Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Nevados de Chillan (Chile) Explosions and pyroclastic flows continue; new dome emerges from Nicanor crater in June 2020

Bagana (Papua New Guinea) Ash plumes during 29 February-2 March and 1 May 2020

Kerinci (Indonesia) Intermittent ash emissions during January-early May 2020

Tinakula (Solomon Islands) Intermittent small thermal anomalies and gas-and-steam plumes during January-June 2020

Ibu (Indonesia) Frequent ash emissions and summit incandescence; Strombolian explosions in March 2020

Suwanosejima (Japan) Frequent explosions, ash plumes, and summit incandescence in January-June 2020

Kadovar (Papua New Guinea) Intermittent ash plumes and persistent summit thermal anomalies, January-June 2020

Sangay (Ecuador) Daily ash plumes and frequent pyroclastic flows produce ashfall and lahars, January-June 2020

Karangetang (Indonesia) Incandescent block avalanches through mid-January 2020; crater anomalies through May

Shishaldin (United States) Intermittent thermal activity and a possible new cone at the summit crater during February-May 2020

Masaya (Nicaragua) Lava lake level drops but remains active through May 2020; weak gas plumes

Krakatau (Indonesia) Strombolian explosions, ash plumes, and crater incandescence during April 2020



Nevados de Chillan (Chile) — May 2020 Citation iconCite this Report

Nevados de Chillan

Chile

36.868°S, 71.378°W; summit elev. 3180 m

All times are local (unless otherwise noted)


Explosions and pyroclastic flows continue; new dome emerges from Nicanor crater in June 2020

Nevados de Chillán is a complex of late-Pleistocene to Holocene stratovolcanoes in the Chilean Central Andes. An eruption started with a phreatic explosion and ash emission on 8 January 2016 from a new crater (Nicanor) on the E flank of the Nuevo crater, itself on the NW flank of the large Volcán Viejo stratovolcano. Strombolian explosions and ash emissions continued throughout 2016 and 2017; a lava dome within the Nicanor crater was confirmed in early January 2018. Explosions and pyroclastic flows continued during 2018 and 2019, with several lava flows appearing in late 2019. This report covers continuing activity from January-June 2020 when ongoing explosive events produced ash plumes, pyroclastic flows, and the growth of new dome inside the crater. Information for this report is provided primarily by Chile's Servicio Nacional de Geología y Minería (SERNAGEOMIN)-Observatorio Volcanológico de Los Andes del Sur (OVDAS), and by the Buenos Aires Volcanic Ash Advisory Center (VAAC).

Explosions with ash plumes rising up to three kilometers above the summit area were intermittent from late January through early June 2020. Some of the larger explosions produced pyroclastic flows that traveled down multiple flanks. Thermal anomalies within the Nicanor crater were recorded in satellite data several times each month from February through June. A reduction in overall activity led SERNAGEOMIN to lower the Alert Level from Orange to Yellow (on a 4-level, Green-Yellow-Orange-Red scale) during the first week of March, although tens of explosions with ash plumes were still recorded during March and April. Explosive activity diminished in early June and SERNAGEOMIN reported the growth of a new dome inside the Nicanor crater. By the end of June, a new flow had extended about 100 m down the N flank. Thermal activity recorded by the MIROVA project showed a drop in thermal energy in mid-December 2019 after the lava flows of September-November stopped advancing. A decrease in activity in January and February 2020 was followed by an increase in thermal and explosive activity in March and April. Renewed thermal activity from the growth of a new dome inside the Nicanor crater was recorded beginning in mid-June (figure 52).

Figure (see Caption) Figure 52. MIROVA thermal anomaly data for Nevados de Chillan from 8 September 2019 through June 2020 showed a drop in thermal activity in mid-December 2019 after the lava flows of September-November stopped advancing. A decrease in activity in January and February 2020 was followed by an increase in explosive activity in March and April. Renewed thermal activity from the growth of a new dome inside the Nicanor crater was recorded beginning in mid-June. Courtesy of MIROVA.

Weak gas emissions were reported daily during January 2020 until a series of explosions began on the 21st. The first explosion rose 100 m above the active crater; the following day, the highest explosion rose 1.6 km above the crater. The Buenos Aires VAAC reported pulse emissions visible in satellite imagery on 21 and 24 January that rose to 3.9-4.3 km altitude and drifted SE and NE, respectively. Intermittent explosions continued through 26 January. Incandescent ejecta was observed during the night of 28-29 January. The VAAC reported an isolated emission on 29 January that rose to 5.2 km altitude and drifted E. A larger explosion on 30 January produced an ash plume that SERNAGEOMIN reported at 3.4 km above the crater (figure 53). It produced pyroclastic flows that traveled down ravines on the NNE and SE flanks. The Washington VAAC reported on behalf of the Buenos Aires VAAC that an emission was observed in satellite imagery on 30 January that rose to 4.9 km altitude and was moving rapidly E, reaching 15 km from the summit at midday. The altitude of the ash plume was revised two hours later to 7.3 km, drifting NNE and rapidly dissipating. Satellite images identified two areas of thermal anomalies within the Nicanor crater that day. One was the same emission center (CE4) identified in November 2019, and the second was a new emission center (CE5) located 60 m NW.

Figure (see Caption) Figure 53. A significant explosion and ash plume from the Nicanor crater at Nevados de Chillan on 30 January 2020 produced an ash plume reported at 7.3 km altitude. The left image was taken within one minute of the initial explosion. Images posted by Twitter accounts #EmergenciasÑuble (left) and T13 (right); original photographers unknown.

When the weather permitted, low-altitude mostly white degassing was seen during February 2020, often with traces of fine-grained particulate material. Incandescence at the crater was observed overnight during 4-5 February. The Buenos Aires VAAC reported an emission on 14 February visible in the webcam. The next day, an emission was visible in satellite imagery at 3.9 km altitude that drifted E. Episodes of pulsating white and gray plumes were first observed by SERNAGEOMIN beginning on 18 February and continued through 25 February (figure 54). The Buenos Aires VAAC reported pulses of ash emissions moving SE on 18 February at 4.3 km altitude. Ash drifted E the next day at 3.9 km altitude and a faint plume was briefly observed on 20 February drifting N at 3.7 km altitude before dissipating. Sporadic pulses of ash moved SE from the volcano on 22 February at 4.3 km altitude, briefly observed in satellite imagery before dissipating. Thermal anomalies were visible from the Nicanor crater in Sentinel-2 satellite imagery on 23 and 28 February.

Figure (see Caption) Figure 54. An ash emission at Nevados de Chillan on 18 February 2020 was captured in Sentinel-2 satellite imagery drifting SE (left). Thermal anomalies within the Nicanor crater were measured on 23 (right) and 28 February. Images use Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.

Only low-altitude degassing of mostly steam was reported for the first half of March 2020. When SERNAGEOMIN lowered the Alert Level from Orange to Yellow on 5 March, they reduced the affected area from 5 km NE and 3 km SW of the crater to a radius of 2 km around the active crater. Thermal anomalies were recorded at the Nicanor crater in Sentinel-2 imagery on 4, 9, 11, 16, and 19 March (figure 55). A new series of explosions began on 19 March; 44 events were recorded during the second half of the month (figure 56). Webcams captured multiple explosions with dense ash plumes; on 25 and 30 March the plumes rose more than 2 km above the crater. Fine-grained ashfall occurred in Las Trancas (10 km SW) on 25 March. Pyroclastic flows on 25 and 30 March traveled 300 m NE, SE, and SW from the crater. Incandescence was observed at night multiple times after 20 March. The Buenos Aires VAAC reported several discrete pulses of ash that rose to 4.3 km altitude and drifted SE on 20 and 21 March, SW on 25 March, and SE on 29 and 30 March. Another ash emission rose to 5.5 km altitude later on 30 March and drifted SE.

Figure (see Caption) Figure 55. Sentinel-2 Satellite imagery of Nevados de Chillan during March 2020 showed thermal anomalies on five different dates at the Nicanor crater, including on 9, 11, and 16 March. A second thermal anomaly of unknown origin was also visible on 11 March about 2 km SW of the crater (center). Images use Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 56. Forty-four explosive events were recorded at Nevados de Chillan during the second half of March 2020 including on 19 March. Courtesy of SERNAGEOMIN webcams and chillanonlinenoticia.

In their semi-monthly reports for April 2020, SERNAGEOMIN reported 94 explosive events during the first half of the month and 49 during the second half; many produced dense ash plumes. The Buenos Aires VAAC reported frequent intermittent ash emissions during 1-13 April reaching altitudes of 3.7-4.3 km (figure 57). They reported the plume on 8 April visible in satellite imagery at 7.3 km altitude drifting SE. An emission on 13 April was also visible in satellite imagery at 6.1 km altitude drifting NE.

Figure (see Caption) Figure 57. Sentinel-2 satellite imagery captured a strong thermal anomaly and an ash plume drifting SE from Nevados de Chillan on 10 April 2020. Image uses Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.

During the second half of April 2020, SERNAGEOMIN reported that only one plume exceeded 2 km in height; on 21 April, it rose to 2.4 km above the crater (figure 58). The Buenos Aires VAAC reported isolated pulses of ash on 18, 26, 28, and 30 April. During the second half of April SERNAGEOMIN also reported that a pyroclastic flow traveled about 1,200 m from the crater rim down the SE flank. The ash from the pyroclastic flow drifted SE and S as far as 3.5 km. Satellite images showed continued activity from multiple emission centers around the crater. Pronounced scarps were noted on the internal walls of the crater, attributed to the deepening of the crater from explosive activity.

Figure (see Caption) Figure 58. Tens of explosions were reported at Nevados de Chillan during the second half of April 2020 that produced dense ash plumes. The plume on 21 April rose 2.4 km above the Nicanor crater. Photo by Josefa Carrasco Acuña from San Fabián de Alico; posted by Noticias Valpo Express.

Intermittent explosive activity continued during May 2020. The plumes contained abundant particulate material and were accompanied by periodic pyroclastic flows and incandescent ejecta around the active crater, especially visible at night. The Buenos Aires VAAC reported several sporadic weak ash emissions during the first week of May that rose to 3.7-5.2 km altitude and drifted NE. SERNAGEOMIN reported that only one explosion produced an ash emission that rose more than two km above the crater during the first two weeks of the month; on 6 May it rose to 2.5 km above the crater and drifted NE. They also observed pyroclastic flows on the E and SE flanks that day. Additional pyroclastic flows traveled 450 m down the S flank during the first half of the month, and similar deposits were observed to the N and NE. Satellite observations showed various emission points along the NW-trending lineament at the summit and multiple erosion scarps. Major erosion was noted at the NE rim of the crater along with an increase in degassing around the rim.

During the second half of May 2020 most of the ash plumes rose less than 2 km above the crater; a plume from one explosion on 22 May rose 2.2 km above the crater; the Buenos Aires VAAC reported the plume at 5.5 km altitude drifting NW (figure 59). Continuing pyroclastic emissions deposited material as far as 1.5 km from the crater rim on the NNW flank. There were also multiple pyroclastic deposits up to 500 m from the crater directed N and NE during the period. SERNAGEOMIN reported an increase in steam degassing between Nuevo-Nicanor and Nicanor-Arrau craters.

Figure (see Caption) Figure 59. Explosions produced dense ash plumes and pyroclastic flows at Nevados de Chillan multiple times during May 2020 including on 22 May. Courtesy of SERNAGEOMIN.

Webcam images during the first two weeks of June 2020 indicated multiple incandescent explosions. On 3 and 4 June plumes from explosions reached heights of over 1.25 km above the crater; the Buenos Aires VAAC reported them drifting NW at 3.9 km altitude. Incandescent ejecta on 6 June rose 760 m above the vent and drifted NE. In addition, pyroclastic flows were distributed on the N, NW, E and SE flanks. Significant daytime and nighttime incandescence was reported on 6, 9, and 10 June (figure 60). The VAAC reported emission pulses on 6 and 9 June drifting E and SE at 4.3 km altitude.

Figure (see Caption) Figure 60. Multiple ash plumes with incandescence were reported at Nevados de Chillan during the first ten days of June 2020 including on 6 June, after which explosive activity decreased significantly. Courtesy of SERNAGEOMIIN and Sismo Alerta Mexicana.

SERNAGEOMIN reported that beginning on the afternoon of 9 June 2020 a tremor-type seismic signal was first recorded, associated with continuous emission of gas and dark gray ash that drifted SE (figure 61). A little over an hour later another tremor signal began that lasted for about four hours, followed by smaller discrete explosions. A hybrid-type earthquake in the early morning of 10 June was followed by a series of explosions that ejected gas and particulate matter from the active crater. The vent where the emissions occurred was located within the Nicanor crater close to the Arrau crater; it had been degassing since 30 May.

Figure (see Caption) Figure 61. A tremor-type seismic signal was first recorded on the afternoon of 9 June 2020 at Nevados de Chillan. It was associated with the continuous emission of gas and dark gray ash that drifted SE, and incandescent ejecta visible after dark. View is to the S, courtesy of SERNAGEOMIN webcam, posted by Volcanology Chile.

After the explosions on the afternoon of 9 June, a number of other nearby vents became active. In particular, the vent located between the Nuevo and Nicanor craters began emitting material for the first time during this eruptive cycle. The explosion also generated pyroclastic flows that traveled less than 50 m in multiple directions away from the vent. Abundant incandescent material was reported during the explosion early on 10 June. Deformation measurements showed inflation over the previous 12 days.

SERNAGEOMIN identified a surface feature in satellite imagery on 11 June 2020 that they interpreted as a new effusive lava dome. It was elliptical with dimensions of about 85 x 120 m. In addition to a thermal anomaly attributed to the dome, they noted three other thermal anomalies between the Nuevo, Arrau, and Nicanor craters. They reported that within four days the base of the active crater was filled with effusive material. Seismometers recorded tremor activity after 11 June that was interpreted as associated with lava effusion. Incandescent emissions were visible at night around the active crater. Sentinel-2 satellite imagery recorded a bright thermal anomaly inside the Nicanor crater on 14 June (figure 62).

Figure (see Caption) Figure 62. A bright thermal anomaly was recorded inside the Nicanor crater at Nevados de Chillan on 14 June 2020. SERNAGEOMIN scientists attributed it to the growth of a new lava dome within the crater. Image uses Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.

A special report from SERNAGEOMIN on 24 June 2020 noted that vertical inflation had increased during the previous few weeks. After 20 June the inflation rate reached 2.49 cm/month, which was considered high. The accumulated inflation measured since July 2019 was 22.5 cm. Satellite imagery continued to show the growth of the dome, and SERNAGEOMIN scientists estimated that it reached the E edge of the Nicanor crater on 23 June. Based on these images, they estimated an eruptive rate of 0.1-0.3 m3/s, about two orders of magnitude faster than the Gil-Cruz dome that emerged between December 2018 and early 2019.

Webcams revealed continued low-level explosive activity and incandescence visible both during the day and at night. By the end of June, webcams recorded a lava flow that extended 94 m down the N flank from the Nicanor crater and continued to advance. Small explosions with abundant pyroclastic debris produced recurring incandescence at night. Satellite infrared imagery indicated thermal radiance from effusive material that covered an area of 37,000 m2, largely filling the crater. DEM analysis suggested that the size of the crater had tripled in volume since December 2019 due largely to erosion from explosive activity since May 2020. Sentinel-2 satellite imagery showed a bright thermal anomaly inside the crater on 27 June.

Geologic Background. The compound volcano of Nevados de Chillán is one of the most active of the Central Andes. Three late-Pleistocene to Holocene stratovolcanoes were constructed along a NNW-SSE line within three nested Pleistocene calderas, which produced ignimbrite sheets extending more than 100 km into the Central Depression of Chile. The largest stratovolcano, dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW end of the group. Volcán Viejo (Volcán Chillán), which was the main active vent during the 17th-19th centuries, occupies the SE end. The new Volcán Nuevo lava-dome complex formed between 1906 and 1945 between the two volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and eventually exceeded its height.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/, https://twitter.com/Sernageomin); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); #EmergenciasÑuble (URL: https://twitter.com/urgenciasnuble/status/1222943399185207296); T13, Channel 13 Press Department (URL: https://twitter.com/T13/status/1222951071443771394); Chillanonlinenoticia (URL: https://twitter.com/ChillanOnline/status/1240754211932995595); Noticias Valpo Express (URL: https://twitter.com/NoticiasValpoEx/status/1252715033131388928); Sismo Alerta Mexicana (URL: https://twitter.com/Sismoalertamex/status/1269351579095691265); Volcanology Chile (URL: https://twitter.com/volcanologiachl/status/1270548008191643651).


Bagana (Papua New Guinea) — July 2020 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Ash plumes during 29 February-2 March and 1 May 2020

Bagana lies in a nearly inaccessible mountainous tropical rainforest area of Bougainville Island in Papua New Guinea and is primarily monitored by satellite imagery of ash plumes and thermal anomalies. After a state of elevated activity that lasted through December 2018 (BGVN 43:05, 44:06, 44:12), the volcano entered a quieter period that persisted through at least May 2020. This report focuses on activity between December 2019 and May 2020.

Atmospheric clouds often obscured satellite views of the volcano during the reporting period. When the volcano could be observed, light-colored gas plumes were often observed (figure 43). Based on satellite and wind model data, the Darwin Volcanic Ash Advisory Centre (VAAC) reported that during 29 February-2 March ash plumes rose to an altitude of 1.8-2.1 km and drifted SW and N. On 1 May an ash plume rose to an altitude of 3 km and drifted NW and W. According to both Darwin VAAC volcanic ash advisories, the Aviation Color Code was Orange (second highest of four hazard levels).

Figure (see Caption) Figure 43. Sentinel-2 image of Bagana, showing a gas plume drifting SE on 13 March 2020, during a period when the Darwin VAAC had not reported any ash explosions (Natural Color rendering, bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

During the reporting period, the MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system recorded only intermittent thermal anomalies, all of which were of low radiative power. Sulfur dioxide emissions detected by satellite-based instruments over this reporting period were at low levels.

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Kerinci (Indonesia) — July 2020 Citation iconCite this Report

Kerinci

Indonesia

1.697°S, 101.264°E; summit elev. 3800 m

All times are local (unless otherwise noted)


Intermittent ash emissions during January-early May 2020

Kerinci is a stratovolcano located in Sumatra, Indonesia that has been characterized by explosive eruptions with ash plumes and gas-and-steam emissions. The most recent eruptive episode began in April 2018 which has included intermittent explosions and ash plumes. The previous report (BGVN 44:12) described more recent activity consisting of intermittent gas-and-steam and ash plumes which occurred during June through early November 2019. This volcanism continued through May 2020, though little to no activity was reported during December 2019. The primary source of information for this report comes from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) and the Darwin Volcanic Ash Advisory Centre (VAAC).

Activity during December 2019 consisted of white gas-and-steam emissions rising 100-500 m above the summit. White and brown emissions continued intermittently through May 2020, rising to a maximum altitude of 1 km above the summit on 14 April. During 3-6 and 8-9 January 2020, the Darwin VAAC and PVMBG issued notices reporting brown volcanic ash rising 150-600 m above the summit drifting S and ESE (figure 19). PVMBG published a VONA notice on 24 January at 0828 reporting ash rising 400 m above the summit. Brown emissions continued intermittently throughout the reporting period. On 1 February, volcanic ash was observed rising 300-960 m above the summit and drifting NE; PVMBG reported continuing brown emissions during 1-3 February. During 16-17 February, two VONA notices reported that brown ash plumes rose 150-400 m above the summit and drifted SW accompanied by consistent white gas-and-steam emissions (figure 20).

Figure (see Caption) Figure 19. Brown ash plume rose 500-600 m above Kerinci on 4 January 2020. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.
Figure (see Caption) Figure 20. White gas-and-steam emissions rose 400 m above Kerinci on 19 February 2020. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.

During 1-16 and 25-26 March 2020 brown ash emissions were frequently observed rising 100-500 m above the summit drifting in multiple directions. During 6-8 and 10-15, April brown ash emissions were reported 50-1,000 m above the summit. The most recent Darwin VAAC and VONA notices were published on 14 April, reporting volcanic ash rising 400 and 600 m above the summit, respectively; however, PVMBG reported brown emissions rising up to 1,000 m. By 25-27 April brown ash emissions rose 50-300 m above the summit. Intermittent white gas-and-steam emissions continued through May. The last brown emissions seen in May were reported on the 7th rising 50-100 m above the summit.

Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com, images at https://twitter.com/OysteinLAnderse/status/1213658331564269569/photo/1 and https://twitter.com/OysteinLAnderse/status/1230419965209018369/photo/1).


Tinakula (Solomon Islands) — July 2020 Citation iconCite this Report

Tinakula

Solomon Islands

10.386°S, 165.804°E; summit elev. 796 m

All times are local (unless otherwise noted)


Intermittent small thermal anomalies and gas-and-steam plumes during January-June 2020

Tinakula is a remote stratovolcano located 100 km NE of the Solomon Trench at the N end of the Santa Cruz. In 1971, an eruption with lava flows and ash explosions caused the small population to evacuate the island. Volcanism has previously been characterized by an ash explosion in October 2017 and the most recent eruptive period that began in December 2018 with renewed thermal activity. Activity since then has consisted of intermittent thermal activity and dense gas-and-steam plumes (BGVN 45:01), which continues into the current reporting period. This report updates information from January-June 2020 using primary source information from various satellite data, as ground observations are rarely available.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed weak, intermittent, but ongoing thermal activity during January-June 2020 (figure 41). A small cluster of slightly stronger thermal signatures was detected in late February to early March, which is correlated to MODVOLC thermal alert data; four thermal hotspots were recorded on 20, 27, and 29 February and 1 March. However, observations using Sentinel-2 satellite imagery were often obscured by clouds. In addition to the weak thermal signatures, dense gas-and-steam plumes were observed in Sentinel-2 satellite imagery rising from the summit during this reporting period (figure 42).

Figure (see Caption) Figure 41. Weak thermal anomalies at Tinakula from 26 June 2019 through June 2020 as recorded by the MIROVA system (Log Radiative Power) were intermittent and clustered more strongly in late February to early March.
Figure (see Caption) Figure 42. Sentinel-2 satellite imagery shows ongoing gas-and-steam plumes rising from Tinakula during January through May 2020. Images with atmospheric penetration (bands 12, 11, 8a) rendering; courtesy of Sentinel Hub Playground.

Three distinct thermal anomalies were observed in Sentinel-2 thermal satellite imagery on 22 January, 11 April, and 6 May 2020, accompanied by some gas-and-steam emissions (figure 43). The hotspot on 22 January was slightly weaker than the other two days, and was seen on the W flank, compared to the other two that were observed in the summit crater. According to MODVOLC thermal alerts, a hotspot was recorded on 6 May, which corresponded to a Sentinel-2 thermal satellite image with a notable anomaly in the summit crater (figure 43). On 10 June no thermal anomaly was seen in Sentinel-2 satellite imagery due to the presence of clouds; however, what appeared to be a dense gas-and-steam plume was extending W from the summit.

Figure (see Caption) Figure 43. Sentinel-2 thermal satellite images showing a weak thermal activity (bright yellow-orange) on 22 January 2020 on the W flank of Tinakula (top) and slightly stronger thermal hotspots on 11 April (middle) and 6 May (bottom) in at the summit, which are accompanied by gas-and-steam emissions. Images with atmospheric penetration (bands 12, 11, 8a) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The small 3.5-km-wide island of Tinakula is the exposed summit of a massive stratovolcano at the NW end of the Santa Cruz islands. Similar to Stromboli, it has a breached summit crater that extends from the summit to below sea level. Landslides enlarged this scarp in 1965, creating an embayment on the NW coast. The satellitic cone of Mendana is located on the SE side. The dominantly andesitic volcano has frequently been observed in eruption since the era of Spanish exploration began in 1595. In about 1840, an explosive eruption apparently produced pyroclastic flows that swept all sides of the island, killing its inhabitants. Frequent historical eruptions have originated from a cone constructed within the large breached crater. These have left the upper flanks and the steep apron of lava flows and volcaniclastic debris within the breach unvegetated.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Ibu (Indonesia) — July 2020 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Frequent ash emissions and summit incandescence; Strombolian explosions in March 2020

Ibu is an active stratovolcano located along the NW coast of Halmahera Island in Indonesia. Volcanism has recently been characterized by frequent ash explosions, ash plumes, and small lava flows within the crater throughout 2019 (BGVN 45:01). Activity continues, consisting of frequent white-and-gray emissions, ash explosions, ash plumes, and lava flows. This report updates activity through June 2020, using data from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Darwin Volcanic Ash Advisory Centre (VAAC), and various satellites.

Volcanism during the entire reporting period dominantly consisted of white-and-gray emissions that rose 200-800 m above the summit drifting in multiple directions. The ash plume with the maximum altitude of 13.7 km altitude occurred on 16 May 2020. Sentinel-2 thermal satellite imagery detected multiple smaller hotspots within the crater throughout the reporting period.

Continuous ash emissions were reported on 6 February rising to 2.1 km altitude drifting E, accompanied by a hotspot visible in infrared satellite imagery. On 16 February, a ground observer reported an eruption that produced an ash plume rising 800 m above the summit drifting W, according to a Darwin VAAC notice. Ash plumes continued through the month, drifting in multiple directions and rising up to 2.1 km altitude. During 8-10 March, video footage captured multiple Strombolian explosions that ejected incandescent material and produced ash plumes from the summit (figures 21 and 22). Occasionally volcanic lightning was observed within the ash column, as recorded in video footage by Martin Rietze. This event was also documented by a Darwin VAAC notice, which stated that multiple ash emissions rose 2.1 km altitude drifting SE. PVMBG published a VONA notice on 10 March at 1044 reporting ash plumes rising 400 m above the summit. PVMBG and Darwin VAAC notices described intermittent eruptions on 26, 28, and 29 March, all of which produced ash plumes rising 300-800 m above the summit.

Figure (see Caption) Figure 21. Strombolian explosions recorded at the crater summit of Ibu during 8-10 March 2020 ejected incandescent ejecta and a dense ash plume. Video footage copyright by Martin Rietze, used with permission.
Figure (see Caption) Figure 22. Strombolian explosions recorded at the crater summit of Ibu during 8-10 March 2020 ejected incandescent ejecta and ash. Frequent volcanic lightning was also observed. Video footage copyright by Martin Rietze, used with permission.

A majority of days in April included white-and-gray emissions rising up to 800 m above the summit. A ground observer reported an eruption on 9 April, according to a Darwin VAAC report, and a hotspot was observed in HIMAWARI-8 satellite imagery. Minor eruptions were reported intermittently during mid-April and early to mid-May. On 12 May at 1052 a VONA from PVMBG reported an ash plume 800-1,100 m above the summit. A large short-lived eruption on 16 May produced an ash plume that rose to a maximum of 13.7 km altitude and drifted S, according to the Darwin VAAC report. By June, volcanism consisted predominantly of white-and-gray emissions rising 800 m above the summit, with an ash eruption on 15 June. This eruptive event resulted in an ash plume that rose 1.8 km altitude drifting WNW and was accompanied by a hotspot detected in HIMAWARI-8 satellite imagery, according to a Darwin VAAC notice.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected frequent hotspots during July 2019 through June 2020 (figure 23). In comparison, the MODVOLC thermal alerts recorded a total of 24 thermal signatures over the course of 19 different days between January and June. Many thermal signatures were captured as small thermal hotspots in Sentinel-2 thermal satellite imagery within the crater (figure 24).

Figure (see Caption) Figure 23. Thermal anomalies recorded at Ibu from 2 July 2019 through June 2020 as recorded by the MIROVA system (Log Radiative Power) were frequent and consistent in power. Courtesy of MIROVA.
Figure (see Caption) Figure 24. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) showed occasional thermal hotspots (bright orange) in the Ibu summit crater during January through June 2020. Courtesy of Sentinel Hub Playground.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Martin Rietze, Taubenstr. 1, D-82223 Eichenau, Germany (URL: https://mrietze.com/, https://www.youtube.com/channel/UC5LzAA_nyNWEUfpcUFOCpJw/videos, video at https://www.youtube.com/watch?v=qMkfT1e4HQQ).


Suwanosejima (Japan) — July 2020 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Frequent explosions, ash plumes, and summit incandescence in January-June 2020

Suwanosejima is an active stratovolcano located in the northern Ryukyu Islands. Volcanism has previously been characterized by Strombolian explosions, ash plumes, and summit incandescence (BGVN 45:01), which continues to occur intermittently. A majority of this activity originates from vents within the large Otake summit crater. This report updates information during January through June 2020 using monthly reports from the Japan Meteorological Agency (JMA), the Tokyo Volcanic Ash Advisory Center (VAAC), and various satellite data.

During 3-10 January 2020, 13 explosions were detected from the Otake crater rising to 1.4 km altitude; material was ejected as far as 600 m away and ashfall was reported in areas 4 km SSW, according to JMA. Occasional small eruptive events continued during 12-17 January, which resulted in ash plumes that rose 1 km above the crater rim and ashfall was again reported 4 km SSW. Crater incandescence was visible nightly during 17-24 January, while white plumes rose as high as 700 m above the crater rim.

Nightly incandescence during 7-29 February, and 1-6 March, was accompanied by intermittent explosions that produced ash plumes rising up to 1.2 km above the crater rim (figure 44); activity during early February resulted in ashfall 4 km SSW. On 19 February an eruption produced a gray-white ash plume that rose 1.6 km above the crater (figure 45), resulting in ashfall in Toshima village (4 km SSW), according to JMA. Explosive events during 23-24 February ejected blocks onto the flanks. Two explosions were recorded during 1-6 March, which sent ash plumes as high as 900-1,000 m above the crater rim and ejected large blocks 300 m from the crater.

Figure (see Caption) Figure 44. Surveillance camera images of summit incandescence at Suwanosejima on 29 January (top left), 21 (middle left) and 23 (top right) February, and 25 March (bottom left and right) 2020. Courtesy of JMA (Monthly bulletin reports 511, January, February, and March 2020).
Figure (see Caption) Figure 45. Surveillance camera images of which and white-and-gray gas-and-steam emissions rising from Suwanosejima on 5 January (top), 19 February (middle), and 24 March 2020 (bottom). Courtesy of JMA (Monthly bulletin reports 511, January, February, and March 2020).

Nightly incandescence continued to be visible during 13-31 March, 1-10 and 17-24 April, 1-8, 15-31 May, 1-5 and 12-30 June 2020; activity during the latter part of March was relatively low and consisted of few explosive events. In contrast, incandescence was frequently accompanied by explosions in April and May. On 28 April at 0432 an eruption produced an ash plume that rose 1.6 km above the crater rim and drifted SE and E, and ejected blocks as far as 800 m from the crater. The MODVOLC thermal alerts algorithm also detected four thermal signatures during this eruption within the summit crater. An explosion at 1214 on 29 April caused glass in windows to vibrate up to 4 km SSW away while ash emissions continued to be observed following the explosion the previous day, according to the Tokyo VAAC.

During 1-8 May explosions occurred twice a day, producing ash plumes that rose as high as 1 km above the crater rim and ejecting material 400 m from the crater. An explosion on 29 May at 0210 produced an off-white plume that rose as high as 500 m above the crater rim and ejected large blocks up to 200 m above the rim. On 5 June an explosion produced gray-white plumes rising 1 km above the crater. Small eruptive events continued in late June, producing ash plumes that rose as high as 900 m above the crater rim.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed relatively stronger thermal anomalies in late February and late April 2020 with an additional six weaker thermal anomalies detected in early January (2), early February (1), mid-April (2), and mid-May (1) (figure 46). Sentinel-2 thermal satellite imagery in late January through mid-April showed two distinct thermal hotspots within the summit crater (figure 47).

Figure (see Caption) Figure 46. Prominent thermal anomalies at Suwanosejima during July-June 2020 as recorded by the MIROVA system (Log Radiative Power) occurred in late February and late April. Courtesy of MIROVA.
Figure (see Caption) Figure 47. Sentinel-2 thermal satellite images showing small thermal anomalies (bright yellow-orange) from two locations within the Otake summit crater at Suwanosejima. Images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kadovar (Papua New Guinea) — July 2020 Citation iconCite this Report

Kadovar

Papua New Guinea

3.608°S, 144.588°E; summit elev. 365 m

All times are local (unless otherwise noted)


Intermittent ash plumes and persistent summit thermal anomalies, January-June 2020

The steeply sloped 1.4-km-diameter Kadovar Island is located in the Bismark Sea offshore from the mainland of Papua New Guinea about 25 km NNE from the mouth of the Sepik River. Its first confirmed observed eruption began in early January 2018, with ash plumes and lava extrusion resulting in the evacuation of around 600 residents from the N side of the island (BGVN 43:03). A dome appeared at the base of the E flank during March-May 2018 (Planka et al., 2019); by November activity had migrated to a new dome growing near the summit on the E flank. Pulsating steam plumes, thermal anomalies, and periodic ash emissions continued throughout 2019 (BGVN 44:05, 45:01), and from January-June 2020, the period covered in this report. Information was provided by the Rabaul Volcano Observatory (RVO), the Darwin Volcanic Ash Advisory Center (VAAC), satellite sources, and photographs from visitors.

Activity during January-June 2020. Intermittent ash plumes, pulsating gas and steam plumes, and thermal anomalies continued at Kadovar during January-June 2020. MIROVA thermal data suggested persistent low-level anomalies throughout the period (figure 45). Sentinel-2 satellite data confirmed thermal anomalies at the summit on 5 and 25 January 2020, and an ash emission on 20 January (figure 46). Persistent pulsating steam plumes were visible whenever the skies were clear enough to see the volcano.

Figure (see Caption) Figure 45. Persistent low-level thermal activity at Kadovar was recorded in the MIROVA graph of radiative power from 2 July 2019 through June 2020. The island location is mislocated in the MIROVA system by about 5.5 km SE due to older mis-registered imagery; the anomalies are all on the island. Courtesy of MIROVA.
Figure (see Caption) Figure 46. Sentinel-2 satellite data confirmed thermal anomalies at the summit of Kadovar on 5 (left) and 25 January 2020, and an ash emission and steam plume that drifted SE on 20 January (center). Pulsating steam-and-gas emissions left a trail in the atmosphere drifting SE for several kilometers on 25 January (right). Left image uses Atmospheric penetration rendering (bands 12, 11, 8a), center and right images use Natural color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

On 2 February 2020 the Darwin VAAC reported a minor eruption plume that rose to 1.5 km altitude and drifted ESE for a few hours. Another plume was clearly discernible in satellite imagery on 5 February at 2.1 km altitude moving SE. RVO issued an information bulletin on 7 February reporting that, since the beginning of January, the eruption had continued with frequent Vulcanian explosions from the Main Vent with a recurrence interval of hours to days. Rocks and ash were ejected 300-400 m above the vent. Rumbling could be heard from Blupblup (Rubrub) island, 15 km E, and residents there also observed incandescence at night. On clear days the plume was sometimes visible from Wewak, on the mainland 100 km W. Additional vents produced variable amounts of steam. The Darwin VAAC reported continuous volcanic ash rising to 1.5 km on 22 February that extended ESE until it was obscured by a meteoric cloud; it dissipated early the next day. A small double ash plume and two strong thermal anomalies at the summit were visible in satellite imagery on 24 February (figure 47).

Figure (see Caption) Figure 47. Ash emissions and thermal anomalies continued at Kadovar during February 2020. Two small plumes of ash or dense steam rose from the summit on 24 February 2020, seen in this Natural color rendering (bands 4, 3, 2) on the left. The same image rendered in Atmospheric penetration (bands 12, 11, 8a) on the right shows two thermal anomalies in the same locations as the ash plumes. Courtesy of Sentinel Hub Playground.

The Darwin VAAC reported continuous ash emissions beginning on 13 March 2020 that rose to 1.5 km altitude and drifted SE. The plume was visible intermittently in satellite imagery for about 36 hours before dissipating. During April, pulsating steam plumes rose from two vents at the summit, and thermal anomalies appeared at both vents in satellite data (figure 48). Small but distinct SO2 anomalies were visible in satellite data on 15 and 16 April (figure 49).

Figure (see Caption) Figure 48. Steam plumes and thermal anomalies continued at Kadovar during April 2020. Top: A thermal anomaly at the summit accompanied pulsating steam plumes that drifted several kilometers SE before dissipating on 4 April 2020. Bottom left: Two gas-and-steam plumes drifted E from the summit on 9 April. Bottom right: Two adjacent thermal anomalies were present near the summit on 19 April. Top and bottom right images use Atmospheric penetration rendering (bands 12, 11, 8a), bottom left image uses Natural color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 49. Small but distinct SO2 anomalies were detected at Kadovar on 15 and 16 April 2020 with the TROPOMI instrument on the Sentinel-5P satellite. Nearby Manam often produces larger SO2 plumes that obscure evidence of activity at Kadovar. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Two summit vents remained active throughout May and June 2020, producing pulsating steam plumes that were visible for tens of kilometers and thermal anomalies visible in satellite data (figure 50). A strong thermal anomaly was visible beneath meteoric clouds on 8 June.

Figure (see Caption) Figure 50. During May and June 2020 thermal and plume activity continued at Kadovar. Top: Gas-and-steam plumes drifted NW from two sources at the summit of Kadovar on 19 May 2020. Bottom left: Two thermal anomalies marked the E rim of the summit crater on 28 June 2020. Bottom right: A zoomed out view of the same 28 June image shows pulsating steam plumes drifting 10 km NW from Kadovar. Top image is Natural color rendering (bands 4, 3, 2). Bottom images are Atmospheric penetration rendering (bands 12, 11, 8a) of Sentinel-2 images. Courtesy of Sentinel Hub Playground.

Visitor observations on 21 October 2019. Claudio Jung visited Kadovar on 21 October 2019. Shortly before arriving on the island an ash plume rose tens of meters above the summit and drifted W (figure 51). From the NW side of the summit crater rim, Jung saw the actively growing dome on the side of a larger dome, and steam and gas issuing from the growing dome (figure 52). The crater rim was covered with dead vegetation, ash, and large bombs from recent explosions (figure 53). The summit dome had minor fumarolic activity around the summit area and dead vegetation halfway up the flank (figure 54) while the fresh blocky lava of the actively growing dome on the E side of the summit produced significant steam and gas emissions. The growing dome produced periodic pulses of dense steam during his visit (figure 55).

Figure (see Caption) Figure 51. Views looking S show the shoreline dome at the base of the E flank of Kadovar that was active during March-May 2018 (left), and an ash plume drifting W from the summit dome located on the E side of the summit crater (right) on 21 October 2019. Copyrighted photos courtesy of Claudio Jung, used with permission.
Figure (see Caption) Figure 52. A panorama looking SE from the crater rim of Kadovar on 21 October 2019 shows the actively growing dome on the far left with a narrow plume of steam and gas being emitted. A large dome fills the summit crater; the crater rim is visible on the right. Copyrighted photo courtesy of Claudio Jung, used with permission.
Figure (see Caption) Figure 53. The crater rim of Kadovar on 21 October 2019 was covered with dead vegetation, ash, and large bombs from recent explosions. Person is sitting on a large bomb; weak fumarolic activity is visible along the rim. Copyrighted photo courtesy of Claudio Jung, used with permission.
Figure (see Caption) Figure 54. The summit dome of Kadovar on 21 October 2019 had minor fumarolic activity around most of its summit and dead vegetation half-way up the flank (left). The dead tree stumps suggest that vegetation covered the lower half of the dome prior to the eruption that began in January 2018. The fresh blocky lava of the actively growing dome on the E side of the summit dome produced significant steam and gas emissions (right). Copyrighted photos courtesy of Claudio Jung, used with permission.
Figure (see Caption) Figure 55. Dense steam from the growing dome on the E side of the summit drifted W from Kadovar on 21 October 2019. Copyrighted photo courtesy of Claudio Jung, used with permission.

Reference: Planka S, Walter T R, Martinis S, Cescab S, 2019, Growth and collapse of a littoral lava dome during the 2018/19 eruption of Kadovar Volcano, Papua New Guinea, analyzed by multi-sensor satellite imagery, Journal of Volcanology and Geothermal Research, v. 388, 15 December 2019, 106704, https://doi.org/10.1016/j.jvolgeores.2019.106704.

Geologic Background. The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the andesitic volcano, filling an arcuate landslide scarp open to the south; submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. A period of heightened thermal phenomena took place in 1976. An eruption began in January 2018 that included lava effusion from vents at the summit and at the E coast.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Claudio Jung (URL: https://www.instagram.com/jung.claudio/).


Sangay (Ecuador) — July 2020 Citation iconCite this Report

Sangay

Ecuador

2.005°S, 78.341°W; summit elev. 5286 m

All times are local (unless otherwise noted)


Daily ash plumes and frequent pyroclastic flows produce ashfall and lahars, January-June 2020

Frequent activity at Ecuador's Sangay has included pyroclastic flows, lava flows, ash plumes, and lahars reported since 1628. Its remoteness on the east side of the Andean crest make ground observations difficult; remote cameras and satellites provide important information on activity. The current eruption began in March 2019 and continued through December 2019 with activity focused on the Cráter Central and the Ñuñurco (southeast) vent; they produced explosions with ash plumes, lava flows, and pyroclastic flows and block avalanches. In addition, volcanic debris was remobilized in the Volcan river causing significant damming downstream. This report covers ongoing similar activity from January through June 2020. Information is provided by Ecuador's Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), and a number of sources of remote data including the Washington Volcanic Ash Advisory Center (VAAC), the Italian MIROVA Volcano HotSpot Detection System, and Sentinel-2 satellite imagery. Visitors also provided excellent ground and drone-based images and information.

Throughout January-June 2020, multiple daily reports from the Washington Volcanic Ash Advisory Center (VAAC) indicated ash plumes rising from the summit, generally 500-1,100 m. Each month one or more plumes rose over 2,000 m. The plumes usually drifted SW or W, and ashfall was reported in communities 25-90 km away several times during January-March and again in June. In addition to explosions with ash plumes, pyroclastic flows and incandescent blocks frequently descended a large, deep ravine on the SE flank. Ash from the pyroclastic flows rose a few hundred meters and drifted away from the volcano. Incandescence was visible on clear nights at the summit and in the ravine. The MIROVA log radiative power graph showed continued moderate and high levels of thermal energy throughout the period (figure 57). Sangay also had small but persistent daily SO2 signatures during January-June 2020 with larger pulses one or more days each month (figure 58). IG-EPN published data in June 2020 about the overall activity since May 2019, indicating increases throughout the period in seismic event frequency, SO2 emissions, ash plume frequency, and thermal energy (figure 59).

Figure (see Caption) Figure 57. This graph of log radiative power at Sangay for 18 Aug 2018 through June 2020 shows the moderate levels of thermal energy through the end of the previous eruption in late 2018 and the beginning of the current one in early 2019. Data is from Sentinel-2, courtesy of MIROVA.
Figure (see Caption) Figure 58. Small but persistent daily SO2 signatures were typical of Sangay during January-June 2020. A few times each month the plume was the same or larger than the plume from Columbia’s Nevado del Ruiz, located over 800 km NE. Image dates are shown in the header over each image. Courtesy of NASA’s Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 59. A multi-parameter graph of activity at Sangay from May 2019 to 12 June 2020 showed increases in many types of activity. a) seismic activity (number of events per day) detected at the PUYO station (source: IG-EPN). b) SO2 emissions (tons per day) detected by the Sentinel-5P satellite sensor (TROPOMI: red squares; source: MOUNTS) and by the IG-EPN (DOAS: green bars). c) height of the ash plumes (meters above crater) detected by the GOES-16 satellite sensor (source: Washington VAAC). d) thermal emission power (megawatt) detected by the MODIS satellite sensor (source: MODVOLC) and estimate of the accumulated lava volume (million M3, thin lines represent the error range). Courtesy of IG-EPN (Informe Especial del Volcán Sangay - 2020 - N°3, “Actualización de la actividad eruptiva”, Quito, 12 de junio del 2020).

Activity during January-March 2020. IG-EPN and the Washington VAAC reported multiple daily ash emissions throughout January 2020. Gas and ash emissions generally rose 500-1,500 m above the summit, most often drifting W or SW. Ashfall was reported on 8 January in the communities of Sevilla (90 km SSW), Pumallacta and Achupallas (60 km SW) and Cebadas (35 km WNW). On 16 January ash fell in the Chimborazo province in the communities of Atillo, Ichobamba, and Palmira (45 km W). Ash on 28 January drifted NW, with minor ashfall reported in Púngala (25 km NW) and other nearby communities. The town of Alao (20 km NW) reported on 30 January that all of the vegetation in the region was covered with fine white ash; Cebadas and Palmira also noted minor ashfall (figure 60).

Figure (see Caption) Figure 60. Daily ash plumes and repeated ashfall were reported from Sangay during January 2020. Top left: 1 January 2020 (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-2, JUEVES, 2 ENERO 2020). Top right: 20 January 2020 (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-21, MARTES, 21 ENERO 2020). Bottom left: 26 January-1 February 2020 expedition (Martes, 18 Febrero 2020 12:21, EXPEDICIÓN AL VOLCÁN SANGAY). Bottom right: 30 January 2020, minor ashfall was reported in the Province of Chimborazo (#IGAlInstante Informativo VOLCÁN SANGAY No. 006, JUEVES, 30 ENERO 2020). Courtesy of IG-EPN.

A major ravine on the SE flank has been the site of ongoing block avalanches and pyroclastic flows since the latest eruption began in March 2019. The pyroclastic flows down the ravine appeared incandescent at night; during the day they created ash clouds that drifted SW. Satellite imagery recorded incandescence and dense ash from pyroclastic flows in the ravine on 7 January (figure 61). They were also reported by IG on the 9th, 13th, 26th, and 28th. Incandescent blocks were reported in the ravine several times during the month. The webcam captured images on 31 January of large incandescent blocks descending the entire length of the ravine to the base of the mountain (figure 62). Large amounts of ash and debris were remobilized as lahars during heavy rains on the 25th and 28th.

Figure (see Caption) Figure 61. Sentinel-2 satellite imagery of Sangay from 7 January 2020 clearly showed a dense ash plume drifting W and ash and incandescent material from pyroclastic flows descending the SE-flank ravine. Left image uses natural color (bands 4, 3, 2) rendering and right images uses atmospheric penetration (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 62. Pyroclastic flows at Sangay produced large trails of ash down the SE ravine many times during January 2020 that rose and drifted SW. Top left: 9 January (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-9, JUEVES, 9 ENERO 2020). Top right: 13 January (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-14, MARTES, 14 ENERO 2020). On clear nights, incandescent blocks of lava and pyroclastic flows were visible in the ravine. Bottom left: 16 January (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-17, VIERNES, 17 ENERO 2020). Bottom right: 31 January (#IGAlInstante Informativo VOLCÁN SANGAY No. 007, VIERNES, 31 ENERO 2020). Courtesy of IG-EPN.

Observations by visitors to the volcano during 9-17 January 2020 included pyroclastic flows, ash emissions, and incandescent debris descending the SE flank ravine during the brief periods when skies were not completely overcast (figure 63 and 64). More often there was ash-filled rain and explosions heard as far as 16 km from the volcano, along with the sounds of lahars generated from the frequent rainfall mobilizing debris from the pyroclastic flows. The confluence of the Rio Upano and Rio Volcan is 23 km SE of the summit and debris from the lahars has created a natural dam on the Rio Upano that periodically backs up water and inundates the adjacent forest (figure 65). A different expedition to Sangay during 26 January-1 February 2020 by IG personnel to repair and maintain the remote monitoring station and collect samples was successful, after which the station was once again transmitting data to IG-EPN in Quito (figure 66).

Figure (see Caption) Figure 63. Hikers near Sangay during 9-17 January 2020 witnessed pyroclastic flows and incandescent explosions and debris descending the SE ravine. Left: The view from 40 km SE near Macas showed ash rising from pyroclastic flows in the SE ravine. Right: Even though the summit was shrouded with a cap cloud, incandescence from the summit crater and from pyroclastic flows on the SE flank were visible on clear nights. Courtesy of Arnold Binas, used with permission.
Figure (see Caption) Figure 64. The steep ravine on the SE flank of Sangay was hundreds of meters deep in January 2020 when these drone images were taken by members of a hiking trip during 9-17 January 2020 (left). Pyroclastic flows descended the ravine often (right), coating the sides of the ravine with fine, white ash and sending ash billowing up from the surface of the flow which resulted in ashfall in adjacent communities several times. Courtesy of Arnold Binas, used with permission.
Figure (see Caption) Figure 65. Debris from pyroclastic flows that descended the SE Ravine at Sangay was carried down the Volcan River (left) during frequent rains and caused repeated damming at the confluence with the Rio Upano (right), located 23 km SE of the summit. These images show the conditions along the riverbeds during 9-17 January 2020. Courtesy of Arnold Binas, used with permission.
Figure (see Caption) Figure 66. An expedition by scientists from IG-EPN to one of the remote monitoring stations at Sangay during 26 January-1 February 2020 was successful in restoring communication to Quito. The remote location and constant volcanic activity makes access and maintenance a challenge. Courtesy of IG-EPN (Martes, 18 Febrero 2020 12:21, EXPEDICIÓN AL VOLCÁN SANGAY).

During February 2020, multiple daily VAAC reports of ash emissions continued (figure 67). Plumes generally rose 500-1,100 m above the summit and drifted W, although on 26 February emissions were reported to 1,770 m. Ashfall was reported in Macas (40 km SE) on 1 February, and in the communities of Pistishi (65 km SW), Chunchi (70 km SW), Pumallacta (60 k. SW), Alausí (60 km SW), Guamote (40 km WNW) and adjacent areas of the Chimborazo province on 5 February. The Ecuadorian Red Cross reported ash from Sangay in the provinces of Cañar and Azuay (60-100 km SW) on 25 February. Cebadas and Guamote reported moderate ashfall the following day. The communities of Cacha (50 km NW) and Punín (45 km NW) reported trace amounts of ashfall on 29 February. Incandescent blocks were seen on the SE flank multiples times throughout the month. A pyroclastic flow was recorded on the SE flank early on 6 February; additional pyroclastic flows were observed later that day on the SW flank. On 23 February a seismic station on the flank recorded a high-frequency signal typical of lahars.

Figure (see Caption) Figure 67. Steam and ash could be seen drifting SW from the summit of Sangay on 11 February 2020 even though the summit was hidden by a large cap cloud. Ash was also visible in the ravine on the SE flank. Courtesy of Sentinel Hub Playground, natural color (bands 4, 3, 2) rendering.

A significant ash emission on 1 March 2020 was reported about 2 km above the summit, drifting SW. Multiple ash emissions continued daily during the month, generally rising 570-1,170 m high. An emission on 12 March also rose 2 km above the summit. Trace ashfall was reported in Cebadas (35 km WNW) on 12 March. The community of Huamboya, located 40 km ENE of Sangay in the province of Morona-Santiago reported ashfall on 17 March. On 19 and 21 March ashfall was seen on the surface of cars in Macas to the SE. (figure 68). Ash was also reported on the 21st in de Santa María De Tunants (Sinaí) located E of Sangay. Ash fell again in Macas on 23 March and was also reported in General Proaño (40 km SE). The wind changed direction the next day and caused ashfall on 24 March to the SW in Cuenca and Azogues (100 km SW).

Figure (see Caption) Figure 68. Ashfall from Sangay was reported on cars in Huamboya on 17 March 2020 (left) and in Macas on 19 March (right). Courtesy IG-EPN, (#IGAlInstante Informativo VOLCÁN SANGAY No. 024, MARTES, 17 MARZO 2020 and #IGAlInstante Informativo VOLCÁN SANGAY No. 025, JUEVES, 19 MARZO 2020).

Incandescence from the dome at the crater and on the SE flank was noted by IG on 3, 4, and 13 March. Remobilized ash from a pyroclastic flow was reported drifting SW on 13 March. The incandescent path of the flow was still visible that evening. Numerous lahars were recorded seismically during the month, including on days 5, 6, 8, 11, 15, 30 and 31. Images from the Rio Upano on 11 March confirmed an increase from the normal flow rate (figure 69) inferred to be from volcanic debris. Morona-Santiago province officials reported on 14 March that a new dam had formed at the confluence of the Upano and Volcano rivers that decreased the flow downstream; by 16 March it had given way and flow had returned to normal levels.

Figure (see Caption) Figure 69. Images from the Rio Upano on 11 March 2020 (left) confirmed an increase from the normal flow rate related to lahars from Sangay descending the Rio Volcan. By 16 March (right), the flow rate had returned to normal, although the large blocks in the river were evidence of substantial activity in the past. Courtesy of IG (#IGAlInstante Informativo VOLCÁN SANGAY No. 018, MIÉRCOLES, 11 MARZO 2020 and #IGAlInstante Informativo VOLCÁN SANGAY No. 023, LUNES, 16 MARZO 2020).

Activity during April-June 2020. Lahar activity continued during April 2020; they were reported seven times on 2, 5, 7, 11, 12, 19, and 30 April. A significant reduction in the flow of the Upano River at the entrance bridge to the city of Macas was reported 9 April, likely due to a new dam on the river upstream from where the Volcan river joins it caused by lahars related to ash emissions and pyroclastic flows (figure 70). The flow rate returned to normal the following day. Ash emissions were reported most days of the month, commonly rising 500-1,100 m above the summit and drifting W. Incandescent blocks or flows were visible on the SE flank on 4, 10, 12, 15-16, and 20-23 April (figure 71).

Figure (see Caption) Figure 70. A significant reduction in the flow of the Upano River at the entrance bridge to the city of Macas was reported on 9 April 2020, likely due to a new dam upstream from lahars related to ash emissions and pyroclastic flows from Sangay. Courtesy of IG-EPN (#IGAlInstante Informativo VOLCÁN SANGAY No. 032, JUEVES, 9 ABRIL 2020).
Figure (see Caption) Figure 71. Incandescent blocks rolled down the SE ravine at Sangay multiple times during April 2020, including on 4 April (left). Pyroclastic flows left two continuous incandescent trails in the ravine on 23 April (right). Courtesy of IG-EPN (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-95, SÁBADO, 4 ABRIL 2020 and INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-114, JUEVES, 23 ABRIL 2020).

Activity during May 2020 included multiple daily ash emissions that drifted W and numerous lahars from plentiful rain carrying ash and debris downstream. Although there were only a few visible observations of ash plumes due to clouds, the Washington VAAC reported plumes visible in satellite imagery throughout the month. Plumes rose 570-1,170 m above the summit most days; the highest reported rose to 2,000 m above the summit on 14 May. Two lahars occurred in the early morning on 1 May and one the next day. A lahar signal lasted for three hours on 4 May. Two lahar signals were recorded on the 7th, and three on the 9th. Lahars were also recorded on 16-17, 20-22, 26-27, and 30 May. Incandescence on the SE flank was only noted three times, but it was cloudy nearly every day.

An increase in thermal and overall eruptive activity was reported during June 2020. On 1 and 2 June the webcam captured lava flows and remobilization of the deposits on the SE flank in the early morning and late at night. Incandescence was visible multiple days each week. Lahars were reported on 4 and 5 June. The frequent daily ash emissions during June generally rose to 570-1,200 m above the summit and drifted usually SW or W. The number of explosions and ash emissions increased during the evening of 7 June. IG interpreted the seismic signals from the explosions as an indication of the rise of a new pulse of magma (figure 72). The infrasound sensor log from 8 June also recorded longer duration tremor signals that were interpreted as resulting from the descent of pyroclastic flows in the SE ravine.

Figure (see Caption) Figure 72. Seismic and infrasound signals indicated increased explosive and pyroclastic flow activity at Sangay on 7-8 June 2020. Left: SAGA station (seismic component) of 7 and 8 June. The signals correspond to explosions without VT or tremor signals, suggesting the rise of a new magma pulse. Right: SAGA station infrasound sensor log from 8 June. The sharp explosion signals are followed a few minutes later (examples highlighted in red) by emergent signals of longer duration, possibly associated with the descent of pyroclastic material in the SE flank ravine. Courtesy if IG-EPN (Informe Especial del Volcán Sangay - 2020 - N°3, “Actualización de la actividad eruptiva”, Quito, 12 de junio del 2020).

On the evening of 8 June ashfall was reported in the parish of Cebadas and in the Alausí Canton to the W and SW of Sangay. There were several reports of gas and ash emissions to 1,770 m above the summit the next morning on 9 June, followed by reports of ashfall in the provinces of Guayas, Santa Elena, Los Ríos, Morona Santiago, and Chimborazo. Ashfall continued in the afternoon and was reported in Alausí, Chunchi, Guamote, and Chillanes. That night, which was clear, the webcam captured images of pyroclastic flows down the SE-flank ravine; IG attributed the increase in activity to the collapse of one or more lava fronts. On the evening of 10 June additional ashfall was reported in the towns of Alausí, Chunchi, and Guamote (figure 73); satellite imagery indicated an ash plume drifting W and incandescence from pyroclastic flows in the SE-flank ravine the same day (figure 74).

Figure (see Caption) Figure 73. Ashfall from Sangay was reported in Alausí (top left), Chunchi (top right) and Guamote (bottom) on 10 June 2020. Courtesy of IG-EPN (#IGAlInstante Informativo VOLCÁN SANGAY No. 049, MIÉRCOLES, 10 JUNIO 2020).
Figure (see Caption) Figure 74. Incandescent pyroclastic flows (left) and ash plumes that drifted W (right) were recorded on 10 June 2020 at Sangay in Sentinel-2 satellite imagery. Courtesy of Sentinel Hub Playground.

Ashfall continued on 11 June and was reported in Guayaquil, Guamote, Chunchi, Riobamba, Guaranda, Chimbo, Echandía, and Chillanes. The highest ash plume of the report period rose to 2,800 m above the summit that day and drifted SW. That evening the SNGRE (Servicio Nacional de Gestion de Riesgos y Emergencias) reported ash fall in the Alausí canton. IG noted the increase in intensity of activity and reported that the ash plume of 11 June drifted more than 600 km W (figure 75). Ash emissions on 12 and 13 June drifted SW and NW and resulted in ashfall in the provinces of Chimborazo, Cotopaxi, Tungurahua, and Bolívar. On 14 June, the accumulation of ash interfered with the transmission of information from the seismic station. Lahars were reported each day during 15-17 and 19-21 June. Trace amounts of ashfall were reported in Macas to the SE on 25 June.

Figure (see Caption) Figure 75. The ash plume at Sangay reported on 11 June 2020 rose 2.8 km above the summit and drifted W according to the Washington VAAC and IG (left). Explosions and high levels of incandescence on the SE flank were captured by the Don Bosco webcam (right). Courtesy of IG-EPN (#IGAlInstante Informativo VOLCÁN SANGAY No. 055, JUEVES, 11 JUNIO 2020 and INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-164, VIERNES, 12 JUNIO 2020).

During an overflight of Sangay on 24 June IG personnel observed that activity was characterized by small explosions from the summit vent and pyroclastic flows down the SE-flank ravine. The explosions produced small gas plumes with a high ash content that did not rise more than 500 m above the summit and drifted W (figure 76). The pyroclastic flows were restricted to the ravine on the SE flank, although the ash from the flows rose rapidly and reached about 200 m above the surface of the ravine and also drifted W (figure 77).

Figure (see Caption) Figure 76. A dense ash plume rose 500 m from the summit of Sangay on 24 June 2020 and drifted W during an overflight by IG-EPN personnel. The aerial photograph is taken from the SE; snow-covered Chimborazo is visible behind and to the right of Sangay. Photo by M Almeida, courtesy of IG EPN (Jueves, 02 Julio 2020 10:29, INFORME DEL SOBREVUELO AL VOLCÁN SANGAY EL 24 DE JUNIO DE 2020).
Figure (see Caption) Figure 77. Pyroclastic flows descended the SE flank ravine at Sangay during an overflight by IG-EPN personnel on 24 June 2020. Ash from the pyroclastic flow rose 200 m and drifted W, and infrared imagery identified the thermal signature of the pyroclastic flow in the ravine. Photo by M Almeida, IR Image by S Vallejo, courtesy of IG EPN (Jueves, 25 Junio 2020 12:24, SOBREVUELO AL VOLCÁN SANGAY).

Infrared imagery taken during the overflight on 24 June identified three significant thermal anomalies in the large ravine on the SE flank (figure 78). Analysis by IG scientists suggested that the upper anomaly 1 (125°C) was associated with explosive activity that was observed during the flight. Anomaly 2 (147°C), a short distance below Anomaly 1, was possibly related to effusive activity of a small flow, and Anomaly 3 (165°C) near the base of the ravine that was associated with pyroclastic flow deposits. The extent of the changes at the summit of Sangay and along the SE flank since the beginning of the eruption that started in March 2019 were clearly visible when images from May 2019 were compared with images from the 24 June 2020 overflight (figure 79). The upper part of the ravine was nearly 400 m wide by the end of June.

Figure (see Caption) Figure 78. A thermal image of the SE flank of Sangay taken on 24 June 2020 indicated three thermal anomalies. Anomaly 1 was associated with explosive activity, Anomaly 2 was associated with effusive activity, and Anomaly 3 was related to pyroclastic-flow deposits. Image prepared by S Vallejo Vargas, courtesy of IG EPN (Jueves, 02 Julio 2020 10:29, INFORME DEL SOBREVUELO AL VOLCÁN SANGAY EL 24 DE JUNIO DE 2020).
Figure (see Caption) Figure 79. Aerial and thermal photographs of the southern flank of the Sangay volcano on 17 May 2019 (left: visible image) and 24 June 2020 (middle: visible image, right: visible-thermal overlay) show the morphological changes on the SE flank, associated with the formation of a deep ravine and the modification of the summit. Photos and thermal image by M Almeida, courtesy of IG EPN (Jueves, 02 Julio 2020 10:29, INFORME DEL SOBREVUELO AL VOLCÁN SANGAY EL 24 DE JUNIO DE 2020).

Geologic Background. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

Information Contacts: Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Arnold Binas (URL: https://www.doroadventures.com).


Karangetang (Indonesia) — June 2020 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Incandescent block avalanches through mid-January 2020; crater anomalies through May

The Karangetang andesitic-basaltic stratovolcano (also referred to as Api Siau) at the northern end of the island of Siau, north of Sulawesi, Indonesia, has had more than 50 observed eruptions since 1675. Frequent explosive activity is accompanied by pyroclastic flows and lahars, and lava-dome growth has created two active summit craters (Main to the S and Second Crater to the N). Rock avalanches, observed incandescence, and satellite thermal anomalies at the summit confirmed continuing volcanic activity since the latest eruption started in November 2018 (BGVN 44:05). This report covers activity from December 2019 through May 2020. Activity is monitored by Indonesia's Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), and ash plumes are monitored by the Darwin VAAC (Volcanic Ash Advisory Center). Information is also available from MODIS thermal anomaly satellite data through both the University of Hawaii's MODVOLC system and the Italian MIROVA project.

Increased activity that included daily incandescent avalanche blocks traveling down the W and NW flanks lasted from mid-July 2019 (BGVN 44:12) through mid-January 2020 according to multiple sources. The MIROVA data showed increased number and intensity of thermal anomalies during this period, with a sharp drop during the second half of January (figure 40). The MODVOLC thermal alert data reported 29 alerts in December and ten alerts in January, ending on 14 January, with no further alerts through May 2020. During December and the first half of January incandescent blocks traveled 1,000-1,500 m down multiple drainages on the W and NW flanks (figure 41). After this, thermal anomalies were still present at the summit craters, but no additional activity down the flanks was identified in remote satellite data or direct daily observations from PVMBG.

Figure (see Caption) Figure 40. An episode of increased activity at Karangetang from mid-July 2019 through mid-January 2020 included incandescent avalanche blocks traveling down multiple flanks of the volcano. This was reflected in increased thermal activity seen during that interval in the MIROVA graph covering 5 June 2019 through May 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 41. An episode of increased activity at Karangetang from mid-July 2019 through mid-January 2020 included incandescent avalanche blocks traveling up to 1,500 m down drainages on the W and NW flanks of the volcano. Top left: large thermal anomalies trend NW from Main Crater on 5 December 2019; about 500 m N a thermal anomaly glows from Second Crater. Top center: on 15 December plumes of steam and gas drifted W and SW from both summit craters as seen in Natural Color rendering (bands 4,3,2). Top right: the same image as at top center with Atmospheric penetration rendering (bands 12, 11, 8a) shows hot zones extending WNW from Main Crater and a thermal anomaly at Second Crater. Bottom left: thermal activity seen on 14 January 2020 extended about 800 m WNW from Main Crater along with an anomaly at Second Crater and a hot spot about 1 km W. Bottom center: by 19 January the anomaly from Second Crater appeared slightly stronger than at Main Crater, and only small anomalies appeared on the NW flank. Bottom right: an image from 14 March shows only thermal anomalies at the two summit craters. Courtesy of Sentinel Hub Playground.

A single VAAC report in early April noted a short-lived ash plume that drifted SW. Intermittent low-level activity continued through May 2020. Small SO2 plumes appeared in satellite data multiple times in December 2019 and January 2020; they decreased in size and frequency after that but were still intermittently recorded into May 2020 (figure 42).

Figure (see Caption) Figure 42. Small plumes of sulfur dioxide were measured at Karangetang with the TROPOMI instrument on the Sentinel-5P satellite multiple times during December 2019 (top row). They were less frequent but still appeared during January-May 2020 (bottom row). Larger plumes were also detected from Dukono, located 300 km ESE at the N end of North Maluku. Courtesy of Global Sulfur Dioxide Monitoring Page.

PVMBG reported in their daily summaries that steam plumes rose 50-150 m above the Main Crater and 25-50 m above Second Crater on most days in December. The incandescent avalanche activity that began in mid-July 2019 also continued throughout December 2019 and January 2020 (figure 43). Incandescent blocks from the Main Crater descended river drainages (Kali) on the W and NW flanks throughout December. They were reported nearly every day in the Nanitu, Sense, and Pangi drainages, traveling 1,000-1,500 m. Incandescence from both craters was visible 10-25 m above the crater rim most nights.

Figure (see Caption) Figure 43. Incandescent block avalanches descended the NW flank of Karangetang as far as 1,500 m frequently during December 2019 and January 2020. Left image taken 13 December 2019, right image taken 6 January 2020 by PVMBG webcam. Courtesy of PVMBG, Oystein Anderson, and Bobyson Lamanepa.

A few blocks were noted traveling 800 m down Kali Beha Barat on 1 December. Incandescence above the Main crater reached 50-75 m during 4-6 December. During 4-7 December incandescent blocks appeared in Kali Sesepe, traveling 1,000-1,500 m down from the summit. They were also reported in Kali Batang and Beha Barat during 4-14 December, usually moving 800-1,000 m downslope. Between 5 and 14 December, gray and white plumes from Second Crater reached 300 m multiple times. During 12-15 December steam plumes rose 300-500 m above the Main crater. Activity decreased during 18-26 December but increased again during the last few days of the month. On 28 December, incandescent blocks were reported 1,500 m down Kali Pangi and Nanitu, and 1,750 m down Kali Sense.

Incandescent blocks were reported in Kali Sesepi during 4-6 January and in Kali Batang and Beha Barat during 4-8 and 12-15 January (figure 44); they often traveled 800-1,200 m downslope. Activity tapered off in those drainages and incandescent blocks were last reported in Kali Beha Barat on 15 January traveling 800 m from the summit. Incandescent blocks were also reported traveling usually 1,000-1,500 m down the Nanitu, Sense, and Pangi drainages during 4-19 January. Blocks continued to occasionally descend up to 1,000 m down Kali Nanitu through 24 January. Pulses of activity occurred at the summit of Second Crater a few times in January. Steam plumes rose 25-50 m during 8-9 January and again during 16-31 January, with plumes rising 300-400 m on 20, 29, and 31 January. Incandescence was noted 10-25 m above the summit of Second Crater during 27-30 January.

Figure (see Caption) Figure 44. Incandescent material descends the Beha Barat, Sense, Nanitu, and Pangi drainages on the NW flank of Karangetang in early January 2020. Courtesy of Bobyson Lamanepa; posted on Twitter on 6 January 2020.

Activity diminished significantly after mid-January 2020. Steam plumes at the Main Crater rose 50-100 m on the few days where the summit was not obscured by fog during February. Faint incandescence occurred at the Main Crater on 7 February, and steam plumes rising 25-50 m from Second Crater that day were the only events reported there in February. During March, steam plumes persisted from the Main Crater, with heights of over 100 m during short periods from 8-16 March and 25-30 March. Weak incandescence was reported from the Main Crater only once, on 25 March. Very little activity occurred at Second Crater during March, with only steam plumes reported rising 25-300 m from the 22nd to the 28th (figure 45).

Figure (see Caption) Figure 45. Steam plumes at Karangetang rose over 100 m above both summit craters multiple times during March, including on 26 March 2020. Courtesy of PVMBG and Oystein Anderson.

The Darwin VAAC reported a continuous ash emission on 4 April 2020 that rose to 2.1 km altitude and drifted SW for a few hours before dissipating. Incandescence visible 25 m above both craters on 13 April was the only April activity reported by PVMBG other than steam plumes from the Main Crater that rose 50-500 m on most days. Steam plumes of 50-100 m were reported from Second Crater during 11-13 April. Activity remained sporadic throughout May 2020. Steam plumes from the Main Crater rose 50-300 m each day. Satellite imagery identified steam plumes and incandescence from both summit craters on 3 May (figure 46). Faint incandescence was observed at the Main Crater on 12 and 27 May. Steam plumes rose 25-50 m from Second Crater on a few days; a 200-m-high plume was reported on 27 May. Bluish emissions were observed on the S and SW flanks on 28 May.

Figure (see Caption) Figure 46. Dense steam plumes and thermal anomalies were present at both summit craters of Karangetang on 3 May 2020. Sentinel 2 satellite image with Natural Color (bands 4, 3, 2) (left) and Atmospheric Penetration rendering (bands 12, 11, 8a) (right); courtesy of Sentinel Hub Playground.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com); Bobyson Lamanepa, Yogyakarta, Indonesia, (URL: https://twitter.com/BobyLamanepa/status/1214165637028728832).


Shishaldin (United States) — June 2020 Citation iconCite this Report

Shishaldin

United States

54.756°N, 163.97°W; summit elev. 2857 m

All times are local (unless otherwise noted)


Intermittent thermal activity and a possible new cone at the summit crater during February-May 2020

Shishaldin is located near the center of Unimak Island in Alaska, with the current eruption phase beginning in July 2019 and characterized by ash plumes, lava flows, lava fountaining, pyroclastic flows, and lahars. More recently, in late 2019 and into January 2020, activity consisted of multiple lava flows, pyroclastic flows, lahars, and ashfall events (BGVN 45:02). This report summarizes activity from February through May 2020, including gas-and-steam emissions, brief thermal activity in mid-March, and a possible new cone within the summit crater. The primary source of information comes from the Alaska Volcano Observatory (AVO) reports and various satellite data.

Volcanism during February 2020 was relatively low, consisting of weakly to moderately elevated surface temperatures during 1-4 February and occasional small gas-and-steam plumes (figure 37). By 6 February both seismicity and surface temperatures had decreased. Seismicity and surface temperatures increased slightly again on 8 March and remained elevated through the rest of the reporting period. Intermittent gas-and-steam emissions were also visible from mid-March (figure 38) through May. Minor ash deposits visible on the upper SE flank may have been due to ash resuspension or a small collapse event at the summit, according to AVO.

Figure (see Caption) Figure 37. Photo of a gas-and-steam plume rising from the summit crater at Shishaldin on 22 February 2020. Photo courtesy of Ben David Jacob via AVO.
Figure (see Caption) Figure 38. A Worldview-2 panchromatic satellite image on 11 March 2020 showing a gas-and-steam plume rising from the summit of Shishaldin and minor ash deposits on the SE flank (left). Aerial photo showing minor gas-and-steam emissions rising from the summit crater on 11 March (right). Some erosion of the snow and ice on the upper flanks is a result of the lava flows from the activity in late 2019 and early 2020. Photo courtesy of Matt Loewen (left) and Ed Fischer (right) via AVO.

On 14 March, lava and a possible new cone were visible in the summit crater using satellite imagery, accompanied by small explosion signals. Strong thermal signatures due to the lava were also seen in Sentinel-2 satellite data and continued strongly through the month (figure 39). The lava reported by AVO in the summit crater was also reflected in satellite-based MODIS thermal anomalies recorded by the MIROVA system (figure 40). Seismic and infrasound data identified small explosions signals within the summit crater during 14-19 March.

Figure (see Caption) Figure 39. Sentinel-2 thermal satellite images (bands 12, 11, 8A) show a bright hotspot (yellow-orange) at the summit crater of Shishaldin during mid-March 2020 that decreases in intensity by late March. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 40. MIROVA thermal data showing a brief increase in thermal anomalies during late March 2020 and on two days in late April between periods of little to no activity. Courtesy of MIROVA.

AVO released a Volcano Observatory Notice for Aviation (VONA) stating that seismicity had decreased by 16 April and that satellite data no longer showed lava or additional changes in the crater since the start of April. Sentinel-2 thermal satellite imagery continued to show a weak hotspot in the crater summit through May (figure 41), which was also detected by the MIROVA system on two days. A daily report on 6 May reported a visible ash deposit extending a short distance SE from the summit, which had likely been present since 29 April. AVO noted that the timing of the deposit corresponds to an increase in the summit crater diameter and depth, further supporting a possible small collapse. Small gas-and-steam emissions continued intermittently and were accompanied by weak tremors and occasional low-frequency earthquakes through May (figure 42). Minor amounts of sulfur dioxide were detected in the gas-and-steam emissions during 20 and 29 April, and 2, 16, and 28 May.

Figure (see Caption) Figure 41. Sentinel-2 thermal satellite images (bands 12, 11, 8A) show occasional gas-and-steam emissions rising from Shishaldin on 26 February (top left) and 24 April 2020 (bottom left) and a weak hotspot (yellow-orange) persisting at the summit crater during April and early May 2020. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 42. A Worldview-1 panchromatic satellite image showing gas-and-steam emissions rising from the summit of Shishaldin on 1 May 2020 (local time) (left). Aerial photo of the N flank of Shishaldin with minor gas-and-steam emissions rising from the summit on 8 May (right). Photo courtesy of Matt Loewen (left) and Levi Musselwhite (right) via AVO.

Geologic Background. The beautifully symmetrical Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." A steam plume often rises from its small summit crater. Constructed atop an older glacially dissected volcano, it is largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the W and NE sides at 1,500-1,800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Masaya (Nicaragua) — June 2020 Citation iconCite this Report

Masaya

Nicaragua

11.985°N, 86.165°W; summit elev. 594 m

All times are local (unless otherwise noted)


Lava lake level drops but remains active through May 2020; weak gas plumes

Masaya, which is about 20 km NW of the Nicaragua’s capital of Managua, is one of the most active volcanoes in that country and has a caldera that contains a number of craters (BGVN 43:11). The Santiago crater is the one most currently active and it contains a small lava lake that emits weak gas plumes (figure 85). This report summarizes activity during February through May 2020 and is based on Instituto Nicaragüense de Estudios Territoriales (INETER) monthly reports and satellite data. During the reporting period, the volcano was relatively calm, with only weak gas plumes.

Figure (see Caption) Figure 85. Satellite images of Masaya from Sentinel-2 on 18 April 2020, showing and a small gas plume drifting SW (top, natural color bands 4, 3, 2) and the lava lake (bottom, false color bands 12, 11, 4). Courtesy of Sentinel Hub Playground.

According to INETER, thermal images of the lava lake and temperature data in the fumaroles were taken using an Omega infrared gun and a forward-looking infrared (FLIR) SC620 thermal camera. The temperatures above the lava lake have decreased since November 2019, when the temperature was 287°C, dropping to 96°C when measured on 14 May 2020. INETER attributed this decrease to subsidence in the level of the lava lake by 5 m which obstructed part of the lake and concentrated the gas emissions in the weak plume. Convection continued in the lava lake, which in May had decreased to a diameter of 3 m. Many landslides had occurred in the E, NE, and S walls of the crater rim due to rock fracturing caused by the high heat and acidity of the emissions.

During the reporting period, the MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system recorded numerous thermal anomalies from the lava lake based on MODIS data (figure 86). Infrared satellite images from Sentinel-2 regularly showed a strong signature from the lava lake through 18 May, after which the volcano was covered by clouds.

Figure (see Caption) Figure 86. Thermal anomalies at Masaya during February through May 2020. The larger anomalies with black lines are more distant and not related to the volcano. Courtesy of MIROVA.

Measurements of sulfur dioxide (SO2) made by INETER in the section of the Ticuantepe - La Concepción highway (just W of the volcano) with a mobile DOAS system varied between a low of just over 1,000 metric tons/day in mid-November 2019 to a high of almost 2,500 tons/day in late May. Temperatures of fumaroles in the Cerro El Comalito area, just ENE of Santiago crater, ranged from 58 to 76°C during February-May 2020, with most values in the 69-72°C range.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Historical lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Krakatau (Indonesia) — June 2020 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 155 m

All times are local (unless otherwise noted)


Strombolian explosions, ash plumes, and crater incandescence during April 2020

Krakatau, located in the Sunda Strait between Indonesia’s Java and Sumatra Islands, experienced a major caldera collapse around 535 CE, forming a 7-km-wide caldera ringed by three islands. On 22 December 2018, a large explosion and flank collapse destroyed most of the 338-m-high island of Anak Krakatau (Child of Krakatau) and generated a deadly tsunami (BGVN 44:03). The near-sea level crater lake inside the remnant of Anak Krakatau was the site of numerous small steam and tephra explosions. A larger explosion in December 2019 produced the beginnings of a new cone above the surface of crater lake (BGVN 45:02). Recently, volcanism has been characterized by occasional Strombolian explosions, dense ash plumes, and crater incandescence. This report covers activity from February through May 2020 using information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, also known as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), the Darwin Volcanic Ash Advisory Center (VAAC), and various satellite data.

Activity during February 2020 consisted of dominantly white gas-and-steam emissions rising 300 m above the crater, according to PVMBG. According to the Darwin VAAC, a ground observer reported an eruption on 7 and 8 February, but no volcanic ash was observed. During 10-11 February, a short-lived eruption was detected by seismograms which produced an ash plume up to 1 km above the crater drifting E. MAGMA Indonesia reported two eruptions on 18 March, both of which rose to 300 m above the crater. White gas-and-steam emissions were observed for the rest of the month and early April.

On 10 April PVMBG reported two eruptions, at 2158 and 2235, both of which produced dark ash plumes rising 2 km above the crater followed by Strombolian explosions ejecting incandescent material that landed on the crater floor (figures 108 and 109). The Darwin VAAC issued a notice at 0145 on 11 April reporting an ash plume to 14.3 km altitude drifting WNW, however this was noted with low confidence due to the possible mixing of clouds. During the same day, an intense thermal hotspot was detected in the HIMAWARI thermal satellite imagery and the NASA Global Sulfur Dioxide page showed a strong SO2 plume at 11.3 km altitude drifting W (figure 110). The CCTV Lava93 webcam showed new lava flows and lava fountaining from the 10-11 April eruptions. This activity was evident in the MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data (figure 111).

Figure (see Caption) Figure 108. Webcam (Lava93) images of Krakatau on 10 April 2020 showing Strombolian explosions, strong incandescence, and ash plumes rising from the crater. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 109. Webcam image of incandescent Strombolian explosions at Krakatau on 10 April 2020. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 110. Strong sulfur dioxide emissions rising from Krakatau and drifting W were detected using the TROPOMI instrument on the Sentinel-5P satellite on 11 April 2020 (top row). Smaller volumes of SO2 were visible in Sentinel-5P/TROPOMI maps on 13 (bottom left) and 19 April (bottom right). Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 111. Thermal activity at Anak Krakatau from 29 June-May 2020 shown on a MIROVA Log Radiative Power graph. The power and frequency of the thermal anomalies sharply increased in mid-April. After the larger eruptive event in mid-April the thermal anomalies declined slightly in strength but continued to be detected intermittently through May. Courtesy of MIROVA.

Strombolian activity rising up to 500 m continued into 12 April and was accompanied by SO2 emissions that rose 3 km altitude, drifting NW according to a VAAC notice. PVMBG reported an eruption on 13 April at 2054 that resulted in incandescence as high as 25 m above the crater. Volcanic ash, accompanied by white gas-and-steam emissions, continued intermittently through 18 April, many of which were observed by the CCTV webcam. After 18 April only gas-and-steam plumes were reported, rising up to 100 m above the crater; Sentinel-2 satellite imagery showed faint thermal anomalies in the crater (figure 112). SO2 emissions continued intermittently throughout April, though at lower volumes and altitudes compared to the 11th. MODIS satellite data seen in MIROVA showed intermittent thermal anomalies through May.

Figure (see Caption) Figure 112. Sentinel-2 thermal satellite images showing the cool crater lake on 20 March (top left) followed by minor heating of the crater during April and May 2020. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 26, Number 08 (August 2001)

Managing Editor: Richard Wunderman

Etna (Italy)

Strombolian activity during May and June 2001

Fuego (Guatemala)

Seismic activity during April and December, eruption in September 2000

Jackson Segment (Undersea Features)

Additional investigations show no evidence of April eruption

Karymsky (Russia)

Increased seismicity from December 2000 through September 2001

Lopevi (Vanuatu)

June 2001 lavas, debris avalanches, <= 1.5 m ashfall, and 7.5-km-high plume

Mayon (Philippines)

Two main episodes in 2001; quiet seen in late August

Okmok (United States)

Small earthquake swarm during 11-15 May 2001

Popocatepetl (Mexico)

Steam-and-ash emissions, periods of dome growth during 2001

Semeru (Indonesia)

Continuous seismic activity, plumes to ~11.6 km

Sheveluch (Russia)

Eruption on 15 July, pyroclastic flows and explosion on 23 August 2001



Etna (Italy) — August 2001 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Strombolian activity during May and June 2001

During 14-20 May 2000, lava emission continued from the N fissure of the Southeast Crater (SEC). At about 1900 on 17 May there was an increase in the intensity of Strombolian activity and lava began to flow in several directions, forming two sub-parallel tongues toward the E. On 18 May observers noted that the lava flow emerged from a single vent at 3,156 m elevation, with an effusion rate of 2.5-4.5 m3/s. A short distance below the effusive vent, the flow divided into three branches: one to the NE, whose front flowed at about 2,700 m and reached a distance of about 1 km from the vent; the central branch flowing to the E, widest of the three with some points wider than 20 m; and one to the S, flowing below 3,000 m elevation at about 700 m from the vent. The farthest lava front was estimated to reach ~2,700 m elevation, 1.2 km from the vent. During this period, the Bocca Nuova (BN) crater continued to degas, accompanied by occasional emissions of brown ash. Also noted were a further deepening and widening of the internal crater in the BN's SE quadrant.

During 21-27 May, lava flows from the N fissure of SEC continued intermittent and variably intense Strombolian activity. Sporadic emissions of brownish-reddish ash came from the N crater of BN. Problems with surveillance cameras precluded continuous observation of the summit craters; however, on the morning of 24 May, renewed explosive activity was seen. Observations from Belevedere showed three hornitos on the N flank of the SEC, which emitted pulsing pressurized gas. The lava flow was active and well fed, with branches of ~1.5-2 km in length.

Activity at SEC increased considerably during 28 May-3 June. On 28 May, the presence of a small cinder cone, possibly having formed slowly over recent months, was discovered at the base of Northeast Crater (NEC), occupying about 2/3 of the crater floor and at least 20 m high.

At SEC, evidence of Strombolian activity was masked by discrete flows of gas and steam. The active lava field on the N flank, emerged from a main vent at about 3155 m elevation, which fed two principal flows, one to the E and one to the NE (then turning E). The latter flow formed a lava tube and then re-emerged ~100 m downstream from a small tumulus from which spewed other lava flows, the longest of which extended more than 1.5 km. The S-most branch also initially flowed partly inside a lava tube.

During the evening of 28 May, between 2222 and 2242, Strombolian activity at SEC rose sharply, with ejecta reaching as high as 50 m above the crater rim and with materials occasionally falling on other flanks of the cone. Lava flow rates on 29 and 30 May were estimated at 6-8 m3/s. Temperatures measured using a K-type (Cr/Al) thermocouple showed a maximum temperature on the inside of an expansion bulb to be of 1,065°C at 5 cm depth. Intense degassing continued at SEC for the next several days.

On the evening of 3 June two sub-parallel lava flows descended to the E, of which the northernmost was the longest and reached at least 2,600 m elevation. A few hundred meters ahead of its front, a small branch flowed N but stopped soon after. The other flow was directed toward the Valle del Bove and its advances were discontinuous. Further deepening of the two interior Voragine vents was observed. Eruptive activity was not continuous.

The W rim of BN had a very warm fissure that ran to the N. The N vent was much widened, but it was not possible to observe the base. During observations, gas explosions occurred about every 15 minutes, but it was not possible to observe the fall of ejecta. The S vent had also widened and deepened. On its SE flank, a small semi-circular vent emitted rumbling explosions every 3-10 minutes, accompanied by mostly blue-colored gas mixed with brown ash.

Although intense degassing did not permit views of the interior of the NEC, an apparently recent fissure on the N side of the cone was very warm.

During 4-10 June, two episodes of lava fountaining occurred at the SEC. The first began during the night of 5-6 June, with modest Strombolian activity at the SEC's secondary vent. At 2136 on 6 June, Strombolian activity at the secondary vent reached a frequency of about one explosion per minute, which in successive hours included the main vent as well. The activity eventually climaxed at 0145 on 7 June, when the secondary vent produced a lava fountain whose altitude reached 50 m. Falling to the ground, the stream of lava formed a primary lava flow, which immediately divided into three branches and stopped at about 3,000 m elevation. A second stream flowed to the N before turning E, reaching 2,600 m and superimposing in part on earlier lava flows. The eruptive episode concluded about 0340, with copious ash emissions from the SEC and the BN.

On the night of 8-9 June, a new eruptive episode occurred at the SEC, also beginning with Strombolian activity at 2011 at the principal and secondary vents. The activity evolved into lava fountains which reached a maximum altitude of about 200 m at the principal vent and about 80 m at the secondary vent. The strong activity continued until about 0322 and was accompanied by sustained lava emissions from the secondary vent, which gave rise to two flows which spread to the E and N respectively, superimposing themselves over preceding lava flows.

Activity at the other craters during this period was characterized by continuous degassing at the Voragine and NEC, accompanied, as in the case of the BN, by frequent ash emissions in the SE sector of the crater.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sistema Poseidon, a cooperative project supported by both the Italian and the Sicilian regional governments, and operated by several scientific institutions (URL: http://www.ct.ingv.it/en/chi-siamo/la-sezione.html).


Fuego (Guatemala) — August 2001 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Seismic activity during April and December, eruption in September 2000

Ash venting began at Fuego on 5 April 2000, followed by increased ash emissions and strong seismic signals during 7 and 8 April, according to the Guatemala Volcano Observatory and the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH) of Guatemala. On 8 April at 0215 a hot spot was visible in multi-spectral imagery. More hot spots were occasionally noted but there were no further reports of ash.

A news article from La Hora reported that a column of ash reached 1 km on 29 August 2000. According to the Guatemala Volcano Observatory, an eruption beginning on 6 September emitted an ash-and-steam plume that reached ~800 m. On 21 September a large amount of ash was emitted, blanketing nearby communities. Authorities considered evacuating residents and issued an Orange Alert for the area near the volcano.

Satellite imagery on 7 December showed an ash plume to the SW of the summit, extending 39 km and 11 km wide. According to ground observations the ash was centered at ~4.9 km elevation. INSIVUMEH reported that the volcano was producing loud rumbling sounds and a more significant eruption was likely. On 9 December 2000 satellite imagery confirmed a small eruption at about 1645. The eruption sent an ash cloud to ~4.5 km altitude, near the summit level. The ash cloud was initially dense, about 8 km wide, and drifted W and NW. By 2345, the cloud had dissipated and was no longer visible on satellite imagery. Occasional strong hot spots were visible on GOES-8 multi-spectral imagery throughout the day. That evening, volcanologists in Guatemala indicated that the volcano had become increasingly unstable with several explosions occurring within a few hours. Since then, no major activity has occurred.

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Otoniel Matías and Eddie Sánchez, Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH), Ministero de Communicaciones, Transporto, Obras Públicas y Vivienda, 7a. Av. 14-57, zona 13, Guatemala City 01013, Guatemala (URL: http://www.insivumeh.gob.gt/); Washington Volcanic Ash Advisory Center, NOAA Satellite Services Division, NESDIS E/SP23, NOAA Science Center, Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/); La Hora (URL: http://www.lahora.com.gt/).


Jackson Segment (Undersea Features) — August 2001 Citation iconCite this Report

Jackson Segment

Undersea Features

42.15°N, 127.05°W; summit elev. -3100 m

All times are local (unless otherwise noted)


Additional investigations show no evidence of April eruption

After a 3-9 April 2001 seismic swarm that was traced to the Jackson Segment of the Gorda Ridge (BGVN 26:03), seismically inferred volcanism remained unconfirmed. The signals detected on 3 April 2001 were located on the S side of the segment, and continued through 9 April. During a six-day period instruments detected over 3,500 earthquakes; 548 epicenters were located. By 11 April seismic activity was at very low levels, possibly below the detection threshold of the T-phase monitoring system.

On 10 April, an NSF- and NOAA-funded response team departed on the ship RV New Horizon to search for mega-plumes from the event, but no plumes were detected. On 26 April the U.S. Coast Guard ship Healy conducted conductivity, temperature, and depth (CTD) probes and took dredge samples on the site. A report made available in late May indicated that investigations from the Healy also failed to find evidence of an eruption at the Jackson Segment and detected no significant thermal anomalies from hydrothermal plumes. Rocks recovered by dredge from the sea floor were clearly old. The entire segment was also resurveyed with multibeam sonar to compare with bathymetry collected before the earthquake swarm. The early April earthquake swarm may have indicated moving magma that never made it up to the sea floor to erupt.

Geologic Background. The Jackson Segment of the Gorda Ridge more than 200 km off the coast of Oregon lies immediately SSW of the North Gorda Ridge, the northermost of five segments forming the Gorda Ridge spreading center. The first recorded activity took place in April 2001, when volcanic seismicity was detected by hydroacoustic monitoring. The seismicity indicated possible dike propagation to the south and was similar to that which was documented at the time of the eruption of a submarine lava flow from the adjacent North Gorda Ridge segment in 1996. The 2001 activity originated from the central axial valley of the Jackson Segment, near the "narrowgate" on the southern part of the segment. Later surveys, however, revealed no evidence for submarine eruptive activity in April 2001.

Information Contacts: Bob Embley (NOAA/PMEL) and Jim Cowen (SOEST, Univ. of Hawaii), NOAA Pacific Marine Environmental Laboratory (PMEL), 2115 SE Osu Drive, Newport, OR 97365 USA (URL: https://www.pmel.noaa.gov/).


Karymsky (Russia) — August 2001 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Increased seismicity from December 2000 through September 2001

Since the activity reported from June through mid-October 2000 (BGVN 25:09), the Kamchatkan Volcanic Eruption Response Team (KVERT) reported that seismic activity at Karymsky remained mostly at background levels, with a few episodes of increased seismicity.

On 20 December 2000 around 0915 shallow earthquakes under the volcano were accompanied by short-lived explosions. At 2150 the same day a pilot confirmed the presence of ash at the summit of the volcano and mud traces from melting snow on the edifice slopes. The Concern Color Code was increased from Green (volcano is dormant; normal seismicity and fumarolic activity) to Yellow (volcano is restless; eruption may occur) until 29 December.

On 2 and 28 February several shallow seismic events took place, including a 5-minute-long series of weak shallow earthquakes on 28 February. During March, small shallow earthquakes and one episode of weak high-frequency spasmodic tremor were registered. On 12 March a high-frequency signal lasted for 90 minutes. On 28 March, from 1205 to 1300, an intense series of earthquakes with magnitudes up to ~3 was registered. Several local low-frequency earthquakes occurred during the end of March and beginning of April. Around 20 April, more than 40 earthquakes with magnitudes up to ~2.5 occurred. Since then through at least September 2001, seismic activity at Karymsky has remained at background levels with the exception of 23 August, when 30 earthquakes were registered.

General Reference. Khrenov, A.P., and others, 1982, Eruptive activity of Karymsky Volcano over the period of 10 Years (1970-1980): Volcanology and Seismology, no. 4, p. 29-48. Tokarev, P.I., 1990, Eruptions and seismicity at Karymskii volcano in 1965-1986: Volcanology and Seismology, v. 11, p. 117-134 (in English).

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Lopevi (Vanuatu) — August 2001 Citation iconCite this Report

Lopevi

Vanuatu

16.507°S, 168.346°E; summit elev. 1413 m

All times are local (unless otherwise noted)


June 2001 lavas, debris avalanches, <= 1.5 m ashfall, and 7.5-km-high plume

Lopevi erupted explosively on 8 June 2001, with additional eruptions at least through the 19th. The current eruptive period, which started in July 1998, continued during 1999 and 2000 (BGVN 24:02, 24:07, 25:04, and 26:06). This report covers June and July 2001.

The explosive eruption that began around 1100 on 8 June generated an eruptive plume, a lava flow on the NW flank, and two debris avalanches on the W flank (figure 12). During the explosive activity, a crater opened at ~200 m elevation on the NW flank along the SE-NW crack. The ash plume rose to ~7,500 m (as determined by NOAA satellite data analysis). The ash blew NW, carried by ~35-45 km/hour winds; tephra-fall deposits on Lopevi reached ~0.5-1.5 m thick. As much as 7 cm of ash fell on the E coast and middle of Paama Island, 5 km WNW with ~1,700 residents, reaching a thickness of 7 cm.

Figure (see Caption) Figure 12. Sketch map of Lopevi showing the location of June 2001 deposits on the NW and NNW flanks. One lava flow and two debris avalanche deposits date from the 8 June 2001 eruption. Farther N, two lava flows date from the 15 June 2001 eruption. Produced from an original map by A-J. Warden including observations by A-J. Warden and R. Priam (Archive Service de Mines); revised and updated by S. Wallez and D. Charley; drafted by A. Mabonlala. Courtesy of IRD.

About 11 hours after the eruption the Along-Track Scanning Radiometer (ATSR-2) research instrument on the European Remote-Sensing Satellite (ERS-2) obtained data from which an image of the plume could be derived (figure 13). The instrument has infrared detection channels at ~11 and ~12 µm, which are used to discriminate ash from meteorological clouds. The image shows the temperature difference between the 11 and 12 µm channels. The greater this negative difference, the greater the likelihood that there is ash; larger negative differences usually mean more ash. A possible explanation of the complex plume structure shown on figure 13 is the presence of atmospheric water vapor, which would mask the ash signal over some parts of the plume. Water vapor has the opposite effect of ash on the image: a positive difference is created because water vapor tends to make the 11µm temperature larger than the 12 µm temperature.

Figure (see Caption) Figure 13. Lopevi ash plume as imaged by the ATSR-2 instrument on 8 June 2001 at 1134Z. The unlabeled island SW of the plume is Lopevi. The areas with the most ash are in the center of the shaded plume area. Courtesy of Fred Prata, CSIRO.

The 8 June explosion caused instability on the W flank that produced two debris avalanches-unsorted deposits composed of older material (figures 14 and 15). The smaller of the two avalanches was composed of fine gray debris. It occurred next to the lava flow from the NW-flank crater. The larger avalanche, which reached the sea, was beige in color and included basaltic lava fragments, unburned vegetation, and red and black scoria of the sort commonly found on the steep (45°) upper slopes. The scoria and other observations were consistent with this debris avalanche resulting from a partial collapse of the active cone. Aa lava from the NW-flank crater spread out along the coastline (figure 14) on the SW side of the 2000 lava flows (figure 16). This flow had cooled by the time of a field visit on 11 June.

Figure (see Caption) Figure 14. Lopevi's NW coastline showing the 8 June aa lavas and debris avalanches (barely visible); older lavas from 2000 also appear. The photograph was taken on 9 June 2001. Courtesy of S. Wallez.
Figure (see Caption) Figure 15. Lopevi's two W-flank debris avalanches produced during the 8 June 2001 eruption (photographed 9 June 2001). Courtesy of S. Wallez.
Figure (see Caption) Figure 16. Sub-vertical aerial photograph showing lava flows that reached the NNW coast of Lopevi during 2000. Additional lava flows from the June 2001 eruptions covered parts of the SW and NE areas of this delta. N is to the right. Courtesy of S. Wallez.

On a second visit during 14-17 June, geologists saw two new NW-flank flows, which they mapped and photographed (figures 12 and 17). Their guide said the lava flows were emplaced on 15 June 2001. These flows began at a height of ~400 m and added to a delta with a width of ~350 m at the coast.

Figure (see Caption) Figure 17. View of Lopevi from the ocean looking towards the NW coast towards the lava flows from 2000 and both 8 and 15 June 2001. Courtesy of S. Wallez.

According to United Nations reports, the strong SE trade winds had deposited ~18 cm of ash on Paama Island as of 20 June, and lesser ashfall on Ambrym and Malekula islands. The worst affected villages were Luli, Lulep, and Liro on Paama. Overall, it was estimated that 4,000-5,000 people were directly affected by the ashfall on Paama and SE Ambrym. The ashfall on Paama polluted open water-supplies, bringing the pH to 3-4, and caused darkness for a few hours beginning at about 1500 on 8 June. The 12 June report noted that the government of Vanuatu had approached the Australian High Commission in Port Vila and in response an Australian ship in the area, HMAS Kanimbla, was deployed to deliver drinking water from Red Cross stocks. The Vanuatu Red Cross Society provided water, blankets, and soap, as well as participating in assessment activities with government officials and scientists. The National Disaster Management Office reported to the UN that more ashfall occurred on the night of 19 June. As of 20 June sources of potable water had been identified, but there remained a shortage of cooking and wash water. As a precaution, 105 students and five teachers from Paama were evacuated to schools on other islands, but most residents remained and were occupied with clearing ash from roofs, water tanks, and gardens.

Geologic Background. The small 7-km-wide conical island of Lopevi, known locally as Vanei Vollohulu, is one of Vanuatu's most active volcanoes. A small summit crater containing a cinder cone is breached to the NW and tops an older cone that is rimmed by the remnant of a larger crater. The basaltic-to-andesitic volcano has been active during historical time at both summit and flank vents, primarily along a NW-SE-trending fissure that cuts across the island, producing moderate explosive eruptions and lava flows that reached the coast. Historical eruptions at the 1413-m-high volcano date back to the mid-19th century. The island was evacuated following major eruptions in 1939 and 1960. The latter eruption, from a NW-flank fissure vent, produced a pyroclastic flow that swept to the sea and a lava flow that formed a new peninsula on the western coast.

Information Contacts: Sandrine Wallez and Douglas Charley, Department of Geology, Mines & Water Resources (DGMWR), PMB 01, Port-Vila, Vanuatu; Michel Lardy, Institut de Recherche pour le Développement (IRD), Bondy, Paris, France; Fred Prata, Senior Principal Research Scientist, Commonwealth Scientific and Industrial Research Organization (CSIRO), Atmospheric Research, PB 1 Aspendale, Victoria 3195, Australia; United Nations Office for the Coordination of Humanitarian Affairs (OCHA), New York, NY 10017 USA (URL: https://reliefweb.int/).


Mayon (Philippines) — August 2001 Citation iconCite this Report

Mayon

Philippines

13.257°N, 123.685°E; summit elev. 2462 m

All times are local (unless otherwise noted)


Two main episodes in 2001; quiet seen in late August

Mayon has undergone two eruptive episodes thus far in 2001. The first episode began in January 2001 and involved a period of unrest that culminated in explosive eruptions on 24 and 29 June. The second episode took place on 20 July, climaxing on 26 July. Low-level lava spattering and active degassing continued for days after the latter climax but activity dropped in early August.

The stratovolcano was last reported on through 31 May 2001 (BGVN 26:05); the present report covers through mid-August 2001. The volcano's Alert Levels are discussed in more detail in the last section.

Precursors and minor explosive activity. Unrest during the year 2001 was first recognized on 8 January when the Lignon Hill Observatory (LHO) in Legaspi City (11.5 km SE of the summit) reported a blocky lava dome growing on top of the summit. Lava dome extrusions occurred before an explosive eruption the previous year, so the January 2001 dome was an ominous sign of renewed activity. From January to April 2001, the dome slowly grew and sporadic ash explosions accompanied or followed periods of seismic unrest. The hazard status was set at Alert Level 2, signifying the ascent of magma.

During the second week of May, LHO staff noticed that the growing summit lava dome overlapped the unconfined side of the SE crater rim. At 1752 on 11 May a minor explosion ejected ash and vapor to 50 m above the summit. A series of similar small explosions followed on 12 May that were likely triggered by magma intruding into the dome. As a result, the SE portion of the dome partially collapsed.

Subsequently, the SE flank of the dome facing the observatory glowed conspicuously and lava fragments began to detach from the summit lava dome. Rockfalls were episodic at first and it was not clear initially whether detaching lava was caused by instability of the growing dome or due to the effects of increased internal pressure.

In time, observations from Bonga, ~8 km SE of the summit, indicated that incandescent rockfalls were apparently caused by slowly ascending magma entering the dome. The magma was degassed but hot, presumably a remnant of magma erupted during 2000. PHIVOLCS later postulated that ascending magma punched an exit point on the SE flank of the growing lava dome. This material then spilled into the Bonga Gully, with hot lava boulders as big as trucks falling, rolling, and sliding to form a pyroclastic apron on slopes at 1,800-2,000 m elevation. Rockfall activity, monitored via the seismic network, progressively increased in frequency until magma discharge was sufficient to form a stubby lava flow on 17 June. By 20 June, the seismograms displayed more or less merging codas of high-frequency tremor, which suggested that lava extrusion dominated earlier rockfall activity. As seen earlier, the lava flow was thought to represent relatively fresh but still degassed magma.

Lava fills crater then extends 5 km. By 22 June, lava had already buried the summit dome and partially filled the crater. Lava was no longer exiting from a single patch at the side of the dome but from the whole breadth of the SE summit.

Episodes of conspicuous summit glow began on 23 June, and intensified to a pulsating light-yellow incandescence by early evening. The summit did not stay quiet for long because the crater began to vent voluminous gases and to shower spatter around the summit. COSPEC readings indicated an SO2 flux of ~7,000 metric tons per day (t/d), well above the baseline of ~500 t/d. At about 1909 on 23 June, a period of low-level lava fountaining began to feed lava flows that eventually descended from the summit elevation to ~500 m elevation-a distance of ~5 km.

When lava fountaining commenced the Alert Level rose from 3 to 4. This status meant that PHIVOLCS considered a hazardous eruption imminent, within hours to days. The corresponding Level 4 Bulletin carried with it a recommendation to evacuate areas within the 6-km-radius Permanent Danger Zone (PDZ) and a 7-km-radius Extended Danger Zone (EDZ) in the SE sector. The EDZ provided a buffer zone to the Bonga Gully, which descends from near the crater mouth to the lower mid-slopes (~600 m elevation) to the SE, a distance of ~4 km. By 0100 on 24 June the PDZ and EDZ were fully evacuated through the efforts of a group called "Task Force Mayon," a military and civilian organization charged with implementing the evacuation of the danger zones. Temporary shelters received ~25,000 people.

At 0317 on 24 June a series of explosions fed an ash column that rose to ~1 km above the volcano's summit. A thin blanket of ash fell mainly on the northern half of the volcano in the vicinity of barangays (hamlets) Amtic and Tambo of Ligao City and San Vicente, San Antonio, Quinastillojan, Bantayan, Tabiguian, and Buang of Tabaco City.

First substantial pyroclastic flows. Although lava fountaining and small ash puffs signaled the start of explosive activity, it was not until 1245 on 24 June that the first major pyroclastic flow occurred. It followed the eastern branch of the Bonga Gully in the general direction of Barangay Buyuan. PHIVOLCS promptly raised the status to the highest Alert Level, 5, first verbally to provincial disaster-mitigation officials shortly after 1245, followed by an official bulletin released by 1300. Alert Level 5 provided a reminder that hazardous eruptions were taking place. Although the 1245 pyroclastic flow was short-lived and ran down to the middle slopes only (~700-1,000 m elevation), this again-elevated status emphasized that more explosive eruptions were expected.

At 1444 on 24 June, large explosions commenced and generated multiple pyroclastic flows around the cone. Ash clouds from the eruption column and pyroclastic flows enveloped the volcano in ash and rose to ~10 km altitude. Although the volcano seemed to disappear within its own eruption clouds, giving the impression of massive explosions that might have threatened the lowlands, the pyroclastic flows and lava flows were all contained within the PDZ, with maximum runouts to only ~5.5 km.

Considerable airfall ash blanketed the northern areas, particularly the cities of Ligao and Tabaco, but this was chiefly a function of wind velocity and direction, because the wind mostly comes from the SW this time of the year.

Eruptions continued until 1921 on 24 June when seismographs began to record diminishing eruption intensity as indicated by decreasing harmonic tremor amplitudes. However, sporadic explosive eruptions continued throughout the evening as LHO noted light ashfall in Legaspi up to about 2135 that day. Thereafter, during 25-28 June, Mayon remained quiet, although Alert Level 5 was maintained in anticipation of more explosions.

At around 1605 and 1702 on 29 June, Mayon erupted again and sent relatively small pyroclastic flows down the Bonga Gully to the SE. Over the period 30 June to 19 July, Mayon's apparent activity waned and the hazard status was eventually lowered to level 3 (which states that an eruption may still be expected within the coming weeks). Observations in support of reduced activity included a general deflation of the edifice, decreased seismic activity, lowered gas emission rates, and the disappearance of summit incandescence. The first eruptive episode ended and scientists inferred that intrusions into the cone had ceased.

Activity during late July 2001. Mayon's eruptive episode during July 2001 was essentially a continuation of June's activity. On 20 July seismographs around the volcano recorded high-frequency, short-duration tremor associated with rockfalls. The number of seismically detected rockfalls had already declined from the pre-June 24 eruption level of more than 200 events per day to (by 19 July 2001) a post-eruption level of less than ~10 events per day. The latter number was attributed to unstable, freshly deposited lavas on steep upper slopes.

Scientists were alerted when the S-flank seismic station at ~800 m elevation registered an abrupt increase, from 5 rockfall events on 19 January to 48 events on 20 January. Over the same time period an upper seismic station (at 1,700 m elevation) recorded a jump from 25 to 142 events. Incandescent rockfalls became persistent.

Other striking changes soon occurred. On 21 July the SO2 flux tripled, to 7,400 t/d. The uppermost electronic tiltmeter (at 1,700 m elevation) fluctuated by ~20 µrad. Crater glow increased and rockfall occurrences peaked.

PHIVOLCS inferred that Mayon had again entered a mild eruptive stage. The character of unrest resembled activity observed between mid May and 20 June, prior to explosive eruptions on 24 June. Scientists recognized that an explosive and hazardous eruption could occur anytime. By 23 July, PHIVOLCS gave the Albay provincial government a notice of increasing unrest and by 25 July, the Municipal Mayors were informed of reactivation and possible explosive eruption of Mayon.

Overall, unrest was accelerating. On the morning on 25 July, the bulletin also added that the current extrusion of lava was clear evidence of eruption and that more explosive eruptions were expected. At 0418 on 25 July seismometers detected more or less continuous high-frequency tremor. Although clouds shrouded Mayon, volcanologists believed these signals indicated that a lava flow had extruded from the dome, an idea confirmed when observers saw a short lava tongue draping the SE slope just below the summit crater.

During 0219-0315 on 26 July, LHO staff saw mild lava fountaining that reached to ~70 m high. This prompted the return to Alert Level 4 at 0400 on 26 July and a rapid evacuation. During quiet times, farmers work portions of land within the 6-km-radius PDZ, but at Alert 4, people in this zone are required to evacuate as quickly as possible. As in the previous 24 June eruption, a 7-km-radius SE-flank EDZ was also declared (to include river gullies upstream of barangays Mabinit, Bonga, Buyuan and Matanag). But, lava fountaining declined at about 0400 and the volcano seemed quiet. This led some people to be initially lax, and some farmers viewed the lull as an opportunity to gather their livestock near the Bonga Gully. PHIVOLCS firmly advised not to proceed. This warning proved justified when at 0538 a brief burst from the crater sent an ash cloud to ~500 m above the summit. This was accompanied by a low-frequency type earthquake that lasted for about a minute. A lack of urgency towards evacuating may have been widespread. Legaspi City Mayor Rosal made the following admission, which appeared in The Philippine Star the next day. "We were surprised by its sudden explosion. We were told to evacuate last night but we did not know it would explode so fast."

At 0745 on 26 July there occurred another ash explosion with similar seismic signature. In retrospect, sequences of low-frequency seismic events were detected by the Mayon Resthouse station (780 m elevation) before the onset of explosive eruptions at 0756 on 26 July. These events were not detected at other stations or were obscured by high-frequency tremor associated with both lava flowing out at the uppermost elevations and lava fragments detaching from the advancing lava flow.

The 0756 eruption produced a turbulent head of steam and ash, followed by a column of roiling dark-gray ash clouds. The column convected to ~10 km altitude while pyroclastic flows descended the Bonga (SE flank) and Basud (E flank) gullies. Upper-level winds conveyed the topmost eruption column to the SW. Lower-level winds carried fine ash lofted upwards (elutriated) from pyroclastic flows to the SE. Accordingly, the main ashfall deposit reached ~7 mm or more in thickness to the SW (in Camalig); it included scoria up to 10 cm diameter and perhaps larger. Most scoria fragments broke up upon impact with hard surfaces such as concrete and asphalt, but scoria clasts that landed on softer ground were preserved. A second ashfall deposit occurred to the S, SE, and ESE (in Legazpi, Daraga, and Lidong, respectively), amounting to ~5 mm thickness during this initial eruption. Additional lighter ashfalls occurred to the S (in Daraga) and to the SW (in Guinobatan).

A brief helicopter flight over Albay Gulf looking at Legaspi and Santo Domingo showed the dark curtain of ash progressively blanketing these localities. Pyroclastic flows remained well within the PDZ, a fact used to conclude that additional areas were not endangered. Only small-volume pyroclastic flows were seen descending the S-flank regions (Mi-isi and Anoling gullies).

The eruption that began on 0756 on 26 July lasted for about an hour. Ash clouds remained suspended throughout the day, even when Typhoon Feria's rains swept over Mayon. At 1420 that day another episode of eruptions began. Although the suspended ash and rain clouds covered Mayon, harmonic tremor and booming sounds signified explosive discharge until about 1500. A third and final eruption episode occurred from 1749 until 1810. Like the second period of eruptions, ash and rain clouds obscured much of the volcano from Legaspi. From Santo Domingo, however, pyroclastic flows were seen descending the Basud Gully. A ground survey to Bonga, facing this gully in the SE indicated that very small pyroclastic flows were passing here, yet there were large pyroclastic flows to the E.

When the eruption cleared the following day, observers recognized that the septum between the Bonga and Basud Gullies near the summit had breached. It is therefore very likely that late-stage pyroclastic flows during the third eruptive episode were funneled through Basud and little material was channeled along the Bonga Gully. This demonstrates the high probability that subsequent flows will also affect the eastern sector and not just the SE. Fortunately, flow runouts remained within defined danger zones.

On 27 July Mayon entered an effusive state as lava from the summit fed a flow that eventually reached ~3.75 km to the SE at an elevation of ~650 m. This was smaller than the lava flow extruded in June; it traveled farther and eventually reached ~5.5 km down the SE slope at ~500 m elevation. Hazy conditions in the SE foothills were caused by ash-and-steam plumes from the summit and from pyroclastic-and lava-flow deposits. Seismicity remained active, with signals from sporadic explosions and persistent background tremor related to lava flows and other surface events. Numerous (206) discrete rockfall signatures, for example, were detected by the seismic network and many of these were visually confirmed from LHO. The resumption of rockfalls was interpreted to not result from another intrusion but from loosened lava debris on steep slopes.

The SO2 flux at 6,450 t/d remained very high on 27 July and even on the following days, SO2 emission rates varied between 3,265 and 9,915 t/d. Voluminous degassing coincided with loud roaring from the crater, which caused some residents of Santo Domingo, at least 8 km E of the crater, to evacuate. According to residents, the last time they heard the crater degas loudly was prior to the resurgence on 23 September 1984, so that they were troubled when they heard another explosive eruption after 26 July 2001. The concern was not at all unfounded. Although incandescence of the summit already diminished to faint conditions as observed from LHO, some low-level fountaining became evident on video cameras with night vision. The cameras clearly showed blobs of lava thrown 100 m above the crater rim. This new observation, along with elevated seismic and SO2 levels, and other monitored parameters, kept the alert status at Level 5.

Waning activity. It was not until there were clearer signals of gradual decline of activity that PHIVOLCS lowered the Alert Level 5 status to Level 4. A bulletin on 9 August 2001 explicitly noted the cessation of explosive eruptions.

After 10 August seismic activity decreased. Background tremor associated with active magma transport had stopped and rockfall occurrences had become insignificant. The number of low-frequency volcanic earthquakes occurring daily was still above baseline, up to 22 events, but this is not unusual after an eruption of Mayon and was probably related to shallow magma degassing. The SO2 fluxes, up to 6,600 t/d, were still very high, presumably for the same reason. Electronic tiltmeters supported the idea of substantial degassing, showing a general deflation episode following the 26 July eruption. In summary, while various monitoring parameters continued to show significant unrest of Mayon, the general trend was one of declining activity. This information may be used to eventually lower alerts over the volcano and allow the return of evacuees to their homes by the end of August 2001.

June and July eruptions compared. The eruptions in June appeared to be more voluminous and produced more lavas than tephra. The estimated volume of 15 x 106 m3 was in the ratio 2/3 lava and 1/3 pyroclastics. The June eruptions also produced pyroclastic flows that ran through many gullies radiating around the cone. The 26 July eruption produced roughly similar proportions of lava and tephra (namely, 5 x 106 m3 lava; 6 x 106 m3 tephra).

When the 26 July pyroclastic flows poured down the SE and E flanks, the low-altitude SE winds caused Legaspi City to be enveloped in ashfall. Legaspi City generally remains ash-free due to seasonal wind patterns. Not fully prepared to cope with ashfall, many residents panicked even though the threats to life were virtually nil. Phone lines jammed and vehicle traffic was backed up for several kilometers on the highway from Rawis, Legaspi City to Padang, and Santo Domingo. Busy communication networks also prevented PHIVOLCS from relaying real-time information by telephone to the central office in Quezon City. Fortunately, anticipation of explosive eruptions earlier that day meant that warnings to local and national authorities were already sent out. A notice to the Volcanic Ash Advisory Center in Tokyo was also made that morning.

Another marked difference between the June and July 2001 unrest was the time interval between perceived disquiet to the day of explosive eruption. The 24 June eruption was preceded by over a month of seemingly increasing rockfall activity. In a sense, rockfalls were an indicator of magma-discharge rates and the number of rockfalls per day progressively increased up until lava-flow extrusion. In contrast, the period between the onset of rockfalls and the 26 July eruption was barely a week, so that magma-discharge rates jumped abruptly before the onset of lava extrusion and explosive discharge.

Background provided by PHIVOLCS. The towering Mayon stratovolcano is famous for its highly conical shape and its symmetry. It is the most active volcano in the Philippines, with 47 historical eruptions since 1616. The typical eruption episode lasting from a few days to about a month produces a sequence of basaltic andesite lava flows, pyroclastic flows, and tephra falls. Based on geological studies on the nature and extent of deposits, a 6-km-radius "Permanent Danger Zone" (PDZ) has been defined to discourage people from permanently occupying hazardous areas.

Table 6 shows the Mayon warning scheme devised by PHIVOLCS. It is similar to the one employed at Pinatubo. Six alert levels provide the general activity status.

Table 6. A simplified version of the current warning scheme used at Mayon. Courtesy of PHIVOLCS.

Alert Level Meaning
0 Volcano is quiet; no eruption in foreseeable future
1 Little unrest, possibly of hydrothermal, magmatic or tectonic activity
2 Moderate unrest of magmatic origin; may lead to an eruption
3 High unrest; tendency towards an eruption within weeks
4 Eruption imminent within days
5 Hazardous eruption in progress

It has been suggested that Mayon erupts every 10 years, referring to the eruptions of 1928, 1938, and 1947. Then there were the eruptions of 1968 and 1978 as well as the interval between 1984 and 1993 events. Yet in recent years, it seems that this general periodicity has changed. The Millennium eruption, 24 February to 7 March 2000, occurred just 7 years after the 1993 outbursts. A similar period of repose is evident in the interval 1978-84. In fact, close inspection of the historical record suggests other intervals with eruption repose periods of less than 10 years.

Geologic Background. Beautifully symmetrical Mayon, which rises above the Albay Gulf NW of Legazpi City, is the Philippines' most active volcano. The structurally simple edifice has steep upper slopes averaging 35-40 degrees that are capped by a small summit crater. Historical eruptions date back to 1616 and range from Strombolian to basaltic Plinian, with cyclical activity beginning with basaltic eruptions, followed by longer term andesitic lava flows. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic flows and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often devastated populated lowland areas. A violent eruption in 1814 killed more than 1,200 people and devastated several towns.

Information Contacts: Ernesto Corpuz, Philippine Institute of Volcanology and Seismology, C.P. Garcia Ave., Univ. Philippines Campus, U.P. Diliman, 1101 Quezon City.


Okmok (United States) — August 2001 Citation iconCite this Report

Okmok

United States

53.43°N, 168.13°W; summit elev. 1073 m

All times are local (unless otherwise noted)


Small earthquake swarm during 11-15 May 2001

Since the February 1997 eruption (BGVN 22:04) until at least September 2001, Okmok has remained relatively quiet, with one period of increased seismic activity. On 11 May 2001, from about 0800 to at least 1700, the Alaska Volcano Observatory (AVO) detected a small earthquake swarm centered near the volcano. Earthquakes in the swarm had magnitudes ranging from ~2 to 3.6. The locations of the earthquakes could not be pinpointed because Okmok is not monitored by a local seismic network. AVO noted that the earthquakes may have been of volcanic origin, but swarms with similar characteristics are not uncommon at Aleutian arc volcanoes and do not necessarily lead to eruptive activity. The earthquake swarm ended by 15 May, and AVO has not reported any further activity at Okmok since then.

Geologic Background. The broad, basaltic Okmok shield volcano, which forms the NE end of Umnak Island, has a dramatically different profile than most other Aleutian volcanoes. The summit of the low, 35-km-wide volcano is cut by two overlapping 10-km-wide calderas formed during eruptions about 12,000 and 2050 years ago that produced dacitic pyroclastic flows that reached the coast. More than 60 tephra layers from Okmok have been found overlying the 12,000-year-old caldera-forming tephra layer. Numerous satellitic cones and lava domes dot the flanks of the volcano down to the coast, including 1253-m Mount Tulik on the SE flank, which is almost 200 m higher than the caldera rim. Some of the post-caldera cones show evidence of wave-cut lake terraces; the more recent cones, some of which have been active historically, were formed after the caldera lake, once 150 m deep, disappeared. Hot springs and fumaroles are found within the caldera. Historical eruptions have occurred since 1805 from cinder cones within the caldera.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Popocatepetl (Mexico) — August 2001 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Steam-and-ash emissions, periods of dome growth during 2001

Following an episode of intense volcanic activity at Popocatépetl during December 2000 and January 2001 (BGVN 25:12) volcanic activity through September 2001 consisted of periods of small-to-moderate emissions of steam, gas, and ash, several ash cloud-producing eruptions, periods of many high-frequency volcanic earthquakes, and fumarolic activity. In addition, a new lava dome grew within the crater left after a lava dome was destroyed in December 2000.

The Centro Nacionale de Prevencion de Desastres (CENAPRED) and the Washington Volcanic Ash Advisory Center (VAAC) noted several small-to-moderate sized eruptions during the report period. Large eruptions are discussed below, and others are in table 14.

Table 14. Eruptions at Popocatépetl during February-August 2001 not discussed in the report, based on information from CENAPRED, Washington VAAC, and the México City Meteorological Watch Office via the Washington VAAC. All heights are approximate values above the volcano.

Date Time Description of activity
01 Feb 2001 1345 Narrow ash plume visible in GOES-8 imagery rose to ~1 km, drifted NNE
08 Feb 2001 1921 Small ash cloud rose to 2 km, drifted NE
09 Feb 2001 1400 Ash cloud rose to 2 km
11 Feb 2001 1338 Ash cloud rose to 2.5 km, drifted S
11 Feb 2001 1348 Ash cloud rose to 2.5 km, drifted S
06 May 2001 1205 Steam-and-ash cloud rose to 1.5 km
14 May 2001 0939 Steam-and-ash cloud rose to 1.5 km
26 May 2001 1122 Steam-and-ash emission rose to 1.5 km
01 Jun 2001 0804 Steam-and-ash cloud rose to 1.5 km
09 Jun 2001 0424 Small explosion, most intense phase lasted 30 seconds
11 Jun 2001 1100 Ash cloud rose to 2 km, drifted W
12 Jun 2001 1648 Eruption occurred with the most intense phase lasting 30 seconds, too cloudy to observe ash cloud
24 Jun 2001 0900 Small ash cloud rose to 0.5 km, drifted SW
01 Jul 2001 0912 Ash cloud rose to 800 m, drifted SSW
14 Jul 2001 1045 Steam-and-ash cloud rose to 2 km, drifted W
14 Jul 2001 2303 Eruption occurred, but too cloudy to assign a height to the ash cloud
14 Jul 2001 2341 Ash cloud rose to 0.5 km, drifted NW
24 Jul 2001 0900 Summit-level emission, drifted W
09 Aug 2001 2300 Ash cloud rose to 2 km
17 Aug 2001 1514 Ash cloud rose to 2 km

Volcanic Activity during late January-February 2001. As of late January Popocatépetl was at Alert Level Yellow Phase Three, with a 12-km-radius restricted area. During the end of January through February several moderate-to-small eruptions occurred at Popocatépetl. On 30 January during 1530-1545 a moderate ash emission was visible on CENAPRED's video camera rising to ~1.5 km above the volcano's summit. The ~9-km-wide moderately-dense ash cloud extended from the summit to the N and NE. An eruption on 15 February at 1542 produced an ash cloud that rose to 2.5 km above the summit and drifted to the ENE. The intense phase of the eruption lasted about 15 minutes. The ash cloud was tracked using Geostationary Operational Environmental Satellite-8 (GOES-8) imagery as it drifted to the Gulf of México by 0102 the next day. The NOAA Operational Significant Event Imagery Support Team created a movie loop using images captured by GOES-8 that are available at http://www.osei.noaa.gov/.

New lava dome growth and destruction during March and April. Relatively low volcanic activity during the beginning of March consisted of small steam-and-ash emissions and periods of harmonic tremor. CENAPRED reported that beginning on 12 March volcanic activity rose to high levels, with harmonic tremor occurring for a cumulative hour and approximately 50 small emissions of steam, gas, and occasionally ash. An eruption at 2023 produced an ash column that rose 1 km above the summit and incandescent volcanic fragments were hurled up to 1 km away from the crater to the volcano's N flank.

On 13 March at 1953 another eruption produced an ash column that rose to 2 km. While flying over the volcano the same day CENAPRED personnel observed a new 100- to 150-m-diameter lava dome growing in the inner crater that was created after the December 2000 dome was destroyed. On both 14 and 15 March a cumulative hour-long period of harmonic tremor occurred and 55, and 73 emissions of steam, gas, and ash occurred, respectively. The lava dome was 200 m in diameter and about 40 m tall as of 15 March. On 16 March there was a larger number of volcanic emissions (95) than on the previous couple of days, but less harmonic tremor was registered (0.5 hour). Volcanic activity began to decrease on 17 March, with 38 emissions occurring and 15 minutes of harmonic tremor recorded.

During the remainder of March and early April volcanic activity related to the emplacement of the new lava dome occurred; there were episodes of harmonic tremor totaling up to 8 hours per day, a large amount of high-frequency tremor, an average of two tectono-volcanic earthquakes per day up to M 2.3, and fumarolic activity.

On 16 April at 1948 a moderate eruption produced an ash cloud that rose to 4 km above the volcano's summit and drifted to the SW (figure 37, a and b). The eruption also sent incandescent volcanic fragments up to 2 km from the crater to the volcano's NE and NW flanks. The 40-second-long eruption destroyed the lava dome that had formed within the crater over the course of the previous several weeks. After the eruption the level of volcanic activity stabilized, with a relatively low number of gas, steam, and ash emissions and episodes of harmonic tremor. On 17 April a small lahar traveled down the Achupashal Gorge.

Figure (see Caption) Figure 37. For Popocatépetl, (a) a photograph showing the 16 April 2001eruption at 1949, and (b) thermal image of the 16 April eruption at an unstated time. In the thermal image, the ash cloud is visible rising to 4 km above the volcano's summit. Higher temperatures are represented by red and pink color shades in the area of fresh tephra deposition. The N flank of the volcano is shown. Hot material is visible on the upper NE and NW flanks of the volcano. Courtesy of CENAPRED.

Volcanic activity during late April-July. Following episodes of harmonic tremor during 28 April through early on 29 April a moderate eruption at 0819 produced an ash cloud that CENAPRED reported rose 2 km above the summit and quickly drifted to the ESE. A pilot reported that the ash cloud reached up to 3.5 km. The most intense phase of the eruption lasted approximately 1 minute. Extreme cloudiness obstructed clear views of the volcano, but scientist believe incandescent volcanic fragments were ejected during the eruption. Noise from the eruption was heard in San Pedro Benito Juárez (Puebla), 10 km SE of the volcano. By 0930 small amounts of ash fell in San Pedro Benito Juárez. Another small eruption occurred at 1310 and produced an ash cloud that rose 1.5-2 km above the volcano. After the eruptions volcanic activity returned to previous levels, with episodes of harmonic tremor and small volcanic emissions.

One of the many small eruptions during May occurred on the 13th at 2301 and ejected volcanic fragments up to 0.5 km away from the volcano's crater. Cloudy conditions prohibited observation of a possible accompanying ash cloud. The eruption was followed by an episode of harmonic tremor. A moderate-sized eruption on 31 May at 2136 sent incandescent material 2-3 km from the crater down the NE flank. The ash cloud produced from the eruption rose ~2 km above the volcano's summit and drifted to the W. The most intense phase of the eruption lasted approximately 1 minute. Harmonic tremor started about 90 seconds after the eruption began, and lasted about 5 hours. The following day a similar, but smaller, eruption at 0804 sent a steam-and-ash cloud to ~1.5 km.

Volcanic activity was relatively low in June, with small steam-and-ash emissions (table 4). CENAPRED reported that a moderate-sized eruption occurred on 3 July at 0410, which may have ejected incandescent volcanic fragments around the rim of the summit crater. Later that day, at 0648, a larger eruption produced an ash cloud that rose more than 4 km above the summit in a few minutes (figure 38). According to the Washington VAAC, at least three ash-producing eruptions occurred on 3 July; at 0425, 0648, and 0830. They reported that the 0425 eruption produced an ash cloud that was visible on GOES-8 imagery spreading in two directions at different heights; less than 1 km above the volcano one portion of the ash cloud drifted to the NW, and ~1-4 km above the summit it drifted to the SE (figure 39). Small amounts of ash fell NW of the volcano in the towns of San Pedro Nexapa, Amecameca, Tlalmanalco, San Rafael, Iztapaluc, and as far away as 35 km in Chalco.

Figure (see Caption) Figure 38. Photograph of an eruption of Popocatépetl taken on 3 July 2001 at 0657. The northern side of the volcano is shown. Courtesy of CENAPRED.
Figure (see Caption) Figure 39. Sketch showing the distributions of two portions of a Popocatépetl ash cloud in GOES-8 imagery on 3 July 2001at 0515. The enclosed hatched areas depict the location of volcanic ash. The portion of the ash cloud that drifted to the NW was ~ 1 km above the volcano and the portion that drifted to the SE, ~ 1-4 km above the volcano. Courtesy of Washington VAAC.

Based on information from pilot reports and ground observations, the Washington VAAC reported that the ash cloud was 9.3 km SE of México City airport (~65 km NE of the volcano) at 0930. Very light ash fell on runways at the Mexico City Airport, causing some airlines to briefly suspend takeoffs. CENAPRED's seismic data revealed that the explosive event lasted ~10 minutes, after which volcanism returned to low levels.

On 23 July CENAPRED reduced the Alert Level from Yellow Phase Three to Phase Two because volcanism was lower than it had been in December 2000 when the Alert Level was originally raised (BGVN 25:12). Under the new Alert Level, activity continued to be prohibited within a 12 km radius around the volcano, but controlled travel was permitted on the road between Santiago Xalitzintla (Puebla) ~10 km NE of the volcano and San Pedro Nexapa (State of México) ~12 km NW of the volcano, including Paso de Cortés.

New dome growth episode during August. A new episode of dome growth was first detected at Popocatépetl on 9 August when a significant increase in seismicity at the volcano lasted for about 24 hours. The seismicity was much lower than that detected in the interval beginning on 13 December 2000, a time when the highest amplitude tremor was recorded at Popocatépetl to date. A high-altitude flight took place on 10 August (sponsored by the Secretary of Communication and Transportation); it revealed that a new dome had been emplaced. It emerged at the bottom of the inner crater that formed after the December 2000 dome was destroyed (figures 40 and 41).

Figure (see Caption) Figure 40. Sketch of Popocatépetl's summit crater and the new lava dome as they appeared on 10 August 2001. Courtesy of CENAPRED and Instituto de Geofísica, UNAM.
Figure (see Caption) Figure 41. Photograph of Popocatépetl's new lava dome taken on 20 August 2001. Courtesy of CENAPRED and the Secretary of Communication and Transportation.

The lava dome's volume was estimated to be slightly more than 0.5 million cubic meters. Based on the assumption that the period of dome growth coincided with the period of maximum seismicity, the rate of growth was estimated to be 7-8 m3/s; less than 5% of the rates measured in December 2000. On 13 August the dome was 190 m in diameter and 30 m tall, about 5% the size of the December 2000 dome.

On 15 August at 1545 a new episode of high seismic activity began at the volcano. This episode was similar to the 9 August episode, but more steam-and-ash emissions with higher intensities occurred on 15 August. Seismicity further increased at 1800. The entire episode was attributed to a higher rate of lava extrusion. The waveforms and amplitudes of seismic signals were similar to those recorded on 13 December 2000; however, the total seismic energy release was about 30 % of the energy released on 13 December.

Small amounts of ash from the emissions fell NW and W of the volcano in San Pedro Nexapa, Amecameca, Ozumba, Atlautla, and San Juan Tehuiztitlán. Volcanic activity decreased on 16 August around 0115. During the night incandescence was seen at the summit and at 0538 incandescent fragments were ejected more than 500 m down the volcano's N flank.

After the August 15 increase in seismicity, seismic and volcanic activity returned to normal levels, with small volcanic emissions and periods of high-frequency and low-amplitude tremor. On 9 September during 0815-1605 an episode of frequent small- to moderate-sized eruptions began at Popocatépetl. The eruptions produced steam-and-ash emissions that rose to a maximum height of 1 km above the dome and drifted to the NW. During the night a small eruption sent incandescent fragments up to 200 m from the crater. Small amounts of ash fell in Ozumba (~15 km W of the volcano) and in Yecapixtla (~25 km SW of the volcano). Aerial photographs taken on 20 September revealed that the lava dome was visible within the crater.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Carlos Valdés González, Roberto Quass Weppen, Gilberto Castelan, Enrique Guevara Ortiz, and Angel Gómez-Vázquez, Centro Nacional de Prevención de Desastres (CENAPRED), Av. Delfín Madrigal No.665. Coyoacan, México. D.F. 04360 (URL: https://www.gob.mx/cenapred/); Servando de la Cruz-Reyna, Instituto de Geofísica, UNAM. Cd. Universitaria. Circuito Institutos. Coyoácan. México, D.F. 04510 (URL: http://www.geofisica.unam.mx/); Washington VAAC, Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ssd.noaa.gov/); NOAA Operational Significant Events Imagery Support Team (OSEI), NOAA/NESDIS, World Weather Building, Room 510, 5200 Auth Road, Camp Springs, MD 20748 USA (URL: https://www.nnvl.noaa.gov/); Secretaría de Comunicaciones y Transportes, Xola Y Avenida Universidad, Cuerpo "C",Piso 1, Col. Navarte, Del. Benito Juarez, C. P. 03028, México (URL: http://www.sct.gob.mx/); Associated Press.


Semeru (Indonesia) — August 2001 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Continuous seismic activity, plumes to ~11.6 km

From August 2000 through August 2001, activity at Semeru was characterized by continuous seismic activity and ash-and-steam plumes of varying heights above the summit. The Alert Level at Semeru remained at level 2 (on a scale of 1-4) throughout the report period.

The Darwin Volcanic Ash Advisory Center (VAAC) reported volcanic ash plumes and clouds on several occasions throughout the year (table 5). The plumes ranged from ~4.6 to ~11.6 km altitude, and moved mainly SSE. On 8 July at 1503 a SE-drifting ash plume rose to ~2.5 km above the volcano. Ground-based reports prior to the eruption revealed that each day during 18-24 June Semeru emitted ash to ~0.6 km above the volcano.

Table 5. Summary of Volcanic Ash Advisories from the Darwin VAAC issued between August 2000 and August 2001. Note that heights are given in altitude. Semeru's summit lies at 3,767 m above sea level. Information sources include air reports (for example, routed via airlines, AIREPS), pilot reports (PIREPS), satellite data, and reports from ground observations), and information from the Meteorological and Geophysical Agency of Indonesia. Source date was provided by the Darwin VAAC.

Date Time Source Comment
19 Aug 2000 0653 PIREPS Possible smoke plume observed extending to ~10.6 km and moving S to SE.
19 Aug 2000 0812 PIREPS Possible smoke plume extending to ~4.6 km.
20 Aug 2000 0944 AIREP Smoke plume observed extending to ~7.3 km.
21 Aug 2000 0938 AIREP Smoke plume observed extending to ~7.3 km.
14 Sep 2000 1135 AIREP Stationary smoke plume at ~6 km.
10 Oct 2000 0333 AIREP Volcanic ash cloud at ~6 km and ascending.
10 Oct 2000 0433 AIREP Volcanic ash cloud at ~6 km and ascending.
10 Oct 2000 1030 AIREP Volcanic ash cloud at ~6 km and ascending.
11 Oct 2000 0216 AIREP Volcanic ash cloud at ~6 km and ascending.
11 Oct 2000 0435 AIREP Volcanic ash cloud at ~6 km, intermittent discharge extending to a maximum of 30 NM.
11 Oct 2000 0528 AIREP Volcanic ash cloud at ~6 km, intermittent discharge extending to a maximum of 30 NM.
11 Oct 2000 0925 AIREP Volcanic ash cloud at ~6 km, intermittent discharge extending to a maximum of 30 NM.
13 Oct 2000 0426 AIREP Volcanic ash cloud at ~6 to ~7.6 km drifting SW.
27 Oct 2000 0215 AIREP Volcanic ash cloud at ~7.6 km lasting for ~10 minutes.
30 Oct 2000 1055 AIREP Volcanic ash cloud at ~6 km.
11 Dec 2000 0508 AIREP Volcanic ash to ~7.6 km.
08 Jul 2001 0929 AIREP Ash plume reported to ~6 km drifting SE.
09 Jul 2001 0857 AIREP Ash plume to ~6 km drifting SE.
09 Jul 2001 2355 AIREP Volcanic ash at ~11.6 km.
09 Jul 2001 0857 AIREP Ash plume reported to ~6 km drifting SE.

Explosion earthquakes dominated the seismicity (table 6), and pyroclastic flows occurred 17 times between 31 July 2000 and 15 July 2001. The Volcanological Survey of Indonesia (VSI) reported that a significant change in seismic activity occurred during 3-9 October 2000, when the number of explosion earthquakes increased to more than 700. A pyroclastic flow that reached the Kembar Besuki river, as far as 2,500 m from the summit, occurred on 2 October.

Table 6. Summary of seismicity at Semeru, 31 July 2000-15 July 2001. Ash plume heights are distances above the summit unless otherwise noted. Courtesy of the Volcanic Survey of Indonesia (VSI).

Date Deep Volcanic (A-type) Shallow Volcanic (B-type) Explosion Avalanche Tectonic Comment
31 Jul-07 Aug 2000 4 5 657 64 22 Five pyroclastic flows. Five pyroclastic-flow earthquakes. Four tremor events.
08 Aug-14 Aug 2000 5 4 584 43 13 Two pyroclastic flows; ash plume ~600 m. Two tremor events.
15 Aug-21 Aug 2000 2 -- 420 17 5 Ash plume ~600 m.
22 Aug-29 Aug 2000 23 1 542 27 21 Ash plume ~600 m. Three pyroclastic-flow earthquakes.
29 Aug-04 Sep 2000 23 1 542 27 21 Ash cloud ~600 m. Three pyroclastic-flow earthquakes.
05 Sep-11 Sep 2000 -- 2 594 8 -- Ashfall (105 events); white cloud to ~700 m.
12 Sep-18 Sep 2000 -- -- 623 -- -- Three pyroclastic flows; ashfall (72 events); ash plume to ~600 m. Two tremor events.
19 Sep-25 Sep 2000 -- 3 556 98 16 Ash plume to ~600 m.
26 Sep-02 Oct 2000 2 2 582 19 1 Thin white ash plume. One pyroclastic-flow earthquake. 79 tremor events.
03 Oct-09 Oct 2000 1 1 707 80 14 One pyroclastic flow.
10 Oct-16 Oct 2000 1 3 592 41 13 One pyroclastic flow; ash plume to ~600 m.
17 Oct-23 Oct 2000 3 -- 607 25 -- --
24 Oct-30 Oct 2000 42 1 592 22 7 Volcano covered by haze. Four tremor events.
31 Oct-06 Nov 2000 16 1 561 48 13 Ash plume to ~600 m.
28 Nov-04 Dec 2000 8 -- 483 24 2 Thick white fume 600 m above Jonggring Seloko crater.
05 Dec-11 Dec 2000 1 1 513 16 6 Two pyroclastic flows; thick white fume 600 m above Jonggring Seloko crater.
12 Dec-18 Dec 2000 2 -- 598 38 5 Volcano covered by smog.
19 Dec-25 Dec 2000 -- 1 319 22 2 --
26 Dec-01 Jan 2001 1 -- 559 98 7 White-gray ash plume to 600 m.
02 Jan-08 Jan 2001 6 -- 579 80 10 --
09 Feb-15 Feb 2001 29 1 693 80 4 --
13 Feb-19 Feb 2001 1 -- 519 29 1 No visual observations because of cloudy weather.
20 Feb-26 Feb 2001 3 -- 702 58 5 White-thin plume to ~100 m.
27 Feb-05 Mar 2001 -- -- 249 27 2 White-gray plumes to ~600 m.
06 Mar-12 Mar 2001 6 -- 303 31 -- --
12 Mar-18 Mar 2001 4 -- 349 10 3 --
19 Mar-23 Mar 2001 2 -- 259 -- 1 --
02 Apr-09 Apr 2001 28 -- 305 248 3 --
09 Apr-15 Apr 2001 -- -- 339 51 3 --
16 Apr-22 Apr 2001 -- -- 550 -- -- --
23 Apr-29 Apr 2001 12 1 759 157 4 --
30 Apr-06 May 2001 -- -- 782 96 7 --
07 May-13 May 2001 2 -- 670 113 7 --
14 May-20 May 2001 1 -- 616 143 2 --
28 May-03 Jun 2001 -- -- 396 115 3 --
04 Jun-10 Jun 2001 3 -- 430 75 5 --
11 Jun-17 Jun 2001 2 -- 361 81 4 --
18 Jun-24 Jun 2001 8 -- 346 62 3 --
25 Jun-01 Jul 2001 2 -- 331 37 2 --
02 Jul-08 Jul 2001 -- -- 299 30 6 --
09 Jul-15 Jul 2001 -- -- 687 57 11 --

During 27 March-1 April 2001, VSI personnel observed several lava avalanches that traveled to Kembar River valley as far as 750 m S of the summit. No seismic data were available because the seismometers broke on 24 March 2001. They were repaired on 1 April.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/).


Sheveluch (Russia) — August 2001 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Eruption on 15 July, pyroclastic flows and explosion on 23 August 2001

During 14-16 July 2001, spasmodic volcanic tremor increased several times. On 15 July at 1803 a three-pixel anomaly was visible on AVHRR satellite imagery near the SW flank of the volcano and at 2100 a gas-and-steam plume was observed rising to 1.5 km above the dome. A moderate-sized eruption took place on 19 July at 1033. KVERT raised the level of concern from Yellow (volcano is restless; eruption may occur) to Orange (volcano is in eruption or eruption may occur at any time). The eruption produced an ash plume that rose 3 km above the lava dome.

After the eruption through 15 August, seismic activity remained above background levels, with many small earthquakes occurring within the volcano's edifice and many different seismic signals (explosion, avalanche, collapse) recorded locally. Gas-and-steam plumes rose from the summit level to ~2 km above the dome. One- to three-pixel anomalies were occasionally visible on AVHRR imagery near the SW flank of the volcano. The level of continuous spasmodic volcanic tremor increased on 28 and 30 July. On the night of 1 August ash fell in the town of Klyuchi, 46 km S of the volcano. On 11 August several thermal anomalies were recorded on satellite imagery, as well as a gas-and-steam plume that extended 75 km SE. On 15 August volcanic tremor decreased gradually to background levels, but increased again soon after. Pyroclastic flows traveled down the flanks of the volcano following an explosion on 23 August. The volcano remained at concern level Orange throughout August.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT); Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA; Anchorage Volcanic Ash Advisory Center (VAAC), NOAA Alaska Aviation Weather Unit, 6930 Sand Lake Road, Anchorage, AK 99502-1845, USA (URL: http://vaac.arh.noaa.gov/); Tokyo Volcanic Ash Advisory Center, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports