AVO) detected a small earthquake swarm centered near the volcano. Earthquakes in the swarm had magnitudes ranging from ~2 to 3.6. The locations of the earthquakes could not be pinpointed because Okmok is not monitored by a local seismic network. AVO noted that the earthquakes may have been of volcanic origin, but swarms with similar characteristics are not uncommon at Aleutian arc volcanoes and do not necessarily lead to eruptive activity. The earthquake swarm ended by 15 May, and AVO has not reported any further activity at Okmok since then.

Geologic Background. The broad, basaltic Okmok shield volcano, which forms the NE end of Umnak Island, has a dramatically different profile than most other Aleutian volcanoes. The summit of the low, 35-km-wide volcano is cut by two overlapping 10-km-wide calderas formed during eruptions about 12,000 and 2050 years ago that produced dacitic pyroclastic flows that reached the coast. More than 60 tephra layers from Okmok have been found overlying the 12,000-year-old caldera-forming tephra layer. Numerous satellitic cones and lava domes dot the flanks of the volcano down to the coast, including 1253-m Mount Tulik on the SE flank, which is almost 200 m higher than the caldera rim. Some of the post-caldera cones show evidence of wave-cut lake terraces; the more recent cones, some of which have been active historically, were formed after the caldera lake, once 150 m deep, disappeared. Hot springs and fumaroles are found within the caldera. Historical eruptions have occurred since 1805 from cinder cones within the caldera.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Popocatepetl (Mexico) — August 2001 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Steam-and-ash emissions, periods of dome growth during 2001

Following an episode of intense volcanic activity at Popocatépetl during December 2000 and January 2001 (BGVN 25:12) volcanic activity through September 2001 consisted of periods of small-to-moderate emissions of steam, gas, and ash, several ash cloud-producing eruptions, periods of many high-frequency volcanic earthquakes, and fumarolic activity. In addition, a new lava dome grew within the crater left after a lava dome was destroyed in December 2000.

The Centro Nacionale de Prevencion de Desastres (CENAPRED) and the Washington Volcanic Ash Advisory Center (VAAC) noted several small-to-moderate sized eruptions during the report period. Large eruptions are discussed below, and others are in table 14.

Table 14. Eruptions at Popocatépetl during February-August 2001 not discussed in the report, based on information from CENAPRED, Washington VAAC, and the México City Meteorological Watch Office via the Washington VAAC. All heights are approximate values above the volcano.

Date Time Description of activity
01 Feb 2001 1345 Narrow ash plume visible in GOES-8 imagery rose to ~1 km, drifted NNE
08 Feb 2001 1921 Small ash cloud rose to 2 km, drifted NE
09 Feb 2001 1400 Ash cloud rose to 2 km
11 Feb 2001 1338 Ash cloud rose to 2.5 km, drifted S
11 Feb 2001 1348 Ash cloud rose to 2.5 km, drifted S
06 May 2001 1205 Steam-and-ash cloud rose to 1.5 km
14 May 2001 0939 Steam-and-ash cloud rose to 1.5 km
26 May 2001 1122 Steam-and-ash emission rose to 1.5 km
01 Jun 2001 0804 Steam-and-ash cloud rose to 1.5 km
09 Jun 2001 0424 Small explosion, most intense phase lasted 30 seconds
11 Jun 2001 1100 Ash cloud rose to 2 km, drifted W
12 Jun 2001 1648 Eruption occurred with the most intense phase lasting 30 seconds, too cloudy to observe ash cloud
24 Jun 2001 0900 Small ash cloud rose to 0.5 km, drifted SW
01 Jul 2001 0912 Ash cloud rose to 800 m, drifted SSW
14 Jul 2001 1045 Steam-and-ash cloud rose to 2 km, drifted W
14 Jul 2001 2303 Eruption occurred, but too cloudy to assign a height to the ash cloud
14 Jul 2001 2341 Ash cloud rose to 0.5 km, drifted NW
24 Jul 2001 0900 Summit-level emission, drifted W
09 Aug 2001 2300 Ash cloud rose to 2 km
17 Aug 2001 1514 Ash cloud rose to 2 km

Volcanic Activity during late January-February 2001. As of late January Popocatépetl was at Alert Level Yellow Phase Three, with a 12-km-radius restricted area. During the end of January through February several moderate-to-small eruptions occurred at Popocatépetl. On 30 January during 1530-1545 a moderate ash emission was visible on CENAPRED's video camera rising to ~1.5 km above the volcano's summit. The ~9-km-wide moderately-dense ash cloud extended from the summit to the N and NE. An eruption on 15 February at 1542 produced an ash cloud that rose to 2.5 km above the summit and drifted to the ENE. The intense phase of the eruption lasted about 15 minutes. The ash cloud was tracked using Geostationary Operational Environmental Satellite-8 (GOES-8) imagery as it drifted to the Gulf of México by 0102 the next day. The NOAA Operational Significant Event Imagery Support Team created a movie loop using images captured by GOES-8 that are available at http://www.osei.noaa.gov/.

New lava dome growth and destruction during March and April. Relatively low volcanic activity during the beginning of March consisted of small steam-and-ash emissions and periods of harmonic tremor. CENAPRED reported that beginning on 12 March volcanic activity rose to high levels, with harmonic tremor occurring for a cumulative hour and approximately 50 small emissions of steam, gas, and occasionally ash. An eruption at 2023 produced an ash column that rose 1 km above the summit and incandescent volcanic fragments were hurled up to 1 km away from the crater to the volcano's N flank.

On 13 March at 1953 another eruption produced an ash column that rose to 2 km. While flying over the volcano the same day CENAPRED personnel observed a new 100- to 150-m-diameter lava dome growing in the inner crater that was created after the December 2000 dome was destroyed. On both 14 and 15 March a cumulative hour-long period of harmonic tremor occurred and 55, and 73 emissions of steam, gas, and ash occurred, respectively. The lava dome was 200 m in diameter and about 40 m tall as of 15 March. On 16 March there was a larger number of volcanic emissions (95) than on the previous couple of days, but less harmonic tremor was registered (0.5 hour). Volcanic activity began to decrease on 17 March, with 38 emissions occurring and 15 minutes of harmonic tremor recorded.

During the remainder of March and early April volcanic activity related to the emplacement of the new lava dome occurred; there were episodes of harmonic tremor totaling up to 8 hours per day, a large amount of high-frequency tremor, an average of two tectono-volcanic earthquakes per day up to M 2.3, and fumarolic activity.

On 16 April at 1948 a moderate eruption produced an ash cloud that rose to 4 km above the volcano's summit and drifted to the SW (figure 37, a and b). The eruption also sent incandescent volcanic fragments up to 2 km from the crater to the volcano's NE and NW flanks. The 40-second-long eruption destroyed the lava dome that had formed within the crater over the course of the previous several weeks. After the eruption the level of volcanic activity stabilized, with a relatively low number of gas, steam, and ash emissions and episodes of harmonic tremor. On 17 April a small lahar traveled down the Achupashal Gorge.

Figure (see Caption) Figure 37. For Popocatépetl, (a) a photograph showing the 16 April 2001eruption at 1949, and (b) thermal image of the 16 April eruption at an unstated time. In the thermal image, the ash cloud is visible rising to 4 km above the volcano's summit. Higher temperatures are represented by red and pink color shades in the area of fresh tephra deposition. The N flank of the volcano is shown. Hot material is visible on the upper NE and NW flanks of the volcano. Courtesy of CENAPRED.

Volcanic activity during late April-July. Following episodes of harmonic tremor during 28 April through early on 29 April a moderate eruption at 0819 produced an ash cloud that CENAPRED reported rose 2 km above the summit and quickly drifted to the ESE. A pilot reported that the ash cloud reached up to 3.5 km. The most intense phase of the eruption lasted approximately 1 minute. Extreme cloudiness obstructed clear views of the volcano, but scientist believe incandescent volcanic fragments were ejected during the eruption. Noise from the eruption was heard in San Pedro Benito Juárez (Puebla), 10 km SE of the volcano. By 0930 small amounts of ash fell in San Pedro Benito Juárez. Another small eruption occurred at 1310 and produced an ash cloud that rose 1.5-2 km above the volcano. After the eruptions volcanic activity returned to previous levels, with episodes of harmonic tremor and small volcanic emissions.

One of the many small eruptions during May occurred on the 13th at 2301 and ejected volcanic fragments up to 0.5 km away from the volcano's crater. Cloudy conditions prohibited observation of a possible accompanying ash cloud. The eruption was followed by an episode of harmonic tremor. A moderate-sized eruption on 31 May at 2136 sent incandescent material 2-3 km from the crater down the NE flank. The ash cloud produced from the eruption rose ~2 km above the volcano's summit and drifted to the W. The most intense phase of the eruption lasted approximately 1 minute. Harmonic tremor started about 90 seconds after the eruption began, and lasted about 5 hours. The following day a similar, but smaller, eruption at 0804 sent a steam-and-ash cloud to ~1.5 km.

Volcanic activity was relatively low in June, with small steam-and-ash emissions (table 4). CENAPRED reported that a moderate-sized eruption occurred on 3 July at 0410, which may have ejected incandescent volcanic fragments around the rim of the summit crater. Later that day, at 0648, a larger eruption produced an ash cloud that rose more than 4 km above the summit in a few minutes (figure 38). According to the Washington VAAC, at least three ash-producing eruptions occurred on 3 July; at 0425, 0648, and 0830. They reported that the 0425 eruption produced an ash cloud that was visible on GOES-8 imagery spreading in two directions at different heights; less than 1 km above the volcano one portion of the ash cloud drifted to the NW, and ~1-4 km above the summit it drifted to the SE (figure 39). Small amounts of ash fell NW of the volcano in the towns of San Pedro Nexapa, Amecameca, Tlalmanalco, San Rafael, Iztapaluc, and as far away as 35 km in Chalco.

Figure (see Caption) Figure 38. Photograph of an eruption of Popocatépetl taken on 3 July 2001 at 0657. The northern side of the volcano is shown. Courtesy of CENAPRED.
Figure (see Caption) Figure 39. Sketch showing the distributions of two portions of a Popocatépetl ash cloud in GOES-8 imagery on 3 July 2001at 0515. The enclosed hatched areas depict the location of volcanic ash. The portion of the ash cloud that drifted to the NW was ~ 1 km above the volcano and the portion that drifted to the SE, ~ 1-4 km above the volcano. Courtesy of Washington VAAC.

Based on information from pilot reports and ground observations, the Washington VAAC reported that the ash cloud was 9.3 km SE of México City airport (~65 km NE of the volcano) at 0930. Very light ash fell on runways at the Mexico City Airport, causing some airlines to briefly suspend takeoffs. CENAPRED's seismic data revealed that the explosive event lasted ~10 minutes, after which volcanism returned to low levels.

On 23 July CENAPRED reduced the Alert Level from Yellow Phase Three to Phase Two because volcanism was lower than it had been in December 2000 when the Alert Level was originally raised (BGVN 25:12). Under the new Alert Level, activity continued to be prohibited within a 12 km radius around the volcano, but controlled travel was permitted on the road between Santiago Xalitzintla (Puebla) ~10 km NE of the volcano and San Pedro Nexapa (State of México) ~12 km NW of the volcano, including Paso de Cortés.

New dome growth episode during August. A new episode of dome growth was first detected at Popocatépetl on 9 August when a significant increase in seismicity at the volcano lasted for about 24 hours. The seismicity was much lower than that detected in the interval beginning on 13 December 2000, a time when the highest amplitude tremor was recorded at Popocatépetl to date. A high-altitude flight took place on 10 August (sponsored by the Secretary of Communication and Transportation); it revealed that a new dome had been emplaced. It emerged at the bottom of the inner crater that formed after the December 2000 dome was destroyed (figures 40 and 41).

Figure (see Caption) Figure 40. Sketch of Popocatépetl's summit crater and the new lava dome as they appeared on 10 August 2001. Courtesy of CENAPRED and Instituto de Geofísica, UNAM.
Figure (see Caption) Figure 41. Photograph of Popocatépetl's new lava dome taken on 20 August 2001. Courtesy of CENAPRED and the Secretary of Communication and Transportation.

The lava dome's volume was estimated to be slightly more than 0.5 million cubic meters. Based on the assumption that the period of dome growth coincided with the period of maximum seismicity, the rate of growth was estimated to be 7-8 m3/s; less than 5% of the rates measured in December 2000. On 13 August the dome was 190 m in diameter and 30 m tall, about 5% the size of the December 2000 dome.

On 15 August at 1545 a new episode of high seismic activity began at the volcano. This episode was similar to the 9 August episode, but more steam-and-ash emissions with higher intensities occurred on 15 August. Seismicity further increased at 1800. The entire episode was attributed to a higher rate of lava extrusion. The waveforms and amplitudes of seismic signals were similar to those recorded on 13 December 2000; however, the total seismic energy release was about 30 % of the energy released on 13 December.

Small amounts of ash from the emissions fell NW and W of the volcano in San Pedro Nexapa, Amecameca, Ozumba, Atlautla, and San Juan Tehuiztitlán. Volcanic activity decreased on 16 August around 0115. During the night incandescence was seen at the summit and at 0538 incandescent fragments were ejected more than 500 m down the volcano's N flank.

After the August 15 increase in seismicity, seismic and volcanic activity returned to normal levels, with small volcanic emissions and periods of high-frequency and low-amplitude tremor. On 9 September during 0815-1605 an episode of frequent small- to moderate-sized eruptions began at Popocatépetl. The eruptions produced steam-and-ash emissions that rose to a maximum height of 1 km above the dome and drifted to the NW. During the night a small eruption sent incandescent fragments up to 200 m from the crater. Small amounts of ash fell in Ozumba (~15 km W of the volcano) and in Yecapixtla (~25 km SW of the volcano). Aerial photographs taken on 20 September revealed that the lava dome was visible within the crater.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Carlos Valdés González, Roberto Quass Weppen, Gilberto Castelan, Enrique Guevara Ortiz, and Angel Gómez-Vázquez, Centro Nacional de Prevención de Desastres (CENAPRED), Av. Delfín Madrigal No.665. Coyoacan, México. D.F. 04360 (URL: https://www.gob.mx/cenapred/); Servando de la Cruz-Reyna, Instituto de Geofísica, UNAM. Cd. Universitaria. Circuito Institutos. Coyoácan. México, D.F. 04510 (URL: http://www.geofisica.unam.mx/); Washington VAAC, Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ssd.noaa.gov/); NOAA Operational Significant Events Imagery Support Team (OSEI), NOAA/NESDIS, World Weather Building, Room 510, 5200 Auth Road, Camp Springs, MD 20748 USA (URL: https://www.nnvl.noaa.gov/); Secretaría de Comunicaciones y Transportes, Xola Y Avenida Universidad, Cuerpo "C",Piso 1, Col. Navarte, Del. Benito Juarez, C. P. 03028, México (URL: http://www.sct.gob.mx/); Associated Press.


Semeru (Indonesia) — August 2001 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Continuous seismic activity, plumes to ~11.6 km

From August 2000 through August 2001, activity at Semeru was characterized by continuous seismic activity and ash-and-steam plumes of varying heights above the summit. The Alert Level at Semeru remained at level 2 (on a scale of 1-4) throughout the report period.

The Darwin Volcanic Ash Advisory Center (VAAC) reported volcanic ash plumes and clouds on several occasions throughout the year (table 5). The plumes ranged from ~4.6 to ~11.6 km altitude, and moved mainly SSE. On 8 July at 1503 a SE-drifting ash plume rose to ~2.5 km above the volcano. Ground-based reports prior to the eruption revealed that each day during 18-24 June Semeru emitted ash to ~0.6 km above the volcano.

Table 5. Summary of Volcanic Ash Advisories from the Darwin VAAC issued between August 2000 and August 2001. Note that heights are given in altitude. Semeru's summit lies at 3,767 m above sea level. Information sources include air reports (for example, routed via airlines, AIREPS), pilot reports (PIREPS), satellite data, and reports from ground observations), and information from the Meteorological and Geophysical Agency of Indonesia. Source date was provided by the Darwin VAAC.

Date Time Source Comment
19 Aug 2000 0653 PIREPS Possible smoke plume observed extending to ~10.6 km and moving S to SE.
19 Aug 2000 0812 PIREPS Possible smoke plume extending to ~4.6 km.
20 Aug 2000 0944 AIREP Smoke plume observed extending to ~7.3 km.
21 Aug 2000 0938 AIREP Smoke plume observed extending to ~7.3 km.
14 Sep 2000 1135 AIREP Stationary smoke plume at ~6 km.
10 Oct 2000 0333 AIREP Volcanic ash cloud at ~6 km and ascending.
10 Oct 2000 0433 AIREP Volcanic ash cloud at ~6 km and ascending.
10 Oct 2000 1030 AIREP Volcanic ash cloud at ~6 km and ascending.
11 Oct 2000 0216 AIREP Volcanic ash cloud at ~6 km and ascending.
11 Oct 2000 0435 AIREP Volcanic ash cloud at ~6 km, intermittent discharge extending to a maximum of 30 NM.
11 Oct 2000 0528 AIREP Volcanic ash cloud at ~6 km, intermittent discharge extending to a maximum of 30 NM.
11 Oct 2000 0925 AIREP Volcanic ash cloud at ~6 km, intermittent discharge extending to a maximum of 30 NM.
13 Oct 2000 0426 AIREP Volcanic ash cloud at ~6 to ~7.6 km drifting SW.
27 Oct 2000 0215 AIREP Volcanic ash cloud at ~7.6 km lasting for ~10 minutes.
30 Oct 2000 1055 AIREP Volcanic ash cloud at ~6 km.
11 Dec 2000 0508 AIREP Volcanic ash to ~7.6 km.
08 Jul 2001 0929 AIREP Ash plume reported to ~6 km drifting SE.
09 Jul 2001 0857 AIREP Ash plume to ~6 km drifting SE.
09 Jul 2001 2355 AIREP Volcanic ash at ~11.6 km.
09 Jul 2001 0857 AIREP Ash plume reported to ~6 km drifting SE.

Explosion earthquakes dominated the seismicity (table 6), and pyroclastic flows occurred 17 times between 31 July 2000 and 15 July 2001. The Volcanological Survey of Indonesia (VSI) reported that a significant change in seismic activity occurred during 3-9 October 2000, when the number of explosion earthquakes increased to more than 700. A pyroclastic flow that reached the Kembar Besuki river, as far as 2,500 m from the summit, occurred on 2 October.

Table 6. Summary of seismicity at Semeru, 31 July 2000-15 July 2001. Ash plume heights are distances above the summit unless otherwise noted. Courtesy of the Volcanic Survey of Indonesia (VSI).

Date Deep Volcanic (A-type) Shallow Volcanic (B-type) Explosion Avalanche Tectonic Comment
31 Jul-07 Aug 2000 4 5 657 64 22 Five pyroclastic flows. Five pyroclastic-flow earthquakes. Four tremor events.
08 Aug-14 Aug 2000 5 4 584 43 13 Two pyroclastic flows; ash plume ~600 m. Two tremor events.
15 Aug-21 Aug 2000 2 -- 420 17 5 Ash plume ~600 m.
22 Aug-29 Aug 2000 23 1 542 27 21 Ash plume ~600 m. Three pyroclastic-flow earthquakes.
29 Aug-04 Sep 2000 23 1 542 27 21 Ash cloud ~600 m. Three pyroclastic-flow earthquakes.
05 Sep-11 Sep 2000 -- 2 594 8 -- Ashfall (105 events); white cloud to ~700 m.
12 Sep-18 Sep 2000 -- -- 623 -- -- Three pyroclastic flows; ashfall (72 events); ash plume to ~600 m. Two tremor events.
19 Sep-25 Sep 2000 -- 3 556 98 16 Ash plume to ~600 m.
26 Sep-02 Oct 2000 2 2 582 19 1 Thin white ash plume. One pyroclastic-flow earthquake. 79 tremor events.
03 Oct-09 Oct 2000 1 1 707 80 14 One pyroclastic flow.
10 Oct-16 Oct 2000 1 3 592 41 13 One pyroclastic flow; ash plume to ~600 m.
17 Oct-23 Oct 2000 3 -- 607 25 -- --
24 Oct-30 Oct 2000 42 1 592 22 7 Volcano covered by haze. Four tremor events.
31 Oct-06 Nov 2000 16 1 561 48 13 Ash plume to ~600 m.
28 Nov-04 Dec 2000 8 -- 483 24 2 Thick white fume 600 m above Jonggring Seloko crater.
05 Dec-11 Dec 2000 1 1 513 16 6 Two pyroclastic flows; thick white fume 600 m above Jonggring Seloko crater.
12 Dec-18 Dec 2000 2 -- 598 38 5 Volcano covered by smog.
19 Dec-25 Dec 2000 -- 1 319 22 2 --
26 Dec-01 Jan 2001 1 -- 559 98 7 White-gray ash plume to 600 m.
02 Jan-08 Jan 2001 6 -- 579 80 10 --
09 Feb-15 Feb 2001 29 1 693 80 4 --
13 Feb-19 Feb 2001 1 -- 519 29 1 No visual observations because of cloudy weather.
20 Feb-26 Feb 2001 3 -- 702 58 5 White-thin plume to ~100 m.
27 Feb-05 Mar 2001 -- -- 249 27 2 White-gray plumes to ~600 m.
06 Mar-12 Mar 2001 6 -- 303 31 -- --
12 Mar-18 Mar 2001 4 -- 349 10 3 --
19 Mar-23 Mar 2001 2 -- 259 -- 1 --
02 Apr-09 Apr 2001 28 -- 305 248 3 --
09 Apr-15 Apr 2001 -- -- 339 51 3 --
16 Apr-22 Apr 2001 -- -- 550 -- -- --
23 Apr-29 Apr 2001 12 1 759 157 4 --
30 Apr-06 May 2001 -- -- 782 96 7 --
07 May-13 May 2001 2 -- 670 113 7 --
14 May-20 May 2001 1 -- 616 143 2 --
28 May-03 Jun 2001 -- -- 396 115 3 --
04 Jun-10 Jun 2001 3 -- 430 75 5 --
11 Jun-17 Jun 2001 2 -- 361 81 4 --
18 Jun-24 Jun 2001 8 -- 346 62 3 --
25 Jun-01 Jul 2001 2 -- 331 37 2 --
02 Jul-08 Jul 2001 -- -- 299 30 6 --
09 Jul-15 Jul 2001 -- -- 687 57 11 --

During 27 March-1 April 2001, VSI personnel observed several lava avalanches that traveled to Kembar River valley as far as 750 m S of the summit. No seismic data were available because the seismometers broke on 24 March 2001. They were repaired on 1 April.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/).


Sheveluch (Russia) — August 2001 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Eruption on 15 July, pyroclastic flows and explosion on 23 August 2001

During 14-16 July 2001, spasmodic volcanic tremor increased several times. On 15 July at 1803 a three-pixel anomaly was visible on AVHRR satellite imagery near the SW flank of the volcano and at 2100 a gas-and-steam plume was observed rising to 1.5 km above the dome. A moderate-sized eruption took place on 19 July at 1033. KVERT raised the level of concern from Yellow (volcano is restless; eruption may occur) to Orange (volcano is in eruption or eruption may occur at any time). The eruption produced an ash plume that rose 3 km above the lava dome.

After the eruption through 15 August, seismic activity remained above background levels, with many small earthquakes occurring within the volcano's edifice and many different seismic signals (explosion, avalanche, collapse) recorded locally. Gas-and-steam plumes rose from the summit level to ~2 km above the dome. One- to three-pixel anomalies were occasionally visible on AVHRR imagery near the SW flank of the volcano. The level of continuous spasmodic volcanic tremor increased on 28 and 30 July. On the night of 1 August ash fell in the town of Klyuchi, 46 km S of the volcano. On 11 August several thermal anomalies were recorded on satellite imagery, as well as a gas-and-steam plume that extended 75 km SE. On 15 August volcanic tremor decreased gradually to background levels, but increased again soon after. Pyroclastic flows traveled down the flanks of the volcano following an explosion on 23 August. The volcano remained at concern level Orange throughout August.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT); Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA; Anchorage Volcanic Ash Advisory Center (VAAC), NOAA Alaska Aviation Weather Unit, 6930 Sand Lake Road, Anchorage, AK 99502-1845, USA (URL: http://vaac.arh.noaa.gov/); Tokyo Volcanic Ash Advisory Center, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).