Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Kuchinoerabujima (Japan) Eruption and ash plumes begin on 11 January 2020 and continue through April 2020

Soputan (Indonesia) Minor ash emissions during 23 March and 2 April 2020

Heard (Australia) Eruptive activity including a lava flow during October 2019-April 2020

Kikai (Japan) Ash explosion on 29 April 2020

Fuego (Guatemala) Ongoing ash explosions, block avalanches, and intermittent lava flows

Ebeko (Russia) Frequent moderate explosions, ash plumes, and ashfall continue, December 2019-May 2020

Piton de la Fournaise (France) Fissure eruptions in February and April 2020 included lava fountains and flows

Sabancaya (Peru) Daily explosions with ash emissions, large SO2 flux, ongoing thermal anomalies, December 2019-May 2020

Sheveluch (Russia) Lava dome growth and thermal anomalies continue through April 2020, but few ash explosions

Dukono (Indonesia) Numerous ash explosions continue through March 2020

Etna (Italy) Strombolian explosions and ash emissions continue, October 2019-March 2020

Merapi (Indonesia) Explosions produced ash plumes, ashfall, and pyroclastic flows during October 2019-March 2020



Kuchinoerabujima (Japan) — May 2020 Citation iconCite this Report

Kuchinoerabujima

Japan

30.443°N, 130.217°E; summit elev. 657 m

All times are local (unless otherwise noted)


Eruption and ash plumes begin on 11 January 2020 and continue through April 2020

Kuchinoerabujima encompasses a group of young stratovolcanoes located in the northern Ryukyu Islands. All historical eruptions have originated from the Shindake cone, with the exception of a lava flow that originated from the S flank of the Furudake cone. The most recent previous eruptive period took place during October 2018-February 2019 and primarily consisted of weak explosions, ash plumes, and ashfall. The current eruption began on 11 January 2020 after nearly a year of dominantly gas-and-steam emissions. Volcanism for this reporting period from March 2019 to April 2020 included explosions, ash plumes, SO2 emissions, and ashfall. The primary source of information for this report comes from monthly and annual reports from the Japan Meteorological Agency (JMA) and advisories from the Tokyo Volcanic Ash Advisory Center (VAAC). Activity has been limited to Kuchinoerabujima's Shindake Crater.

Volcanism at Kuchinoerabujima was relatively low during March through December 2019, according to JMA. During this time, SO2 emissions ranged from 100 to 1,000 tons/day. Gas-and-steam emissions were frequently observed throughout the entire reporting period, rising to a maximum height of 1.1 km above the crater on 13 December 2019. Satellite imagery from Sentinel-2 showed gas-and-steam and occasional ash emissions rising from the Shindake crater throughout the reporting period (figure 7). Though JMA reported thermal anomalies occurring on 29 January and continuing through late April 2020, Sentinel-2 imagery shows the first thermal signature appearing on 26 April.

Figure (see Caption) Figure 7. Sentinel-2 thermal satellite images showed gas-and-steam and ash emissions rising from Kuchinoerabujima. Some ash deposits can be seen on 6 February 2020 (top right). A thermal anomaly appeared on 26 April 2020 (bottom right). Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

An eruption on 11 January 2020 at 1505 ejected material 300 m from the crater and produced ash plumes that rose 2 km above the crater rim, extending E, according to JMA. The eruption continued through 12 January until 0730. The resulting ash plumes rose 400 m above the crater, drifting SW while the SO2 emissions measured 1,300 tons/day. Ashfall was reported on Yakushima Island (15 km E). Minor eruptive activity was reported during 17-20 January which produced gray-white plumes that rose 300-500 m above the crater. On 23 January, seismicity increased, and an eruption produced an ash plume that rose 1.2 km altitude, according to a Tokyo VAAC report, resulting in ashfall 2 km NE of the crater. A small explosion was detected on 24 January, followed by an increase in the number of earthquakes during 25-26 January (65-71 earthquakes per day were registered). Another small eruptive event detected on 27 January at 0148 was accompanied by a volcanic tremor and a change in tilt data. During the month of January, some inflation was detected at the base on the volcano and a total of 347 earthquakes were recorded. The SO2 emissions ranged from 200-1,600 tons/day.

An eruption on 1 February 2020 produced an eruption column that rose less than 1 km altitude and extended SE and SW (figure 8), according to the Tokyo VAAC report. On 3 February, an eruption from the Shindake crater at 0521 produced an ash plume that rose 7 km above the crater and ejected material as far as 600 m away. As a result, a pyroclastic flow formed, traveling 900-1,500 m SW. The previous pyroclastic flow that was recorded occurred on 29 January 2019. Ashfall was confirmed in the N part of Yakushima Island with a large amount in Miyanoura (32 km ESE) and southern Tanegashima. The SO2 emissions measured 1,700 tons/day during this event.

Figure (see Caption) Figure 8. Webcam images from the Honmura west surveillance camera of an ash plume rising from Kuchinoerabujima on 1 February 2020. Courtesy of JMA (Weekly bulletin report 509, February 2020).

Intermittent small eruptive events occurred during 5-9 February; field observations showed a large amount of ashfall on the SE flank which included lapilli that measured up to 2 cm in diameter. Additionally, thermal images showed 5-km-long pyroclastic flow deposits on the SW flank. An eruption on 9 February produced an ash plume that rose 1.2 km altitude, drifting SE. On 13 February a small eruption was detected in the Shindake crater at 1211, producing gray-white plumes that rose 300 m above the crater, drifting NE. Small eruptive events also occurred during 20-21 February, resulting in gas-and-steam emissions that rose 200 m above the crater. During the month of February, some horizontal extension was observed since January 2020 using GNSS data. The total number of earthquakes during this month drastically increased to 1225 compared to January. The SO2 emissions ranged from 300-1,700 tons/day.

By 2 March 2020, seismicity decreased, and activity declined. Gas-and-steam emissions continued infrequently for the duration of the reporting period. The SO2 emissions during March ranged from 700-2,100 tons/day, the latter of which occurred on 15 March. Seismicity increased again on 27 March. During 5-8 April 2020, small eruptive events were detected, generating ash plumes that rose 900 m above the crater (figure 9). The SO2 emissions on 6 April reached 3,200 tons/day, the maximum measurement for this reporting period. These small eruptive events continued from 13-20 and 23-25 April within the Shindake crater, producing gray-white plumes that rose 300-800 m above the crater.

Figure (see Caption) Figure 9. Webcam images from the Honmura Nishi (top) and Honmura west (bottom) surveillance cameras of ash plumes rising from Kuchinoerabujima on 6 March and 5 April 2020. Courtesy of JMA (Weekly bulletin report 509, March and April 2020).

Geologic Background. A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. The youngest cone, centrally-located Shindake, formed after the NW side of Furudake was breached by an explosion. All historical eruptions have occurred from Shindake, although a lava flow from the S flank of Furudake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shindake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Soputan (Indonesia) — May 2020 Citation iconCite this Report

Soputan

Indonesia

1.112°N, 124.737°E; summit elev. 1785 m

All times are local (unless otherwise noted)


Minor ash emissions during 23 March and 2 April 2020

Soputan is a stratovolcano located in the northern arm of Sulawesi Island, Indonesia. Previous eruptive periods were characterized by ash explosions, lava flows, and Strombolian eruptions. The most recent eruption occurred during October-December 2018, which consisted mostly of ash plumes and some summit incandescence (BGVN 44:01). This report updates information for January 2019-April 2020 characterized by two ash plumes and gas-and-steam emissions. The primary source of information come from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and the Darwin Volcanic Ash Advisory Center (VAAC).

Activity during January 2019-April 2020 was relatively low; three faint thermal anomalies were observed at the summit at Soputan in satellite imagery for a total of three days on 2 and 4 January, and 1 October 2019 (figure 17). The MIROVA (Middle InfraRed Observation of Volcanic Activity) based on analysis of MODIS data detected 12 distal hotspots and six low-power hotspots within 5 km of the summit during August to early October 2019. A single distal thermal hotspot was detected in early March 2020. In March, activity primarily consisted of white to gray gas-and-steam plumes that rose 20-100 m above the crater, according to PVMBG. The Darwin VAAC issued a notice on 23 March 2020 that reported an ash plume rose to 4.3 km altitude; minor ash emissions had been visible in a webcam image the previous day (figure 18). A second notice was issued on 2 April, where an ash plume was observed rising 2.1 km altitude and drifting W.

Figure (see Caption) Figure 17. Sentinel-2 thermal satellite imagery detected a total of three thermal hotspots (bright yellow-orange) at the summit of Soputan on 2 and 4 January and 1 October 2019. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 18. Minor ash emissions were seen rising from Soputan on 22 March 2020. Courtesy of MAGMA Indonesia.

Geologic Background. The Soputan stratovolcano on the southern rim of the Quaternary Tondano caldera on the northern arm of Sulawesi Island is one of Sulawesi's most active volcanoes. The youthful, largely unvegetated volcano is located SW of Riendengan-Sempu, which some workers have included with Soputan and Manimporok (3.5 km ESE) as a volcanic complex. It was constructed at the southern end of a SSW-NNE trending line of vents. During historical time the locus of eruptions has included both the summit crater and Aeseput, a prominent NE-flank vent that formed in 1906 and was the source of intermittent major lava flows until 1924.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Heard (Australia) — May 2020 Citation iconCite this Report

Heard

Australia

53.106°S, 73.513°E; summit elev. 2745 m

All times are local (unless otherwise noted)


Eruptive activity including a lava flow during October 2019-April 2020

Heard Island is located on the Kerguelen Plateau in the southern Indian Ocean and contains Big Ben, a snow-covered stratovolcano with intermittent volcanism reported since 1910. Due to its remote location, visual observations are rare; therefore, thermal anomalies and hotspots detected by satellite-based instruments are the primary source of information. This report updates activity from October 2019 to April 2020.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed three prominent periods of strong thermal anomaly activity during this reporting period: late October 2019, December 2019, and the end of April 2020 (figure 41). These thermal anomalies were relatively strong and occurred within 5 km of the summit. Similarly, the MODVOLC algorithm reported a total of six thermal hotspots during 28 October, 1 November 2019, and 26 April 2020.

Figure (see Caption) Figure 41. Thermal anomalies at Heard from 29 April 2019 through April 2020 as recorded by the MIROVA system (Log Radiative Power) were strong and frequent in late October, during December 2019, and at the end of April 2020. Courtesy of MIROVA.

Six thermal satellite images ranging from late October 2019 to late March showed evidence of active lava at the summit (figure 42). These images show hot material, possibly a lava flow, extending SW from the summit; a hotspot also remained at the summit. Cloud cover was pervasive during the majority of this reporting period, especially in April 2020, though gas-and-steam emissions were visible on 25 April through the clouds.

Figure (see Caption) Figure 42. Thermal satellite images of Heard Island’s Big Ben showing strong thermal signatures representing a lava flow in the SW direction from 28 October to 17 December 2019. These thermal anomalies are located NE from Mawson Peak. A faint thermal anomaly is also captured on 26 March 2020. Satellite images with atmospheric penetration (bands 12, 11, and 8A), courtesy of Sentinel Hub Playground.

Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben because of its extensive ice cover. The historically active Mawson Peak forms the island's high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported at this isolated volcano, but observations are infrequent and additional activity may have occurred.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kikai (Japan) — May 2020 Citation iconCite this Report

Kikai

Japan

30.793°N, 130.305°E; summit elev. 704 m

All times are local (unless otherwise noted)


Ash explosion on 29 April 2020

The Kikai caldera is located at the N end of Japan’s Ryukyu Islands and has been recently characterized by intermittent ash emissions and limited ashfall in nearby communities. On Satsuma Iwo Jima island, the larger subaerial fragment of the Kikai caldera, there was a single explosion with gas-and-steam and ash emissions on 2 November 2019, accompanied by nighttime incandescence (BGVN 45:02). This report covers volcanism from January 2020 through April 2020 with a single-day eruption occurring on 29 April based on reports from the Japan Meteorological Agency (JMA).

Since the last one-day eruption on 2 November 2019, volcanism at Kikai has been relatively low and primarily consisted of 107-170 earthquakes per month and intermittent white gas-and-steam emissions rising up to 1.3 km above the crater summit. Intermittent weak hotspots were observed at night in the summit in Sentinel-2 thermal satellite imagery and webcams, according to JMA (figures 14 and 15).

Figure (see Caption) Figure 14. Weak thermal hotspots (bright yellow-orange) were observed on 7 January (top) and 6 April 2020 (bottom) at Satsuma Iwo Jima (Kikai). Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 15. Incandescence at night on 10 January 2020 was observed at Satsuma Iwo Jima (Kikai) in the Iodake crater with the Iwanogami webcam. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, January 2nd year of Reiwa [2020]).

Weak incandescence continued in April 2020. JMA reported SO2 measurements during April were 400-2000 tons/day. A brief eruption in the Iodake crater on 29 April 2020 at 0609 generated a gray-white ash plume that rose 1 km above the crater (figure 16). No ashfall or ejecta was observed after the eruption on 29 April.

Figure (see Caption) Figure 16. The Iwanogami webcam captured a brief gray-white ash and steam plume rising above the Iodake crater rim on Satsuma Iwo Jima (Kikai) on 29 April 2020 at 0609 local time. The plume rose 1 km above the crater summit. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, April 2nd year of Reiwa [2020]).

Geologic Background. Kikai is a mostly submerged, 19-km-wide caldera near the northern end of the Ryukyu Islands south of Kyushu. It was the source of one of the world's largest Holocene eruptions about 6,300 years ago when rhyolitic pyroclastic flows traveled across the sea for a total distance of 100 km to southern Kyushu, and ashfall reached the northern Japanese island of Hokkaido. The eruption devastated southern and central Kyushu, which remained uninhabited for several centuries. Post-caldera eruptions formed Iodake lava dome and Inamuradake scoria cone, as well as submarine lava domes. Historical eruptions have occurred at or near Satsuma-Iojima (also known as Tokara-Iojima), a small 3 x 6 km island forming part of the NW caldera rim. Showa-Iojima lava dome (also known as Iojima-Shinto), a small island 2 km E of Tokara-Iojima, was formed during submarine eruptions in 1934 and 1935. Mild-to-moderate explosive eruptions have occurred during the past few decades from Iodake, a rhyolitic lava dome at the eastern end of Tokara-Iojima.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Fuego (Guatemala) — April 2020 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Ongoing ash explosions, block avalanches, and intermittent lava flows

Fuego is a stratovolcano in Guatemala that has been erupting since 2002 with historical eruptions that date back to 1531. Volcanism is characterized by major ashfalls, pyroclastic flows, lava flows, and lahars. The previous report (BGVN 44:10) detailed activity that included multiple ash explosions, ash plumes, ashfall, active lava flows, and block avalanches. This report covers this continuing activity from October 2019 through March 2020 and consists of ash plumes, ashfall, incandescent ejecta, block avalanches, and lava flows. The primary source of information comes from the Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH), the Washington Volcanic Ash Advisory Center (VAAC), and various satellite data.

Summary of activity October 2019-March 2020. Daily activity persisted throughout October 2019-March 2020 (table 20) with multiple ash explosions recorded every hour, ash plumes that rose to a maximum of 4.8 km altitude each month drifting in multiple directions, incandescent ejecta reaching a 500 m above the crater resulting in block avalanches traveling down multiple drainages, and ashfall affecting communities in multiple directions. The highest rate of explosions occurred on 7 November with up to 25 per hour. Dominantly white fumaroles occurred frequently throughout this reporting period, rising to a maximum altitude of 4.5 km and drifting in multiple directions. Intermittent lava flows that reached a maximum length of 1.2 km were observed each month in the Seca (Santa Teresa) and Ceniza drainages (figure 128), but rarely in the Trinidad drainage. Thermal activity increased slightly in frequency and strength in late October and remained relatively consistent through mid-March as seen in the MIROVA analysis of MODIS satellite data (figure 129).

Table 20. Activity summary by month for Fuego with information compiled from INSIVUMEH daily reports.

Month Ash plume heights (km) Ash plume distance (km) and direction Drainages affected by avalanche blocks Villages reporting ashfall
Oct 2019 4.3-4.8 km 10-25 km, W-SW-S-NW Seca, Taniluyá, Ceniza, Trinidad, El Jute, Honda, and Las Lajas Panimaché I and II, Morelia, Santa Sofía, Porvenir, Finca Palo Verde, La Rochela, San Andrés Osuna, Sangre de Cristo, and San Pedro Yepocapa
Nov 2019 4.0-4.8 km 10-20 km, W-SW-S-NW Seca, Taniluyá, Trinidad, Las Lajas, Honda, and Ceniza Panimaché I and II, Morelia, Santa Sofía, Porvenir, Sangre de Cristo, Finca Palo Verde, and San Pedro Yepocapa
Dec 2019 4.2-4.8 km 10-25 km, W-SW-S-SE-N-NE Seca, Taniluya, Ceniza, Trinidad, and Las Lajas Morelia, Santa Sofía, Finca Palo Verde, El Porvenir, Sangre de Cristo, San Pedro Yepocapa, Panimaché I and II, La Rochela, and San Andrés Osuna
Jan 2020 4.3-4.8 km 10-25 km, W-SW-S-N-NE-E Seca, Ceniza, Taniluyá, Trinidad, Honda, and Las Lajas Morelia, Santa Sofía, Sangre de Cristo, San Pedro Yepocapa, Panimaché I and II, El Porvenir, Finca Palo Verde, Rodeo, La Rochela, Alotenango, El Zapote, Trinidad, La Reina, Ceilán
Feb 2020 4.3-4.8 km 8-25 km, W-SW-S-SE-E-NE-N-NW Seca, Ceniza, Taniluya, Trinidad, Las Lajas, Honda, La Rochela, El Zapote, and San Andrés Osuna Panimache I and II, Morelia, Santa Sofia, Sangre de Cristo, San Pedro Yepocapa, Rodeo, La Reina, Alotenango, Yucales, Siquinalá, Santa Lucia, El Porvenir, Finca Los Tarros, La Soledad, Buena Vista, La Cruz, Pajales, San Miguel Dueñas, Ciudad Vieja, San Miguel Escobar, San Pedro las Huertas, Antigua, La Rochela, and San Andrés Osuna
Mar 2020 4.3-4.8 km 10-23 km, W-SW-S-SE-N-NW Seca, Ceniza, Trinidad, Taniluyá, Las Lajas, Honda, La Rochela, El Zapote, San Andrés Osuna, Morelia, Panimache, and Santa Sofia San Andrés Osuna, La Rochela, El Rodeo, Chuchu, Panimache I and II, Santa Sofia, Morelia, Finca Palo Verde, El Porvenir, Sangre de Cristo, La Cruz, San Pedro Yepocapa, La Conchita, La Soledad, Alotenango, Aldea la Cruz, Acatenango, Ceilan, Taniluyá, Ceniza, Las Lajas, Trinidad, Seca, and Honda
Figure (see Caption) Figure 128. Sentinel-2 thermal satellite images of Fuego between 21 November 2019 and 20 March 2020 showing lava flows (bright yellow-orange) traveling generally S and W from the crater summit. An ash plume can also be seen on 21 November 2019, accompanying the lava flow. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 129. Thermal activity at Fuego increased in frequency and strength (log radiative power) in late October 2019 and remained relatively consistent through February 2020. In early March, there is a small decrease in thermal power, followed by a short pulse of activity and another decline. Courtesy of MIROVA.

Activity during October-December 2019. Activity in October 2019 consisted of 6-20 ash explosions per hour; ash plumes rose to 4.8 km altitude, drifting up to 25 km in multiple directions, resulting in ashfall in Panimaché I and II (8 km SW), Morelia (9 km SW), San Pedro Yepocapa (8 km NW), Sangre de Cristo (8 km WSW), Santa Sofía (12 km SW), El Porvenir (8 km ENE), Finca Palo Verde, La Rochela and San Andrés Osuna. The Washington VAAC issued multiple aviation advisories for a total of nine days in October. Continuous white gas-and-steam plumes reached 4.1-4.4 km altitude drifting generally W. Weak SO2 emissions were infrequently observed in satellite imagery during October and January 2020 (figure 130) Incandescent ejecta was frequently observed rising 200-400 m above the summit, which generated block avalanches that traveled down the Seca (W), Taniluyá (SW), Ceniza (SSW), Trinidad (S), El Jute, Honda, and Las Lajas (SE) drainages. During 3-7 October lahars descended the Ceniza, El Mineral, and Seca drainages, carrying tree branches, tree trunks, and blocks 1-3 m in diameter. During 6-8 and 13 October, active lava flows traveled up to 200 m down the Seca drainage.

Figure (see Caption) Figure 130. Weak SO2 emissions were observed rising from Fuego using the TROPOMI instrument on the Sentinel-5P satellite. Top left: 17 October 2019. Top right: 17 November 2019. Bottom left: 20 January 2020. Bottom right: 22 January 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

During November 2019, the rate of explosions increased to 5-25 per hour, the latter of which occurred on 7 November. The explosions resulted in ash plumes that rose 4-4.8 km altitude, drifting 10-20 km in the W direction. Ashfall was observed in Panimaché I and II, Morelia, Santa Sofía, Porvenir, Sangre de Cristo, Finca Palo Verde, and San Pedro Yepocapa. Multiple Washington VAAC notices were issued for 11 days in November. Continuous white gas-and-steam plumes rose up to 4.5 km altitude drifting generally W. Incandescent ejecta rose 100-500 m above the crater, generating block avalanches in Seca, Taniluyá, Trinidad, Las Lajas, Honda, and Ceniza drainages. Lava flows were observed for a majority of the month into early December measuring 100-900 m long in the Seca and Ceniza drainages.

The number of explosions in December 2019 decreased compared to November, recording 8-19 per hour with incandescent ejecta rising 100-400 m above the crater. The explosions generated block avalanches that traveled in the Seca, Taniluya, Ceniza, Trinidad, and Las Lajas drainages throughout the month. Ash plumes continued to rise above the summit crater to 4.8 km drifting up to 25 km in multiple directions. The Washington VAAC issued multiple daily notices almost daily in December. A continuous lava flow observed during 6-15, 21-22, 24, and 26 November through 9 December measured 100-800 m long in the Seca and Ceniza drainages.

Activity during January-March 2020. Incandescent Strombolian explosions continued daily during January 2020, ejecting material up to 100-500 m above the crater. Ash plumes continued to rise to a maximum altitude of 4.8 km, resulting in ashfall in all directions affecting Morelia, Santa Sofía, Sangre de Cristo, San Pedro Yepocapa, Panimaché I and II, El Porvenir, Finca Palo Verde, Rodeo, La Rochela, Alotenango, El Zapote, Trinidad, La Reina, and Ceilán. The Washington VAAC issued multiple notices for a total of 12 days during January. Block avalanches resulting from the Strombolian explosions traveled down the Seca, Ceniza, Taniluyá, Trinidad, Honda, and Las Lajas drainages. An active lava flow in the Ceniza drainage measured 150-600 m long during 6-10 January.

During February 2020, INSIVUMEH reported a range of 4-16 explosions per hour, accompanied by incandescent material that rose 100-500 m above the crater (figure 131). Block avalanches traveled in the Santa Teresa, Seca, Ceniza, Taniluya, Trinidad, Las Lajas, Honda, La Rochela, El Zapote, and San Andrés Osuna drainages. Ash emissions from the explosions continued to rise 4.8 km altitude, drifting in multiple directions as far as 25 km and resulting in ashfall in the communities of Panimache I and II, Morelia, Santa Sofia, Sangre de Cristo, San Pedro Yepocapa, Rodeo, La Reina, Alotenango, Yucales, Siquinalá, Santa Lucia, El Porvenir, Finca Los Tarros, La Soledad, Buena Vista, La Cruz, Pajales, San Miguel Dueñas, Ciudad Vieja, San Miguel Escobar, San Pedro las Huertas, Antigua, La Rochela, and San Andrés Osuna. Washington VAAC notices were issued almost daily during the month. Lava flows were active in the Ceniza drainage during 13-20, 23-24, and 26-27 February measuring as long as 1.2 km.

Figure (see Caption) Figure 131. Incandescent ejecta rose several hundred meters above the crater of Fuego on 6 February 2020, resulting in block avalanches down multiple drainages. Courtesy of Crelosa.

Daily explosions and incandescent ejecta continued through March 2020, with 8-17 explosions per hour that rose up to 500 m above the crater. Block avalanches from the explosions were observed in the Seca, Ceniza, Trinidad, Taniluyá, Las Lajas, Honda, Santa Teresa, La Rochela, El Zapote, San Andrés Osuna, Morelia, Panimache, and Santa Sofia drainages. Accompanying ash plumes rose 4.8 km altitude, drifting in multiple directions mostly to the W as far as 23 km and resulting in ashfall in San Andrés Osuna, La Rochela, El Rodeo, Chuchu, Panimache I and II, Santa Sofia, Morelia, Finca Palo Verde, El Porvenir, Sangre de Cristo, La Cruz, San Pedro Yepocapa, La Conchita, La Soledad, Alotenango, Aldea la Cruz, Acatenango, Ceilan, Taniluyá, Ceniza, Las Lajas, Trinidad, Seca, and Honda. Multiple Washington VAAC notices were issued for a total of 15 days during March. Active lava flows were observed from 16-21 March in the Trinidad and Ceniza drainages measuring 400-1,200 m long and were accompanied by weak to moderate explosions. By 23 March, active lava flows were no longer observed.

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Crelosa, 3ra. avenida. 8-66, Zona 14. Colonia El Campo, Guatemala Ciudad de Guatemala (URL: http://crelosa.com/, post at https://www.youtube.com/watch?v=1P4kWqxU2m0&feature=youtu.be).


Ebeko (Russia) — June 2020 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Frequent moderate explosions, ash plumes, and ashfall continue, December 2019-May 2020

The current moderate explosive eruption of Ebeko has been ongoing since October 2016, with frequent ash explosions that have reached altitudes of 1.3-6 km (BGVN 42:08, 43:03, 43:06, 43:12, 44:12). Ashfall is common in Severo-Kurilsk, a town of about 2,500 residents 7 km ESE, where the Kamchatka Volcanic Eruptions Response Team (KVERT) monitor the volcano. During the reporting period, December 2019-May 2020, the Aviation Color Code remained at Orange (the second highest level on a four-color scale).

During December 2019-May 2020, frequent explosions generated ash plumes that reached altitudes of 1.5-4.6 km (table 9); reports of ashfall in Severo-Kurilsk were common. Ash explosions in late April caused ashfall in Severo-Kurilsk during 25-30 April (figure 24), and the plume drifted 180 km SE on the 29th. There was also a higher level of activity during the second half of May (figure 25), when plumes drifted up to 80 km downwind.

Table 9. Summary of activity at Ebeko, December 2019-May 2020. S-K is Severo-Kurilsk (7 km ESE of the volcano). TA is thermal anomaly in satellite images. In the plume distance column, only plumes that drifted more than 10 km are indicated. Dates based on UTC times. Data courtesy of KVERT.

Date Plume Altitude (km) Plume Distance Plume Directions Other Observations
30 Nov-05 Dec 2019 3 -- NE, E Intermittent explosions.
06-13 Dec 2019 4 -- E Explosions all week. Ashfall in S-K on 10-12 Dec.
15-17 Dec 2019 3 -- E Explosions. Ashfall in S-K on 16-17 Dec.
22-24 Dec 2019 3 -- NE Explosions.
01-02 Jan 2020 3 30 km N N Explosions. TA over dome on 1 Jan.
03, 05, 09 Jan 2020 2.9 -- NE, SE Explosions. Ashfall in S-K on 8 Jan.
11, 13-14 Jan 2020 3 -- E Explosions. Ashfall in S-K.
19-20 Jan 2020 3 -- E Ashfall in S-K on 19 Jan.
24-31 Jan 2020 4 -- E Explosions.
01-07 Feb 2020 3 -- E, S Explosions all week.
12-13 Feb 2020 1.5 -- E Explosions. Ashfall in S-K.
18-19 Feb 2020 2.3 -- SE Explosions.
21, 25, 27 Feb 2020 2.9 -- S, SE, NE Explosions. Ashfall in S-K on 22 Feb.
01-02, 05 Mar 2020 2 -- S, E Explosions.
08 Mar 2020 2.5 -- NE Explosions.
13, 17 Mar 2020 2.5 -- NE, SE Bursts of gas, steam, and small amount of ash.
24-25 Mar 2020 2.5 -- NE, W Explosions.
29 Mar-02 Apr 2020 2.2 -- NE, E Explosions. Ashfall in S-K on 1 Apr. TA on 30-31 Mar.
04-05, 09 Apr 2020 1.5 -- NE Explosions. TA on 5 Apr.
13 Apr 2020 2.5 -- SE Explosions.
18, 20 Apr 2020 -- -- -- TA on 18, 20 Apr.
24 Apr-01 May 2020 3.5 180 km SE on 29 Apr E, SE Explosions all week. Ashfall in S-K on 25-30 Apr.
01-08 May 2020 2.6 -- E Explosions all week. Ashfall in S-K on 3-5 May. TA on 3 May.
08-15 May 2020 4 -- E Explosions. Ashfall in S-K on 8-12 May. TA during 12-14 May.
14-15, 19-21 May 2020 3.6 80 km SW, S, SE during 14, 20-21 May -- Explosions. TA on same days.
22-29 May 2020 4.6 60 km SE E, SE Explosions all week. Ashfall in S-K on 22, 24 May.
29-31 May 2020 4.5 -- E, S Explosions. TA on 30 May.
Figure (see Caption) Figure 24. Photo of ash explosion at Ebeko at 2110 UTC on 28 April 2020, as viewed from Severo-Kurilsk. Courtesy of KVERT (L. Kotenko).
Figure (see Caption) Figure 25. Satellite image of Ebeko from Sentinel-2 on 27 May 2020, showing a plume drifting SE. Image using natural color rendering (bands 4, 3, 2) courtesy of Sentinel Hub Playground.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Piton de la Fournaise (France) — May 2020 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


Fissure eruptions in February and April 2020 included lava fountains and flows

Piton de la Fournaise is a massive basaltic shield volcano on the French island of Réunion in the western Indian Ocean. Recent volcanism is characterized by multiple fissure eruptions, lava fountains, and lava flows (BGVN 44:11). The activity during this reporting period of November 2019-April 2020 is consistent with the previous eruption, including lava fountaining and lava flows. Information for this report comes from the Observatoire Volcanologique du Piton de la Fournaise (OVPF) and various satellite data.

Activity during November 2019-January 2020 was relatively low; no eruptive events were detected, according to OVPF. Edifice deformation resumed during the last week in December and continued through January. Seismicity significantly increased in early January, registering 258 shallow earthquakes from 1-16 January. During 17-31 January, the seismicity declined, averaging one earthquake per day.

Two eruptive events took place during February-April 2020. OVPF reported that the first occurred from 10 to 16 February on the E and SE flanks of the Dolomieu Crater. The second took place during 2-6 April. Both eruptive events began with a sharp increase in seismicity accompanied by edifice inflation, followed by a fissure eruption that resulted in lava fountains and lava flows (figure 193). MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed the two eruptive events occurring during February-April 2020 (figure 194). Similarly, the MODVOLC algorithm reported 72 thermal signatures proximal to the summit crater from 12 February to 6 April. Both of these eruptive events were accompanied by SO2 emissions that were detected by the Sentinel-5P/TROPOMI instrument (figures 195 and 196).

Figure (see Caption) Figure 193. Location maps of the lava flows on the E flank at Piton de la Fournaise on 10-16 February 2020 (left) and 2-6 April 2020 (right) as derived from SAR satellite data. Courtesy of OVPF-IPGP, OPGC, LMV (Monthly bulletins of the Piton de la Fournaise Volcanological Observatory, February and April 2020).
Figure (see Caption) Figure 194. Two significant eruptive events at Piton de la Fournaise took place during February-April 2020 as recorded by the MIROVA system (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 195. Images of the SO2 emissions during the February 2020 eruptive event at Piton de la Fournaise detected by the Sentinel-5P/TROPOMI satellite. Top left: 10 February 2020. Top right: 11 February 2020. Bottom left: 13 February 2020. Bottom right: 14 February 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 196. Images of the SO2 emissions during the April 2020 eruptive event at Piton de la Fournaise detected by the Sentinel-5P/TROPOMI satellite. Left: 4 April 2020. Middle: 5 April 2020. Right: 6 April 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

On 10 February 2020 a seismic swarm was detected at 1027, followed by rapid deformation. At 1050, volcanic tremors were recorded, signaling the start of the eruption. Several fissures opened on the E flank of the Dolomieu Crater between the crater rim and at 2,000 m elevation, as observed by an overflight during 1300 and 1330. These fissures were at least 1 km long and produced lava fountains that rose up to 10 m high. Lava flows were also observed traveling E and S to 1,700 m elevation by 1315 (figures 197 and 198). The farthest flow traveled E to an elevation of 1,400 m. Satellite data from HOTVOLC platform (OPGC - University of Auvergne) was used to estimate the peak lava flow rate on 11 February at 10 m3/s. By 13 February only one lava flow that was traveling E below the Marco Crater remained active. OVPF also reported the formation of a cone, measuring 30 m tall, surrounded by three additional vents that produced lava fountains up to 15 m high. On 15 February the volcanic tremors began to decrease at 1400; by 16 February at 1412 the tremors stopped, indicating the end of the eruptive event.

Figure (see Caption) Figure 197. Photo of a lava flow and degassing at Piton de la Fournaise on 10 February 2020. Courtesy of OVPF-IPGP.
Figure (see Caption) Figure 198. Photos of the lava flows at Piton de la Fournaise taken during the February 2020 eruption by Richard Bouchet courtesy of AFP News Service.

Volcanism during the month of March 2020 consisted of low seismicity, including 21 shallow volcanic tremors and near the end of the month, edifice inflation was detected. A second eruptive event began on 2 April 2020, starting with an increase in seismicity during 0815-0851. Much of this seismicity was located on the SE part of the Dolomieu Crater. A fissure opened on the E flank, consistent with the fissures that were active during the February 2020 event. Seismicity continued to increase in intensity through 6 April located dominantly in the SE part of the Dolomieu Crater. An overflight on 5 April at 1030 showed lava fountains rising more than 50 m high accompanied by gas-and-steam plumes rising to 3-3.5 km altitude (figures 199 and 200). A lava flow advanced to an elevation of 360 m, roughly 2 km from the RN2 national road (figure 199). A significant amount of Pele’s hair and clusters of fine volcanic products were produced during the more intense phase of the eruption (5-6 April) and deposited at distances more than 10 km from the eruptive site (figure 201). It was also during this period that the SO2 emissions peaked (figure 196). The eruption stopped at 1330 after a sharp decrease in volcanic tremors.

Figure (see Caption) Figure 199. Photos of a lava flow (left) and lava fountains (right) at Piton de la Fournaise during the April 2020 eruption. Left: photo taken on 2 April 2020 at 1500. Right: photo taken on 5 April 2020 at 1030. Courtesy of OVPF-IPGP (Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, April 2020).
Figure (see Caption) Figure 200. Photo of the lava fountains erupting from Piton de la Fournaise on 4 April 2020. Photo taken by Richard Bouchet courtesy of Geo Magazine via Jeannie Curtis.
Figure (see Caption) Figure 201. Photos of Pele’s hair deposited due to the April 2020 eruption at Piton de la Fournaise. Samples collected near the Gîte du volcan on 7 April 2020 (left) and a cluster of Pele’s hair found near the Foc-Foc car park on 9 April 2020 (right). Courtesy of OVPF-IPGP (Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, April 2020).

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Observatoire Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris, 14 route nationale 3, 27 ème km, 97418 La Plaine des Cafres, La Réunion, France (URL: http://www.ipgp.fr/fr); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); GEO Magazine (AFP story at URL: https://www.geo.fr/environnement/la-reunion-fin-deruption-au-piton-de-la-fournaise-200397); AFP (URL: https://twitter.com/AFP/status/1227140765106622464, Twitter: @AFP, https://twitter.com/AFP); Jeannie Curtis (Twitter: @VolcanoJeannie, https://twitter.com/VolcanoJeannie).


Sabancaya (Peru) — June 2020 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Daily explosions with ash emissions, large SO2 flux, ongoing thermal anomalies, December 2019-May 2020

Although tephrochronology has dated activity at Sabancaya back several thousand years, renewed activity that began in 1986 was the first recorded in over 200 years. Intermittent activity since then has produced significant ashfall deposits, seismic unrest, and fumarolic emissions. A new period of explosive activity that began in November 2016 has been characterized by pulses of ash emissions with some plumes exceeding 10 km altitude, thermal anomalies, and significant SO2 plumes. Ash emissions and high levels of SO2 continued each week during December 2019-May 2020. The Observatorio Vulcanologico INGEMMET (OVI) reports weekly on numbers of daily explosions, ash plume heights and directions of drift, seismicity, and other activity. The Buenos Aires Volcanic Ash Advisory Center (VAAC) issued three or four daily reports of ongoing ash emissions at Sabancaya throughout the period.

The dome inside the summit crater continued to grow throughout this period, along with nearly constant ash, gas, and steam emissions; the average number of daily explosions ranged from 4 to 29. Ash and gas plume heights rose 1,800-3,800 m above the summit crater, and multiple communities around the volcano reported ashfall every month (table 6). Sulfur dioxide emissions were notably high and recorded daily with the TROPOMI satellite instrument (figure 75). Thermal activity declined during December 2019 from levels earlier in the year but remained steady and increased in both frequency and intensity during April and May 2020 (figure 76). Infrared satellite images indicated that the primary heat source throughout the period was from the dome inside the summit crater (figure 77).

Table 6. Persistent activity at Sabancaya during December 2019-May 2020 included multiple daily explosions with ash plumes that rose several kilometers above the summit and drifted in many directions; this resulted in ashfall in communities within 30 km of the volcano. Satellite instruments recorded SO2 emissions daily. Data courtesy of OVI-INGEMMET.

Month Avg. Daily Explosions by week Max plume Heights (m above crater) Plume drift (km) and direction Communities reporting ashfall Min Days with SO2 over 2 DU
Dec 2019 16, 13, 5, 5 2,600-3,800 20-30 NW Pinchollo, Madrigal, Lari, Maca, Achoma, Coporaque, Yanque, Chivay, Huambo, Cabanaconde 27
Jan 2020 10, 8, 11, 14, 4 1,800-3,400 30 km W, NW, SE, S Chivay, Yanque, Achoma 29
Feb 2020 8, 11, 20, 19 2,000-2,200 30 km SE, E, NE, W Huambo 29
Mar 2020 14, 22, 29, 18 2,000-3,000 30 km NE, W, NW, SW Madrigal, Lari, Pinchollo 30
Apr 2020 12, 12, 16, 13, 8 2,000-3,000 30 km SE, NW, E, S Pinchollo, Madrigal, Lari, Maca, Ichupampa, Yanque, Chivay, Coporaque, Achoma 27
May 2020 15, 14, 6, 16 1,800-2,400 30 km SW, SE, E, NE, W Chivay, Achoma, Maca, Lari, Madrigal, Pinchollo 27
Figure (see Caption) Figure 75. Sulfur dioxide anomalies were captured daily from Sabancaya during December 2019-May 2020 by the TROPOMI instrument on the Sentinel-5P satellite. Some of the largest SO2 plumes are shown here with dates listed in the information at the top of each image. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 76. Thermal activity at Sabancaya declined during December 2019 from levels earlier in the year but remained steady and increased slightly in frequency and intensity during April and May 2020, according to the MIROVA graph of Log Radiative Power from 23 June 2019 through May 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 77. Sentinel-2 satellite imagery of Sabancaya confirmed the frequent ash emissions and ongoing thermal activity from the dome inside the summit crater during December 2019-May 2020. Top row (left to right): On 6 December 2019 a large plume of steam and ash drifted N from the summit. On 16 December 2019 a thermal anomaly encircled the dome inside the summit caldera while gas and possible ash drifted NW. On 14 April 2020 a very similar pattern persisted inside the crater. Bottom row (left to right): On 19 April an ash plume was clearly visible above dense cloud cover. On 24 May the infrared glow around the dome remained strong; a diffuse plume drifted W. A large plume of ash and steam drifted SE from the summit on 29 May. Infrared images use Atmospheric penetration rendering (bands 12, 11, 8a), other images use Natural Color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

The average number of daily explosions during December 2019 decreased from a high of 16 the first week of the month to a low of five during the last week. Six pyroclastic flows occurred on 10 December (figure 78). Tremors were associated with gas-and-ash emissions for most of the month. Ashfall was reported in Pinchollo, Madrigal, Lari, Maca, Achoma, Coporaque, Yanque, and Chivay during the first week of the month, and in Huambo and Cabanaconde during the second week (figure 79). Inflation of the volcano was measured throughout the month. SO2 flux was measured by OVI as ranging from 2,500 to 4,300 tons per day.

Figure (see Caption) Figure 78. Multiple daily explosions at Sabancaya produced ash plumes that rose several kilometers above the summit. Left image is from 5 December and right image is from 11 December 2019. Note pyroclastic flows to the right of the crater on 11 December. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-49-2019/INGEMMET Semana del 2 al 8 de diciembre de 2019 and RSSAB-50-2019/INGEMMET Semana del 9 al 15 de diciembre de 2019).
Figure (see Caption) Figure 79. Communities to the N and W of Sabancaya recorded ashfall from the volcano the first week of December and also every month during December 2019-May 2020. The red zone is the area where access is prohibited (about a 12-km radius from the crater). Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-22-2020/INGEMMET Semana del 25 al 31 de mayo del 2020).

During January and February 2020 the number of daily explosions averaged 4-20. Ash plumes rose as high as 3.4 km above the summit (figure 80) and drifted up to 30 km in multiple directions. Ashfall was reported in Chivay, Yanque, and Achoma on 8 January, and in Huambo on 25 February. Sulfur dioxide flux ranged from a low of 1,200 t/d on 29 February to a high of 8,200 t/d on 28 January. Inflation of the edifice was measured during January; deformation changed to deflation in early February but then returned to inflation by the end of the month.

Figure (see Caption) Figure 80. Ash plumes rose from Sabancaya every day during January and February 2020. Left: 11 January. Right: 28 February. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-02-2020/INGEMMET Semana del 06 al 12 de enero del 2020 and RSSAB-09-2020/INGEMMET Semana del 24 de febrero al 01 de marzo del 2020).

Explosions continued during March and April 2020, averaging 8-29 per day. Explosions appeared to come from multiple vents on 11 March (figure 81). Ash plumes rose 3 km above the summit during the first week of March and again the first week of April; they were lower during the other weeks. Ashfall was reported in Madrigal, Lari, and Pinchollo on 27 March and 5 April. On 17 April ashfall was reported in Maca, Ichupampa, Yanque, Chivay, Coporaque, and Achoma. Sulfur dioxide flux ranged from 1,900 t/d on 5 March to 10,700 t/d on 30 March. Inflation at depth continued throughout March and April with 10 +/- 4 mm recorded between 21 and 26 April. Similar activity continued during May 2020; explosions averaged 6-16 per day (figure 82). Ashfall was reported on 6 May in Chivay, Achoma, Maca, Lari, Madrigal, and Pinchollo; heavy ashfall was reported in Achoma on 12 May. Additional ashfall was reported in Achoma, Maca, Madrigal, and Lari on 23 May.

Figure (see Caption) Figure 81. Explosions at Sabancaya on 11 March 2020 appeared to originate simultaneously from two different vents (left). The plume on 12 April was measured at about 2,500 m above the summit. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-11-2020/INGEMMET Semana del 9 al 15 de marzo del 2020 and RSSAB-15-2020/INGEMMET Semana del 6 al 12 de abril del 2020).
Figure (see Caption) Figure 82. Explosions dense with ash continued during May 2020 at Sabancaya. On 11 and 29 May 2020 ash plumes rose from the summit and drifted as far as 30 km before dissipating. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya , RSSAB-20-2020/INGEMMET Semana del 11 al 17 de mayo del 2020 and RSSAB-22-2020/INGEMMET Semana del 25 al 31 de mayo del 2020).

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sheveluch (Russia) — May 2020 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Lava dome growth and thermal anomalies continue through April 2020, but few ash explosions

The eruption at Sheveluch has continued for more than 20 years, with strong explosions that have produced ash plumes, lava dome growth, hot avalanches, numerous thermal anomalies, and strong fumarolic activity (BGVN 44:05). During this time, there have been periods of greater or lesser activity. The most recent period of increased activity began in December 2018 and continued through October 2019 (BGVN 44:11). This report covers activity between November 2019 to April 2020, a period during which activity waned. The volcano is monitored by the Kamchatka Volcanic Eruptions Response Team (KVERT) and Tokyo Volcanic Ash Advisory Center (VAAC).

During the reporting period, KVERT noted that lava dome growth continued, accompanied by incandescence of the dome blocks and hot avalanches. Strong fumarolic activity was also present (figure 53). However, the overall eruption intensity waned. Ash plumes sometimes rose to 10 km altitude and drifted downwind over 600 km (table 14). The Aviation Color Code (ACC) remained at Orange (the second highest level on a four-color scale), except for 3 November when it was raised briefly to Red (the highest level).

Figure (see Caption) Figure 53. Fumarolic activity of Sheveluch’s lava dome on 24 January 2020. Photo by Y. Demyanchuk; courtesy of KVERT.

Table 14. Explosions and ash plumes at Sheveluch during November 2019-April 2020. Dates and times are UTC, not local. Data courtesy of KVERT and the Tokyo VAAC.

Dates Plume Altitude (km) Drift Distance and Direction Remarks
01-08 Nov 2019 -- 640 km NW 3 November: ACC raised to Red from 0546-0718 UTC before returning to Orange.
08-15 Nov 2019 9-10 1,300 km ESE
17-27 Dec 2019 6.0-6.5 25 km E Explosions at about 23:50 UTC on 21 Dec.
20-27 Mar 2020 -- 45 km N 25 March: Gas-and-steam plume containing some ash.
03-10 Apr 2020 10 km 526 km SE 8 April: Strong explosion at 1910 UTC.
17-24 Apr 2020 -- 140 km NE Re-suspended ash plume.

KVERT reported thermal anomalies over the volcano every day, except for 25-26 January, when clouds obscured observations. During the reporting period, thermal anomalies, based on MODIS satellite instruments analyzed using the MODVOLC algorithm recorded hotspots on 10 days in November, 13 days in December, nine days in January, eight days in both February and March, and five days in April. The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system, also based on analysis of MODIS data, detected numerous hotspots every month, almost all of which were of moderate radiative power (figure 54).

Figure (see Caption) Figure 54. Thermal anomalies at Sheveluch continued at elevated levels during November 2019-April 2020, as seen on this MIROVA Log Radiative Power graph for July 2019-April 2020. Courtesy of MIROVA.

High sulfur dioxide levels were occasionally recorded just above or in the close vicinity of Sheveluch by the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor satellite, but very little drift was observed.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Dukono (Indonesia) — May 2020 Citation iconCite this Report

Dukono

Indonesia

1.693°N, 127.894°E; summit elev. 1229 m

All times are local (unless otherwise noted)


Numerous ash explosions continue through March 2020

The ongoing eruption at Dukono is characterized by frequent explosions that send ash plumes to about 1.5-3 km altitude (0.3-1.8 km above the summit), although a few have risen higher. This type of typical activity (figure 13) continued through at least March 2020. The ash plume data below (table 21) were primarily provided by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and the Darwin Volcanic Ash Advisory Centre (VAAC). During the reporting period of October 2019-March 2020, the Alert Level remained at 2 (on a scale of 1-4) and the public was warned to remain outside of the 2-km exclusion zone.

Table 21. Monthly summary of reported ash plumes from Dukono for October 2019-March 2020. The direction of drift for the ash plume through each month was highly variable; notable plume drift each month was only indicated in the table if at least two weekly reports were consistent. Data courtesy of the Darwin VAAC and PVMBG.

Month Plume Altitude (km) Notable Plume Drift
Oct 2019 1.8-3 Multiple
Nov 2019 1.8-2.3 E, SE, NE
Dec 2019 1.8-2.1 E, SE
Jan 2020 1.8-2.1 E, SE, SW, S
Feb 2020 2.1-2.4 S, SW
Mar 2020 1.5-2.3 Multiple
Figure (see Caption) Figure 13.Satellite image of Dukono from Sentinel-2 on 12 November 2019, showing an ash plume drifting E. Image uses natural color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

During the reporting period, high levels of sulfur dioxide were only recorded above or near the volcano during 30-31 October and 4 November 2019. High levels were recorded by the Ozone Mapping and Profiler Suite (OMPS) instrument aboard the Suomi National Polar-orbiting Partnership (NPP) satellite on 30 October 2019, in a plume drifting E. The next day high levels were also recorded by the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor satellite on 31 October (figure 14) and 4 November 2019, in plumes drifting SE and NE, respectively.

Figure (see Caption) Figure 14. Sulfur dioxide emission on 31 October 2019 drifting E, probably from Dukono, as recorded by the TROPOMI instrument aboard the Sentinel-5P satellite. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Etna (Italy) — April 2020 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Strombolian explosions and ash emissions continue, October 2019-March 2020

Mount Etna is a stratovolcano located on the island of Sicily, Italy, with historical eruptions that date back 3,500 years. The most recent eruptive period began in September 2013 and has continued through March 2020. Activity is characterized by Strombolian explosions, lava flows, and ash plumes that commonly occur from the summit area, including the Northeast Crater (NEC), the Voragine-Bocca Nuova (or Central) complex (VOR-BN), the Southeast Crater (SEC, formed in 1978), and the New Southeast Crater (NSEC, formed in 2011). The newest crater, referred to as the "cono della sella" (saddle cone), emerged during early 2017 in the area between SEC and NSEC. This reporting period covers information from October 2019 through March 2020 and includes frequent explosions and ash plumes. The primary source of information comes from the Osservatorio Etneo (OE), part of the Catania Branch of Italy's Istituo Nazionale di Geofisica e Vulcanologica (INGV).

Summary of activity during October 2019-March 2020. Strombolian activity and gas-and-steam and ash emissions were frequently observed at Etna throughout the entire reporting period, according to INGV and Toulouse VAAC notices. Activity was largely located within the main cone (Voragine-Bocca Nuova complex), the Northeast Crater (NEC), and the New Southeast Crater (NSEC). On 1, 17, and 19 October, ash plumes rose to a maximum altitude of 5 km. Due to constant Strombolian explosions, ground observations showed that a scoria cone located on the floor of the VOR Crater had begun to grow in late November and again in late January 2020. A lava flow was first detected on 6 December at the base of the scoria cone in the VOR Crater, which traveled toward the adjacent BN Crater. Additional lava flows were observed intermittently throughout the reporting period in the same crater. On 13 March, another small scoria cone had formed in the main VOR-BN complex due to Strombolian explosions.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows multiple episodes of thermal activity varying in power from 22 June 2019 to March 2020 (figure 286). The power and frequency of these thermal anomalies significantly decreased between August to mid-September. The pulse of activity in mid-September reflected a lava flow from the VOR Crater (BGVN 44:10). By late October through November, thermal anomalies were relatively weaker and less frequent. The next pulse in thermal activity reflected in the MIROVA graph occurred in early December, followed by another shortly after in early January, both of which were due to new lava flows from the VOR Crater. After 9 January the thermal anomalies remained frequent and strong; active lava flows continued through March accompanied by Strombolian explosions, gas-and-steam, SO2, and ash emissions. The most recent distinct pulse in thermal activity was seen in mid-March; on 13 March, another lava flow formed, accompanied by an increase in seismicity. This lava flow, like the previous ones, also originated in the VOR Crater and traveled W toward the BN Crater.

Figure (see Caption) Figure 286. Multiple episodes of varying activity at Etna from 22 June 2019 through March 2020 were reflected in the MIROVA thermal energy data (Log Radiative Power). Courtesy of MIROVA.

Activity during October-December 2019. During October 2019, VONA (Volcano Observatory Notice for Aviation) notices issued by INGV reported ash plumes rose to a maximum altitude of 5 km on 1, 17, and 19 October. Strombolian explosions occurred frequently. Explosions were detected primarily in the VOR-BN Craters, ejecting coarse pyroclastic material that fell back into the crater area and occasionally rising above the crater rim. Ash emissions rose from the VOR-BN and NEC while intense gas-and-steam emissions were observed in the NSEC (figure 287). Between 10-12 and 14-20 October fine ashfall was observed in Pedara, Mascalucia, Nicolosi, San Giovanni La Punta, and Catania. In addition to these ash emissions, the explosive Strombolian activity contributed to significant SO2 plumes that drifted in different directions (figure 288).

Figure (see Caption) Figure 287. Webcam images of ash emissions from the NE Crater at Etna from the a) CUAD (Catania) webcam on 10 October 2019; b) Milo webcam on 11 October 2019; c) Milo webcam on 12 October 2019; d) M.te Cagliato webcam on 13 October 2019. Courtesy of INGV (Report 42/2019, ETNA, Bollettino Settimanale, 07/10/2019 - 13/10/2019, data emissione 15/10/2019).
Figure (see Caption) Figure 288. Strombolian activity at Etna contributed to significant SO2 plumes that drifted in multiple directions during the intermittent explosions in October 2019. Top left: 1 October 2019. Top right: 2 October 2019. Middle left: 15 October 2019. Middle right: 18 October 2019. Bottom left: 13 November 2019. Bottom right: 1 December 2019. Captured by the TROPOMI instrument on the Sentinel 5P satellite, courtesy of NASA Global Sulfur Dioxide Monitoring Page.

The INGV weekly bulletin covering activity between 25 October and 1 November 2019 reported that Strombolian explosions occurred at intervals of 5-10 minutes from within the VOR-BN and NEC, ejecting incandescent material above the crater rim, accompanied by modest ash emissions. In addition, gas-and-steam emissions were observed from all the summit craters. Field observations showed the cone in the crater floor of VOR that began to grow in mid-September 2019 had continued to grow throughout the month. During the week of 4-10 November, Strombolian activity within the Bocca Nuova Crater was accompanied by gas-and-steam emissions. The explosions in the VOR Crater occasionally ejected incandescent ejecta above the crater rim (figures 289 and 290). For the remainder of the month Strombolian explosions continued in the VOR-BN and NEC, producing sporadic ash emissions. Isolated and discontinuous explosions in the New Southeast Crater (NSEC) also produced fine ash, though gas-and-steam emissions still dominated the activity at this crater. Additionally, the explosions from these summit craters were frequently accompanied by strong SO2 emissions that drifted in different directions as discrete plumes.

Figure (see Caption) Figure 289. Photo of Strombolian activity and crater incandescence in the Voragine Crater at Etna on 15 November 2019. Photo by B. Behncke, taken by Tremestieri Etneo. Courtesy of INGV (Report 47/2019, ETNA, Bollettino Settimanale, 11/11/2019 - 17/11/2019, data emissione 19/11/2019).
Figure (see Caption) Figure 290. Webcam images of summit crater activity during 26-29 November and 1 December 2019 at Etna. a) image recorded by the high-resolution camera on Montagnola (EMOV); b) and c) webcam images taken from Tremestieri Etneo on the southern slope of Etna showing summit incandescence; d) image recorded by the thermal camera on Montagnola (EMOT) showing summit incandescence at the NSEC. Courtesy of INGV (Report 49/2019, ETNA, Bollettino Settimanale, 25/11/2019 - 01/12/2019, data emissione 03/12/2019).

Frequent Strombolian explosions continued through December 2019 within the VOR-BN, NEC, and NSEC Craters with sporadic ash emissions observed in the VOR-BN and NEC. On 6 December, Strombolian explosions increased in the NSEC; webcam images showed incandescent pyroclastic material ejected above the crater rim. On the morning of 6 December a lava flow was observed from the base of the scoria cone in the VOR Crater that traveled toward the adjacent Bocca Nuova Crater. INGV reported that a new vent opened on the side of the saddle cone (NSEC) on 11 December and produced explosions until 14 December.

Activity during January-March 2020. On 9 January 2020 an aerial flight organized by RAI Linea Bianca and the state police showed the VOR Crater continuing to produce lava that was flowing over the crater rim into the BN Crater with some explosive activity in the scoria cone. Explosive Strombolian activity produced strong and distinct SO2 plumes (figure 291) and ash emissions through March, according to the weekly INGV reports, VONA notices, and satellite imagery. Several ash emissions during 21-22 January rose from the vent that opened on 11 December. According to INGV’s weekly bulletin for 21-26 January, the scoria cone in the VOR crater produced Strombolian explosions that increased in frequency and contributed to rapid cone growth, particularly the N part of the cone. Lava traveled down the S flank of the cone and into the adjacent Bocca Nuova Crater, filling the E crater (BN-2) (figure 292). The NEC had discontinuous Strombolian activity and periodic, diffuse ash emissions.

Figure (see Caption) Figure 291. Distinct SO2 plumes drifting in multiple directions from Etna were visible in satellite imagery as Strombolian activity continued through March 2020. Top left: 21 January 2020. Top right: 2 February 2020. Bottom left: 10 March 2020. Bottom right: 19 March 2020. Captured by the TROPOMI instrument on the Sentinel 5P satellite, courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 292. a) A map of the lava field at Etna showing cooled flows (yellow) and active flows (red). The base of the scoria cone is outlined in black while the crater rim is outlined in red. b) Thermal image of the Bocca Nuova and Voragine Craters. The bright orange is the warmest temperature measure in the flow. Courtesy of INGV, photos by Laboratorio di Cartografia FlyeEye Team (Report 10/2020, ETNA, Bollettino Settimanale, 24/02/2020 - 01/03/2020, data emissione 03/03/2020).

Strombolian explosions continued into February 2020, accompanied by ash emissions and lava flows from the previous months (figure 293). During 17-23 February, INGV reported that some subsidence was observed in the central portion of the Bocca Nuova Crater. During 24 February to 1 March, the Strombolian explosions ejected lava from the VOR Crater up to 150-200 m above the vent as bombs fell on the W edge of the VOR crater rim (figure 294). Lava flows continued to move into the W part of the Bocca Nuova Crater.

Figure (see Caption) Figure 293. Webcam images of A) Strombolian activity and B) effusive activity fed by the scoria cone grown inside the VOR Crater at Etna taken on 1 February 2020. C) Thermal image of the lava field produced by the VOR Crater taken by L. Lodato on 3 February (bottom left). Image of BN-1 taken by F. Ciancitto on 3 February in the summit area (bottom right). Courtesy of INGV; Report 06/2020, ETNA, Bollettino Settimanale, 27/01/2020 - 02/02/2020, data emissione 04/02/2020 (top) and Report 07/2020, ETNA, Bollettino Settimanale, 03/02/2020 - 09/02/2020, data emissione 11/02/2020 (bottom).
Figure (see Caption) Figure 294. Photos of the VOR intra-crater scoria cone at Etna: a) Strombolian activity resumed on 25 February 2020 from the SW edge of BN taken by B. Behncke; b) weak Strombolian activity from the vent at the base N of the cone on 29 February 2020 from the W edge of VOR taken by V. Greco; c) old vent present at the base N of the cone, taken on 17 February 2020 from the E edge of VOR taken by B. Behncke; d) view of the flank of the cone, taken on 24 February 2020 from the W edge of VOR taken by F. Ciancitto. Courtesy of INGV (Report 10/2020, ETNA, Bollettino Settimanale, 24/02/2020 - 01/03/2020, data emissione 03/03/2020).

During 9-15 March 2020 Strombolian activity was detected in the VOR Crater while discontinuous ash emissions rose from the NEC and NSEC. Bombs were found in the N saddle between the VOR and NSEC craters. On 9 March, a small scoria cone that had formed in the Bocca Nuova Crater and was ejecting bombs and lava tens of meters above the S crater rim. The lava flow from the VOR Crater was no longer advancing. A third scoria cone had formed on 13 March NE in the main VOR-BN complex due to the Strombolian explosions on 29 February. Another lava flow formed on 13 March, accompanied by an increase in seismicity. The weekly report for 16-22 March reported Strombolian activity detected in the VOR Crater and gas-and-steam and rare ash emissions observed in the NEC and NSEC (figure 295). Explosions in the Bocca Nuova Crater ejected spatter and bombs 100 m high.

Figure (see Caption) Figure 295. Map of the summit crater area of Etna showing the active vents and lava flows during 16-22 March 2020. Black hatch marks indicate the crater rims: BN = Bocca Nuova, with NW BN-1 and SE BN-2; VOR = Voragine; NEC = North East Crater; SEC = South East Crater; NSEC = New South East Crater. Red circles indicate areas with ash emissions and/or Strombolian activity, yellow circles indicate steam and/or gas emissions only. The base is modified from a 2014 DEM created by Laboratorio di Aerogeofisica-Sezione Roma 2. Courtesy of INGV (Report 13/2020, ETNA, Bollettino Settimanale, 16/03/2020 - 22/03/2020, data emissione 24/03/2020).

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sezione di Catania - Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/it/); Toulouse Volcanic Ash Advisory Center (VAAC), Météo-France, 42 Avenue Gaspard Coriolis, F-31057 Toulouse cedex, France (URL: http://www.meteo.fr/aeroweb/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Boris Behncke, Sonia Calvari, and Marco Neri, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: https://twitter.com/etnaboris, Image at https://twitter.com/etnaboris/status/1183640328760414209/photo/1).


Merapi (Indonesia) — April 2020 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Explosions produced ash plumes, ashfall, and pyroclastic flows during October 2019-March 2020

Merapi is a highly active stratovolcano located in Indonesia, just north of the city of Yogyakarta. The current eruption episode began in May 2018 and was characterized by phreatic explosions, ash plumes, block avalanches, and a newly active lava dome at the summit. This reporting period updates information from October 2019-March 2020 that includes explosions, pyroclastic flows, ash plumes, and ashfall. The primary reporting source of activity comes from Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG, the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG) and Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM).

Some ongoing lava dome growth continued in October 2019 in the NE-SW direction measuring 100 m in length, 30 m in width, and 20 m in depth. Gas-and-steam emissions were frequent, reaching a maximum height of 700 m above the crater on 31 October. An explosion at 1631 on 14 October removed the NE-SW trending section of the lava dome and produced an ash plume that rose 3 km above the crater and extended SW for about 2 km (figures 90 and 91). The plume resulted in ashfall as far as 25 km to the SW. According to a Darwin VAAC notice, a thermal hotspot was detected in HIMAWARI-8 satellite imagery. A pyroclastic flow associated with the eruption traveled down the SW flank in the Gendol drainage. During 14-20 October lava flows from the crater generated block-and-ash flows that traveled 1 km SW, according to BPPTKG.

Figure (see Caption) Figure 90. An ash plume rising 3 km above Merapi on 14 October 2019.
Figure (see Caption) Figure 91. Webcam image of an ash plume rising above Merapi at 1733 on 14 October 2019. Courtesy of BPPTKG via Jaime S. Sincioco.

At 0621 on 9 November 2019, an eruption produced an ash plume that rose 1.5 km above the crater and drifted W. Ashfall was observed in the W region as far as 15 km from the summit in Wonolelo and Sawangan in Magelang Regency, as well as Tlogolele and Selo in Boyolali Regency. An associated pyroclastic flow traveled 2 km down the Gendol drainage on the SE flank. On 12 November aerial drone photographs were used to measure the volume of the lava dome, which was 407,000 m3. On 17 November, an eruption produced an ash plume that rose 1 km above the crater, resulting in ashfall as far as 15 km W from the summit in the Dukun District, Magelang Regency (figure 92). A pyroclastic flow accompanying the eruption traveled 1 km down the SE flank in the Gendol drainage. By 30 November low-frequency earthquakes and CO2 gas emissions had increased.

Figure (see Caption) Figure 92. An ash plume rising 1 km above Merapi on 17 November 2019. Courtesy of BPPTKG.

Volcanism was relatively low from 18 November 2019 through 12 February 2020, characterized primarily by gas-and-steam emissions and intermittent volcanic earthquakes. On 4 January a pyroclastic flow was recorded by the seismic network at 2036, but it wasn’t observed due to weather conditions. On 13 February an explosion was detected at 0516, which ejected incandescent material within a 1-km radius from the summit (figure 93). Ash plumes rose 2 km above the crater and drifted NW, resulting in ashfall within 10 km, primarily S of the summit; lightning was also seen in the plume. Ash was observed in Hargobinangun, Glagaharjo, and Kepuharjo. On 19 February aerial drone photographs were used to measure the change in the lava dome after the eruption; the volume of the lava had decreased, measuring 291,000 m3.

Figure (see Caption) Figure 93. Webcam image of an ash plume rising from Merapi at 0516 on 13 February 2020. Courtesy of MAGMA Indonesia and PVMBG.

An explosion on 3 March at 0522 produced an ash plume that rose 6 km above the crater (figure 94), resulting in ashfall within 10 km of the summit, primarily to the NE in the Musuk and Cepogo Boyolali sub-districts and Mriyan Village, Boyolali (3 km from the summit). A pyroclastic flow accompanied this eruption, traveling down the SSE flank less than 2 km. Explosions continued to be detected on 25 and 27-28 March, resulting in ash plumes. The eruption on 27 March at 0530 produced an ash plume that rose 5 km above the crater, causing ashfall as far as 20 km to the W in the Mungkid subdistrict, Magelang Regency, and Banyubiru Village, Dukun District, Magelang Regency. An associated pyroclastic flow descended the SSE flank, traveling as far as 2 km. The ash plume from the 28 March eruption rose 2 km above the crater, causing ashfall within 5 km from the summit in the Krinjing subdistrict primarily to the W (figure 94).

Figure (see Caption) Figure 94. Images of ash plumes rising from Merapi during 3 March (left) and 28 March 2020 (right). Images courtesy of BPPTKG (left) and PVMBG (right).

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, Twitter: @BPPTKG); Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/, Twitter: https://twitter.com/BNPB_Indonesia); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Jamie S. Sincioco, Phillipines (Twitter: @jaimessincioco, Image at https://twitter.com/jaimessincioco/status/1227966075519635456/photo/1).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 27, Number 01 (January 2002)

Managing Editor: Richard Wunderman

Chikurachki (Russia)

Several January-February ash clouds observed; small crater formed

Kanlaon (Philippines)

Increased seismicity during January 2002 may be precursor to eruption

Karangetang (Indonesia)

Lahars cause damage in January; explosions and lava flows in February

Marapi (Indonesia)

Explosions during 2001; April ash plume reaches 2.0 km above the summit

Soputan (Indonesia)

Avalanche earthquakes, white plumes to 100 m through mid-July 2001

Soufriere Hills (United Kingdom)

Small-scale dome collapses and pyroclastic flows through February 2002

Stromboli (Italy)

Fallout from 23 January explosion carpets popular tourist area

Tungurahua (Ecuador)

Powerful tremor, plumes, 600-m-high lava fountains, and lahars during 2001

Unnamed (Tonga)

Submarine center identified S of Fonualei may be the source of T-waves and pumice

Yasur (Vanuatu)

Mild eruptive phase ends and leads to a vigorous phase in December 2001; seismic data



Chikurachki (Russia) — January 2002 Citation iconCite this Report

Chikurachki

Russia

50.324°N, 155.461°E; summit elev. 1781 m

All times are local (unless otherwise noted)


Several January-February ash clouds observed; small crater formed

The last report of volcanism at Chikurachki on Paramushir Island in the northern Kuriles (figure 3) was made by crews on fishing boats near the volcano on 19 November 1986; activity consisted of lava flows, ash clouds, and pyroclastic flows (SEAN 11:11, 11:12, and 12:01). Chikurachki is not seismically monitored, and therefore the Kamchatka Volcanic Eruptions Response Team (KVERT) does not use a Color Concern Code to label the level of activity. The volcano is not visible from the closest town from which KVERT receives ashfall reports from, Severo-Kurilsk (~55 km NE of the volcano). Information about volcanism comes from crews on vessels and pilots passing Paramushir Island.

Figure (see Caption) Figure 3. Map of Paramushir Island showing Chikurachki volcano on the SW part of the island, Fuss Peak volcano forming a peninsula to the SW, Ebeko volcano at the N end of the island, and the town of Severo-Kurilsk on the NE side of the island. This map is a segment from the Tactical Pilotage Chart E-10C of the NOAA Sectional Aeronautical Chart Series. Compiled in October 1984 by the Defense Mapping Agency Aerospace Center. Courtesy of NOAA.

An eruption began at Chikurachki on 25 January. The start time of the eruption is not known, but between 1200 and 1500 ash fell to the NE in Severo-Kurilsk. The ash mixed with snow and formed a layer ~1.5 mm thick; the thickness of the ash alone was probably ~10-30% less. On 2 February an eruption was seen by a helicopter pilot. At 1200 that day an ash column rose 300 m above the volcano's crater and drifted more than 70 km to the SE.

The next report of volcanism at Chikurachki was made by a hunter on 7 February. He heard thunder and saw a persistent ash column rising to ~2.5 km altitude. The upper portion of the ash cloud was obscured by low cloud cover, so the ash cloud's exact height and direction of movement were not known.

Reports of activity at Chikurachki also prompted news reports stating that Ebeko, ~60 km NE of Chikurachki, was erupting (figure 3). The reports were found to be false; Chikurachki was the only volcano on Paramushir Island to be active in January.

According to reports from Severo-Kurilsk, by mid-February volcanism at Chikurachki had decreased. Visual observations from a helicopter on 18 February revealed that a small new crater had formed on the SSE part of the volcano's summit crater. In addition, a gas-and-steam plume rose 150 m above the crater and extended to the ESE. A stripe of fresh ash was seen on the volcano's E slope. A satellite image, taken on 18 February at 1649, provided a relatively clear view of Chikurachki; no thermal anomaly or volcanic plume was visible. Although the level of volcanic activity decreased, KVERT stated that ash explosions could still occur. According to the Tokyo VAAC, possible eruptions on 21 February at 0325 and 24 February at 1232 may have produced ash clouds that rose to ~6 and 5.8 km, respectively.

Geologic Background. Chikurachki, the highest volcano on Paramushir Island in the northern Kuriles, is actually a relatively small cone constructed on a high Pleistocene volcanic edifice. Oxidized basaltic-to-andesitic scoria deposits covering the upper part of the young cone give it a distinctive red color. Frequent basaltic plinian eruptions have occurred during the Holocene. Lava flows from 1781-m-high Chikurachki reached the sea and form capes on the NW coast; several young lava flows also emerge from beneath the scoria blanket on the eastern flank. The Tatarinov group of six volcanic centers is located immediately to the south of Chikurachki, and the Lomonosov cinder cone group, the source of an early Holocene lava flow that reached the saddle between it and Fuss Peak to the west, lies at the southern end of the N-S-trending Chikurachki-Tatarinov complex. In contrast to the frequently active Chikurachki, the Tatarinov volcanoes are extensively modified by erosion and have a more complex structure. Tephrochronology gives evidence of only one eruption in historical time from Tatarinov, although its southern cone contains a sulfur-encrusted crater with fumaroles that were active along the margin of a crater lake until 1959.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT); Thomas P. Miller, Alaska Volcano Observatory (AVO), 4200 University Drive, Anchorage, AK 99508, USA (URL: http://www.avo.alaska.edu/); Tokyo Volcanic Ash Advisory Center, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); National Oceanic and Air Administration (NOAA), 14th Street & Constitution Avenue, NW, Room 6013, Washington, DC 20230 (URL: http://www.noaa.gov).


Kanlaon (Philippines) — January 2002 Citation iconCite this Report

Kanlaon

Philippines

10.412°N, 123.132°E; summit elev. 2435 m

All times are local (unless otherwise noted)


Increased seismicity during January 2002 may be precursor to eruption

As of late May 2001, seismicity at Canlaon was low, and the Philippine Institute of Volcanology and Seismology (PHIVOLCS) relaxed its no-entry advisory into the crater (BGVN 26:10). No further reports were issued through 2001.

On 30 January 2002 PHIVOLCS reported that during the previous month, the seismic network around the volcano detected a higher number of earthquakes, observations that may indicate a reactivation of the volcano. Seismicity was dominated by high-frequency earthquakes located around the crater, from shallow depth to 8.5 km deep. These earthquakes may represent episodes of subsurface fracturing due to magma intrusion. During mid-January, PHIVOLCS further noted the occurrence of several low-frequency earthquakes, which supports the idea that some fluid migration, possibly magma ascent, was occurring. PHIVOLCS noted that if this idea was confirmed by forthcoming surveys, then the Alert Level may be raised.

Increased activity at Canlaon was recognized as early as January 2001 with occurrences of earthquake clusters. At the time PHIVOLCS issued a similar notice but activity quieted down. This year's reactivation seems more intense in terms of the number of earthquakes. They could foretell of impending phreatic eruptions. Several teams were sent to augment the Canlaon Volcano Observatory with additional seismometers and deployment of a GPS-based ground-deformation monitoring network. Because sudden phreatic or steam-driven explosions may occur at any time, PHIVOLCS urged the public to strictly observe the 4-km-radius Permanent Danger Zone (PDZ) around the volcano and recommended the suspension of all treks within this zone until further notice. As of 30 January, PHIVOLCS reported that volcanic activity did not require any kind of evacuation except for areas within the PDZ.

Geologic Background. Kanlaon volcano (also spelled Canlaon), the most active of the central Philippines, forms the highest point on the island of Negros. The massive andesitic stratovolcano is dotted with fissure-controlled pyroclastic cones and craters, many of which are filled by lakes. The largest debris avalanche known in the Philippines traveled 33 km SW from Kanlaon. The summit contains a 2-km-wide, elongated northern caldera with a crater lake and a smaller, but higher, historically active vent, Lugud crater, to the south. Historical eruptions, recorded since 1866, have typically consisted of phreatic explosions of small-to-moderate size that produce minor ashfalls near the volcano.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, 5th & 6th Floors, Hizon Building, 29 Quezon Avenue, Quezon City, Philippines.


Karangetang (Indonesia) — January 2002 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Lahars cause damage in January; explosions and lava flows in February

During 5 November 2001 through 24 February 2002, seismicity continued at Karangetang, and plumes were observed rising above the summit (table 3). The lava flows that began during late April and early May 2001 (see BGVN 26:10) stopped around 25 October. Multiphase earthquakes, associated with lava dome growth, had not been registered since September but began again during early November.

Table 3. Seismicity and plumes observed at Karangetang during 5 November through 24 February. The Alert Level remained at 2 throughout this period. Courtesy VSI.

Date Deep volcanic (A-type) Shallow volcanic (B-type) Tectonic Multiphase Observation (plume heights are above summit)
05 Nov-11 Nov 2001 7 -- 51 11 White medium-thick plume rose 100 m above N crater, 50 m above crater II; incandescence to 20 m
12 Nov-18 Nov 2001 14 4 49 -- White medium-thick plume rose 600 m; incandescence to 25-50 m
19 Nov-25 Nov 2001 12 9 36 -- --
26 Nov-02 Dec 2001 14 2 66 5 White medium-thick plume rose 300 m above main crater, 150 m above crater II
03 Dec-09 Dec 2001 13 9 45 11 White thin-medium plume rose 50-250 m above main crater, 100 m above crater II
17 Dec-30 Dec 2001 17 16 60 12 White medium-thick plume rose 500 m above main (S) crater, 50 m above crater II
30 Dec-06 Jan 2002 10 5 9 7 Lahars on 3 January
07 Jan-13 Jan 2002 18 8 56 9 White medium-thick plume rose 400 m above summit, incandescence inside the plume to 50 m
14 Jan-20 Jan 2002 4 7 44 1 --
21 Jan-27 Jan 2002 4 6 29 6 --
28 Jan-03 Feb 2002 8 1 36 12 White medium-thick plume rose 100 m above main (S) crater, 75 m above N crater; incandescence to 25 m
04 Feb-10 Feb 2002 407 215 967 23 Incandescence to 25 m
11 Feb-17 Feb 2002 281 73 102 3 Ash to WSW, lava flows, incandescence to 25 m
18 Feb-24 Feb 2002 113 16 100 1 Incandescence to 25 m

During the first days of 2002 heavy rains near the summit resulted in cold lahars along the Kahetang river on the E flank. On 3 January around 1200 a lahar traveled ~260 m and was ~10-125 cm thick near Terminal and Pelabuhan Ulu Siau. The volume of the lahar was estimated to reach 40,000 m3. In this area, a total of 52 houses were destroyed. Near Bebali village, a lahar traveled ~60 m and covered the road along Ulu Siau city to Ondong village to a thickness of ~75 cm. The volume of the lahar was estimated at 600 m3. In this area, 9 houses and a church were damaged.

Seismicity increased during early February, and a thundering sound was heard frequently coming from the main (S) crater, often accompanied by a sulfur smell. During a 3-day period in early February, 82 earthquakes occurred with magnitudes of 1-3. The earthquakes often caused sliding of the unstable 2001 lava. On 11 February, an explosion occurred that produced ash falls 0.5-1 mm thick to the WSW, reaching the Kanawong, Lehi, Mimi, Kinali, and Pehe villages. Incandescent lava flows traveled up to 1.5 km down the Beha river (W slope) and Kahetang river (E slope). Seismicity was still high but decreased after the 11 February explosion. Loud noises, sulfur smells, and incandescence were observed through at least 24 February.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Dali Ahmad, Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Marapi (Indonesia) — January 2002 Citation iconCite this Report

Marapi

Indonesia

0.38°S, 100.474°E; summit elev. 2885 m

All times are local (unless otherwise noted)


Explosions during 2001; April ash plume reaches 2.0 km above the summit

On 11 March 2000, an explosion at Marapi ejected thick black ash that rose 1.4 km above the summit (BGVN 25:11). Explosive activity occurred again in 2001, peaking during 13-18 April, when a total of 150 explosions occurred that sent ash plumes to 2 km above the summit.

From January to February 2001, monthly A-type earthquakes had decreased from 15 to 8, and B-type earthquakes had decreased from 24 to 14. Gas-and-steam emissions, however, had increased from 11 events during January to 41 times during February. B-type earthquakes were registered on 7 April and continuous volcanic tremor occurred on 9 April.

On 14 April at 1600 a thick dark ash plume was visible from Bukittinggi, 15 km NW of Marapi's summit. On 16 April at 0600 an explosion sent a thick black ash plume to 700 m above the summit. At 0814 the same day a loud explosion was heard 8 km from the volcano, and a black mushroom-shaped ash plume rose to 2 km above the summit. Ejected incandescent fragments were seen clearly from Bukittinggi and then fell back to the crater rim. Ash fell over the villages of Sungai Puah, Air Angeh, and Andala, and in District X Koto, District Batipuh, District V Koto, Tanah Datar Regency, and Padang Panjang City in the zone S and SW of the summit. Ash deposits 1-4 km from the summit were 2-3 cm thick.

The Marapi Volcano Observatory increased the Alert Level from 1 to 2 following the activity that began on 13 April and a recommendation was issued by the local government to prevent people from traveling to the summit area.

Volcanic activity at Marapi continued through at least June 2001 (table 1). On 8 May at 2240, an explosion was accompanied by a moderate booming sound heard from the Tandikat observatory. Ash from the explosion spread to the NW, to Kota Bary, Padangpanjang, Lo Koto, and around the Tandikat observatory.

Table 1. Earthquakes and plumes reported at Marapi during 23 April-10 June 2001. Courtesy of VSI.

Date Deep volcanic (A-type) Shallow volcanic (B-type) Explosion Tectonic Observation (plume heights are above summit)
23 Apr-29 Apr 2001 58 -- 30 -- Gray-black plume to 3.0 km; volcanic materials fell 4.0 km from volcano. Five explosion earthquakes were accompanied by loud noise.
30 Apr-06 May 2001 27 22 4 -- Gray plume to 1.2 km above summit.
07 May-13 May 2001 16 46 14 1 Whitish-gray thick plume to 1.5 km above summit.
04 Jun-10 Jun 2001 2 -- 2 2 Explosion earthquakes had 33.6 mm maximum amplitudes.

An explosion that began at 0445 on 5 June sent ash to the SSW. The ash was 0.5-2 mm thick in places. Merapi remained at Alert Level 2 through at least 10 June 2001.

Geologic Background. Gunung Marapi, not to be confused with the better-known Merapi volcano on Java, is Sumatra's most active volcano. This massive complex stratovolcano rises 2,000 m above the Bukittinggi Plain in the Padang Highlands. A broad summit contains multiple partially overlapping summit craters constructed within the small 1.4-km-wide Bancah caldera. The summit craters are located along an ENE-WSW line, with volcanism migrating to the west. More than 50 eruptions, typically consisting of small-to-moderate explosive activity, have been recorded since the end of the 18th century; no lava flows outside the summit craters have been reported in historical time.

Information Contacts: Dali Ahmad, Volcanological Survey of Indonesia (VSI) (URL: http://www.vsi.esdm.go.id/).


Soputan (Indonesia) — January 2002 Citation iconCite this Report

Soputan

Indonesia

1.112°N, 124.737°E; summit elev. 1785 m

All times are local (unless otherwise noted)


Avalanche earthquakes, white plumes to 100 m through mid-July 2001

During 13 February through 15 July 2001, seismicity at Soputan was dominated by avalanche earthquakes (see table 3). Discontinuous tremor (0.5- 4 mm amplitude) was reported through most of the report period. Plumes, generally white and thin, were visible reaching 50-100 m above the summit. The Alert Level remained at 2 through at least mid-July 2001. No further reports were issued through February 2002.

Table 3. Earthquakes registered at Soputan during 13 February through 15 July 2001. No reports were issued for missing weeks. Courtesy of VSI.

Date Deep volcanic (A-type) Shallow volcanic (B-type) Avalanche Tectonic
13 Feb-19 Feb 2001 7 -- 57 8
20 Feb-26 Feb 2001 4 1 23 36
27 Feb-05 Mar 2001 -- 1 7 --
06 Mar-12 Mar 2001 6 -- 30 12
12 Mar-18 Mar 2001 4 -- 30 15
19 Mar-23 Mar 2001 5 1 56 18
02 Apr-09 Apr 2001 4 1 73 51
09 Apr-15 Apr 2001 1 1 51 17
16 Apr-23 Apr 2001 9 -- 37 30
23 Apr-29 Apr 2001 1 17 36 --
07 May-13 May 2001 -- 1 148 29
14 May-20 May 2001 1 -- 69 14
28 May-03 Jun 2001 6 -- 85 27
04 Jun-10 Jun 2001 5 -- 75 20
11 Jun-17 Jun 2001 0 0 86 18
18 Jun-24 Jun 2001 1 -- 59 14
25 Jun-01 Jul 2001 3 -- 146 18
02 Jul-08 Jul 2001 2 -- 123 34
09 Jul-15 Jul 2001 3 -- 201 48

Geologic Background. The Soputan stratovolcano on the southern rim of the Quaternary Tondano caldera on the northern arm of Sulawesi Island is one of Sulawesi's most active volcanoes. The youthful, largely unvegetated volcano is located SW of Riendengan-Sempu, which some workers have included with Soputan and Manimporok (3.5 km ESE) as a volcanic complex. It was constructed at the southern end of a SSW-NNE trending line of vents. During historical time the locus of eruptions has included both the summit crater and Aeseput, a prominent NE-flank vent that formed in 1906 and was the source of intermittent major lava flows until 1924.

Information Contacts: Dali Ahmad, Volcanological Survey of Indonesia (VSI) (URL: http://www.vsi.esdm.go.id/).


Soufriere Hills (United Kingdom) — January 2002 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Small-scale dome collapses and pyroclastic flows through February 2002

The Montserrat Volcano Observatory (MVO) reported that during 17 August 2001 through at least 1 February 2002 at Soufriere Hills, a new lava dome continued to grow within the scar produced from the 29 July 2001 partial dome collapse (BGVN 26:07). Activity generally increased at Soufriere Hills during mid-September through November 2001, and remained at a high level through at least 1 February 2002 (table 38).

Table 38. Seismic and SO2-flux data from Soufriere Hills during 17 August 2001 to 1 February 2002. Courtesy of MVO.

Date Rockfall Long-period / Rockfall Long-period Hybrid Volcano-tectonic SO2 flux (metric tons/day)
17 Aug-24 Aug 2001 189 1 36 149 0 Not Reported
24 Aug-31 Aug 2001 200 1 6 19 11 25 Aug: 68; 28 Aug: 151
31 Aug-07 Sep 2001 218 2 31 8 4 31 Aug: 242; 01 Sep: 86
07 Sep-14 Sep 2001 228 0 28 65 1 13 Sep: 543
14 Sep-21 Sep 2001 211 4 36 522 3 avg 200-2000
21 Sep-28 Sep 2001 297 7 16 326 12 100-600; avg 250
28 Sep-05 Oct 2001 202 2 26 451 0 01 Oct: 418
05 Oct-12 Oct 2001 285 7 34 20 1 10 Oct: 388
12 Oct-19 Oct 2001 207 2 6 9 1 18 Oct: 320
19 Oct-26 Oct 2001 208 2 3 46 0 22 Oct: 574; 23 Oct: 48424 Oct: 292; 25 Oct: 200
26 Oct-02 Nov 2001 284 -- 8 46 2 77-385; avg 233; 26 Oct: 611
02 Nov-09 Nov 2001 314 8 5 174 4 05 Nov: 134
09 Nov-16 Nov 2001 149 4 20 116 2 13 Nov: 521; 15 Nov: 450
16 Nov-23 Nov 2001 251 45 115 413 -- 19 Nov: 140; 20 Nov: 119
23 Nov-30 Nov 2001 435 82 145 193 -- <100 avg
30 Nov-07 Dec 2001 363 37 58 128 -- Not Reported
07 Dec-14 Dec 2001 551 97 95 80 -- 11 Dec: 158
14 Dec-21 Dec 2001 858 42 57 25 -- 19 Dec: 181
21 Dec-28 Dec 2001 1012 45 75 75 -- 27 Dec: 851
28 Dec-04 Jan 2002 911 69 103 21 -- 250-1000, avg 457
04 Jan-11 Jan 2002 939 81 87 24 -- 08 Jan: 898; 10 Jan: 1122
11 Jan-18 Jan 2002 741 29 52 7 -- Not Reported
18 Jan-25 Jan 2002 471 68 70 9 -- 22 Jan: 700
25 Jan-01 Feb 2002 610 67 140 8 -- Not Reported

Throughout the report period, the new dome produced pyroclastic flows and rockfalls that traveled E to the upper and middle reaches of the Tar River Valley. Small-scale lava dome collapses generated pyroclastic flows almost continuously, with flows entering the sea on 4, 5, and 14 October, 2 and 28 December 2001, and 5 and 12 January 2002. Dense ash plumes associated with sea entry and ash venting from the summit generally drifted W and reached up to 3.0 km altitude (table 39). During mid-October ash clouds drifted to the W and NW and occasionally deposited small amounts of ash on inhabited areas to the N of the island. A new event began on 28 December at 1330 that produced a large area of dense ash observed on satellite imagery below ~3 km a.s.l. Incandescence was observed at the dome on 3 September, during 2-9 and 16-23 November, and on the E and W sides of dome on 26 and 27 December. Mudflows occurred in the Belham Valley on several days during periods of torrential rainfall.

Table 39. Summary of ash emissions at Soufriere Hills seen on satellite imagery during 26 August 2001- 5 February 2002. Courtesy of Washington VAAC.

Date Altitude (km) Direction Size
26 Aug 2001 ~2.1 SW 28 km long, 9 km wide
05 Sep 2001 ~1 W 160 km long, 28 km wide
07 Sep 2001 ~summit level S --
16 Sep 2001 ~summit level -- --
21 Sep 2001 <1 WNW --
22 Sep 2001 <1.2 WNW 115 km long
24 Sep 2001 ~1.5 W --
25 Sep 2001 ~1.5 W --
26 Sep 2001 ~1.5 WSW --
30 Sep 2001 <3.0 W --
03 Oct 2001 ~summit level WSW --
04 Oct 2001 <1.5 W 36 km long, 23 km wide
04 Oct 2001 <2.4 WNW 28 km wide
05 Oct 2001 <1.5 -- --
06 Oct 2001 <1.8 W 168 km long, 17 km wide
07 Oct 2001 <1.8 -- --
10 Oct 2001 ~1.8 vertically, possibly E --
11 Oct 2001 <1.8 W --
11 Oct 2001 >2.1 NW --
12 Oct 2001 <1.8 W --
14 Oct 2001 ~1.8 -- --
26 Oct 2001 <2.1 W --
07 Nov 2001 <1.8 NW 32 km long, 7 km wide
07 Nov 2001 <6.0 ENE --
17 Nov 2001 <5.2 NE --
18 Nov 2001 <3.0 NE 42 km long, 11 km wide
03 Dec 2001 ~2.4 W --
08 Dec 2001 ~1.8 W 139 km long
13 Dec 2001 ~4.0 WSW 60 km long, 13 km wide
14 Dec 2001 -- WSW --
21 Dec 2001 <2.4 W 28 km long, 7 km wide
27 Dec 2001 2.1-3.0 SSE 22 km wide
27 Dec 2001 <3.0 SW --
28 Dec 2001 <3.0 WNW 47 km long, 11 km wide
29 Dec 2001 ~3.0 WNW 70 km wide
29 Dec 2001 <3.0 W 129 km long, 16 km wide
01 Jan 2002 <1.5 W 133 km long, 10-24 km wide
02 Jan 2002 <1.5 WNW 125 km long, 10 km wide
05 Jan 2002 <2.4 W --
08 Jan 2002 ~1.5, bursts to 2.4 W 140 km long
11 Jan 2002 -- W 41 km long, 9 km wide
12 Jan 2002 <3.0 WNW --
13 Jan 2002 <2.4 W 149 km long
29 Jan 2002 ~2.4 W --
05 Feb 2002 2.4-3.0 W --
05 Feb 2002 1.5 NW 23 km wide
05 Feb 2002 3.0 W 17 km wide

The daytime entry zone (DTEZ), closed after 4 July when two small pyroclastic flows passed down the W flank of the volcano in the Amersham area, reopened on 29 August. However, the Montserrat Volcano Observatory (MVO) warned that activity could still increase quite suddenly, with a dangerous situation developing very quickly. Ash masks were to be worn in ashy conditions, and the Belham Valley was to be avoided during and after heavy rainfall due to the possibility of mudflows. The DTEZ was closed again during 4-11 October due to increased activity.

Morphology of the new lava dome. Observations during August 2001 revealed that the new dome appeared to be growing rapidly and had steep sides and a rugged summit area. During mid-September, MVO reported that the volume of the dome was estimated to be approximately 12 x 106 m3, indicating an average growth rate of ~2.6 m3 per second since the partial dome collapse on 29 July.

On 31 October and 1 November observations revealed that the active lava dome had grown substantially and appeared to switch growth direction from the NE to the E, where a massive, near-vertical headwall had developed. Observations from a helicopter on 8 November revealed that a shallow, circular depression was located over the summit area of the dome, with ash vigorously venting from it. The lava dome's highest point during mid-November was measured on 9 November at 876 m elevation.

During mid-November, lava-dome growth shifted from the E to the W, and the summit area was crowned by spines with an average elevation of 940 m. An elevation of 968 meters was measured on one spine, although one other stood higher. By the end of November, MVO reported these elevations: the dome complex consisting of the stagnant E lobe (870 m), an inactive central lobe (930 m), and the active W lobe (960 m on 27 November). The W lobe had produced several small spines, which collapsed and were replaced by new spines.

Observations of the lava dome on 16 December revealed that although it had not increased noticeably in height, it had increased in volume since November. The top of the dome had developed a broadly rounded and blocky appearance. Most of the growth appeared to occur on the W side of the dome, but rockfalls and small pyroclastic flows also occurred on the E and S flanks.

Observations on 10 January revealed that the summit dome had increased in volume considerably during the previous several weeks and that it was broad with several spines projecting upward. The highest spine reached 1,015 m elevation on 12 January. A large lobe was again active on the upper E flank of the dome, just below the summit level. The W side of the dome appeared to have been inactive for some time, judging from the general weathered appearance and deposits of sulphur. Survey measurements also indicated that the saddle area between the NE and central buttresses lowered by about 20 m during the previous weeks due to rockfall and pyroclastic-flow activity.

On 21 January the dome was crowned by a large 40- to 50-m tall spine inclined steeply upwards towards the E. Although the number of rockfalls gradually decreased over the previous 3 weeks, their size and duration significantly increased during 18-25 January. Rockfalls during that interval yielded seismic signals whose total energy rates exceeded those seen during the previous few months.

Activity of the new lava dome. Lava-dome collapses consisting of 10-15% of the dome's volume occurred on the N side of the dome on 4 and 5 October. On 14 October, after a day of torrential rainfall, several million cubic meters of unconsolidated talus was destabilized on the SE flank of the pre-July 29 dome. Seismic data suggested that the event began at about 1715, peaked at 2245, and ended at about 2300. Ash from the event fell in residential areas on Montserrat to the NW.

On the morning of 16 October a collapse occurred on the S flank of the dome complex, producing numerous pyroclastic flows that traveled W down the White River and reached about two-thirds of the distance to the sea. This collapse involved a substantial amount of unconsolidated talus flanking the pre-July 29 dome; but the actual volume was unknown because clouds prevented observation of the summit region. Small pyroclastic flows also occurred on 2, 4, and 6 December in the upper reaches of White River, originating from the old dome material closest to Chances Peak.

On 31 October and 1 November several small pyroclastic flows were generated by material avalanching off the E flank of the dome. By mid-November, activity had shifted to be mainly concentrated on the W side of the active area. On 2 December pyroclastic flows again originated in several places along the E face of the new lava dome.

A large pyroclastic flow occurred on the night of 14 November; it traveled E and reached the lower parts of the Tar River Valley, stopping a few hundred meters short of the delta. During 1330-1500 on 28 December, several million cubic meters of volcanic material collapsed down the volcano's NE flank, generating a dense W-drifting ash plume that deposited up to a centimeter of ash in the vicinity of Plymouth (~4 km W of the summit).

Seismicity. Weak banded tremor, which indicates rapid magma ascent, began in the early hours of 14 August and continued to strengthen through 22 August. Bands of tremor continued at irregular intervals through mid-November, appearing with periodicities generally ranging between 10 and 27 hours. During these banded-tremor events, rockfall activity and ash venting increased. On 26 August, a particularly vigorous period of ash venting lasted for ~1 hour and sent W-drifting ash up to ~2 km above the volcano. A weak swarm of volcano-tectonic earthquakes (less than M 1) occurred during 29-31 August. During mid-September the bands of tremor occurred about every 13 hours and were slightly more intense when compared with those of the previous week. In addition, the number and strength of hybrid events associated with these tremor episodes increased, which is a pattern consistent with the moderate rate of dome-growth and periods of vigorous degassing.

Continuous low-amplitude tremor was accompanied by increased rockfall activity during 12-14 September. Ash clouds produced from rockfalls rose slightly above the summit and were visible in satellite imagery. Rockfall signals were intense on 9 and 10 November, but then declined significantly and remained low after 12 November. A swarm of hybrid and long-period earthquakes began on 14 November and reached a peak on 21 November, before declining slightly, although the swarm continued to be moderately energetic through the end of the month. An M 3.6 earthquake located just off the NW coast of Montserrat occurred on 29 November at 1248 and was felt throughout the island.

Rockfalls continued through December, and many were preceded by a few seconds of long-period earthquakes. Continuous, weak tremor recorded on 13 December was associated with ash venting, and produced columns that rose to at least 4 km. Periods of intense cyclical rockfalls occurred on 27 December and coincided with weak swarms of hybrid earthquakes. These hybrids were too small to trigger the seismic-event-detection system, and are therefore not included in the count of hybrid earthquakes given in table 39.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), Mongo Hill, Montserrat, West Indies (URL: http://www.mvo.ms/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/).


Stromboli (Italy) — January 2002 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Fallout from 23 January explosion carpets popular tourist area

On 23 January at 2054 a large explosion occurred at Stromboli. The explosion was accompanied by a loud noise that was heard at all of the villages on the island and ashfall that lasted for several minutes.

On 24 January, staff from Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Catania (INGV-CT) visited the area SE of the summit craters near Il Pizzo Sopra la Fossa between the Bastimento and La Fossetta. They found the area covered with ash and blocks, mostly comprised of lithic material, with some clasts up to 60 cm in diameter, and with minor amounts of spatter up to 1.7 m long. No golden-colored pumice was found, which typically characterizes the most energetic events of Stromboli (Bertagnini and others, 1999). The greatest density of lithics on the ground was found in a ~200-m-wide belt between the craters and Il Pizzo. Spatter was more frequent NE of Il Pizzo. Fine-grained material covered the crater zone and the volcano's NE flank to the village of Stromboli, ~2 km to the NE. A continuous carpet of fallout material covered the zone of Il Pizzo, a spot where many tourists visit. The explosion would have posed a serious threat to tourists had it occurred during a visit. Fallout from the eruption also damaged equipment located near the summit.

During the 2.5 hours of the survey observers recorded only five weak explosions from Crater 1 and none from Craters 2 and 3. This activity was much weaker than that observed after the major explosion of 20 October 2001 (BGVN 26:10), when 15 explosions were recorded from Crater 1 and 8 from Crater 3 during a 1-hour period.

Thermal images on 24 January showed that Crater 2 had a higher temperature than the other active craters. Maximum temperatures recorded at this crater were 320°C averaged over a pixel area of 40 cm, much higher than the 200°C recorded on 20 October 2001. The high temperatures were due to spatter coating the crater's inner walls following the 23 January explosion. Measurements also revealed that the diameter of Crater 2 had grown from an estimated 10 m in October to ~26 m after the January explosion.

From the type and distribution of erupted products and the morphological changes observed at the craters, observers suggested that the eruptive event of 23 January could be related to the obstruction of the conduit of one of the craters. Gas pressure within the conduit probably built up until a major explosion occurred, ejecting mostly lithics. Conduit opening was followed by intense magmatic explosions and spatter fallout. During the present phase, observers were concerned by the lack of explosive activity at Crater 3. This may suggest an obstruction of this crater, which might be followed by a new violent episode similar to the one on 23 January.

Reference. Bertagnini A., Coltelli M., Landi P., Pompilio M., and Rosi M., 1999, Violent explosions yield new insights into dynamics of Stromboli volcano: EOS Transactions, AGU, v. 80, n. 52, p. 633-636.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Sonia Calvari, Massimo Pompilio and Daniele Andronico, Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Catania (INGV-CT) Piazza Roma 2, 95123 Catania, Italy.


Tungurahua (Ecuador) — January 2002 Citation iconCite this Report

Tungurahua

Ecuador

1.467°S, 78.442°W; summit elev. 5023 m

All times are local (unless otherwise noted)


Powerful tremor, plumes, 600-m-high lava fountains, and lahars during 2001

The first portion of this report discusses some geophysical and geochemical aspects of Tungurahua's behavior during 2001, including further descriptions through August 2001 (BGVN 26:07). The latter portion of this report contains a log of behavioral data for 24 August-30 December 2001 in tabular form, and finally includes field notes from a visitor who watched the summit crater for several weeks in the later months of the year.

Instituto Geofísico (IG) scientists estimated that 10-15 million metric tons of ash were deposited during the 4-26 August 2001 eruption. By the end of 2001 the current eruptive crisis had included 8 inferred intrusive episodes. Some eruptions, including those during 2001, displayed fountaining with jets of lava rising over 500 m. Since 5 September 2000 through at least January 2002, Alert Levels have been set at Yellow for the town of Baños and at Orange for the rest of the high-risk zone.

Seismicity and SO2 flux. Long-period (LP) earthquakes dominated the seismic record since December 1999 (figure 12). Except for the anomalous month of February 2001, this trend continued in 2001, with the number of LP earthquakes largely swamping other kinds. Specifically, at the scale of the histogram hybrid (H) earthquakes are only visible during February and August; volcano-tectonic (VT) earthquakes, only during January, August, September, and December; explosion (EXP) earthquakes, only during June, July, August, and September.

Figure (see Caption) Figure 12. Number of Tungurahua earthquakes recorded monthly during 1999-2001. LP earthquakes clearly dominated since December 1999, except for the anomalous month of February 2001. During the year 2001, the peaks seen around May, August, and December may have corresponded to magmatic intrusions. Courtesy of IG.

During 2001 both the seismicity and SO2 flux underwent intervals of relative quiet and intervals with elevated signals. The most dramatic quiet interval, from late 2000 into May 2001, appears on a plot of reduced displacements (RDs) from explosive events (figure 13). A comparative lull also appeared in overall seismicity (figure 12), provisionally in SO2 flux (figure 15), and to a lesser extent, in tremor energy (figure 14). Although the lull appears more equivocal on figure 14, the peaks in tremor energy during July and August, following the lull, were the largest recorded since the spike seen in January 2000. Elevated SO2 flux values appeared around about the same times as the peaks in tremor energy (figure 15).

Figure (see Caption) Figure 13. Explosion earthquakes at Tungurahua during 26 November 1999-14 January 2002 were quantified as reduced displacements (RDs, unit, cm2) and plotted at roughly 2-day intervals. RDs can be computed from seismic records; larger values indicate larger events. The record used came from station Patacocha. The largest RD shown, ~19 cm2, corresponds to an explosion that took place in December 1999 (upper left-hand corner). Courtesy of IG.
Figure (see Caption) Figure 14. At Tungurahua, the energy contained in tremor (including both harmonic and hydrothermal types) during 14 September 1999-30 September 2001. The two largest peaks in tremor energy yet recorded occurred in mid-2001 (July and August). Horizontal axis is labeled as day/month/year. Courtesy of IG.
Figure (see Caption) Figure 15. SO2 flux measured by COSPEC at Tungurahua during July 1999-November 2001. During 2001, flux highs were measured during May and August. Courtesy of IG.

During 2001, instruments recorded two pronounced seismic peaks (figures 6 and 7). These swarms of LP events had focal depths of 5-7 km and a wide range of dominant frequencies, 308-1066 Hz. The first peak in LP events took place during May-June and was accompanied by emissions at the summit.

The second peak in LP events took place during August-September and also corresponded to increases in the number of hybrid (HB) and volcano-tectonic (VT) earthquakes, and to summit explosions. This second peak differed from seismicity during September 1998 and October 1999 (see plot, BGVN 26:07). During those earlier times, instruments recorded higher numbers of HB and VT events. More recently, both HB and VT events had been decreasing: the former since July 2000, and the latter since October 2000.

Although during early December comparatively few earthquakes occurred, the type of events recorded, tornillos, merit special discussion (see below). Beginning on 20 December the number of LP events increased from an average of 20 events per day in the first days of the month, to an average of 200 events per day. The LPs maintained that level until 26 December.

The two prominent seismic peaks of 2001 were considered as related to intruding magma. Thus, the intrusion associated with the first peak can be divided into three pulses, the first occurring during 19-20 March, the second, 17-18 May, and the third, 6-7 June (and perhaps into July).

The second intrusion occurred in two pulses, the first during 4-20 August, and the second during 4-25 September. The events related to the second intrusion produced the largest RDs (figure 13). For comparison, in 1999-2000 LP events had larger RDs, 12-19 cm2 (figure 13).

In the first inferred intrusion, the discharge of SO2 amounted to 2,900-3,600 metric tons/day (t/d), decreasing to 677 t/d by the end of June. SO2 fluxes associated with the second inferred intrusion reached 3,585 t/d by mid-August, decreasing to 175 t/d by the end of August (figure 15). The peaks in SO2 flux closely corresponded to the increases in tremor energy (figure 14). Incandescence visible during the end of March and July, during early and mid-August, and during early September confirmed that magma then lay at or near the surface.

The pulses of activity of each intrusion preceded, and in some cases accompanied, the emission of vapor and ash during explosive Strombolian activity. For example, for the first intrusion, the second pulse of seismic activity preceded the explosion of 28 May. In that pulse there was ~1 explosion per day with RDs of 1-3 cm2. During the third pulse, aboutone explosion per day had RDs of 1-7 cm2.

For the second, more energetic intrusion, the first pulse of activity had 7 explosions per day with RDs of 1-13 cm2. The next (second) pulse had ~1 explosion per day with RDs of 1-9 cm2 (figure 13). The last intrusion, during mid-June through July, was preceded by "LP de Juive", events so-named because residents in Juive felt them. These signals could have been caused by clearing of nearby subsurface passages that transport magma.

At the beginning of December the previously mentioned tornillos appeared. Tornillos ("Screw-type" events) are monochromatic LP events characterized by a long, slowly decaying coda. On a seismogram they appear similar to a screw. They may arise from fluid resonance in a cavity. It is noteworthy that they showed up for the first time in December 2001, and arrived with considerable intensity. Where defined farther N in the Andes at Galeras, have been recognized as eruptive precursors.

Although relatively small in number, the tornillo events were considered important. During 3-9 December, 43 occurred, the largest number recognized in the history of monitoring at Tungurahua. During 4-12 December the duration of these event's increased. During 4-10 December they underwent a decrease in their dominant frequency. The latter could stem from increased gas in the fluid. The tornillo signals may thus disclose physical changes in the volcano during early December. For example, the tornillos could be related to shifts in internal pressure.

The LP events began to register on 20 December, suggesting magma ascent. A lack of significant ash emissions or SO2 flux suggested that the conduit was sealed. This could allow internal pressure to rise, resulting in a series of explosions.

Deformation. During 2001, inclinometer data from station RETU, located above the Refuge, showed a drift in the positive direction of 10-15 µrad. These values are not highly anomalous considering the large diurnal variations stemming from effects such as temperature and humidity changes in the air and ground surface. On the other hand, measurements of points on the W flank lacked significant distance changes.

EDM measurements from a fixed base (the El Salado base station) were conducted periodically. They aim at two distinct points on the NE flank (in a region above the Refuge). A gradual decrease in the distance between the base and the two points began during July 2000 and implies a slight inflation of the NE flank of the volcano.

During the course of field studies, new NE-flank fumaroles were sighted at ~4,400 m elevation along fractures. Topographic movements were suspected in this sector.

Chronological observations, August-December 2001. Table 5 summarizes seismicity, and visual and satellite observations of eruptions and explosions and their ash clouds.

Table 5. Summary of activity at Tungurahua during August through December 2001. These data mainly came from IG reports. Some of the higher plume heights came from the Washington VAAC and were based on satellite imagery and local aviation reports. Courtesy of IG.

Date Long-period earthquakes Tremor signals Observations
24 Aug 2001 -- -- An eruption at 1755 produced an ash cloud that rose ~6-8 km and drifted E to SE.
29 Aug 2001 20 several A gas-and-ash eruption at 1530.
03 Sep 2001 44 36 Ash cloud rose to ~ 5.8 km and drifted W.
05 Sep 2001 77 46 Weak emissions with low ash content.
08 Sep 2001 -- -- Ash cloud at 0828 rose ~10.5 km altitude and drifted SW.
11 Sep 2001 -- -- Ashfall to N in Pondoa, Runtun, Banos; ashfall to S in Quero and Penipe; mudflows between Puela and Bilbao.
12 Sep 2001 19 5 An explosion at 1632 produced an ash-bearing emission that reached 2 km above the summit and drifted W; an explosion at 1830 produced an emission that reached 0.5 km above the summit and drifted W.
13 Sep 2001 63 11 A small explosion at 1106; continuous steam emission with ash reached 0.8-1 km above the summit and drifted W; ashfall to the W in Juive, Cotalo, and Bilbao.
15 Sep 2001 -- -- Incandescent material observed along with ash emissions; ashfall to the SW in Riobamba and Penipe.
16 Sep 2001 123 37 Small explosion at 1631; moderate explosion at 1750 (3-km-high column that drifted NW); 2 VT earthquakes.
17 Sep 2001 56 12 --
20 Sep 2001 62 49 Moderate explosion at 1044 generated an ash column 2 km high that drifted W-SW; the explosion was preceded by three hours of tremor; ashfall in Pillate, Juive, and Runtun; columns of gas and ash drifted W.
21 Sep 2001 -- -- Moderate explosion at 1625 (3-km-high ash column drifted NW); incandescence observed in the crater.
22 Sep 2001 212 139 --
24 Sep 2001 104 159 Moderate explosion at 1500 (ash column drifted WSW); flank rockfalls heard in Juive, Runtun, Pillate, Pondoa.
25 Sep 2001 108 41 An explosion at 1230 produced an ash column 5 km high that drifted NW; Strombolian activity, incandescence, and rockfalls observed on the W and NW flanks; ashfall in Cotalo; 2 VT earthquakes registered.
26 Sep 2001 36 37 Some ashfall to the S in Quero.
11 Oct 2001 30 -- --
14 Oct 2001 -- -- Ash visible ~1 km above the summit at 1736.
20 Oct 2001 108 6 Fumarolic activity on the NE side of the crater with intermittent emissions of white clouds that reached 20-500 m.
22 Oct 2001 7 7 Fumarolic activity produced clouds with low ash content that reached 0.5 km; at 1758 a gas-and-ash emission reached 0.7 km and drifted W.
23 Oct 2001 7 1 Fumarolic activity on the N flank (near Vazcun); ash emissions reached 1 km above the summit.
24 Oct 2001 42 13 --
26 Oct 2001 -- -- Hot spot visible at summit on thermal satellite imagery.
29 Oct 2001 24 3 --
01 Nov 2001 42 3 Gas-and-ash emissions reached 1-2 km above the summit and drifted ENE.
03 Nov 2001 38 1 --
06 Nov 2001 12 1 --
11 Nov 2001 34 22 Gas-and-ash emissions at 1050 and 1352 reached 1 and 3 km, respectively, both drifted W.
14 Nov 2001 10 3 Incandescence and sporadic gas columns observed.
15 Nov 2001 38 11 At 1420 a gas-and-ash emission reached 1 km high and drifted W.
19 Nov 2001 73 15 Emissions followed by 10-30 minutes of tremor; ash columns rose to 2 km and drifted WNW.
22 Nov 2001 30 -- New fumarole observed on the W flank; EDM measurements showed swelling of the N flank.
24 Nov 2001 21 4 Gas-and-ash column rose to 100 m.
26 Nov 2001 28 1 --
27 Nov 2001 18 -- --
01 Dec 2001 21 1 Constant gas-and-ash emission reached a few hundred meter's above the summit.
02 Dec 2001 -- -- A small ash emission at 1140 remained near the summit level.
03 Dec 2001 23 2 --
08 Dec 2001 42 -- --
10 Dec 2001 33 2 --
12 Dec 2001 4 -- --
14 Dec 2001 12 -- Lahars traveled down the flanks of the volcano.
16 Dec 2001 17 -- Lahars traveled down the flanks of the volcano; 1 VT earthquake registered.
18 Dec 2001 -- -- A gas-and-ash column reached 1 km above the summit.
19 Dec 2001 16 -- --
20 Dec 2001 62 -- Gas-and-ash columns reached 100-200 m above the summit.
26 Dec 2001 82 11 At 1500 a gas-and-ash column reached ~0.3 km above the summit; the continuous gas transmission was accompanied by sporadic pulses of gas and ash.
27 Dec 2001 186 12 At 0900 and 1500 white gas-and-ash columns reached ~0.2 km above the summit. At 1006 and 1427 gray gas-and-ash columns reached 2 and 1 km, respectively; 1 VT earthquake registered.
29 Dec 2001 -- -- A mudflow at 2342 in the Juive Grande gorge affected La Pampa and Los Pajaros.
30 Dec 2001 202 -- An explosion at 0023; at 0027 ash from the explosion rose to ~15 km; until 1500 ashfall was reported in Guadalupe and Patate and other areas W of the volcano.

IG scientists estimated that 10-15 million tons of ash fell during 4-26 August eruptions. During 6-14 August ash clouds reached the Pacific Ocean, and on 9 August falling ash affected towns 100 km W of the volcano. The Washington Volcanic Ash Advisory Center (VAAC) reported that nearly continuous ash emissions had occurred at Tungurahua beginning on 6 August, but extensive cloudiness prohibited ash-cloud detection in satellite imagery. Officials reported that over 23,000 people were affected by ashfall. The Civil Defense of Ecuador reported that the ashfall reached ~5 cm deep in places. Volcanism also increased during mid-September. Ashfall was reported in adjacent communities during 11-13 September.

The IG reported that on 14 December heavy rain on the upper flanks of Tungurahua resulted in dangerous lahars (table 7). The rain lasted for ~3 hours and the road into Baños was blocked for more than 12 hours in the zone of La Pampa (NW lowermost flank), where the lahars are usually deposited. An emergency bridge was necessary so that traffic could continue to pass. A few cars were almost buried under the flows. Local authorities were alerted within several minutes prior to the event because of an acoustic flow-monitor instrument in the zone.

The minimum total volume of the lahar was ~55,000 m3, making it the seventh-largest recorded by the acoustic flow-monitor since April 2000. The deposit was mainly composed of coarse ash and small pebbles, but it removed blocks up to 2 m in diameter. Similar lahars were reported elsewhere, mostly on the western flank. On 16 December another short rain on the lower flanks removed part of the previous day's lahar in La Pampa, and formed another small flow that again blocked the road for awhile.

Watching the crater during parts of September-December. Jean-Luc Le Pennec of the Institut de Recherche pour le Développement and a collaborator at the IG visited Tungurahua during 10-18 September, 15-22 October, and 26 November-3 December. He made the following observations.

The volcano remained extremely quite, without visible gas escaping the crater, during the day on 10 September. Without clear premonitory signal, at 1915 a powerful lava fountain began. The first pulses of the fountain reached 700 m and progressively declined to 300 m above the crater, before stopping abruptly about 6 minutes after starting. The summit crater then resumed complete quiescence.

In a second episode at 2147, fountaining reached ~600 m above crater and decreased rapidly to ~300 m during the next 5-6 minutes. The crater returned to quiescence and was later obscured by clouds. A seismic swarm of LP events took place during the following hours. During 11-16 September activity was characterized by fluctuating but almost continuous gas-and-ash emissions. Plume height varied between 0.6 to 2 km, depending on gas pressure and wind speed above the crater. The plume usually drifted W (SW to NW). Ashfalls were reported in Guaranda (morning of 11 September), Riobamba (16 September), Pelileo (12 September), and in other localities closer to the volcano. In addition, short-lived explosions occurred at a rate of 0-2 per day, producing ballistic fallouts on the terminal cone, and ash columns reaching ~2-4 km above the crater. They were sometimes accompanied with cannon-like sounds heard 15 km away.

The ejected lava's brightness was particularly intense during the night of 16 September, and a few glowing blocks fell outside of the crater. Periods of rumbling noises were frequently heard all week long, but their intensity increased on 16-17 September. During the night of 17 September lava projections reached 100-300 m above the crater rim. This activity took place around 0300 and started declining very slowly 90 minutes later. The activity continued to decline during the day on 18 September, ending at about 1400 when no sounds were audible as close as 2.5 km from the crater. On 25 September, the volcano produced 1 explosion and Strombolian activity.

During 15-22 October, good weather conditions allowed for frequent observations of the crater. Extremely low activity prevailed, with almost no degassing from the summit crater (except for the permanently active fumaroles of the N crater rim and of the N flank at 4,400 m elevation). Light degassing was observed during the morning of 19 October, after 2 days of increased seismic activity (from ~10 to ~100 events/day). The same day, at 1327, a short-lived outburst sent an ash cloud to ~1 km above the crater. The cloud drifted rapidly to the NNE. Interestingly, the outburst occurred when seismic waves from a regional earthquake arrived at the volcano. Two small ash emissions also occurred, reaching 500-600 m above the crater. In the latter case, a lapse time of 42 seconds was measured between the onset of the seismic signal and the appearance of the ash cloud at the crater level. Light vapor venting was occasionally seen on 20 October. Four ash emissions were witnessed during 2000-2200, with ash columns reaching 0.5-1.0 km above the crater. Few other emissions occurred during the night of 21 October.

During 26 November-3 December activity was low. A fairly continuous pulsating gas plume was emitted from the summit crater. During a 70-minute period on 2 December, five small ash emissions occurred. They rose 0.5-1 km and drifted N. For the third emission, the delay between the onset of the seismic agitation and the appearance of the ash cloud at the crater was 25 seconds, perhaps indicating the release of magma relatively deep in the system.

Geologic Background. Tungurahua, a steep-sided andesitic-dacitic stratovolcano that towers more than 3 km above its northern base, is one of Ecuador's most active volcanoes. Three major edifices have been sequentially constructed since the mid-Pleistocene over a basement of metamorphic rocks. Tungurahua II was built within the past 14,000 years following the collapse of the initial edifice. Tungurahua II itself collapsed about 3000 years ago and produced a large debris-avalanche deposit and a horseshoe-shaped caldera open to the west, inside which the modern glacier-capped stratovolcano (Tungurahua III) was constructed. Historical eruptions have all originated from the summit crater, accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. Prior to a long-term eruption beginning in 1999 that caused the temporary evacuation of the city of Baños at the foot of the volcano, the last major eruption had occurred from 1916 to 1918, although minor activity continued until 1925.

Information Contacts: Patty Mothes and Daniel Andrade, Geophysical Institute (Instituto Geofísico, IG), Escuela Politécnica Nacional, Apartado 17-01-2759, Quito, Ecuador; Jean-Luc Le Pennec, "Volcanic processes and hazards" research unit, Institut de Recherche pour le Développement (IRD), Whymper 442 y Coruña, A.P. 17-12-857 Quito, Ecuador (URL: http:/www.ird.fr); Washington VAAC, Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ssd.noaa.gov/); United Nations Office for the Coordination of Humanitarian Affairs (OCHA), United Nations, New York, NY 10017 (URL: https://reliefweb.int/); Associated Press.


Unnamed (Tonga) — January 2002 Citation iconCite this Report

Unnamed

Tonga

18.325°S, 174.365°W; summit elev. -40 m

All times are local (unless otherwise noted)


Submarine center identified S of Fonualei may be the source of T-waves and pumice

The following was largely condensed from a report by Paul Taylor submitted to the Tongan government (Taylor, 2002). Our previous report on the topic appeared under the heading "Fonualei" (BGVN 26:11). The bulk of that report described T-wave signals on 28-29 September 2001 traced to near Fonualei and fresh pumice found along beaches in Fiji (hundreds of kilometers W of Tonga) during 9-25 November 2001. The T-wave signals and pumice sightings both relate to the activity discussed here.

During September through early November 2001, submarine volcanic activity was observed ~33 km S of Fonualei (figure 3). This same spot lies ~30 km NW of the Vava'u Group of the Tongan islands. This volcanic center lacked prior historical activity, although Taylor and Ewart (1997) indicated that a number of submarine structures were present between Late and Fonualei islands.

Figure (see Caption) Figure 3. Map of the Vava'u region, with the Tonga Platform (to the E) and the active volcano belt (to the W), showing the site of the recent (September-October 2001) submarine volcanic activity. The symbols indicate active centers (white stars within black circles), i.e. those with recorded eruptions; inactive centers (solid black stars ), i.e. those with no recorded activity, and probable submarine centers (open stars). Bathymetric contours are in kilometers below sea level. Courtesy of Paul Taylor.

Form, structure, and depth. Although no details are available concerning the form and structure of this eruptive site, it is likely to be the summit of a submarine stratovolcano that rises from a NNE-SSW trending topographic high. A shoal has not been reported at the site during historical times. No surveys of this area have been conducted; however, its bathymetry suggests that several submarine structures rise from a depth of about 1 km to probably within 200-300 m of the surface. No shoal or island was observed when the site was visited by the Tonga Defense Services during early and mid-October 2001.

Volcanic activity. The activity appears to have been submarine and explosive in character. Known reports relating to this eruption are given in table 1. A plot of the seismic activity from stations in the Cook Islands and French Polynesia during 28-29 September 2001 were provided in Figure 1 of BGVN 26:11.

Table 1. A summary of observations relating to an unnamed submarine volcano (NW of Vava'u, Tonga). Latitudes and longitudes appear in degrees and decimal degrees; the original used degrees-minutes-seconds. Other significant revisions and substitutions to the original appear as text in brackets. Courtesy of Paul Taylor.

Date Activity
27-28 Sep 2001 T-phase seismic waves from a probable volcanic source recorded in French Polynesia. Approximate coordinates of 18.39°S; 174.6°W, are located near the Vava'u Group.
27 Sep 2001 1800 - Reports of submarine activity were received from near Vava'u. A local fisherman experienced "an abnormal disturbance from the deep ocean." Shortly after an ash-rich eruption column rose from the sea at 18.325°S, 174.365°W.
28 Sep 2001 1300 - An "island" was reported to have formed during the explosive activity with an ash-rich eruption column still being produced. The "island" was estimated to be about 2 miles [~ 3 km] long. The sea was "highly disturbed and silky" at this time.
01 Oct 2001 0930 - Royal Tongan Airlines flights 801 and 802 reported that activity above the surface had ceased. A huge underwater bank, about 1.5 miles [2.4 km] across, was observed at 18.358°S, 174.346°W, [3.8 km SW] of the initial location. The water was reported as "boiling bubbles of seawater oozing out from the area to the sea surface".
03 Oct 2001 A Tonga Defense Services patrol boat visited the area, but due to heavy seas observations were restricted. The surface of the sea in the region was discolored a "dark whitish color". The discolored area was estimated to be 3 miles [~ 5 km] long (N-S direction) and 1.5-2 miles[2.4-3 km] wide. Near the reported location, the sea appeared to contain a mixture of whitish and yellow-brownish substances although no pumice was observed floating on the surface. A local Notice to Mariners (NTM 15/01) was issued, warning shipping to stay away from the area.
09 Oct 2001 1600 - A Tonga Defense Services aircraft flew over the site and reported that an area of discolored water was present. No eruption column or pumice was observed and the island reported earlier was not present.
26 Oct 2001 A Tonga Defense Services patrol boat visited the site and observed an area of discolored water 300 m long (NE-SW direction) centered on a position of 18.303°S, 174.377°W, [a spot 2.7 km NE of the initial position]. The discoloration was light-brownish in the center and light greenish toward the outside. The charted depth of the shoal at this location was 298 meters. No depth was recorded by the boat's echo sounder and no attempt was made to take a sounding over the discolored water.
early Nov 2001 Pumice strandings were reported along the coast of Kadavu and on the S coast of Viti Levu, Fiji. Rafts reported to be over 100 m in diameter with pumice fragments ranging in size from under 1 cm to ~20 cm.

Comments. As noted above, the charted depth prior to the eruption was ~200-300 m and the syn-eruptive depth was not determined. Further, Taylor learned that post-eruptive depths had not been taken at the site. He goes on to state, "The initial activity was the result of submarine explosions, producing what was reported as 'an island' and an eruption column." In his report, Taylor concluded that the island was essentially a floating pumice raft and ". . . was more likely the effect of gases and pyroclastic material produced by the explosions breaking the surface, which appeared land-like. An eruption column of predominantly volcanic gas, steam, and pyroclastic material was then ejected above the surface."

Taylor (2002) goes on to discuss relevant volcanic hazards. Regarding approaching the volcano, he recommended that access be prohibited within 2 km, access restricted within the interval 2 to 4 km, and extreme care be taken when approaching or within the interval 4 to 5 km.

References. Taylor, P.W., 2002, Volcanic hazards assessment following the September-October 2001 eruption of a previously unrecognized submarine volcano W of Vava'u, kingdom of Tonga: Australian Volcanological Investigations, AVI Occasional Report No. 02/01

Taylor, P.W., 1999, A volcanic hazards assessment following the January 1999 eruption of Submarine Volcano III Tofua Volcanic Arc, Kingdom of Tonga: Australian Volcanological Investigations, AVI Occasional Report No. 99/01.

Taylor, P.W., and Ewart, A., 1997, The Tofua Volcanic Arc, Tonga, SW Pacific: A review of historic volcanic activity: Australian Volcanological Investigations, AVI Occasional Report No. 97/01.

Geologic Background. A submarine volcano along the Tofua volcanic arc was first observed in September 2001. The newly discovered volcano lies NW of the island of Vava'u about 35 km S of Fonualei and 60 km NE of Late volcano. The site of the eruption is along a NNE-SSW-trending submarine plateau with an approximate bathymetric depth of 300 m. T-phase waves were recorded on 27-28 September 2001, and on the 27th local fishermen observed an ash-rich eruption column that rose above the sea surface. No eruptive activity was reported after the 28th, but water discoloration was documented during the following month. In early November rafts and strandings of dacitic pumice were reported along the coast of Kadavu and Viti Levu in the Fiji Islands. The depth of the summit of the submarine cone following the eruption determined to be 40 m during a 2007 survey; the crater of the 2001 eruption was breached to the E.

Information Contacts: Paul Taylor, Australian Volcanological Investigations, PO Box 291, Pymble NSW 2073, Australia; Olivier Hyvernaud, Laboratoire de Geophysique, Papeete Tahiti, French Polynesia; Dan Shackelford, 3124 E. Yorba Linda Blvd., Apt. H-33, Fullerton, CA 92831-2324, USA.


Yasur (Vanuatu) — January 2002 Citation iconCite this Report

Yasur

Vanuatu

19.532°S, 169.447°E; summit elev. 361 m

All times are local (unless otherwise noted)


Mild eruptive phase ends and leads to a vigorous phase in December 2001; seismic data

Following 22 months of mild eruptive activity (BGVN 26:11), at the end of October 2001 on-site volcanologists observed the beginning of a more vigorous eruptive phase. The phase's progressive onset was also monitored seismically, which revealed an initial cycle of substantial activity that developed during the first half of December (figure 27). This was followed by a calmer interval, 14-25 December, after which a new burst of activity took place.

Figure (see Caption) Figure 27. Seismicity recorded at Yasur during 1 October 2001 through 31 January 2002. Levels 1-5 have been defined by a signal-processing algorithm (see text). The units on the vertical axes are counts at the various levels. The two level-5 events correspond to large tectonic earthquakes. Courtesy of Michel Lardy, IRD.

The seismic counts at Yasur (figure 27) can be explained as follows. A geophone is connected to an amplifier that generates signals in response to rapid vertical ground-movements. When the system's output signal (1-20 Hz) crosses a predefined threshold 8 times, the contents of the memory of the counter keyed to that particular threshold are increased by one. For a new count to begin, there has to be an interruption of the signal of at least 2 seconds. The permanent apparatus installed at Yasur for measurement of seismic variation is set to measure across 5 such thresholds, corresponding to an amplitude of just a few micrometers (level 1) to over 300 µm (level 5). The first four thresholds (levels) variously reflect Yasur's state of Strombolian activity.

At levels 1 and 2, one can observe hundreds, sometimes thousands, of seismic counts per day. During periods of high activity, paradoxically, one notes a lessening of the number of these counts, either because the counters are saturated, or because the background noise remains above the set threshold. In contrast, level 3, gives a representative idea of the volcano's daily activity: A count in the two-digit range indicates low activity; a daily count in the hundreds indicates high or even very high activity. For level 4, a few counts per day indicates high activity (a status of type 2 on the local hazard map), and when in excess of 10 counts per day, very high activity.

Regarding level 5-from the time since recording began in October 1993 to date-only major regional earthquakes have generated such high-amplitude signals. The counts for large earthquakes do not fully represent the assigned momement-magnitudes. That is the case here, for the main shock of the large tectonic earthquake on 2 January (M 7.2) attained fewer counts than the aftershock (M 6.6, figure 27).

A visit to the crater area on 31 December revealed that the majority of ash emission and ballistic projectiles were limited to area C (see map in BGVN 26:11) and that a vent of 20-30 m diameter, dormant at the time of earlier visits, had formed in area A (figure 28).

Figure (see Caption) Figure 28. A picture taken of the area within Yasur's main crater showing smaller inner craters ("areas") A, B, C, and a new crater, as seen 31 December 2001. Note the small plumes coming from crater C. Copyrighted photo by S. Wallez.

Observers witnessed Strombolian eruptions on 29, 30, and 31 December 2001 (figure 29). This activity was accompanied by considerable ash falling in a narrow band over the NE coastal area of the island. Close to a thousand residents suffered the effects of the ashfall, which also negatively impacted subsistence agriculture and the local collection of rainfall as a source of fresh water.

Figure (see Caption) Figure 29. Details of an explosion in Yasur's area C on 31 December 2001. This photo is one of a series taken at half-second intervals. Copyrighted photo by S. Wallez.

High-magnitude earthquakes. On 2 and 3 January 2002 large tectonic earthquakes struck over 200 km N of Tanna Island (Mw 7.2 and 6.6 respectively). They were felt by the population of Tanna, and recorded by the seismic monitoring station at level 5 (figure 27). Subsequent records showed a considerable weakening of volcanic activity a few days following the earthquake, similar to the pattern observed after the (1-14 December 2001 cycle). It is common for high-magnitude earthquakes (M > 6) near the center of the Vanuatu island group to be felt in Tanna, over 200 km away. To date, after 8 years of continuous monitoring (BGVN 26:11), no connection has been observed between such earthquakes and shifts towards more hazardous behavior at Yasur.

Geologic Background. Yasur, the best-known and most frequently visited of the Vanuatu volcanoes, has been in more-or-less continuous Strombolian and Vulcanian activity since Captain Cook observed ash eruptions in 1774. This style of activity may have continued for the past 800 years. Located at the SE tip of Tanna Island, this mostly unvegetated pyroclastic cone has a nearly circular, 400-m-wide summit crater. The active cone is largely contained within the small Yenkahe caldera, and is the youngest of a group of Holocene volcanic centers constructed over the down-dropped NE flank of the Pleistocene Tukosmeru volcano. The Yenkahe horst is located within the Siwi ring fracture, a 4-km-wide, horseshoe-shaped caldera associated with eruption of the andesitic Siwi pyroclastic sequence. Active tectonism along the Yenkahe horst accompanying eruptions has raised Port Resolution harbor more than 20 m during the past century.

Information Contacts: Janette Tabbagh, Université Paris VI, UMR 7619, Coordination des Rechershes Volcanologiques (CRV), 4 Place Jussieu, 75252 Paris Cedex 05, France; Michel Lardy, Institut de Recherche pour le Développement (IRD), CRV, BP A 5 Nouméa, Nouvelle Calédonie; Sandrine Wallez and Douglas Charley, Department of Geology, Mines and Water Resources, PMB 01, Port-Vila, Vanuatu.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports