Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Sangay (Ecuador) Daily ash plumes and frequent pyroclastic flows produce ashfall and lahars, January-June 2020

Karangetang (Indonesia) Incandescent block avalanches through mid-January 2020; crater anomalies through May

Masaya (Nicaragua) Lava lake level drops but remains active through May 2020; weak gas plumes

Shishaldin (United States) Intermittent thermal activity and a possible new cone at the summit crater during February-May 2020

Krakatau (Indonesia) Strombolian explosions, ash plumes, and crater incandescence during April 2020

Taal (Philippines) Eruption on 12 January with explosions through 22 January; steam plumes continuing into March

Unnamed (Tonga) Additional details and pumice raft drift maps from the August 2019 submarine eruption

Klyuchevskoy (Russia) Strombolian activity November 2019 through May 2020; lava flow down the SE flank in April

Nyamuragira (DR Congo) Intermittent thermal anomalies within the summit crater during December 2019-May 2020

Nyiragongo (DR Congo) Activity in the lava lake and small eruptive cone persists during December 2019-May 2020

Kavachi (Solomon Islands) Discolored water plumes seen using satellite imagery in 2018 and 2020

Kuchinoerabujima (Japan) Eruption and ash plumes begin on 11 January 2020 and continue through April 2020



Sangay (Ecuador) — July 2020 Citation iconCite this Report

Sangay

Ecuador

2.005°S, 78.341°W; summit elev. 5286 m

All times are local (unless otherwise noted)


Daily ash plumes and frequent pyroclastic flows produce ashfall and lahars, January-June 2020

Frequent activity at Ecuador's Sangay has included pyroclastic flows, lava flows, ash plumes, and lahars reported since 1628. Its remoteness on the east side of the Andean crest make ground observations difficult; remote cameras and satellites provide important information on activity. The current eruption began in March 2019 and continued through December 2019 with activity focused on the Cráter Central and the Ñuñurco (southeast) vent; they produced explosions with ash plumes, lava flows, and pyroclastic flows and block avalanches. In addition, volcanic debris was remobilized in the Volcan river causing significant damming downstream. This report covers ongoing similar activity from January through June 2020. Information is provided by Ecuador's Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), and a number of sources of remote data including the Washington Volcanic Ash Advisory Center (VAAC), the Italian MIROVA Volcano HotSpot Detection System, and Sentinel-2 satellite imagery. Visitors also provided excellent ground and drone-based images and information.

Throughout January-June 2020, multiple daily reports from the Washington Volcanic Ash Advisory Center (VAAC) indicated ash plumes rising from the summit, generally 500-1,100 m. Each month one or more plumes rose over 2,000 m. The plumes usually drifted SW or W, and ashfall was reported in communities 25-90 km away several times during January-March and again in June. In addition to explosions with ash plumes, pyroclastic flows and incandescent blocks frequently descended a large, deep ravine on the SE flank. Ash from the pyroclastic flows rose a few hundred meters and drifted away from the volcano. Incandescence was visible on clear nights at the summit and in the ravine. The MIROVA log radiative power graph showed continued moderate and high levels of thermal energy throughout the period (figure 57). Sangay also had small but persistent daily SO2 signatures during January-June 2020 with larger pulses one or more days each month (figure 58). IG-EPN published data in June 2020 about the overall activity since May 2019, indicating increases throughout the period in seismic event frequency, SO2 emissions, ash plume frequency, and thermal energy (figure 59).

Figure (see Caption) Figure 57. This graph of log radiative power at Sangay for 18 Aug 2018 through June 2020 shows the moderate levels of thermal energy through the end of the previous eruption in late 2018 and the beginning of the current one in early 2019. Data is from Sentinel-2, courtesy of MIROVA.
Figure (see Caption) Figure 58. Small but persistent daily SO2 signatures were typical of Sangay during January-June 2020. A few times each month the plume was the same or larger than the plume from Columbia’s Nevado del Ruiz, located over 800 km NE. Image dates are shown in the header over each image. Courtesy of NASA’s Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 59. A multi-parameter graph of activity at Sangay from May 2019 to 12 June 2020 showed increases in many types of activity. a) seismic activity (number of events per day) detected at the PUYO station (source: IG-EPN). b) SO2 emissions (tons per day) detected by the Sentinel-5P satellite sensor (TROPOMI: red squares; source: MOUNTS) and by the IG-EPN (DOAS: green bars). c) height of the ash plumes (meters above crater) detected by the GOES-16 satellite sensor (source: Washington VAAC). d) thermal emission power (megawatt) detected by the MODIS satellite sensor (source: MODVOLC) and estimate of the accumulated lava volume (million M3, thin lines represent the error range). Courtesy of IG-EPN (Informe Especial del Volcán Sangay - 2020 - N°3, “Actualización de la actividad eruptiva”, Quito, 12 de junio del 2020).

Activity during January-March 2020. IG-EPN and the Washington VAAC reported multiple daily ash emissions throughout January 2020. Gas and ash emissions generally rose 500-1,500 m above the summit, most often drifting W or SW. Ashfall was reported on 8 January in the communities of Sevilla (90 km SSW), Pumallacta and Achupallas (60 km SW) and Cebadas (35 km WNW). On 16 January ash fell in the Chimborazo province in the communities of Atillo, Ichobamba, and Palmira (45 km W). Ash on 28 January drifted NW, with minor ashfall reported in Púngala (25 km NW) and other nearby communities. The town of Alao (20 km NW) reported on 30 January that all of the vegetation in the region was covered with fine white ash; Cebadas and Palmira also noted minor ashfall (figure 60).

Figure (see Caption) Figure 60. Daily ash plumes and repeated ashfall were reported from Sangay during January 2020. Top left: 1 January 2020 (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-2, JUEVES, 2 ENERO 2020). Top right: 20 January 2020 (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-21, MARTES, 21 ENERO 2020). Bottom left: 26 January-1 February 2020 expedition (Martes, 18 Febrero 2020 12:21, EXPEDICIÓN AL VOLCÁN SANGAY). Bottom right: 30 January 2020, minor ashfall was reported in the Province of Chimborazo (#IGAlInstante Informativo VOLCÁN SANGAY No. 006, JUEVES, 30 ENERO 2020). Courtesy of IG-EPN.

A major ravine on the SE flank has been the site of ongoing block avalanches and pyroclastic flows since the latest eruption began in March 2019. The pyroclastic flows down the ravine appeared incandescent at night; during the day they created ash clouds that drifted SW. Satellite imagery recorded incandescence and dense ash from pyroclastic flows in the ravine on 7 January (figure 61). They were also reported by IG on the 9th, 13th, 26th, and 28th. Incandescent blocks were reported in the ravine several times during the month. The webcam captured images on 31 January of large incandescent blocks descending the entire length of the ravine to the base of the mountain (figure 62). Large amounts of ash and debris were remobilized as lahars during heavy rains on the 25th and 28th.

Figure (see Caption) Figure 61. Sentinel-2 satellite imagery of Sangay from 7 January 2020 clearly showed a dense ash plume drifting W and ash and incandescent material from pyroclastic flows descending the SE-flank ravine. Left image uses natural color (bands 4, 3, 2) rendering and right images uses atmospheric penetration (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 62. Pyroclastic flows at Sangay produced large trails of ash down the SE ravine many times during January 2020 that rose and drifted SW. Top left: 9 January (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-9, JUEVES, 9 ENERO 2020). Top right: 13 January (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-14, MARTES, 14 ENERO 2020). On clear nights, incandescent blocks of lava and pyroclastic flows were visible in the ravine. Bottom left: 16 January (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-17, VIERNES, 17 ENERO 2020). Bottom right: 31 January (#IGAlInstante Informativo VOLCÁN SANGAY No. 007, VIERNES, 31 ENERO 2020). Courtesy of IG-EPN.

Observations by visitors to the volcano during 9-17 January 2020 included pyroclastic flows, ash emissions, and incandescent debris descending the SE flank ravine during the brief periods when skies were not completely overcast (figure 63 and 64). More often there was ash-filled rain and explosions heard as far as 16 km from the volcano, along with the sounds of lahars generated from the frequent rainfall mobilizing debris from the pyroclastic flows. The confluence of the Rio Upano and Rio Volcan is 23 km SE of the summit and debris from the lahars has created a natural dam on the Rio Upano that periodically backs up water and inundates the adjacent forest (figure 65). A different expedition to Sangay during 26 January-1 February 2020 by IG personnel to repair and maintain the remote monitoring station and collect samples was successful, after which the station was once again transmitting data to IG-EPN in Quito (figure 66).

Figure (see Caption) Figure 63. Hikers near Sangay during 9-17 January 2020 witnessed pyroclastic flows and incandescent explosions and debris descending the SE ravine. Left: The view from 40 km SE near Macas showed ash rising from pyroclastic flows in the SE ravine. Right: Even though the summit was shrouded with a cap cloud, incandescence from the summit crater and from pyroclastic flows on the SE flank were visible on clear nights. Courtesy of Arnold Binas, used with permission.
Figure (see Caption) Figure 64. The steep ravine on the SE flank of Sangay was hundreds of meters deep in January 2020 when these drone images were taken by members of a hiking trip during 9-17 January 2020 (left). Pyroclastic flows descended the ravine often (right), coating the sides of the ravine with fine, white ash and sending ash billowing up from the surface of the flow which resulted in ashfall in adjacent communities several times. Courtesy of Arnold Binas, used with permission.
Figure (see Caption) Figure 65. Debris from pyroclastic flows that descended the SE Ravine at Sangay was carried down the Volcan River (left) during frequent rains and caused repeated damming at the confluence with the Rio Upano (right), located 23 km SE of the summit. These images show the conditions along the riverbeds during 9-17 January 2020. Courtesy of Arnold Binas, used with permission.
Figure (see Caption) Figure 66. An expedition by scientists from IG-EPN to one of the remote monitoring stations at Sangay during 26 January-1 February 2020 was successful in restoring communication to Quito. The remote location and constant volcanic activity makes access and maintenance a challenge. Courtesy of IG-EPN (Martes, 18 Febrero 2020 12:21, EXPEDICIÓN AL VOLCÁN SANGAY).

During February 2020, multiple daily VAAC reports of ash emissions continued (figure 67). Plumes generally rose 500-1,100 m above the summit and drifted W, although on 26 February emissions were reported to 1,770 m. Ashfall was reported in Macas (40 km SE) on 1 February, and in the communities of Pistishi (65 km SW), Chunchi (70 km SW), Pumallacta (60 k. SW), Alausí (60 km SW), Guamote (40 km WNW) and adjacent areas of the Chimborazo province on 5 February. The Ecuadorian Red Cross reported ash from Sangay in the provinces of Cañar and Azuay (60-100 km SW) on 25 February. Cebadas and Guamote reported moderate ashfall the following day. The communities of Cacha (50 km NW) and Punín (45 km NW) reported trace amounts of ashfall on 29 February. Incandescent blocks were seen on the SE flank multiples times throughout the month. A pyroclastic flow was recorded on the SE flank early on 6 February; additional pyroclastic flows were observed later that day on the SW flank. On 23 February a seismic station on the flank recorded a high-frequency signal typical of lahars.

Figure (see Caption) Figure 67. Steam and ash could be seen drifting SW from the summit of Sangay on 11 February 2020 even though the summit was hidden by a large cap cloud. Ash was also visible in the ravine on the SE flank. Courtesy of Sentinel Hub Playground, natural color (bands 4, 3, 2) rendering.

A significant ash emission on 1 March 2020 was reported about 2 km above the summit, drifting SW. Multiple ash emissions continued daily during the month, generally rising 570-1,170 m high. An emission on 12 March also rose 2 km above the summit. Trace ashfall was reported in Cebadas (35 km WNW) on 12 March. The community of Huamboya, located 40 km ENE of Sangay in the province of Morona-Santiago reported ashfall on 17 March. On 19 and 21 March ashfall was seen on the surface of cars in Macas to the SE. (figure 68). Ash was also reported on the 21st in de Santa María De Tunants (Sinaí) located E of Sangay. Ash fell again in Macas on 23 March and was also reported in General Proaño (40 km SE). The wind changed direction the next day and caused ashfall on 24 March to the SW in Cuenca and Azogues (100 km SW).

Figure (see Caption) Figure 68. Ashfall from Sangay was reported on cars in Huamboya on 17 March 2020 (left) and in Macas on 19 March (right). Courtesy IG-EPN, (#IGAlInstante Informativo VOLCÁN SANGAY No. 024, MARTES, 17 MARZO 2020 and #IGAlInstante Informativo VOLCÁN SANGAY No. 025, JUEVES, 19 MARZO 2020).

Incandescence from the dome at the crater and on the SE flank was noted by IG on 3, 4, and 13 March. Remobilized ash from a pyroclastic flow was reported drifting SW on 13 March. The incandescent path of the flow was still visible that evening. Numerous lahars were recorded seismically during the month, including on days 5, 6, 8, 11, 15, 30 and 31. Images from the Rio Upano on 11 March confirmed an increase from the normal flow rate (figure 69) inferred to be from volcanic debris. Morona-Santiago province officials reported on 14 March that a new dam had formed at the confluence of the Upano and Volcano rivers that decreased the flow downstream; by 16 March it had given way and flow had returned to normal levels.

Figure (see Caption) Figure 69. Images from the Rio Upano on 11 March 2020 (left) confirmed an increase from the normal flow rate related to lahars from Sangay descending the Rio Volcan. By 16 March (right), the flow rate had returned to normal, although the large blocks in the river were evidence of substantial activity in the past. Courtesy of IG (#IGAlInstante Informativo VOLCÁN SANGAY No. 018, MIÉRCOLES, 11 MARZO 2020 and #IGAlInstante Informativo VOLCÁN SANGAY No. 023, LUNES, 16 MARZO 2020).

Activity during April-June 2020. Lahar activity continued during April 2020; they were reported seven times on 2, 5, 7, 11, 12, 19, and 30 April. A significant reduction in the flow of the Upano River at the entrance bridge to the city of Macas was reported 9 April, likely due to a new dam on the river upstream from where the Volcan river joins it caused by lahars related to ash emissions and pyroclastic flows (figure 70). The flow rate returned to normal the following day. Ash emissions were reported most days of the month, commonly rising 500-1,100 m above the summit and drifting W. Incandescent blocks or flows were visible on the SE flank on 4, 10, 12, 15-16, and 20-23 April (figure 71).

Figure (see Caption) Figure 70. A significant reduction in the flow of the Upano River at the entrance bridge to the city of Macas was reported on 9 April 2020, likely due to a new dam upstream from lahars related to ash emissions and pyroclastic flows from Sangay. Courtesy of IG-EPN (#IGAlInstante Informativo VOLCÁN SANGAY No. 032, JUEVES, 9 ABRIL 2020).
Figure (see Caption) Figure 71. Incandescent blocks rolled down the SE ravine at Sangay multiple times during April 2020, including on 4 April (left). Pyroclastic flows left two continuous incandescent trails in the ravine on 23 April (right). Courtesy of IG-EPN (INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-95, SÁBADO, 4 ABRIL 2020 and INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-114, JUEVES, 23 ABRIL 2020).

Activity during May 2020 included multiple daily ash emissions that drifted W and numerous lahars from plentiful rain carrying ash and debris downstream. Although there were only a few visible observations of ash plumes due to clouds, the Washington VAAC reported plumes visible in satellite imagery throughout the month. Plumes rose 570-1,170 m above the summit most days; the highest reported rose to 2,000 m above the summit on 14 May. Two lahars occurred in the early morning on 1 May and one the next day. A lahar signal lasted for three hours on 4 May. Two lahar signals were recorded on the 7th, and three on the 9th. Lahars were also recorded on 16-17, 20-22, 26-27, and 30 May. Incandescence on the SE flank was only noted three times, but it was cloudy nearly every day.

An increase in thermal and overall eruptive activity was reported during June 2020. On 1 and 2 June the webcam captured lava flows and remobilization of the deposits on the SE flank in the early morning and late at night. Incandescence was visible multiple days each week. Lahars were reported on 4 and 5 June. The frequent daily ash emissions during June generally rose to 570-1,200 m above the summit and drifted usually SW or W. The number of explosions and ash emissions increased during the evening of 7 June. IG interpreted the seismic signals from the explosions as an indication of the rise of a new pulse of magma (figure 72). The infrasound sensor log from 8 June also recorded longer duration tremor signals that were interpreted as resulting from the descent of pyroclastic flows in the SE ravine.

Figure (see Caption) Figure 72. Seismic and infrasound signals indicated increased explosive and pyroclastic flow activity at Sangay on 7-8 June 2020. Left: SAGA station (seismic component) of 7 and 8 June. The signals correspond to explosions without VT or tremor signals, suggesting the rise of a new magma pulse. Right: SAGA station infrasound sensor log from 8 June. The sharp explosion signals are followed a few minutes later (examples highlighted in red) by emergent signals of longer duration, possibly associated with the descent of pyroclastic material in the SE flank ravine. Courtesy if IG-EPN (Informe Especial del Volcán Sangay - 2020 - N°3, “Actualización de la actividad eruptiva”, Quito, 12 de junio del 2020).

On the evening of 8 June ashfall was reported in the parish of Cebadas and in the Alausí Canton to the W and SW of Sangay. There were several reports of gas and ash emissions to 1,770 m above the summit the next morning on 9 June, followed by reports of ashfall in the provinces of Guayas, Santa Elena, Los Ríos, Morona Santiago, and Chimborazo. Ashfall continued in the afternoon and was reported in Alausí, Chunchi, Guamote, and Chillanes. That night, which was clear, the webcam captured images of pyroclastic flows down the SE-flank ravine; IG attributed the increase in activity to the collapse of one or more lava fronts. On the evening of 10 June additional ashfall was reported in the towns of Alausí, Chunchi, and Guamote (figure 73); satellite imagery indicated an ash plume drifting W and incandescence from pyroclastic flows in the SE-flank ravine the same day (figure 74).

Figure (see Caption) Figure 73. Ashfall from Sangay was reported in Alausí (top left), Chunchi (top right) and Guamote (bottom) on 10 June 2020. Courtesy of IG-EPN (#IGAlInstante Informativo VOLCÁN SANGAY No. 049, MIÉRCOLES, 10 JUNIO 2020).
Figure (see Caption) Figure 74. Incandescent pyroclastic flows (left) and ash plumes that drifted W (right) were recorded on 10 June 2020 at Sangay in Sentinel-2 satellite imagery. Courtesy of Sentinel Hub Playground.

Ashfall continued on 11 June and was reported in Guayaquil, Guamote, Chunchi, Riobamba, Guaranda, Chimbo, Echandía, and Chillanes. The highest ash plume of the report period rose to 2,800 m above the summit that day and drifted SW. That evening the SNGRE (Servicio Nacional de Gestion de Riesgos y Emergencias) reported ash fall in the Alausí canton. IG noted the increase in intensity of activity and reported that the ash plume of 11 June drifted more than 600 km W (figure 75). Ash emissions on 12 and 13 June drifted SW and NW and resulted in ashfall in the provinces of Chimborazo, Cotopaxi, Tungurahua, and Bolívar. On 14 June, the accumulation of ash interfered with the transmission of information from the seismic station. Lahars were reported each day during 15-17 and 19-21 June. Trace amounts of ashfall were reported in Macas to the SE on 25 June.

Figure (see Caption) Figure 75. The ash plume at Sangay reported on 11 June 2020 rose 2.8 km above the summit and drifted W according to the Washington VAAC and IG (left). Explosions and high levels of incandescence on the SE flank were captured by the Don Bosco webcam (right). Courtesy of IG-EPN (#IGAlInstante Informativo VOLCÁN SANGAY No. 055, JUEVES, 11 JUNIO 2020 and INFORME DIARIO DEL ESTADO DEL VOLCÁN SANGAY No. 2020-164, VIERNES, 12 JUNIO 2020).

During an overflight of Sangay on 24 June IG personnel observed that activity was characterized by small explosions from the summit vent and pyroclastic flows down the SE-flank ravine. The explosions produced small gas plumes with a high ash content that did not rise more than 500 m above the summit and drifted W (figure 76). The pyroclastic flows were restricted to the ravine on the SE flank, although the ash from the flows rose rapidly and reached about 200 m above the surface of the ravine and also drifted W (figure 77).

Figure (see Caption) Figure 76. A dense ash plume rose 500 m from the summit of Sangay on 24 June 2020 and drifted W during an overflight by IG-EPN personnel. The aerial photograph is taken from the SE; snow-covered Chimborazo is visible behind and to the right of Sangay. Photo by M Almeida, courtesy of IG EPN (Jueves, 02 Julio 2020 10:29, INFORME DEL SOBREVUELO AL VOLCÁN SANGAY EL 24 DE JUNIO DE 2020).
Figure (see Caption) Figure 77. Pyroclastic flows descended the SE flank ravine at Sangay during an overflight by IG-EPN personnel on 24 June 2020. Ash from the pyroclastic flow rose 200 m and drifted W, and infrared imagery identified the thermal signature of the pyroclastic flow in the ravine. Photo by M Almeida, IR Image by S Vallejo, courtesy of IG EPN (Jueves, 25 Junio 2020 12:24, SOBREVUELO AL VOLCÁN SANGAY).

Infrared imagery taken during the overflight on 24 June identified three significant thermal anomalies in the large ravine on the SE flank (figure 78). Analysis by IG scientists suggested that the upper anomaly 1 (125°C) was associated with explosive activity that was observed during the flight. Anomaly 2 (147°C), a short distance below Anomaly 1, was possibly related to effusive activity of a small flow, and Anomaly 3 (165°C) near the base of the ravine that was associated with pyroclastic flow deposits. The extent of the changes at the summit of Sangay and along the SE flank since the beginning of the eruption that started in March 2019 were clearly visible when images from May 2019 were compared with images from the 24 June 2020 overflight (figure 79). The upper part of the ravine was nearly 400 m wide by the end of June.

Figure (see Caption) Figure 78. A thermal image of the SE flank of Sangay taken on 24 June 2020 indicated three thermal anomalies. Anomaly 1 was associated with explosive activity, Anomaly 2 was associated with effusive activity, and Anomaly 3 was related to pyroclastic-flow deposits. Image prepared by S Vallejo Vargas, courtesy of IG EPN (Jueves, 02 Julio 2020 10:29, INFORME DEL SOBREVUELO AL VOLCÁN SANGAY EL 24 DE JUNIO DE 2020).
Figure (see Caption) Figure 79. Aerial and thermal photographs of the southern flank of the Sangay volcano on 17 May 2019 (left: visible image) and 24 June 2020 (middle: visible image, right: visible-thermal overlay) show the morphological changes on the SE flank, associated with the formation of a deep ravine and the modification of the summit. Photos and thermal image by M Almeida, courtesy of IG EPN (Jueves, 02 Julio 2020 10:29, INFORME DEL SOBREVUELO AL VOLCÁN SANGAY EL 24 DE JUNIO DE 2020).

Geologic Background. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

Information Contacts: Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Arnold Binas (URL: https://www.doroadventures.com).


Karangetang (Indonesia) — June 2020 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Incandescent block avalanches through mid-January 2020; crater anomalies through May

The Karangetang andesitic-basaltic stratovolcano (also referred to as Api Siau) at the northern end of the island of Siau, north of Sulawesi, Indonesia, has had more than 50 observed eruptions since 1675. Frequent explosive activity is accompanied by pyroclastic flows and lahars, and lava-dome growth has created two active summit craters (Main to the S and Second Crater to the N). Rock avalanches, observed incandescence, and satellite thermal anomalies at the summit confirmed continuing volcanic activity since the latest eruption started in November 2018 (BGVN 44:05). This report covers activity from December 2019 through May 2020. Activity is monitored by Indonesia's Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), and ash plumes are monitored by the Darwin VAAC (Volcanic Ash Advisory Center). Information is also available from MODIS thermal anomaly satellite data through both the University of Hawaii's MODVOLC system and the Italian MIROVA project.

Increased activity that included daily incandescent avalanche blocks traveling down the W and NW flanks lasted from mid-July 2019 (BGVN 44:12) through mid-January 2020 according to multiple sources. The MIROVA data showed increased number and intensity of thermal anomalies during this period, with a sharp drop during the second half of January (figure 40). The MODVOLC thermal alert data reported 29 alerts in December and ten alerts in January, ending on 14 January, with no further alerts through May 2020. During December and the first half of January incandescent blocks traveled 1,000-1,500 m down multiple drainages on the W and NW flanks (figure 41). After this, thermal anomalies were still present at the summit craters, but no additional activity down the flanks was identified in remote satellite data or direct daily observations from PVMBG.

Figure (see Caption) Figure 40. An episode of increased activity at Karangetang from mid-July 2019 through mid-January 2020 included incandescent avalanche blocks traveling down multiple flanks of the volcano. This was reflected in increased thermal activity seen during that interval in the MIROVA graph covering 5 June 2019 through May 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 41. An episode of increased activity at Karangetang from mid-July 2019 through mid-January 2020 included incandescent avalanche blocks traveling up to 1,500 m down drainages on the W and NW flanks of the volcano. Top left: large thermal anomalies trend NW from Main Crater on 5 December 2019; about 500 m N a thermal anomaly glows from Second Crater. Top center: on 15 December plumes of steam and gas drifted W and SW from both summit craters as seen in Natural Color rendering (bands 4,3,2). Top right: the same image as at top center with Atmospheric penetration rendering (bands 12, 11, 8a) shows hot zones extending WNW from Main Crater and a thermal anomaly at Second Crater. Bottom left: thermal activity seen on 14 January 2020 extended about 800 m WNW from Main Crater along with an anomaly at Second Crater and a hot spot about 1 km W. Bottom center: by 19 January the anomaly from Second Crater appeared slightly stronger than at Main Crater, and only small anomalies appeared on the NW flank. Bottom right: an image from 14 March shows only thermal anomalies at the two summit craters. Courtesy of Sentinel Hub Playground.

A single VAAC report in early April noted a short-lived ash plume that drifted SW. Intermittent low-level activity continued through May 2020. Small SO2 plumes appeared in satellite data multiple times in December 2019 and January 2020; they decreased in size and frequency after that but were still intermittently recorded into May 2020 (figure 42).

Figure (see Caption) Figure 42. Small plumes of sulfur dioxide were measured at Karangetang with the TROPOMI instrument on the Sentinel-5P satellite multiple times during December 2019 (top row). They were less frequent but still appeared during January-May 2020 (bottom row). Larger plumes were also detected from Dukono, located 300 km ESE at the N end of North Maluku. Courtesy of Global Sulfur Dioxide Monitoring Page.

PVMBG reported in their daily summaries that steam plumes rose 50-150 m above the Main Crater and 25-50 m above Second Crater on most days in December. The incandescent avalanche activity that began in mid-July 2019 also continued throughout December 2019 and January 2020 (figure 43). Incandescent blocks from the Main Crater descended river drainages (Kali) on the W and NW flanks throughout December. They were reported nearly every day in the Nanitu, Sense, and Pangi drainages, traveling 1,000-1,500 m. Incandescence from both craters was visible 10-25 m above the crater rim most nights.

Figure (see Caption) Figure 43. Incandescent block avalanches descended the NW flank of Karangetang as far as 1,500 m frequently during December 2019 and January 2020. Left image taken 13 December 2019, right image taken 6 January 2020 by PVMBG webcam. Courtesy of PVMBG, Oystein Anderson, and Bobyson Lamanepa.

A few blocks were noted traveling 800 m down Kali Beha Barat on 1 December. Incandescence above the Main crater reached 50-75 m during 4-6 December. During 4-7 December incandescent blocks appeared in Kali Sesepe, traveling 1,000-1,500 m down from the summit. They were also reported in Kali Batang and Beha Barat during 4-14 December, usually moving 800-1,000 m downslope. Between 5 and 14 December, gray and white plumes from Second Crater reached 300 m multiple times. During 12-15 December steam plumes rose 300-500 m above the Main crater. Activity decreased during 18-26 December but increased again during the last few days of the month. On 28 December, incandescent blocks were reported 1,500 m down Kali Pangi and Nanitu, and 1,750 m down Kali Sense.

Incandescent blocks were reported in Kali Sesepi during 4-6 January and in Kali Batang and Beha Barat during 4-8 and 12-15 January (figure 44); they often traveled 800-1,200 m downslope. Activity tapered off in those drainages and incandescent blocks were last reported in Kali Beha Barat on 15 January traveling 800 m from the summit. Incandescent blocks were also reported traveling usually 1,000-1,500 m down the Nanitu, Sense, and Pangi drainages during 4-19 January. Blocks continued to occasionally descend up to 1,000 m down Kali Nanitu through 24 January. Pulses of activity occurred at the summit of Second Crater a few times in January. Steam plumes rose 25-50 m during 8-9 January and again during 16-31 January, with plumes rising 300-400 m on 20, 29, and 31 January. Incandescence was noted 10-25 m above the summit of Second Crater during 27-30 January.

Figure (see Caption) Figure 44. Incandescent material descends the Beha Barat, Sense, Nanitu, and Pangi drainages on the NW flank of Karangetang in early January 2020. Courtesy of Bobyson Lamanepa; posted on Twitter on 6 January 2020.

Activity diminished significantly after mid-January 2020. Steam plumes at the Main Crater rose 50-100 m on the few days where the summit was not obscured by fog during February. Faint incandescence occurred at the Main Crater on 7 February, and steam plumes rising 25-50 m from Second Crater that day were the only events reported there in February. During March, steam plumes persisted from the Main Crater, with heights of over 100 m during short periods from 8-16 March and 25-30 March. Weak incandescence was reported from the Main Crater only once, on 25 March. Very little activity occurred at Second Crater during March, with only steam plumes reported rising 25-300 m from the 22nd to the 28th (figure 45).

Figure (see Caption) Figure 45. Steam plumes at Karangetang rose over 100 m above both summit craters multiple times during March, including on 26 March 2020. Courtesy of PVMBG and Oystein Anderson.

The Darwin VAAC reported a continuous ash emission on 4 April 2020 that rose to 2.1 km altitude and drifted SW for a few hours before dissipating. Incandescence visible 25 m above both craters on 13 April was the only April activity reported by PVMBG other than steam plumes from the Main Crater that rose 50-500 m on most days. Steam plumes of 50-100 m were reported from Second Crater during 11-13 April. Activity remained sporadic throughout May 2020. Steam plumes from the Main Crater rose 50-300 m each day. Satellite imagery identified steam plumes and incandescence from both summit craters on 3 May (figure 46). Faint incandescence was observed at the Main Crater on 12 and 27 May. Steam plumes rose 25-50 m from Second Crater on a few days; a 200-m-high plume was reported on 27 May. Bluish emissions were observed on the S and SW flanks on 28 May.

Figure (see Caption) Figure 46. Dense steam plumes and thermal anomalies were present at both summit craters of Karangetang on 3 May 2020. Sentinel 2 satellite image with Natural Color (bands 4, 3, 2) (left) and Atmospheric Penetration rendering (bands 12, 11, 8a) (right); courtesy of Sentinel Hub Playground.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com); Bobyson Lamanepa, Yogyakarta, Indonesia, (URL: https://twitter.com/BobyLamanepa/status/1214165637028728832).


Masaya (Nicaragua) — June 2020 Citation iconCite this Report

Masaya

Nicaragua

11.985°N, 86.165°W; summit elev. 594 m

All times are local (unless otherwise noted)


Lava lake level drops but remains active through May 2020; weak gas plumes

Masaya, which is about 20 km NW of the Nicaragua’s capital of Managua, is one of the most active volcanoes in that country and has a caldera that contains a number of craters (BGVN 43:11). The Santiago crater is the one most currently active and it contains a small lava lake that emits weak gas plumes (figure 85). This report summarizes activity during February through May 2020 and is based on Instituto Nicaragüense de Estudios Territoriales (INETER) monthly reports and satellite data. During the reporting period, the volcano was relatively calm, with only weak gas plumes.

Figure (see Caption) Figure 85. Satellite images of Masaya from Sentinel-2 on 18 April 2020, showing and a small gas plume drifting SW (top, natural color bands 4, 3, 2) and the lava lake (bottom, false color bands 12, 11, 4). Courtesy of Sentinel Hub Playground.

According to INETER, thermal images of the lava lake and temperature data in the fumaroles were taken using an Omega infrared gun and a forward-looking infrared (FLIR) SC620 thermal camera. The temperatures above the lava lake have decreased since November 2019, when the temperature was 287°C, dropping to 96°C when measured on 14 May 2020. INETER attributed this decrease to subsidence in the level of the lava lake by 5 m which obstructed part of the lake and concentrated the gas emissions in the weak plume. Convection continued in the lava lake, which in May had decreased to a diameter of 3 m. Many landslides had occurred in the E, NE, and S walls of the crater rim due to rock fracturing caused by the high heat and acidity of the emissions.

During the reporting period, the MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system recorded numerous thermal anomalies from the lava lake based on MODIS data (figure 86). Infrared satellite images from Sentinel-2 regularly showed a strong signature from the lava lake through 18 May, after which the volcano was covered by clouds.

Figure (see Caption) Figure 86. Thermal anomalies at Masaya during February through May 2020. The larger anomalies with black lines are more distant and not related to the volcano. Courtesy of MIROVA.

Measurements of sulfur dioxide (SO2) made by INETER in the section of the Ticuantepe - La Concepción highway (just W of the volcano) with a mobile DOAS system varied between a low of just over 1,000 metric tons/day in mid-November 2019 to a high of almost 2,500 tons/day in late May. Temperatures of fumaroles in the Cerro El Comalito area, just ENE of Santiago crater, ranged from 58 to 76°C during February-May 2020, with most values in the 69-72°C range.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Historical lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Shishaldin (United States) — June 2020 Citation iconCite this Report

Shishaldin

United States

54.756°N, 163.97°W; summit elev. 2857 m

All times are local (unless otherwise noted)


Intermittent thermal activity and a possible new cone at the summit crater during February-May 2020

Shishaldin is located near the center of Unimak Island in Alaska, with the current eruption phase beginning in July 2019 and characterized by ash plumes, lava flows, lava fountaining, pyroclastic flows, and lahars. More recently, in late 2019 and into January 2020, activity consisted of multiple lava flows, pyroclastic flows, lahars, and ashfall events (BGVN 45:02). This report summarizes activity from February through May 2020, including gas-and-steam emissions, brief thermal activity in mid-March, and a possible new cone within the summit crater. The primary source of information comes from the Alaska Volcano Observatory (AVO) reports and various satellite data.

Volcanism during February 2020 was relatively low, consisting of weakly to moderately elevated surface temperatures during 1-4 February and occasional small gas-and-steam plumes (figure 37). By 6 February both seismicity and surface temperatures had decreased. Seismicity and surface temperatures increased slightly again on 8 March and remained elevated through the rest of the reporting period. Intermittent gas-and-steam emissions were also visible from mid-March (figure 38) through May. Minor ash deposits visible on the upper SE flank may have been due to ash resuspension or a small collapse event at the summit, according to AVO.

Figure (see Caption) Figure 37. Photo of a gas-and-steam plume rising from the summit crater at Shishaldin on 22 February 2020. Photo courtesy of Ben David Jacob via AVO.
Figure (see Caption) Figure 38. A Worldview-2 panchromatic satellite image on 11 March 2020 showing a gas-and-steam plume rising from the summit of Shishaldin and minor ash deposits on the SE flank (left). Aerial photo showing minor gas-and-steam emissions rising from the summit crater on 11 March (right). Some erosion of the snow and ice on the upper flanks is a result of the lava flows from the activity in late 2019 and early 2020. Photo courtesy of Matt Loewen (left) and Ed Fischer (right) via AVO.

On 14 March, lava and a possible new cone were visible in the summit crater using satellite imagery, accompanied by small explosion signals. Strong thermal signatures due to the lava were also seen in Sentinel-2 satellite data and continued strongly through the month (figure 39). The lava reported by AVO in the summit crater was also reflected in satellite-based MODIS thermal anomalies recorded by the MIROVA system (figure 40). Seismic and infrasound data identified small explosions signals within the summit crater during 14-19 March.

Figure (see Caption) Figure 39. Sentinel-2 thermal satellite images (bands 12, 11, 8A) show a bright hotspot (yellow-orange) at the summit crater of Shishaldin during mid-March 2020 that decreases in intensity by late March. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 40. MIROVA thermal data showing a brief increase in thermal anomalies during late March 2020 and on two days in late April between periods of little to no activity. Courtesy of MIROVA.

AVO released a Volcano Observatory Notice for Aviation (VONA) stating that seismicity had decreased by 16 April and that satellite data no longer showed lava or additional changes in the crater since the start of April. Sentinel-2 thermal satellite imagery continued to show a weak hotspot in the crater summit through May (figure 41), which was also detected by the MIROVA system on two days. A daily report on 6 May reported a visible ash deposit extending a short distance SE from the summit, which had likely been present since 29 April. AVO noted that the timing of the deposit corresponds to an increase in the summit crater diameter and depth, further supporting a possible small collapse. Small gas-and-steam emissions continued intermittently and were accompanied by weak tremors and occasional low-frequency earthquakes through May (figure 42). Minor amounts of sulfur dioxide were detected in the gas-and-steam emissions during 20 and 29 April, and 2, 16, and 28 May.

Figure (see Caption) Figure 41. Sentinel-2 thermal satellite images (bands 12, 11, 8A) show occasional gas-and-steam emissions rising from Shishaldin on 26 February (top left) and 24 April 2020 (bottom left) and a weak hotspot (yellow-orange) persisting at the summit crater during April and early May 2020. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 42. A Worldview-1 panchromatic satellite image showing gas-and-steam emissions rising from the summit of Shishaldin on 1 May 2020 (local time) (left). Aerial photo of the N flank of Shishaldin with minor gas-and-steam emissions rising from the summit on 8 May (right). Photo courtesy of Matt Loewen (left) and Levi Musselwhite (right) via AVO.

Geologic Background. The beautifully symmetrical Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." A steam plume often rises from its small summit crater. Constructed atop an older glacially dissected volcano, it is largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the W and NE sides at 1,500-1,800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Krakatau (Indonesia) — June 2020 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 155 m

All times are local (unless otherwise noted)


Strombolian explosions, ash plumes, and crater incandescence during April 2020

Krakatau, located in the Sunda Strait between Indonesia’s Java and Sumatra Islands, experienced a major caldera collapse around 535 CE, forming a 7-km-wide caldera ringed by three islands. On 22 December 2018, a large explosion and flank collapse destroyed most of the 338-m-high island of Anak Krakatau (Child of Krakatau) and generated a deadly tsunami (BGVN 44:03). The near-sea level crater lake inside the remnant of Anak Krakatau was the site of numerous small steam and tephra explosions. A larger explosion in December 2019 produced the beginnings of a new cone above the surface of crater lake (BGVN 45:02). Recently, volcanism has been characterized by occasional Strombolian explosions, dense ash plumes, and crater incandescence. This report covers activity from February through May 2020 using information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, also known as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), the Darwin Volcanic Ash Advisory Center (VAAC), and various satellite data.

Activity during February 2020 consisted of dominantly white gas-and-steam emissions rising 300 m above the crater, according to PVMBG. According to the Darwin VAAC, a ground observer reported an eruption on 7 and 8 February, but no volcanic ash was observed. During 10-11 February, a short-lived eruption was detected by seismograms which produced an ash plume up to 1 km above the crater drifting E. MAGMA Indonesia reported two eruptions on 18 March, both of which rose to 300 m above the crater. White gas-and-steam emissions were observed for the rest of the month and early April.

On 10 April PVMBG reported two eruptions, at 2158 and 2235, both of which produced dark ash plumes rising 2 km above the crater followed by Strombolian explosions ejecting incandescent material that landed on the crater floor (figures 108 and 109). The Darwin VAAC issued a notice at 0145 on 11 April reporting an ash plume to 14.3 km altitude drifting WNW, however this was noted with low confidence due to the possible mixing of clouds. During the same day, an intense thermal hotspot was detected in the HIMAWARI thermal satellite imagery and the NASA Global Sulfur Dioxide page showed a strong SO2 plume at 11.3 km altitude drifting W (figure 110). The CCTV Lava93 webcam showed new lava flows and lava fountaining from the 10-11 April eruptions. This activity was evident in the MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data (figure 111).

Figure (see Caption) Figure 108. Webcam (Lava93) images of Krakatau on 10 April 2020 showing Strombolian explosions, strong incandescence, and ash plumes rising from the crater. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 109. Webcam image of incandescent Strombolian explosions at Krakatau on 10 April 2020. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 110. Strong sulfur dioxide emissions rising from Krakatau and drifting W were detected using the TROPOMI instrument on the Sentinel-5P satellite on 11 April 2020 (top row). Smaller volumes of SO2 were visible in Sentinel-5P/TROPOMI maps on 13 (bottom left) and 19 April (bottom right). Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 111. Thermal activity at Anak Krakatau from 29 June-May 2020 shown on a MIROVA Log Radiative Power graph. The power and frequency of the thermal anomalies sharply increased in mid-April. After the larger eruptive event in mid-April the thermal anomalies declined slightly in strength but continued to be detected intermittently through May. Courtesy of MIROVA.

Strombolian activity rising up to 500 m continued into 12 April and was accompanied by SO2 emissions that rose 3 km altitude, drifting NW according to a VAAC notice. PVMBG reported an eruption on 13 April at 2054 that resulted in incandescence as high as 25 m above the crater. Volcanic ash, accompanied by white gas-and-steam emissions, continued intermittently through 18 April, many of which were observed by the CCTV webcam. After 18 April only gas-and-steam plumes were reported, rising up to 100 m above the crater; Sentinel-2 satellite imagery showed faint thermal anomalies in the crater (figure 112). SO2 emissions continued intermittently throughout April, though at lower volumes and altitudes compared to the 11th. MODIS satellite data seen in MIROVA showed intermittent thermal anomalies through May.

Figure (see Caption) Figure 112. Sentinel-2 thermal satellite images showing the cool crater lake on 20 March (top left) followed by minor heating of the crater during April and May 2020. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Taal (Philippines) — June 2020 Citation iconCite this Report

Taal

Philippines

14.002°N, 120.993°E; summit elev. 311 m

All times are local (unless otherwise noted)


Eruption on 12 January with explosions through 22 January; steam plumes continuing into March

Taal volcano is in a caldera system located in southern Luzon island and is one of the most active volcanoes in the Philippines. It has produced around 35 recorded eruptions since 3,580 BCE, ranging from VEI 1 to 6, with the majority of eruptions being a VEI 2. The caldera contains a lake with an island that also contains a lake within the Main Crater (figure 12). Prior to 2020 the most recent eruption was in 1977, on the south flank near Mt. Tambaro. The United Nations Office for the Coordination of Humanitarian Affairs in the Philippines reports that over 450,000 people live within 40 km of the caldera (figure 13). This report covers activity during January through February 2020 including the 12 to 22 January eruption, and is based on reports by Philippine Institute of Volcanology and Seismology (PHIVOLCS), satellite data, geophysical data, and media reports.

Figure (see Caption) Figure 12. Annotated satellite images showing the Taal caldera, Volcano Island in the caldera lake, and features on the island including Main Crater. Imagery courtesy of Planet Inc.
Figure (see Caption) Figure 13. Map showing population totals within 14 and 17 km of Volcano Island at Taal. Courtesy of the United Nations Office for the Coordination of Humanitarian Affairs (OCHA).

The hazard status at Taal was raised to Alert Level 1 (abnormal, on a scale of 0-5) on 28 March 2019. From that date through to 1 December there were 4,857 earthquakes registered, with some felt nearby. Inflation was detected during 21-29 November and an increase in CO2 emission within the Main Crater was observed. Seismicity increased beginning at 1100 on 12 January. At 1300 there were phreatic (steam) explosions from several points inside Main Crater and the Alert Level was raised to 2 (increasing unrest). Booming sounds were heard in Talisay, Batangas, at 1400; by 1402 the plume had reached 1 km above the crater, after which the Alert Level was raised to 3 (magmatic unrest).

Phreatic eruption on 12 January 2020. A seismic swarm began at 1100 on 12 January 2020 followed by a phreatic eruption at 1300. The initial activity consisted of steaming from at least five vents in Main Crater and phreatic explosions that generated 100-m-high plumes. PHIVOLCS raised the Alert Level to 2. The Earth Observatory of Singapore reported that the International Data Center (IDC) for the Comprehensive test Ban Treaty (CTBT) in Vienna noted initial infrasound detections at 1450 that day.

Booming sounds were heard at 1400 in Talisay, Batangas (4 km NNE from the Main Crater), and at 1404 volcanic tremor and earthquakes felt locally were accompanied by an eruption plume that rose 1 km; ash fell to the SSW. The Alert Level was raised to 3 and the evacuation of high-risk barangays was recommended. Activity again intensified around 1730, prompting PHIVOLCS to raise the Alert Level to 4 and recommend a total evacuation of the island and high-risk areas within a 14-km radius. The eruption plume of steam, gas, and tephra significantly intensified, rising to 10-15 km altitude and producing frequent lightning (figures 14 and 15). Wet ash fell as far away as Quezon City (75 km N). According to news articles schools and government offices were ordered to close and the Ninoy Aquino International Airport (56 km N) in Manila suspended flights. About 6,000 people had been evacuated. Residents described heavy ashfall, low visibility, and fallen trees.

Figure (see Caption) Figure 14. Lightning produced during the eruption of Taal during 1500 on 12 January to 0500 on 13 January 2020 local time (0700-2100 UTC on 12 January). Courtesy of Chris Vagasky, Vaisala.
Figure (see Caption) Figure 15. Lightning strokes produced during the first days of the Taal January 2020 eruption. Courtesy of Domcar C Lagto/SIPA/REX/Shutterstock via The Guardian.

In a statement issued at 0320 on 13 January, PHIVOLCS noted that ashfall had been reported across a broad area to the north in Tanauan (18 km NE), Batangas; Escala (11 km NW), Tagaytay; Sta. Rosa (32 km NNW), Laguna; Dasmariñas (32 km N), Bacoor (44 km N), and Silang (22 km N), Cavite; Malolos (93 km N), San Jose Del Monte (87 km N), and Meycauayan (80 km N), Bulacan; Antipolo (68 km NNE), Rizal; Muntinlupa (43 km N), Las Piñas (47 km N), Marikina (70 km NNE), Parañaque (51 km N), Pasig (62 km NNE), Quezon City, Mandaluyong (62 km N), San Juan (64 km N), Manila; Makati City (59 km N) and Taguig City (55 km N). Lapilli (2-64 mm in diameter) fell in Tanauan and Talisay; Tagaytay City (12 km N); Nuvali (25 km NNE) and Sta (figure 16). Rosa, Laguna. Felt earthquakes (Intensities II-V) continued to be recorded in local areas.

Figure (see Caption) Figure 16. Ashfall from the Taal January 2020 eruption in Lemery (top) and in the Batangas province (bottom). Photos posted on 13 January, courtesy of Ezra Acayan/Getty Images, Aaron Favila/AP, and Ted Aljibe/AFP via Getty Images via The Guardian.

Magmatic eruption on 13 January 2020. A magmatic eruption began during 0249-0428 on 13 January, characterized by weak lava fountaining accompanied by thunder and flashes of lightning. Activity briefly waned then resumed with sporadic weak fountaining and explosions that generated 2-km-high, dark gray, steam-laden ash plumes (figure 17). New lateral vents opened on the N flank, producing 500-m-tall lava fountains. Heavy ashfall impacted areas to the SW, including in Cuenca (15 km SSW), Lemery (16 km SW), Talisay, and Taal (15 km SSW), Batangas (figure 18).

Figure (see Caption) Figure 17. Ash plumes seen from various points around Taal in the initial days of the January 2020 eruption, posted on 13 January. Courtesy of Eloisa Lopez/Reuters, Kester Ragaza/Pacific Press/Shutterstock, Ted Aljibe/AFP via Getty Images, via The Guardian.
Figure (see Caption) Figure 18. Map indicating areas impacted by ashfall from the 12 January eruption through to 0800 on the 13th. Small yellow circles (to the N) are ashfall report locations; blue circles (at the island and to the S) are heavy ashfall; large green circles are lapilli (particles measuring 2-64 mm in diameter). Modified from a map courtesy of Lauriane Chardot, Earth Observatory of Singapore; data taken from PHIVOLCS.

News articles noted that more than 300 domestic and 230 international flights were cancelled as the Manila Ninoy Aquino International Airport was closed during 12-13 January. Some roads from Talisay to Lemery and Agoncillo were impassible and electricity and water services were intermittent. Ashfall in several provinces caused power outages. Authorities continued to evacuate high-risk areas, and by 13 January more than 24,500 people had moved to 75 shelters out of a total number of 460,000 people within 14 km.

A PHIVOLCS report for 0800 on the 13th through 0800 on 14 January noted that lava fountaining had continued, with steam-rich ash plumes reaching around 2 km above the volcano and dispersing ash SE and W of Main Crater. Volcanic lighting continued at the base of the plumes. Fissures on the N flank produced 500-m-tall lava fountains. Heavy ashfall continued in the Lemery, Talisay, Taal, and Cuenca, Batangas Municipalities. By 1300 on the 13th lava fountaining generated 800-m-tall, dark gray, steam-laden ash plumes that drifted SW. Sulfur dioxide emissions averaged 5,299 metric tons/day (t/d) on 13 January and dispersed NNE (figure 19).

Figure (see Caption) Figure 19. Compilation of sulfur dioxide plumes from TROPOMI overlaid in Google Earth for 13 January from 0313-1641 UT. Courtesy of NASA Global Sulfur Dioxide Monitoring Page and Google Earth.

Explosions and ash emission through 22 January 2020. At 0800 on 15 January PHIVOLCS stated that activity was generally weaker; dark gray, steam-laden ash plumes rose about 1 km and drifted SW. Satellite images showed that the Main Crater lake was gone and new craters had formed inside Main Crater and on the N side of Volcano Island.

PHIVOLCS reported that activity during 15-16 January was characterized by dark gray, steam-laden plumes that rose as high as 1 km above the vents in Main Crater and drifted S and SW. Sulfur dioxide emissions were 4,186 t/d on 15 January. Eruptive events at 0617 and 0621 on 16 January generated short-lived, dark gray ash plumes that rose 500 and 800 m, respectively, and drifted SW. Weak steam plumes rose 800 m and drifted SW during 1100-1700, and nine weak explosions were recorded by the seismic network.

Steady steam emissions were visible during 17-21 January. Infrequent weak explosions generated ash plumes that rose as high as 1 km and drifted SW. Sulfur dioxide emissions fluctuated and were as high as 4,353 t/d on 20 January and as low as 344 t/d on 21 January. PHIVOLCS reported that white steam-laden plumes rose as high as 800 m above main vent during 22-28 January and drifted SW and NE; ash emissions ceased around 0500 on 22 January. Remobilized ash drifted SW on 22 January due to strong low winds, affecting the towns of Lemery (16 km SW) and Agoncillo, and rose as high as 5.8 km altitude as reported by pilots. Sulfur dioxide emissions were low at 140 t/d.

Steam plumes through mid-April 2020. The Alert Level was lowered to 3 on 26 January and PHIVOLCS recommended no entry onto Volcano Island and Taal Lake, nor into towns on the western side of the island within a 7-km radius. PHIVOLCS reported that whitish steam plumes rose as high as 800 m during 29 January-4 February and drifted SW (figure 20). The observed steam plumes rose as high as 300 m during 5-11 February and drifted SW.

Sulfur dioxide emissions averaged around 250 t/d during 22-26 January; emissions were 87 t/d on 27 January and below detectable limits the next day. During 29 January-4 February sulfur dioxide emissions ranged to a high of 231 t/d (on 3 February). The following week sulfur dioxide emissions ranged from values below detectable limits to a high of 116 t/d (on 8 February).

Figure (see Caption) Figure 20. Taal Volcano Island producing gas-and-steam plumes on 15-16 January 2020. Courtesy of James Reynolds, Earth Uncut.

On 14 February PHIVOLCS lowered the Alert Level to 2, noting a decline in the number of volcanic earthquakes, stabilizing ground deformation of the caldera and Volcano Island, and diffuse steam-and-gas emission that continued to rise no higher than 300 m above the main vent during the past three weeks. During 14-18 February sulfur dioxide emissions ranged from values below detectable limits to a high of 58 tonnes per day (on 16 February). Sulfur dioxide emissions were below detectable limits during 19-20 February. During 26 February-2 March steam plumes rose 50-300 m above the vent and drifted SW and NE. PHIVOLCS reported that during 4-10 March weak steam plumes rose 50-100 m and drifted SW and NE; moderate steam plumes rose 300-500 m and drifted SW during 8-9 March. During 11-17 March weak steam plumes again rose only 50-100 m and drifted SW and NE.

PHIVOLCS lowered the Alert Level to 1 on 19 March and recommended no entry onto Volcano Island, the area defined as the Permanent Danger Zone. During 8-9 April steam plumes rose 100-300 m and drifted SW. As of 1-2 May 2020 only weak steaming and fumarolic activity from fissure vents along the Daang Kastila trail was observed.

Evacuations. According to the Disaster Response Operations Monitoring and Information Center (DROMIC) there were a total of 53,832 people dispersed to 244 evacuation centers by 1800 on 15 January. By 21 January there were 148,987 people in 493 evacuation. The number of residents in evacuation centers dropped over the next week to 125,178 people in 497 locations on 28 January. However, many residents remained displaced as of 3 February, with DROMIC reporting 23,915 people in 152 evacuation centers, but an additional 224,188 people staying at other locations.

By 10 February there were 17,088 people in 110 evacuation centers, and an additional 211,729 staying at other locations. According to the DROMIC there were a total of 5,321 people in 21 evacuation centers, and an additional 195,987 people were staying at other locations as of 19 February.

The number of displaced residents continued to drop, and by 3 March there were 4,314 people in 12 evacuation centers, and an additional 132,931 people at other locations. As of 11 March there were still 4,131 people in 11 evacuation centers, but only 17,563 staying at other locations.

Deformation and ground cracks. New ground cracks were observed on 13 January in Sinisian (18 km SW), Mahabang Dahilig (14 km SW), Dayapan (15 km SW), Palanas (17 km SW), Sangalang (17 km SW), and Poblacion (19 km SW) Lemery; Pansipit (11 km SW), Agoncillo; Poblacion 1, Poblacion 2, Poblacion 3, Poblacion 5 (all around 17 km SW), Talisay, and Poblacion (11 km SW), San Nicolas (figure 21). A fissure opened across the road connecting Agoncillo to Laurel, Batangas. New ground cracking was reported the next day in Sambal Ibaba (17 km SW), and portions of the Pansipit River (SW) had dried up.

Figure (see Caption) Figure 21. Video screenshots showing ground cracks that formed during the Taal unrest and captured on 15 and 16 January 2020. Courtesy of James Reynolds, Earth Uncut.

Dropping water levels of Taal Lake were first observed in some areas on 16 January but reported to be lake-wide the next day. The known ground cracks in the barangays of Lemery, Agoncillo, Talisay, and San Nicolas in Batangas Province widened a few centimeters by 17 January, and a new steaming fissure was identified on the N flank of the island.

GPS data had recorded a sudden widening of the caldera by ~1 m, uplift of the NW sector by ~20 cm, and subsidence of the SW part of Volcano Island by ~1 m just after the main eruption phase. The rate of deformation was smaller during 15-22 January, and generally corroborated by field observations; Taal Lake had receded about 30 cm by 25 January but about 2.5 m of the change (due to uplift) was observed around the SW portion of the lake, near the Pansipit River Valley where ground cracking had been reported.

Weak steaming (plumes 10-20 m high) from ground cracks was visible during 5-11 February along the Daang Kastila trail which connects the N part of Volcano Island to the N part of the main crater. PHIVOLCS reported that during 19-24 February steam plumes rose 50-100 m above the vent and drifted SW. Weak steaming (plumes up to 20 m high) from ground cracks was visible during 8-14 April along the Daang Kastila trail which connects the N part of Volcano Island to the N part of the main crater.

Seismicity. Between 1300 on 12 January and 0800 on 21 January the Philippine Seismic Network (PSN) had recorded a total of 718 volcanic earthquakes; 176 of those had magnitudes ranging from 1.2-4.1 and were felt with Intensities of I-V. During 20-21 January there were five volcanic earthquakes with magnitudes of 1.6-2.5; the Taal Volcano network (which can detect smaller events not detectable by the PSN) recorded 448 volcanic earthquakes, including 17 low-frequency events. PHIVOLCS stated that by 21 January hybrid earthquakes had ceased and both the number and magnitude of low-frequency events had diminished.

Geologic Background. Taal is one of the most active volcanoes in the Philippines and has produced some of its most powerful historical eruptions. Though not topographically prominent, its prehistorical eruptions have greatly changed the landscape of SW Luzon. The 15 x 20 km Talisay (Taal) caldera is largely filled by Lake Taal, whose 267 km2 surface lies only 3 m above sea level. The maximum depth of the lake is 160 m, and several eruptive centers lie submerged beneath the lake. The 5-km-wide Volcano Island in north-central Lake Taal is the location of all historical eruptions. The island is composed of coalescing small stratovolcanoes, tuff rings, and scoria cones that have grown about 25% in area during historical time. Powerful pyroclastic flows and surges from historical eruptions have caused many fatalities.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, University of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph/); Disaster Response Operations Monitoring and Information Center (DROMIC) (URL: https://dromic.dswd.gov.ph/); United Nations Office for the Coordination of Humanitarian Affairs, Philippines (URL: https://www.unocha.org/philippines); James Reynolds, Earth Uncut TV (Twitter: @EarthUncutTV, URL: https://www.earthuncut.tv/, YouTube: https://www.youtube.com/user/TyphoonHunter); Chris Vagasky, Vaisala Inc., Louisville, Colorado, USA (URL: https://www.vaisala.com/en?type=1, Twitter: @COweatherman, URL: https://twitter.com/COweatherman); Earth Observatory of Singapore, Nanyang Technological University, 50 Nanyang Avenue, Singapore (URL: https://www.earthobservatory.sg/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Relief Web, Flash Update No. 1 - Philippines: Taal Volcano eruption (As of 13 January 2020, 2 p.m. local time) (URL: https://reliefweb.int/report/philippines/flash-update-no-1-philippines-taal-volcano-eruption-13-january-2020-2-pm-local); Bloomberg, Philippines Braces for Hazardous Volcano Eruption (URL: https://www.bloomberg.com/news/articles/2020-01-12/philippines-raises-alert-level-in-taal-as-volcano-spews-ash); National Public Radio (NPR), Volcanic Eruption In Philippines Causes Thousands To Flee (URL: npr.org/2020/01/13/795815351/volcanic-eruption-in-philippines-causes-thousands-to-flee); Reuters (http://www.reuters.com/); Agence France-Presse (URL: http://www.afp.com/); Pacific Press (URL: http://www.pacificpress.com/); Shutterstock (URL: https://www.shutterstock.com/); Getty Images (URL: http://www.gettyimages.com/); Google Earth (URL: https://www.google.com/earth/).


Unnamed (Tonga) — March 2020 Citation iconCite this Report

Unnamed

Tonga

18.325°S, 174.365°W; summit elev. -40 m

All times are local (unless otherwise noted)


Additional details and pumice raft drift maps from the August 2019 submarine eruption

In the northern Tonga region, approximately 80 km NW of Vava’u, large areas of floating pumice, termed rafts, were observed starting as early as 7 August 2019. The area of these andesitic pumice rafts was initially 195 km2 with the layers measuring 15-30 cm thick and were produced 200 m below sea level (Jutzeler et al. 2020). The previous report (BGVN 44:11) described the morphology of the clasts and the rafts, and their general westward path from 9 August to 9 October 2019, with the first sighting occurring on 9 August NW of Vava’u in Tonga. This report updates details regarding the submarine pumice raft eruption in early August 2019 using new observations and data from Brandl et al. (2019) and Jutzeler et al. (2020).

The NoToVE-2004 (Northern Tonga Vents Expedition) research cruise on the RV Southern Surveyor (SS11/2004) from the Australian CSIRO Marine National Facility traveled to the northern Tonga Arc and discovered several submarine basalt-to-rhyolite volcanic centers (Arculus, 2004). One of these volcanic centers 50 km NW of Vava’u was the unnamed seamount (volcano number 243091) that had erupted in 2001 and again in 2019, unofficially designated “Volcano F” for reference purposes by Arculus (2004) and also used by Brandl et al. (2019). It is a volcanic complex that rises more than 1 km from the seafloor with a central 6 x 8.7 km caldera and a volcanic apron measuring over 50 km in diameter (figures 19 and 20). Arculus (2004) described some of the dredged material as “fresh, black, plagioclase-bearing lava with well-formed, glassy crusts up to 2cm thick” from cones by the eastern wall of the caldera; a number of apparent flows, lava or debris, were observed draping over the northern wall of the caldera.

Figure (see Caption) Figure 19. Visualization of the unnamed submarine Tongan volcano (marked “Volcano F”) using bathymetric data to show the site of the 6-8 August 2020 eruption and the rest of the cone complex. Courtesy of Philipp Brandl via GEOMAR.
Figure (see Caption) Figure 20. Map of the unnamed submarine Tongan volcano using satellite imagery, bathymetric data, with shading from the NW. The yellow circle indicates the location of the August 2019 activity. Young volcanic cones are marked “C” and those with pit craters at the top are marked with “P.” Courtesy of Brandl et al. (2019).

The International Seismological Centre (ISC) Preliminary Bulletin listed a particularly strong (5.7 Mw) earthquake at 2201 local time on 5 August, 15 km SSW of the volcano at a depth of 10 km (Brandl et al. 2019). This event was followed by six slightly lower magnitude earthquakes over the next two days.

Sentinel-2 satellite imagery showed two concentric rings originating from a point source (18.307°S 174.395°W) on 6 August (figure 21), which could be interpreted as small weak submarine plumes or possibly a series of small volcanic cones, according to Brandl et al. (2019). The larger ring is about 1.2 km in diameter and the smaller one measures 250 m. By 8 August volcanic activity had decreased, but the pumice rafts that were produced remained visible through at least early October (BGVN 44:11). Brandl et al. (2019) states that, due to the lack of continued observed activity rising from this location, the eruption was likely a 2-day-long event during 6-8 August.

Figure (see Caption) Figure 21. Sentinel-2 satellite image of possible gas/vapor emissions (streaks) on 6 August 2019 drifting NW, which is the interpreted site for the unnamed Tongan seamount. The larger ring is about 1.2 km in diameter and the smaller one measures 250 m. Image using False Color (urban) rendering (bands 12, 11, 4); courtesy of Sentinel Hub Playground.

The pumice was first observed on 9 August occurred up to 56 km from the point of origin, according to Jutzeler et al. (2020). By calculating the velocity (14 km/day) of the raft using three satellites, Jutzeler et al. (2020) determined the pumice was erupted immediately after the satellite image of the submarine plumes on 6 August (UTC time). Minor activity at the vent may have continued on 8 and 11 August (UTC time) with pale blue-green water discoloration (figure 22) and a small (less than 1 km2) diffuse pumice raft 2-5 km from the vent.

Figure (see Caption) Figure 22. Sentinel-2 satellite image of the last visible activity occurring W of the unnamed submarine Tongan volcano on 8 August 2019, represented by slightly discolored blue-green water. Image using Natural Color rendering (bands 4, 3, 2) and enhanced with color correction; courtesy of Sentinel Hub Playground.

Continuous observations using various satellite data and observations aboard the catamaran ROAM tracked the movement and extent of the pumice raft that was produced during the submarine eruption in early August (figure 23). The first visible pumice raft was observed on 8 August 2019, covering more than 136.7 km2 between the volcanic islands of Fonualei and Late and drifting W for 60 km until 9 August (Brandl et al. 2019; Jutzeler 2020). The next day, the raft increased to 167.2-195 km2 while drifting SW for 74 km until 14 August. Over the next three days (10-12 August) the size of the raft briefly decreased in size to less than 100 km2 before increasing again to 157.4 km2 on 14 August; at least nine individual rafts were mapped and identified on satellite imagery (Brandl et al. 2019). On 15 August sailing vessels observed a large pumice raft about 75 km W of Late Island (see details in BGVN 44:11), which was the same one as seen in satellite imagery on 8 August.

Figure (see Caption) Figure 23. Map of the extent of discolored water and the pumice raft from the unnamed submarine Tongan volcano between 8 and 14 August 2019 using imagery from NASA’s MODIS, ESA’s Sentinel-2 satellite, and observations from aboard the catamaran ROAM (BGVN 44:11). Back-tracing the path of the pumice raft points to a source location at the unnamed submarine Tongan volcano. Courtesy of Brandl et al. (2019).

By 17 August high-resolution satellite images showed an area of large and small rafts measuring 222 km2 and were found within a field of smaller rafts for a total extent of 1,350 km2, which drifted 73 km NNW through 22 August before moving counterclockwise for three days (figure f; Jutzeler et al., 2020). Small pumice ribbons encountered the Oneata Lagoon on 30 August, the first island that the raft came into contact (Jutzeler et al. 2020). By 2 September, the main raft intersected with Lakeba Island (460 km from the source) (figure 24), breaking into smaller ribbons that started to drift W on 8 September. On 19 September the small rafts (less than 100 m x less than 2 km) entered the strait between Viti Levu and Vanua Levu, the two main islands of Fiji, while most of the others were stranded 60 km W in the Yasawa Islands for more than two months (Jutzeler et al., 2020).

Figure (see Caption) Figure 24. Time-series map of the raft dispersal from the unnamed submarine Tongan volcano using multiple satellite images. A) Map showing the first days of the raft dispersal starting on 7 August 2019 and drifting SW from the vent (marked with a red triangle). Precursory seismicity that began on 5 August is marked with a white star. By 15-17 August the raft was entrained in an ocean loop or eddy. The dashed lines represent the path of the sailing vessels. B) Map of the raft dispersal using high-resolution Sentinel-2 and -3 imagery. Two dispersal trails (red and blue dashed lines) show the daily dispersal of two parts of the raft that were separated on 17 August 2019. Courtesy of Jutzeler et al. (2020).

References: Arculus, R J, SS2004/11 shipboard scientists, 2004. SS11/2004 Voyage Summary: NoToVE-2004 (Northern Tonga Vents Expedition): submarine hydrothermal plume activity and petrology of the northern Tofua Arc, Tonga. https://www.cmar.csiro.au/data/reporting/get file.cfm?eovpub id=901.

Brandl P A, Schmid F, Augustin N, Grevemeyer I, Arculus R J, Devey C W, Petersen S, Stewart M , Kopp K, Hannington M D, 2019. The 6-8 Aug 2019 eruption of ‘Volcano F’ in the Tofua Arc, Tonga. Journal of Volcanology and Geothermal Research: https://doi.org/10.1016/j.jvolgeores.2019.106695

Jutzeler M, Marsh R, van Sebille E, Mittal T, Carey R, Fauria K, Manga M, McPhie J, 2020. Ongoing Dispersal of the 7 August 2019 Pumice Raft From the Tonga Arc in the Southwestern Pacific Ocean. AGU Geophysical Research Letters: https://doi.orh/10.1029/2019GL086768.

Geologic Background. A submarine volcano along the Tofua volcanic arc was first observed in September 2001. The newly discovered volcano lies NW of the island of Vava'u about 35 km S of Fonualei and 60 km NE of Late volcano. The site of the eruption is along a NNE-SSW-trending submarine plateau with an approximate bathymetric depth of 300 m. T-phase waves were recorded on 27-28 September 2001, and on the 27th local fishermen observed an ash-rich eruption column that rose above the sea surface. No eruptive activity was reported after the 28th, but water discoloration was documented during the following month. In early November rafts and strandings of dacitic pumice were reported along the coast of Kadavu and Viti Levu in the Fiji Islands. The depth of the summit of the submarine cone following the eruption determined to be 40 m during a 2007 survey; the crater of the 2001 eruption was breached to the E.

Information Contacts: Jan Steffen, Communication and Media, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany; Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Klyuchevskoy (Russia) — June 2020 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Strombolian activity November 2019 through May 2020; lava flow down the SE flank in April

Klyuchevskoy is part of the Klyuchevskaya volcanic group in northern Kamchatka and is one of the most frequently active volcanoes of the region. Eruptions produce lava flows, ashfall, and lahars originating from summit and flank activity. This report summarizes activity during October 2019 through May 2020, and is based on reports by the Kamchatkan Volcanic Eruption Response Team (KVERT) and satellite data.

There were no activity reports from 1 to 22 October, but gas emissions were visible in satellite images. At 1020 on 24 October (2220 on 23 October UTC) KVERT noted that there was a small ash component in the ash plume from erosion of the conduit, with the plume reaching 130 km ENE. The Aviation Colour Code was raised from Green to Yellow, then to Orange the following day. An ash plume continued on the 25th to 5-7 km altitude and extending 15 km SE and 70 km SW and reached 30 km ESE on the 26th. Similar activity continued through to the end of the month.

Moderate gas emissions continued during 1-19 November, but the summit was obscured by clouds. Strong nighttime incandescence was visible at the crater during the 10-11 November and thermal anomalies were detected on 8 and 10-13 November. Explosions produced ash plumes up to 6 km altitude on the 20-21st and Strombolian activity was reported during 20-22 November. Degassing continued from 23 November through 12 December, and a thermal anomaly was visible on the days when the summit was not covered by clouds. An ash plume was reported moving to the NW on the 13th, and degassing with a thermal anomaly and intermittent Strombolian activity then resumed, continuing through to the end of December with an ash plume reported on the 30th.

Gas-and-steam plumes continued into January 2020 with incandescence noted when the summit was clear (figure 33). Strombolian activity was reported again starting on the 3rd. A weak ash plume produced on the 6th extended 55 km E, and on the 21st an ash plume reached 5-5.5 km altitude and extended 190 km NE (figure 34). Another ash plume the next day rose to the same altitude and extended 388 km NE. During 23-29 Strombolian activity continued, and Vulcanian activity produced ash plumes up to 5.5 altitude, extending to 282 km E on the 30th, and 145 km E on the 31st.

Figure (see Caption) Figure 33. Incandescence and degassing were visible at Klyuchevskoy through January 2020, seen here on the 11th. Courtesy of KVERT.
Figure (see Caption) Figure 34. A low ash plume at Klyuchevskoy on 21 January 2020 extended 190 km NE. Courtesy of KVERT.

Strombolian activity continued throughout February with occasional explosions producing ash plumes up to 5.5 km altitude, as well as gas-and-steam plumes and a persistent thermal anomaly with incandescence visible at night. Starting in late February thermal anomalies were detected much more frequently, and with higher energy output compared to the previous year (figure 35). A lava fountain was reported on 1 March with the material falling back into the summit crater. Strombolian activity continued through early March. Lava fountaining was reported again on the 8th with ejecta landing in the crater and down the flanks (figure 36). A strong persistent gas-and-steam plume containing some ash continued along with Strombolian activity through 25 March (figure 37), with Vulcanian activity noted on the 20th and 25th. Strombolian and Vulcanian activity was reported through the end of March.

Figure (see Caption) Figure 35. This MIROVA thermal energy plot for Klyuchevskoy for the year ending 29 April 2020 (log radiative power) shows intermittent thermal anomalies leading up to more sustained energy detected from February through March, then steadily increasing energy through April 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 36. Strombolian explosions at Klyuchevskoy eject incandescent ash and gas, and blocks and bombs onto the upper flanks on 8 and 10 March 2020. Courtesy of IVS FEB RAS, KVERT.
Figure (see Caption) Figure 37. Weak ash emission from the Klyuchevskoy summit crater are dispersed by wind on 19 and 29 March 2020, with ash depositing on the flanks. Courtesy of IVS FEB RAS, KVERT.

Activity was dominantly Strombolian during 1-5 April and included intermittent Vulcanian explosions from the 6th onwards, with ash plumes reaching 6 km altitude. On 18 April a lava flow began moving down the SE flank (figures 38). A report on the 26th reported explosions from lava-water interactions with avalanches from the active lava flow, which continued to move down the SE flank and into the Apakhonchich chute (figures 39 and 40). This continued throughout April and May with sustained Strombolian and intermittent Vulcanian activity at the summit (figures 41 and 42).

Figure (see Caption) Figure 38. Strombolian activity produced ash plumes and a lava flow down the SE flank of Klyuchevskoy on 18 April 2020. Courtesy of IVS FEB RAS, KVERT.
Figure (see Caption) Figure 39. A lava flow descends the SW flank of Klyuchevskoy and a gas plume is dispersed by winds on 21 April 2020. Courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.
Figure (see Caption) Figure 40. Sentinel-2 thermal satellite images show the progression of the Klyuchevskoy lava flow from the summit crater down the SE flank from 19-29 April 2020. Associated gas plumes are dispersed in various directions. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 41. Strombolian activity at Klyuchevskoy ejects incandescent ejecta, gas, and ash above the summit on 27 April 2020. Courtesy of D. Bud'kov, IVS FEB RAS, KVERT.
Figure (see Caption) Figure 42. Sentinel-2 thermal satellite images of Klyuchevskoy show the progression of the SE flank lava flow through May 2020, with associated gas plumes being dispersed in multiple directions. Courtesy of Sentinel Hub Playground.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nyamuragira (DR Congo) — June 2020 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Intermittent thermal anomalies within the summit crater during December 2019-May 2020

Nyamuragira (also known as Nyamulagira) is located in the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo and consists of a lava lake that reappeared in the summit crater in mid-April 2018. Volcanism has been characterized by lava emissions, thermal anomalies, seismicity, and gas-and-steam emissions. This report summarizes activity during December 2019 through May 2020 using information from monthly reports by the Observatoire Volcanologique de Goma (OVG) and satellite data.

According to OVG, intermittent eruptive activity was detected in the lava lake of the central crater during December 2019 and January-April 2020, which also resulted in few seismic events. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows thermal anomalies within the summit crater that varied in both frequency and power between August 2019 and mid-March 2020, but very few were recorded afterward through late May (figure 88). Thermal hotspots identified by MODVOLC from 15 December 2019 through March 2020 were mainly located in the active central crater, with only three hotspots just outside the SW crater rim (figure 89). Sentinel-2 thermal satellite imagery also showed activity within the summit crater during January-May 2020, but by mid-March the thermal anomaly had visibly decreased in power (figure 90).

Figure (see Caption) Figure 88. The MIROVA graph of thermal activity (log radiative power) at Nyamuragira during 27 July through May 2020 shows variably strong, intermittent thermal anomalies with a variation in power and frequency from August 2019 to mid-March 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 89. Map showing the number of MODVOLC hotspot pixels at Nyamuragira from 1 December 2019 t0 31 May 2020. 37 pixels were registered within the summit crater while 3 were detected just outside the SW crater rim. Courtesy of HIGP-MODVOLC Thermal Alerts System.
Figure (see Caption) Figure 90. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed ongoing thermal activity (bright yellow-orange) at Nyamuragira from February into April 2020. The strength of the thermal anomaly in the summit crater decreased by late March 2020, but was still visible. Courtesy of Sentinel Hub Playground.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Information contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/exp.


Nyiragongo (DR Congo) — June 2020 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Activity in the lava lake and small eruptive cone persists during December 2019-May 2020

Nyiragongo is located in the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo, part of the western branch of the East African Rift System and contains a 1.2 km-wide summit crater with a lava lake that has been active since at least 1971. Volcanism has been characterized by strong and frequent thermal anomalies, incandescence, gas-and-steam emissions, and seismicity. This report summarizes activity during December 2019 through May 2020 using information from monthly reports by the Observatoire Volcanologique de Goma (OVG) and satellite data.

In the December 2019 monthly report, OVG stated that the level of the lava lake had increased. This level of the lava lake was maintained for the duration of the reporting period, according to later OVG monthly reports. Seismicity increased starting in November 2019 and was detected in the NE part of the crater, but it decreased by mid-April 2020. SO2 emissions increased in January 2020 to roughly 7,000 tons/day but decreased again near the end of the month. OVG reported that SO2 emissions rose again in February to roughly 8,500 tons/day before declining to about 6,000 tons/day. Unlike in the previous report (BGVN 44:12), incandescence was visible during the day in the active lava lake and activity at the small eruptive cone within the 1.2-km-wide summit crater has since increased, consisting of incandescence and some lava fountaining (figure 72). A field survey was conducted on 3-4 March where an OVG team observed active lava fountains and ejecta that produced Pele’s hair from the small eruptive cone (figure 73). During this survey, OVG reported that the level of the lava lake had reached the second terrace, which was formed on 17 January 2002 and represents remnants of the lava lake at different eruption stages. There, the open surface lava lake was observed; gas-and-steam emissions accompanied both the active lava lake and the small eruptive cone (figures 72 and 73).

Figure (see Caption) Figure 72. Webcam image of Nyiragongo in February 2020 showing an open lava lake surface and incandescence from the active crater cone within the 1.2 km-wide summit crater visible during the day, accompanied by white gas-and-steam emissions. Courtesy of OVG (Rapport OVG February 2020).
Figure (see Caption) Figure 73. Webcam image of Nyiragongo on 4 March 2020 showing an open lava lake surface and incandescence from the active crater cone within the 1.2 km-wide summit crater visible during the day, accompanied by white gas-and-steam emissions. Courtesy of OVG (Rapport OVG Mars 2020).

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data continued to show frequent strong thermal anomalies within 5 km of the summit crater through May 2020 (figure 74). Similarly, the MODVOLC algorithm reported multiple thermal hotspots almost daily within the summit crater between December 2019 and May 2020. These thermal signatures were also observed in Sentinel-2 thermal satellite imagery within the summit crater (figure 75).

Figure (see Caption) Figure 74. Thermal anomalies at Nyiragongo from 27 July through May 2020 as recorded by the MIROVA system (Log Radiative Power) were frequent and strong. Courtesy of MIROVA.
Figure (see Caption) Figure 75. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) showed ongoing thermal activity (bright yellow-orange) in the summit crater at Nyiragongo during January through April 2020. Courtesy of Sentinel Hub Playground.

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kavachi (Solomon Islands) — May 2020 Citation iconCite this Report

Kavachi

Solomon Islands

8.991°S, 157.979°E; summit elev. -20 m

All times are local (unless otherwise noted)


Discolored water plumes seen using satellite imagery in 2018 and 2020

Kavachi is a submarine volcano located in the Solomon Islands south of Gatokae and Vangunu islands. Volcanism is frequently active, but rarely observed. The most recent eruptions took place during 2014, which consisted of an ash eruption, and during 2016, which included phreatomagmatic explosions (BGVN 42:03). This reporting period covers December 2016-April 2020 primarily using satellite data.

Activity at Kavachi is often only observed through satellite images, and frequently consists of discolored submarine plumes for which the cause is uncertain. On 1 January 2018 a slight yellow discoloration in the water is seen extending to the E from a specific point (figure 20). Similar faint plumes were observed on 16 January, 25 February, 2 March, 26 April, 6 May, and 25 June 2018. No similar water discoloration was noted during 2019, though clouds may have obscured views.

Figure (see Caption) Figure 20. Satellite images from Sentinel-2 revealed intermittent faint water discoloration (yellow) at Kavachi during the first half of 2018, as seen here on 1 January (top left), 25 February (top right), 26 April (bottom left), and 25 June (bottom right). Images with “Natural color” rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Activity resumed in 2020, showing more discolored water in satellite imagery. The first instance occurred on 16 March, where a distinct plume extended from a specific point to the SE. On 25 April a satellite image showed a larger discolored plume in the water that spread over about 30 km2, encompassing the area around Kavachi (figure 21). Another image on 30 April showed a thin ribbon of discolored water extending about 50 km W of the vent.

Figure (see Caption) Figure 21. Sentinel-2 satellite images of a discolored plume (yellow) at Kavachi beginning on 16 March (top left) with a significant large plume on 25 April (right), which remained until 30 April (bottom left). Images with “Natural color” rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Geologic Background. Named for a sea-god of the Gatokae and Vangunu peoples, Kavachi is one of the most active submarine volcanoes in the SW Pacific, located in the Solomon Islands south of Vangunu Island. Sometimes referred to as Rejo te Kvachi ("Kavachi's Oven"), this shallow submarine basaltic-to-andesitic volcano has produced ephemeral islands up to 1 km long many times since its first recorded eruption during 1939. Residents of the nearby islands of Vanguna and Nggatokae (Gatokae) reported "fire on the water" prior to 1939, a possible reference to earlier eruptions. The roughly conical edifice rises from water depths of 1.1-1.2 km on the north and greater depths to the SE. Frequent shallow submarine and occasional subaerial eruptions produce phreatomagmatic explosions that eject steam, ash, and incandescent bombs. On a number of occasions lava flows were observed on the ephemeral islands.

Information Contacts: Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kuchinoerabujima (Japan) — May 2020 Citation iconCite this Report

Kuchinoerabujima

Japan

30.443°N, 130.217°E; summit elev. 657 m

All times are local (unless otherwise noted)


Eruption and ash plumes begin on 11 January 2020 and continue through April 2020

Kuchinoerabujima encompasses a group of young stratovolcanoes located in the northern Ryukyu Islands. All historical eruptions have originated from the Shindake cone, with the exception of a lava flow that originated from the S flank of the Furudake cone. The most recent previous eruptive period took place during October 2018-February 2019 and primarily consisted of weak explosions, ash plumes, and ashfall. The current eruption began on 11 January 2020 after nearly a year of dominantly gas-and-steam emissions. Volcanism for this reporting period from March 2019 to April 2020 included explosions, ash plumes, SO2 emissions, and ashfall. The primary source of information for this report comes from monthly and annual reports from the Japan Meteorological Agency (JMA) and advisories from the Tokyo Volcanic Ash Advisory Center (VAAC). Activity has been limited to Kuchinoerabujima's Shindake Crater.

Volcanism at Kuchinoerabujima was relatively low during March through December 2019, according to JMA. During this time, SO2 emissions ranged from 100 to 1,000 tons/day. Gas-and-steam emissions were frequently observed throughout the entire reporting period, rising to a maximum height of 1.1 km above the crater on 13 December 2019. Satellite imagery from Sentinel-2 showed gas-and-steam and occasional ash emissions rising from the Shindake crater throughout the reporting period (figure 7). Though JMA reported thermal anomalies occurring on 29 January and continuing through late April 2020, Sentinel-2 imagery shows the first thermal signature appearing on 26 April.

Figure (see Caption) Figure 7. Sentinel-2 thermal satellite images showed gas-and-steam and ash emissions rising from Kuchinoerabujima. Some ash deposits can be seen on 6 February 2020 (top right). A thermal anomaly appeared on 26 April 2020 (bottom right). Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

An eruption on 11 January 2020 at 1505 ejected material 300 m from the crater and produced ash plumes that rose 2 km above the crater rim, extending E, according to JMA. The eruption continued through 12 January until 0730. The resulting ash plumes rose 400 m above the crater, drifting SW while the SO2 emissions measured 1,300 tons/day. Ashfall was reported on Yakushima Island (15 km E). Minor eruptive activity was reported during 17-20 January which produced gray-white plumes that rose 300-500 m above the crater. On 23 January, seismicity increased, and an eruption produced an ash plume that rose 1.2 km altitude, according to a Tokyo VAAC report, resulting in ashfall 2 km NE of the crater. A small explosion was detected on 24 January, followed by an increase in the number of earthquakes during 25-26 January (65-71 earthquakes per day were registered). Another small eruptive event detected on 27 January at 0148 was accompanied by a volcanic tremor and a change in tilt data. During the month of January, some inflation was detected at the base on the volcano and a total of 347 earthquakes were recorded. The SO2 emissions ranged from 200-1,600 tons/day.

An eruption on 1 February 2020 produced an eruption column that rose less than 1 km altitude and extended SE and SW (figure 8), according to the Tokyo VAAC report. On 3 February, an eruption from the Shindake crater at 0521 produced an ash plume that rose 7 km above the crater and ejected material as far as 600 m away. As a result, a pyroclastic flow formed, traveling 900-1,500 m SW. The previous pyroclastic flow that was recorded occurred on 29 January 2019. Ashfall was confirmed in the N part of Yakushima Island with a large amount in Miyanoura (32 km ESE) and southern Tanegashima. The SO2 emissions measured 1,700 tons/day during this event.

Figure (see Caption) Figure 8. Webcam images from the Honmura west surveillance camera of an ash plume rising from Kuchinoerabujima on 1 February 2020. Courtesy of JMA (Weekly bulletin report 509, February 2020).

Intermittent small eruptive events occurred during 5-9 February; field observations showed a large amount of ashfall on the SE flank which included lapilli that measured up to 2 cm in diameter. Additionally, thermal images showed 5-km-long pyroclastic flow deposits on the SW flank. An eruption on 9 February produced an ash plume that rose 1.2 km altitude, drifting SE. On 13 February a small eruption was detected in the Shindake crater at 1211, producing gray-white plumes that rose 300 m above the crater, drifting NE. Small eruptive events also occurred during 20-21 February, resulting in gas-and-steam emissions that rose 200 m above the crater. During the month of February, some horizontal extension was observed since January 2020 using GNSS data. The total number of earthquakes during this month drastically increased to 1225 compared to January. The SO2 emissions ranged from 300-1,700 tons/day.

By 2 March 2020, seismicity decreased, and activity declined. Gas-and-steam emissions continued infrequently for the duration of the reporting period. The SO2 emissions during March ranged from 700-2,100 tons/day, the latter of which occurred on 15 March. Seismicity increased again on 27 March. During 5-8 April 2020, small eruptive events were detected, generating ash plumes that rose 900 m above the crater (figure 9). The SO2 emissions on 6 April reached 3,200 tons/day, the maximum measurement for this reporting period. These small eruptive events continued from 13-20 and 23-25 April within the Shindake crater, producing gray-white plumes that rose 300-800 m above the crater.

Figure (see Caption) Figure 9. Webcam images from the Honmura Nishi (top) and Honmura west (bottom) surveillance cameras of ash plumes rising from Kuchinoerabujima on 6 March and 5 April 2020. Courtesy of JMA (Weekly bulletin report 509, March and April 2020).

Geologic Background. A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. All historical eruptions have occurred from Shindake, although a lava flow from the S flank of Furudake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shindake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 27, Number 03 (March 2002)

Managing Editor: Richard Wunderman

Etna (Italy)

Overview of Etna's much-photographed July-August 2001 flank eruption

Fuego (Guatemala)

Costly 1999 aircraft-ash encounters due to ash plumes

Karymsky (Russia)

Elevated seismicity; possible explosions and avalanches in March 2002

Kilauea (United States)

Lava stops entering sea during January, tilting in late March-April 2002

Manam (Papua New Guinea)

Mild eruptions during January-February 2002

Miyakejima (Japan)

Eruptive activity decreases; high SO2 flux through April 2002

Nyiragongo (DR Congo)

Report of field work; MODIS imagery from January 2002 eruption

Pacaya (Guatemala)

Costly 1999 aircraft-ash encounters due to ash plumes

Rabaul (Papua New Guinea)

M 5.6 earthquakes during March 2002 not related to volcanism

Sheveluch (Russia)

Growing dome, greater seismicity, and plumes to 10 km in early 2002

Ulawun (Papua New Guinea)

Isolated tremor episodes and slow deflation through March 2002



Etna (Italy) — March 2002 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Overview of Etna's much-photographed July-August 2001 flank eruption

The last flank eruption at Etna occurred in 1993, but eruptive activity has been nearly continuous in the summit area since late July 1995. Unusually vigorous eruptions in early June 2001 (BGVN 26:08) were followed by still more energetic behavior. An earthquake swarm took place in mid-July, and large SSE-flank eruptions vented lavas in late July and early August on a scale not seen since 1983 (BGVN 26:09). Though this activity has been reported in previous Bulletin reports, what follows is a more detailed description of the summer 2001 activity.

Precursory phases. During the first half of 2001 most activity occurred at the Southeast Crater (SEC), starting with very slow lava extrusion from a vent on the NNE flank of its cone in late January. During the next three months the lava emission rate progressively increased and, in late April, weak ejections of lava fragments began to build small spatter cones (also known as hornitos) in the vent area. Strombolian activity resumed at the SEC's summit vent on 7 May, followed by an episode of vigorous Strombolian activity and lava fountaining two days later.

The activity then returned to lower levels, but for the next two months the SEC was the site of very picturesque continuous and persistent activity, with mild, discontinuous Strombolian explosions from the summit vent and vigorous lava emission (at times accompanied by lava spattering) from vent(s) on the NNE flank. At this spot, a large, steep-sided cone consisting of overlapping lava flows and spatter began to grow, and it was informally named "Levantino." From Levantino (figure 93, upper part), lava flowed NE (toward the Valle del Leone), E, and SE (toward the Valle del Bove), forming a composite lava field with numerous overlapping flow lobes. The longest flows extended up to 2 km from the vent(s). From late May to early June the continuous and relatively harmless activity attracted many visitors.

Figure (see Caption) Figure 93. Inset map (upper left) and sketch map showing Etna's July-August 2001 lava flows, fissures, and related features. The 1983 lava flow-field on the S flank (lighter shading) is shown for comparison. The legend is also linked to numbers near the vents and fissures, as a way to indicate the sequence of activity. The pattern of activity lacked a simple spatial progression. For the time citations, note that the eruption occurred during daylight saving time (UTC + 2 hours). The sketch map is preliminary; it is a composite based on both fieldwork by Behnke and others, and already available maps appearing on the web, including those on the site of INGV-Sezione di Catania. Courtesy of Boris Behnke and Marco Neri, INGV.

The prelude to the main eruption began in early June, with the first strong phase on 7 June, which was mostly confined to lava fountaining at the Levantino, whereas only mild Strombolian activity occurred at the SEC summit vent. During the following six weeks the vigor of the eruptive episodes gradually increased and at times culminated in true lava fountaining from the summit vent. Fourteen such episodes occurred between 7 June and 13 July (7, 9, 11, 13, 15, 17, 19, 22, 24, 27-28 and 30 June; 4, 7 and 13 July), ending with the most violent outburst of the series. Immediately after its cessation, vigorous seismicity began, including shocks that were felt as far as the cities of Acireale and Catania (figure 93 index map).

Between the early mornings of 13 and 17 July, about 2,600 tremors, mostly unfelt, were recorded instrumentally. During this same time interval, severe ground cracking and faulting occurred in various places on the W rim of the Valle del Bove and near the "Cisternazza" pit crater on the Piano del Lago ("PDL," figure 3), a flat area at ~2,500 m elevation to the N of the Montagnola. Press sources cited local volcanologists saying that magma was rising through a dike and stagnating about 1 km below the surface. Steaming was observed at some of the new fractures, but as of the late evening of 16 July no magma had reached the surface. Seismicity continued at a slightly decreased rate.

Shortly after midnight on 17 July, yet another paroxysmal episode occurred at the SEC. This was similar to its 13 July predecessor, with vigorous lava fountaining from the summit vent and the Levantino. It was the last event that could be considered part of the prelude to the main eruption. Figure 93 shows a sketch map of the lava flows that ultimately resulted from the July-August 2001 eruption. The inset at upper left shows the 2001 lavas and locations of various towns on Etna's S, SE, and E flanks.

Eruption of 17 July-9 August 2001. As defined here, the main eruption lasted nearly 24 days, from early 17 July to late 9 August 2001. It began a few hours after the last paroxysmal eruptive episode at the SEC.

An eruptive fissure opened at about 0700 on 17 July at the SSE base of the SEC at ~ 2,950 m elevation (point 1 on figure 93). Vigorous lava spattering occurred at a number of vents, while lava flows advanced toward SE, in the direction of the Valle del Bove rim. Several hours later, at 2200, another fissure opened at an elevation of ~ 2,700 m (point 2 on figure 93), a bit to the W of a panoramic point on the W rim of the Valle del Bove known as "Belvedere," and lava began to extend S from there, across the Piano del Lago, and in the direction of the cable car and ski lifts (shown by the vertical dotted line just beneath PDL on figure 93).

At 0120 on 18 July, a third eruptive fissure became active on the S flank of the Montagnola at ~ 2,100 m elevation, slightly uphill of the Monti Calcarazzi (point 3 on figure 93). Activity at this fissure was initially weak, and a sluggish lava flow began to move from the lower end of the fissure toward the Monte Silvestri superiore, a large complex cinder cone formed in 1892. During the day, the activity gradually increased; lava flowed around the W side of the Monte Silvestri, crossed the road (which connected the Rifugio Sapienza-cable car area with the town of Zafferana) and passed close to buildings. By late evening on 18 July the flow front was at 1,800 m elevation. On 19 July, the lava flow fed by the vents at 2,100 m elevation continued to pass between numerous older cinder cones along the E margin of the 1983 lava flow-field. At the same time eruptive activity continued unabated at all eruptive fissures.

On the evening of 19 July at about 1900, a new vent opened on the Piano del Lago at ~2,570 m elevation, ~ 500 m N of the Montagnola (point 4 on figure 93; "Montagnola 2", "Monte del Lago" or "Cono del Laghetto", unfortunately, all three names are in common usage). The activity was characterized by violent phreatomagmatic explosions that produced a black, ash-laden column and ejected large blocks of older volcanic rocks. This phreatomagmatic activity might have been the result of magma-water interactions with shallow ground water. (The name, Piano del Lago, the "plain of the lake," derives from the fact that frequently during the spring snow-melt a small meltwater lake had formed in that area.) To observers familiar with footage of the 1963 Surtsey (Iceland) eruption, the steam-and-ash columns rising from the new vent appeared strikingly similar. After nightfall spectacular lightning flashed through the plume and ash fell over inhabited areas including the NE, E, SE, and S flanks. Close observation of the vent at 2,570 m elevation revealed a simple, though constantly eroding, pit. Rumors spread that the pit would eventually "make the Montagnola cave in;" however, it remained intact.

The front of the lava flow emitted at 2,100 m elevation (point 3 on figure 93) was at 1,350 m late on the evening of 19 July. It still advanced vigorously, though at reduced speed (~45 m/hour). Soon after, authorities declared a state of emergency.

By the evening of 20 July the front of the lava flow had reached 1,220 m elevation, but it had slowed in a gently sloping area. Nonetheless, the threat to Nicolosi had become international news. The main risk now came from forest and bush fires. Helicopters began to drop large quantities of water onto the burning forest (not onto the lava flow, as was widely reported). Fortunately, no fires broke out. By late 21 July the lava flow's front had reached 1,050 m elevation.

During the night of 19-20 July, the SEC reactivated, and lava began to issue from the NNE side of the Levantino, forming a small flow that advanced in the direction of the Valle del Bove.

At about 1100 on 21 July, yet another eruptive fissure formed (point 5 on figure 93). It emerged on the NE flank, far away from the earlier fissures (below the Pizzi Deneri on the floor of the Valle del Leone). Figure 93 portrays the impressive arcuate fracture system that developed. The lava first issued from the fissure's uppermost portion at ~ 2,700 m elevation, then from its eastern extension ~50 m further downslope. A fracture system formed between this northeasternmost fissure and the E side of the summit crater area, and fissures up to 1 m wide opened on the slope between the Bocca Nuova and the SEC, and began emitting dense vapor plumes.

The large pit crater on the Piano del Lago at 2,570 m elevation continued to produce dense, ash-laden plumes. In late July ash fell over the area between Zafferana and Acireale (inset, figure 93).

On 21 July, the eruption continued with unabated vigor at all eruptive fissures. Late that day, the lava from the vents at 2,700 m had not further advanced on the steep slope above the tourist complex of the Rifugio Sapienza area (shown as Rif. Sapienza, figure 93).

The next day, 22 July, a shift in the wind direction drove the dense ash plume produced by the phreatomagmatic vent at 2,570 m elevation directly over the Catania area, paralyzing the city's Fontanarossa International Airport, and dropping large amounts of fine, black, sand-sized tephra over streets and buildings. Eruptive activity continued without significant variations at all fissures, although the main lava flow directed toward Nicolosi had slowed significantly and advanced only a few meters per hour, still 4 km from the outskirts of the town. That evening, minor, though fast-moving lava tongues fed by the vents at 2,700 m elevation spilled down the steep slope above the tourist complex, destroying part of the ski lifts and threatening to overwhelm some of the poles of the cable car. However, none of these flows made it further than about halfway down that slope. Vigorous Strombolian activity continued at the fissure at 2,100 m elevation, and a cone about 20-30 m high had formed around the largest of its vents, while minor lava spattering from four vents in the lower part of the fissure was building a low-spatter rampart. The lava flow from this fissure moved as a single, broad unit (point 6 on figure 93). Throughout 23 July the activity showed little variation.

On 24 July it became clear that something was changing at the Piano del Lago crater, which until then had displayed only phreatomagmatic activity. Loud detonations came from the Piano del Lago vent on the morning of 25 July, as the activity there had now become purely magmatic.

A new cone was growing on the former Piano del Lago on 26 July produced near-continuous explosions accompanied by loud detonations that could be heard ten's of kilometers away. The cone received bombs ejected from at least three vents within it. Lava began flowing from vents on its S and N sides, spilling around the N and NW sides of the Montagnola and down the steep slope on the W side of that cone toward the Rifugio Sapienza. The new lava flow passed E of the lower cable car station, covered another portion of the road and advanced a few hundred meters further. Vigorous eruptive activity continued on 26 July at the eruptive fissure at 2,950 m elevation, while the fissure at 2,700 m elevation continued to emit lava but pyroclastic activity there had ended. Weak activity continued at the Valle del Leone fissure, with lava flowing toward Monte Simone (in the N part of the Valle del Bove), and the fissure at 2,100 m elevation showed no significant changes in its activity with respect to the previous days.

During 27-30 July the eruption produced some outstanding displays (figures 94 and 95) and caused the greatest impact on human structures. While the fissure in the Valle del Leone showed ever-lower levels of activity and the fissures at 2,900, 2,700, and 2,100 m elevation continued to erupt in a manner almost identical to the previous days, the Montagnola 2 cone and several nearby vents not only provided a show, but vents on its N and S flanks delivered vigorous lava flows that spilled down the steep slope to the W of the Montagnola in surges, presenting a continuous threat to the Rifugio Sapienza area.

Figure (see Caption) Figure 94. At Etna, a night view taken from high on the S flanks near Torre del Filosofo documenting the erupting vents at 2,700 m elevation (left) and a lava fountain at the Piano del Lago cone (right), probably taken on 30 July 2001. The camera was aimed SE. Lights of towns between Acireale and Giarre are visible in the background. Photo was published in the 1 August 2001 issue of the "La Sicilia" newspaper.
Figure (see Caption) Figure 95. Spectacular aerial view of the largest cone formed in Etna's eruption during July-August 2001, built on what used to be the "Piano del Lago" at ~ 2,500 m elevation on the S flank. View is to the SW. Most of the cone grew in a few days in late July; this photo shows the waning phase around 2 August when only ash was emitted. After the end of the activity the summit of the cone stood nearly 100 m higher than its base, but then partially collapsed leaving the cone ~ 80 m higher. To the left of the cone is the 1763 Montagnola crater. Between the two lies a fuming vent; it emitted one of the latest lava flows in the area (black ribbon extending to the left margin of the photo). Other lava flows that were emitted from vents at ~ 2,700 m elevation (out of the photo to the right) can be seen in the right foreground. Yet another lava lobe extends toward the lower left corner of the photo; it emerged at the E base of the Piano del Lago cone. Photograph by volcanologists of the INGV (National Institute of Geophysics and Volcanology); published on 6 August 2001 in the "La Sicilia" newspaper.

A lava flow from the southern base of the Piana del Lago cone on 27 July remained active for about 2 days (point 7 of figure 93). This cone produced three distinct lava flow units from three different vents on its SW, S, and NW sides; those from the SW vent were the most damaging. On the evening of 30 July, the eruption claimed the upper cable car station, which burst into flames as a tongue of lava invaded its interior. Behind it, the rapidly growing cone of the Piano del Lago sent its lava fountains hundreds of meters into the sky, producing ground-shaking detonations.

During late July, the rate of lava emission in the direction of the Rifugio Sapienza area diminished as a new vent opened on the S side of the Piano del Lago cone, from which a lava flow spilled over the crest of the Valle del Bove and flowed to the bottom of the Valle, covering a portion of lava erupted in 1991-1993. The Valle del Leone fissure ceased emitting lava. The Montagnola 2 had become a large cone. It again shifted from magmatic to phreatomagmatic activity. Although the level of activity at this cone was decreasing, ash columns developed, and the wind carried the ash again in the direction of Catania, again closing the Fontanarossa airport. Vigorous eruptive activity continued during the first days of August at the fissure at 2,100 m elevation, but the lava effusion rate had dropped, and only the central portion of the original flow remained active, feeding a flow that advanced on top of the larger earlier flow from the same fissure. Strong phreatomagmatic explosions occurred from time to time at the upper vents on this fissure. Lava also continued to pour from the fissure at 2,700 m elevation, and numerous active flow lobes extended SE toward Monte Nero.

Beginning on 3 August the activity at the fissure at 2,100 m elevation showed a marked decrease. During the last week of the eruption (4-10 August) lava continued to flow from that fissure at a rapidly diminishing rate, explosive activity ended, and the fissures at 2,950 and 2,700 m elevation ceased erupting. Ash emission from the Piano del Lago cone ended around 6 August. Lava was last seen flowing from the fissure at 2,100 m elevation on late 9 or early 10 August. The eruption ended after almost 24 days, much earlier than its vigorous onset had suggested.

Products of the eruption and morphological changes. The July-August 2001 eruption emitted at least eight distinct lava flows which mostly affected the S and SSW flanks of Etna. The most damaging flows came from vents near the Piano del Lago cone at 2,570 m elevation. This cone produced most of the pyroclastic material, of which the most fine-grained portion (ash) caused widespread distress.

Petrographically, the lavas fall into two main groups, one of which is essentially similar to the historical products of Etna (porphyric hawaiites with phenocrysts of plagioclase, clinopyroxene and olivine), while the other shows characteristics not seen in any Etnean lavas during the past millennia (alkalic basalts).

Several major pyroclastic edifices grew during the eruption. The largest, the Piano del Lago cone at ~2,570 m elevation, is a nearly symmetrical cone, ~80 m high, which grew mostly between 25 and 31 July. It is crowned by a large crater ~150 m across and 50-60 m deep with near-vertical walls. During a visit on 30 August a few fumaroles located on the SEC walls emitted vapor and gas without forming a visible plume. A spectacular dike was exposed at the base of the E crater wall, and a less conspicuous dike was visible at the base of the WNW crater wall. Several faults or groups of faults were visible in the E and NE crater walls; a narrow graben developed on top of the E crater wall dike. The second-largest pyroclastic edifice lies in the upper part of the fissure at 2,100 m elevation.

Extensive (non-eruptive) fracture systems formed between the various eruptive fissures. Some of them began to form before the eruption, others developed during its first week. Many of these fractures are arranged in an en echelon pattern, which is especially notable in the Valle del Leone, between the northeastern (2,600 m) vents and the SEC. Other spectacular fractures opened between the Piano del Lago cone and the eruptive fissure at 2,100 m elevation. However, the most impressive fractures developed on the E side of the former Central Crater (now occupied by the Voragine and the Bocca Nuova), where they attained widths of more than 1 m. These fractures were vigorously steaming when visited in late-August and mid-September 2001. Fracturing also affected the southern face of the SEC cone.

About 5.5 km2 of Etna's upper and middle slopes were covered with new lava (compared to 7.6 km2 in the 1991-1993 flank eruption). The total volume of lavas and pyroclastics emitted during the eruption is ~ 30-35 x 106 m3 (25 x 106 m3 of lava and 5-10 x 106 m3 of pyroclastics, all calculated as dense rock equivalent), which makes this eruption a relatively modest-sized one for Etna (the 1991-1993 eruption had produced ~ 235 x 106 m3 of lava). Yet the fairly high proportion of pyroclastic material distinguishes this eruption from most other recent Etnean flank eruptions.

The most productive vents were those at 2,100 m elevation, which produced the longest (~ 7 km) and most voluminous (slightly less than 14 x 106 m3) single lava flow. The average combined effusion rate at all eruptive fissures throughout the eruption was ~11 m3/s, with peak rates of 14-16 m3/s. It is assumed that much of the magma that accumulated in one or more reservoirs below the base of the volcano in the years preceding the eruption was not erupted and remains available for future eruptions.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Boris Behncke, Dipartimento di Scienze Geologiche (Sezione di Geologia e Geofisica), Palazzo delle Scienze, Corso Italia 55, 95129 Catania, Italy.


Fuego (Guatemala) — March 2002 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Costly 1999 aircraft-ash encounters due to ash plumes

At least two commercial aircraft flew through airborne ash near the Guatemala City airport on 21 May 1999. An eruption from Fuego that day was the first at that volcano since 1987 (BGVN 24:04). Although the aviator's reports attributed the ash from this encounter to Fuego, their aircraft intersected multiple ash plumes in widely different locations, and thus they may also have crossed plumes from Pacaya. The most likely plume near the southern approach to the airport (La Aurora, ~23 km N of Pacaya; ~40 km NE of Fuego) is from the almost constantly active Pacaya. In contrast, Fuego lies 32 km W of Pacaya and was the likely source of a plume intersected later during the flight, at higher altitude, and for much longer duration.

During the encounters the ~100 or more people on board the two aircraft, and many more on the ground, were at risk. Both encounters seriously damaged the aircraft but ended in safe landings without reported injuries. Volcanic ash can cause jet-engine failure, which creates a hazard not only to passengers, but to people on the ground as well. The risk in this situation was amplified by the airport's proximity to urban Guatemala City (population, >1.1 million).

This example leads to two conclusions discussed further below. First, ash avoidance methodology needs further refinement. Second, there exists an apparent bias towards under-reporting of aircraft-ash encounters, which could short-change their cost to air carriers, their perceived risk, and their funding allocation.

The original report of an aircraft-ash encounter was brought to our attention by Captain Edward Miller of the Air Line Pilots Association and provided on the condition that the air carrier remain anonymous. Bulletin editors also wish to acknowledge conversations with several additional anonymous contacts (commercial pilots). This case occurred in Guatemala; however, analogous situations exist at many airports adjacent to volcanoes. Modest eruptions from nearby volcanoes may be uncertain or difficult to see; they may be hard to detect or characterize; yet they still may yield mobile ash plumes carried by complex local winds to confront air traffic (Salinas, 2001; Hefter, 1998; Casadevall, 1994).

Although in most Bulletin reports we favor the use of local time to emphasize the reference frame of people on the scene, most of the source material (satellite and aviation) for this report refer to UTC (Coordinated Universal Time). UTC is the time on the Greenwich meridian (longitude zero), formerly GMT, a term which has fallen out of use. Accordingly, there are cases in this report that lack conversion to local time. Local time in Guatemala is 6 hours behind UTC.

Activity at Fuego and Pacaya. Fuego erupted on 21 May 1999 sending ash to the S, SE, and SW and ultimately dropping up to 40 cm of ash on local settlements (BGVN 24:04). The eruption occurred at 1800 local time (in terms of UTC, at 0000 the next day). Three hours later the eruption decreased and the Aeronautica Civil recommended that planes go no closer to Fuego than 40 km. One hour after that (at 2200 local, 0400 UTC), the atmospheric ash had settled, and Aeronautica Civil recommended flying no closer to Fuego than 15 km.

Bulletin reports for Pacaya in mid-1999 suggested relative calm, in harmony with the observation that it had chiefly been fuming. However, Pacaya is well-known for Strombolian outbursts. It lies directly in-line and only 23 km S of the N10°E-oriented airstrip. As is common for commercial aircraft there, the approaches described below passed very close to Pacaya. Pacaya typically has lower and smaller eruptions than Fuego, but because it lies so close to the southern approach to the airport, Pacaya's ash plumes easily enter the path of landing aircraft. The situation was particularly complex during this eruption because Fuego's ash was reported on cities that lie below the flight path as well as on the Pacaya's flanks.

Pilot's report of aircraft-ash encounter. What follows was taken from one flight crew's description of events and from later reports and dialog on the topic. In order to preserve the confidentiality of the airlines, the precise times of events on 21 May 1999 have been omitted. Pilots reported clear visibility and light wind, with both the capital and the airport in sight. They maneuvered the aircraft for a final approach from the S. Pilots were advised by air traffic control about erupted particulate ("volcanic sand") about 24 km (15 miles) SE of the airport, well away from their projected path to Runway 01. In addition, based on winds they detected as they neared the airport, the pilots concluded that the erupted particulate to the SE was downwind from their projected flight path to the airport. (In retrospect, this conclusion appears tenuous considering the possibility of either a fresh injection of ash from Fuego, or lingering ash in the trailing portion of the plume that lay to the SE.)

At ~32 km (20 miles) distance from the runway, the pilots maneuvered the plane through ~3,000 m (9,700 feet) altitude on a final approach to the airport with the plane's flaps partially extended (at ~15°, which slowed their aircraft to ~260 km/hour (160 mph), its auxiliary power unit (a small jet engine) on, and its landing gear down. Around this point in their descent, pilots saw bright yellow sparks through the windshield lasting a few seconds, a display unlike static electricity, but rather like that from a grinding wheel. This occurred again at 2,500 m (8,200 feet) altitude, but was more intense yet intermittent.

At this time, air-traffic control announced to the pilots that the aircraft landing in front of them had encountered volcanic particulate; they instructed the pilots to abort their landing and climb to 3,350 m (11,000 feet) altitude. Discussions of options and ash avoidance ensued between pilots and air-traffic control; ash had by this time accumulated on the runway, further complicating landing, even for approaches in the opposite direction. The pilots retracted the landing gear, accelerated to ~410 km/hour (~250 mph), began to climb, and after some discussion with air-traffic control, held on a course NE of the airport. They were subsequently cleared to climb to 6,700 m (22,000 feet) altitude and advised to proceed to an alternate airfield.

During the climb, at ~5,800 m (19,000 feet) altitude en-route to the alternate airport, the aircraft encountered volcanic particulate for 10 minutes. Within that interval the plane spent 2 minutes during ascent engulfed in denser and heavier particulate. During that period, window arcing was constant and the beam of their landing lights revealed a conspicuous cloud of reflecting particles. During ash ingestion the engines's speed lacked noticeable fluctuations. The aircraft exited the plume at about 6,100 m (20,000 feet) altitude and landed without encountering additional ash.

Upon landing, the pilots noticed reduced visibility through abraded windshields. Post-flight examination of the airplane revealed heavy damage, requiring the replacement of the engines (US $2 million each) and auxiliary-power-unit engine. (Note, however, that no deterioration in engine power or performance was noticed during the flight.) Other replaced parts included windshields, a heat exchanger, and coalescer bags. Minor damage was seen on the horizontal stabilizer and wing leading-edges.

Volcanic Ash Advisory Statements. The U.S. National Oceanic and Atmospheric Administration (NOAA), Satellite Services Division website contains two archived statements issued by the Volcanic Ash Advisory Center (VAAC) at Washington, D.C. for Fuego on 21-22 May 1999. The statements, issued to the aviation cummunity to warn of volcanic hazards, are intended for an audience accustomed to special terminology (figures 2 and 3). In the interest of advancing understanding of how volcanological and atmospheric data get transmitted to aviators, we offer brief explanations for many of the terms used (figure 2).

Figure (see Caption) Figure 2. The first archived Volcanic Ash Advisory Statement (VAAS) for the 21 May 1999 eruption at Fuego, Guatemala. The boxes contain added notes to explain some of the basic conventions and specific details seen here. This Statement currently appears on the NOAA Satellite Services Division website (see "Information Contacts," below). Local names are frequently anglicized, dropping all accents and other non-English characters (eg. México would be written MEXICO). Later Advisories adopted the abbreviation "Z" (pronounced 'Zulu' by aviators) for UTC, as in 1300 UTC written as 1300Z.
Figure (see Caption) Figure 3. A later Volcanic Ash Advisory Statement (VAAS) for the 21 May 1999 eruption at Fuego, Guatemala. The statement, which was issued the next day, discloses that the eruption had then stopped and the hazard status was lowered. The statement appears on the NOAA Satellite Services Division website (see "Information Contacts," below).

The Washington VAAC received first notification of the Fuego eruption from a routine surface weather observation from Guatemala City at 2000 local time (0200 UTC) on 22 May. They issued the first Volcanic Ash Advisory Statement a half-hour later (figure 2). Six hours later they issued the second Advisory Statement (figure 3). The Advisories were composed by staff of the Satellite Analysis Branch, one of the two NOAA components forming the Washington VAAC (Streett, 1999; Washington VAAC).

The section "Details of ash cloud" first says that the "surface observation from Guatemala City indicate that the Fuego volcano is in eruption" and that no additional information is available and then briefly describes in words observations that came from satellite imagery. The first sentence, "No eruption . . ." is self-explanatory, but highlights a limitation of the method in use that needs to be emphasized to aviators: an eruption may have occurred but its status is not revealed on the imagery. The sentence, "No eruption could be detected due to thunderstorm cloudiness covering the area around the volcano" is self-explanatory. Less clear is the term convective debris. It does not refer to ash; rather, it refers to remnants of thunderstorms. The gist of these latter two sentences is simply that the thunderstorms that covered the area made it challenging or impossible to see the ash on satellite imagery. Central American thunderstorm clouds typically can reach altitudes of more than 12,000 m (40,000 feet), and can mask or obscure airborne ash residing below that level.

Members of the Washington VAAC commented that this eruption demonstrates key problems that can arise when cloudy conditions prevent satellite detection of ash, foiling a primary mode of analysis. In such cases, they rely on ground observers (including observatories and weather observers), pilot reports, and reports from airlines. Thus, their ability to issue useful information in cloudy conditions depends on the quality of communications with local observers, the Meteorological Watch Office, volcanologists, geophysical observatories, and the aviation community.

The Advisory Statement listed México City weather balloon data acquired 1,050 km NW of Guatemala City. In retrospect, the Washington VAAC noted that they generally avoid using such distant sounding data. If a closer sounding cannot be found, they prefer to use upper-level wind forecasts taken from a numerical weather model. In any case, the scarcity of local sounding data presents a challenge to the realistic analysis of airborne ash.

The outlook section says to "see SIGMETS." SIGMETS are the true warnings to aircraft for SIGnificant METeorological events. They are issued by regional Meteorological Watch Offices (MWOs), in this case the MWO (for Guatemala) is in Tegucigalpa, Honduras. SIGMETS were lacking for this eruption; although the Washington VAAC tried to contact the MWO without response. Another complexity confronted at the VAAC is a lack of a single scale for communicating a volcano's hazard status.

Reporting of aviation ash encounters. In personal communications with Bulletin editors, airline personnel stated that many more encounters have occurred than have yet been tallied in publically accessible literature. In accord with those assertions, the 21 May 1999 encounters are absent from reports compiled by the International Civil Aviation Organization (ICAO, 2001). In that document (Appendix I, table 3A, p. I-12) Fuego fails to appear as a source vent for any aircraft-ash encounter. Pacaya is listed for two encounters, in January 1987 and in May 1998 (BGVN 23:05).

Even though the number of encounters was probably under-represented and thus reflects a minimum, ICAO (2001) notes that the international costs to aviation since 1982 summed to well in excess of $250 million. They noted, "In addition to its potential to cause a major aircraft accident, the economic cost of volcanic ash to international civil aviation is staggering. This involves numerous complete engine changes, engine overhauls, airframe refurbishing... aircraft downtime... [and] volcanic ash clearance from airports and the damage caused to equipment and buildings on the ground."

The incidents here suggest that there has been a strong bias toward under-reporting aircraft-ash encounters. If this tentative conclusion is correct, it implies consistent understatements of the hazard's magnitude. This, in turn, may have thwarted meaningful analysis of how and whether to proceed with designing more robust hazard-reduction systems. Accordingly, resources that could have been devoted to the problem have not yet been committed (see Gimmestad and others, 2001 for a discussion of a prototype on-board ash-detection instrument).

Communication challenges. While much of the aviation community needs to learn about volcanism rapidly, dependably, and with the aid of the Internet, some observers charged with reporting volcanic-ash hazards in Central and South America lack access to basic communication devices like reliable telephones and fax machines. To reduce the risks, the aviation, meteorological, remote sensing, and volcanological communities need to improve their ability to pass critical information to each other rapidly and precisely. The operational systems related to volcanic ash and aviation must transcend numerous boundaries (eg., languages, infrastructure, funding, governments, agencies, air carriers, pilots, aircraft manufactures, etc.). The systems need to portray complex, dynamic processes such as the rapid rise of an explosive plume, or large-scale ash-cloud movement.

Although the infrastructure for ash avoidance is greater than ever, members of the Washington VAAC have told Bulletin editors that they still depend heavily on people on the scene of the eruption to notify them promptly when eruptions occur. They said that thus far in parts of Central and South America a problem has been the expense of communication (eg., by phone, fax, and Internet). They also said that for the same regions the U.S. meteorological database regularly lacks pilot reports. Though serious, these problems have at least been identified and their solutions would appear to lack great technical or economic barriers.

The pilots involved in the May 1999 encounter recommended that far more emphasis be placed on forecasting and avoiding ash plumes. Other pilots cited the need for fast and accurate communications between those who observe eruptive activity and air traffic control personnel.

Issues like these continue to be an important subject at gatherings on the topic of ash hazards in aviation (Casadevall, 1994; Streett, D., 1999; Washington VAAC, 1999). The Airline Dispatcher's Federation (ADF) will participate in a 7-9 May 2002 conference and workshop: "Operational Implications of Airborne Volcanic Ash: Detection, Avoidance, and Mitigation." The gathering will provide the pilot and dispatcher with insights into volcanic ash, including its characteristics, affects on aircraft, detection/tracking, effective warning systems, and mitigation. A "hands-on" exercise will make this the first gathering of its kind to provide lab-style instruction on interpretation of satellite and wind data, and on models of ash trajectory and dispersion. Representatives from the Boeing company, and a host of US government agencies and non-governmental organizations will attend. The workshop will include lectures, demonstrations, laboratory exercises, and a simulated-eruption exercise involving volcanologists, forecasters, controllers, dispatchers, and pilots.

A second international symposium on ash and aviation safety is being planned by the U.S. Geological Survey, organized by Marianne Guffanti. It will be held in Washington, D.C. in September 2003.

References. Casadevall, T.J. (ed.), 1994, Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety: U.S. Geological Survey Bulletin 2047, 450 p.

Gimmestad, G.G., Papanicolopoulos, C.D., Richards, M.A., Sherman, D.L., and West, L.L., 2001, Feasibility study of radiometry for airborne detection of aviation hazards, NASA/CR-2001-210855; Georgia Tech Research Institute, Atlanta, Georgia, 51 p. (URL: http://techreports.larc.nasa.gov/ltrs/PDF/2001/cr/).

Hefter, J.L., 1998, Verifying a volcanic ash forecasting model, Airline Pilot, v. 67, no. 5, pp. 20-23, 54.

International Civil Aviation Organization (ICAO), 2001, Manual on volcanic ash, radioactive material, and toxic chemical clouds, doc 9691-AN/954 (first edition): 999 University St., Montreal, Quebec, Canada H3C 5H7 (purchasing information: sales_unit@icao.int).

Rose, W.I., Bluth, J.S.G., Schneider, D.L., Ernst, G.G.J., Riley, C.M., Henderson, L.J., and McGimsey, R.G., 2001, Observations of volcanic clouds in the first few days of atmospheric residence: The 1992 eruptions of Crater Peak, Mount Spurr volcano, Alaska, Jour. of Geology, v. 109, p. 677-694.

Salinas, Leonard J., 2001, Volcanic ash clouds pose a real threat to aircraft safety: United Airlines, Chicago, Illinois (URL: http://www.dispatcher.org/library/VolcanicAsh.htm).

Simkin, T., and Siebert, L., 1994, Volcanoes of the World, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Streett, D., 1999, Satellite-based Volcanic Ash Advisories and an Ash Trajectory Model from the Washington VAAC: Eighth Conference on Aviation, Range, and Aerospace Meteorology, 10-15 January 1999, Dallas, Texas; American Meteorological Society, p. 290-294.

Washington VAAC, 1999, Operations of the Washington Volcanic Ash Advisory Center, in Aeronautical meteorological offices and their functions, and meteorological observation networks: Third Caribbean/South American Regional Air Navigation Meeting (Car/sam/ran/3); Buenos Aires, Argentina, 5 - 15 October, 1999; International Civil Aviation Organization (http://www.ssd.noaa.gov/ VAAC/PAPERS/carsam.html).

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Captain Edward Miller, Air Line Pilots Association (ALPA), Air Safety & Engineering Department, 535 Herndon Parkway, PO Box 1169, Herndon, VA 22070-1169, USA; Grace Swanson and Davida Streett, Washington VAAC, Satellite Analysis Branch (NOAA/NESDIS), 4700 Silver Hill Road, Stop 9910, Washington, DC 20233-9910, USA (URL: http://www.ssd.noaa.gov/); Bill Rose, Geological Engineering and Sciences, Michigan Technological University, Houghton, MI 49931, USA.


Karymsky (Russia) — March 2002 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Elevated seismicity; possible explosions and avalanches in March 2002

Episodes of increased seismicity occurred during December 2000 through September 2001 (BGVN 26:08). Since then seismic activity at Karymsky has remained mostly above background levels. The Concern Color Code remained at Yellow ("volcano is restless") through at least late March 2002. Apparent steam plumes were seen in satellite imagery during January-March 2002.

On 4 January 2002, the Kamchatkan Volcanic Eruption Response Team (KVERT) reported above-background seismicity during the previous week, with 40 to 80 weak local earthquakes occurring per day. Several shallow seismic events suggested gas-ash explosions. Beginning at 1200 on 10 January the number of local earthquakes increased noticeably. During 11-14 January about 200 weak local shallow seismic events occurred per day.

During late January through at least March 2002, the seismic station typically recorded approximately 10 local shallow earthquakes per hour. Around 24 January, the earthquakes became slightly stronger. The character of the seismicity during mid-March suggested weak ash-gas explosions and avalanches.

The Tokyo VAAC reported that on 1 February at 1810 an eruption produced an ash cloud that reached ~7.5 km above the summit and drifted to the E; however, the cloud was not visible on satellite imagery. On 13 February at 0945 a pilot reported an ash cloud to ~3.5 km above the volcano extending to the W. Again, this cloud was not visible on satellite imagery; it may have been a single burst that dissipated rapidly.

No ash was detected in satellite images during the report period; only steam and possible airborne volcanic aerosols were visible during late February. Thermal anomalies and plumes were visible on AVHRR satellite imagery throughout the report period (table 1).

Table 1. Thermal anomalies and plumes visible on AVHRR satellite imagery at Karymsky during January through March 2002. Courtesy KVERT.

Date Time (local) Size (pixels) Max. band-3 temperature Background temperature Visible plume
19 Jan 2002 1659 2 31.6°C -21°C --
19 Jan-25 Jan 2002 2-4 -3.7 to 35.0°C -16 to -25°C --
21 Jan 2002 1614 -- -- -- Steam plume extending 45 km SE
27 Jan 2002 1711 1 47.7°C -22°C --
28 Jan 2002 1646 -- -- -- Small steam plume extending 30 km NE
03 Feb-08 Feb 2002 -- 2-10 49.7 to -7°C -15 to -30°C --
05 Feb-06 Feb 2002 -- -- -- -- Steam plume extending 100-150 km E
08 Feb 2002 0536 4 5.7°C -22°C --
13 Feb 2002 0538 4 0.1°C -23°C --
13 Feb 2002 1202 4 -1.7°C -22 to -28°C --
13 Feb 2002 1708 4 ~49°C -20°C 20-km long steam plume moving SW
14 Feb 2002 1644 5 39°C -8°C Small plume extending N
17 Feb 2002 0544 1 -3°C -22°C --
18 Feb 2002 1649 4 32°C -10°C Short plume extending NE
19 Feb 2002 1622 -- -- -- Small steam plume extending 100 km E
20 Feb 2002 0613 4 24.9°C -24°C --
21 Feb 2002 0550 4 -4.2°C -25°C --
22 Feb-01 Mar 2002 -- 1-4 12 to 40°C -10 to -27°C --
22 Feb 2002 1650 -- -- -- Very diffuse cloud observed that could be related to volcanic aerosols
27 Feb 2002 1635 -- -- -- 20-km long faint steam plume extended E
02 Mar-08 Mar 2002 -- 1-4 1 to 15°C -17 to -24°C --
06 Mar 2002 1708 -- -- -- Bifurcated steam plume; first branch extended 10 km NE and the second branch extended 20 km SE
16 Mar-22 Mar 2002 -- 2-4 -6.8 to 35.6°C 0 to -20°C --
19 Mar-20 Mar 2002 -- -- -- -- Small steam/aerosol plume extending SE
22, 25 Mar 2002 -- 1-3 -6.8 and 14°C -20°C --

General Reference. Khrenov, A.P., and others, 1982, Eruptive activity of Karymsky Volcano over the period of 10 Years (1970-1980): Volcanology and Seismology, no. 4, p. 29-48.

Tokarev, P.I., 1990, Eruptions and seismicity at Karymskii volcano in 1965-1986: Volcanology and Seismology, v. 11, p. 117-134 (in English).

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tokyo Volcanic Ash Advisory Center (VAAC),Tokyo, Japan (URL: https://ds.data.jma.go.jp/svd/vaac/data/).


Kilauea (United States) — March 2002 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Lava stops entering sea during January, tilting in late March-April 2002

This report discusses activity at Kilauea during mid-January through mid-April 2002. The flow of lava into the ocean in September (BGVN 26:12) at the Kamoamoa entry and, to a lesser extent, at the E Kupapa'u entry, terminated by the end of January. During February through mid-March lava flowed on the surface at elevations above or on the Pulama Pali slope and along the Kamoamoa lava tube system. Volcanic tremor occurred at moderate levels, and long-period (LP) earthquakes were registered below the caldera. In mid-March incandescence was visible from Pu`u `O`o crater. Incoming lava flooded the floor of Pu`u `O`o crater and excess lava flowed through lava tubes down the Pulama Pali slope to the coastal plain. Heightened activity continued and in early April a series of deflation and inflation events occurred. LP earthquakes increased and on 6 April observations of the crater lake in Pu`u `O`o crater revealed that the lava had risen to 17 m below the E rim.

Geophysical activity. Tiltmeters across the volcano showed no significant deformation until mid-March, although an M 4.1 earthquake had occurred at 0118 on 18 January. The earthquake was located 4 km SSE of the Pu`u `O`o crater at a depth of 9.1 km. During the following several days volcanic tremor remained moderate to strong at Pu`u `O`o. The swarm of long-period (LP) earthquakes at the summit continued through March. Just after 0300 on 27 March a small earthquake beneath the caldera triggered more than 30 minutes of increased tremor and small earthquakes.

Sharp deflation at Pu`u `O`o on 28 March accompanied a change in eruptive activity at the cone. On 31 March volcanic tremor was low-to-moderate at Pu`u `O`o and the continuing weak tremor below the caldera was broken occasionally by small LP earthquakes. Associated tilt across the volcano was flat or only changed slightly.

During 4-6 April, a series of deflation and inflation events occurred. In terms of tilt, at ~2100 on 4 April, Kilauea's summit deflated (~1.7 µrad); 30 minutes later Pu`u `O`o followed (~9 µrad). This was reversed at 1600 on 5 April when rapid inflation began at the summit and ~12 minutes later at Pu`u `O`o. At 1700 inflation ended at the summit, and it abruptly deflated, as did Pu`u `O`o at 1800. Subsequently, tilt at Pu`u `O`o oscillated three times between rapid deflation and slower inflation. The tilt temporarily decreased, but at 0508 on 6 April another interval of 4.5 oscillations occurred followed by resumed tilt and slow, bumpy inflation. During this turbulent period LP earthquakes increased at the summit while tremor remained steady at Pu`u `O`o. By 7 April tilt was relatively steady, volcanic tremor at Pu`u `O`o was moderate, and tremor at the summit was low to moderate.

Lava flows. During mid-January surface lava traveled along the upper portion of the flow field above the Pulama pali slope and onto the coastal flat. Surface lava also emerged along the Kamoamoa lava tube system and traveled down the Pulama pali slope. These surface flows continued to be visible through February, although the flow reaching the coastal plain had stopped at the end of January. At times during early March several rootless shields (a pile of lava flows built over a lava tube rather than over a conduit feeding magma) were active. During 12-19 March a bright glow was widely visible over Kilauea from Pu`u `O`o crater and from a rootless shield near 665 m elevation where the most intense surface activity occurred.

By 18 March lava had flooded the floor of Pu`u `O`o crater resulting in surface lava flows and lava flowing through tubes. Lava spread out on the lower fan and adjacent coastal flat, although the fronts of the flows remained ~2.3 km from the ocean. At the base of the lava fan and on the adjacent coastal flat the rootless shields remained active and small surface lava flows persisted through mid-April.

Eruptive activity changed on 28 March, as noted above, and overflight observations revealed new lava located W of the main crater. Observers also saw lava fountaining and forming a circulating pond. By 31 March a lava flow was visible on the floor of Pu`u `O`o crater and several vents were incandescent. During a brief visit to Pu`u `O`o on 6 April observers noticed that the crater lake had risen ~8 m since 29 March (the lake surface was 17 m below the E rim), several cones were active, and lava was flowing into the lava lake from two vents. By the following day activity had decreased and by 8 April incandescence was no longer visible at Pu`u `O`o.

General References. Decker, R.W., Wright, T.L., and Stauffer, P.H., 1987, (eds.), Volcanism in Hawaii: USGS Professional Paper 1350, 1667 p. (64 papers).

Ryan, M.P., 1988, The mechanics and three-dimensional internal structure of active magmatic systems: Kilauea volcano, Hawaii: JGR, v. 93, p. 4213-4248.

Dzurisin, D., Koyanagi, R.Y., and English, T.T., 1984, Magma supply and storage at Kilauea volcano, Hawaii, 1956-1983: JVGR, v. 21, no. 3/4, p. 177-207.

Heliker, C., Griggs, J.D., Takahashi, T.J., and Wright, T.L., 1986/7, Volcano monitoring at the U.S. Geological Survey's Hawaiian Volcano Observatory: Earthquakes and Volcanoes, v. 18, no. 1, p. 3-71.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawaii National Park, HI 96718, USA (URL: https://volcanoes.usgs.gov/observatories/hvo/).


Manam (Papua New Guinea) — March 2002 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Mild eruptions during January-February 2002

Activity at Manam remained relatively low following a 4 June 2000 eruption (BGVN 25:07). During August and September 2001, the Rabaul Volcanological Observatory (RVO) reported occasional emissions of weak-to-moderate volumes of white vapor. Weak emissions were also observed from South Crater.

On 13 January 2002 mild eruptive activity began from South Crater. Weak gray-brown ash clouds were emitted at 5-10 minute intervals. Fine, light ashfall was reported on the NE side of the island. Ashfall was reported again on 16, 20, 21, 22, 26, 29, 30, and 31 January, produced by activity ranging from gentle emissions to forceful projections of weak-to-moderate gray-brown and occasionally dark-gray ash clouds, during periods lasting a few hours. Most of the activity was accompanied by weak, deep, low roaring and rumbling noises. Explosion noises were heard on 20 January, and incandescence was observed on 17 and 20 January. The incandescence on 20 January fluctuated but occasionally intensified and projected glowing lava fragments.

Similar mild eruptive activity continued through much of February. Fine ashfall occurred on the SE part of the island. Weak-to-bright incandescence was observed on 13 February, after a loud explosion at 0225. The explosion was also followed by weak roaring and rumbling noises at one-minute intervals lasting for ~1 hour. During 20-24 February activity decreased and continuous weak volumes of white vapor were emitted. Main Crater released only weak-to-moderate volumes of white vapor.

People living in and near the four valleys (especially those in the NE and SE) were urged to be cautious and remain away from the valleys as much as possible.

More recently, a period of activity began in December 1956 that lasted through January 1966. Lava flows and a nuee ardente from the South Crater occurred in June and December 1974, and intermittent moderate explosive activity has continued, with peaks of activity in 1982 and 1984. The water-tube tiltmeter is located at Tabele Observatory, 4 km from the summit on the SW flank.

General References. de Saint Ours, P., 1982, Potential volcanic hazards at Manam Island: Geological Survey of Papua New Guinea Report 82/22, 19 p.

Scott, B.J., and McKee, C.O., 1986, Deformation, eruptive activity, and earth tidal influences at Manam volcano, Papua New Guinea, 1957-1982: Royal Society of New Zealand Bulletin 24, p. 155-171.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Ima Itikarai, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.


Miyakejima (Japan) — March 2002 Citation iconCite this Report

Miyakejima

Japan

34.094°N, 139.526°E; summit elev. 775 m

All times are local (unless otherwise noted)


Eruptive activity decreases; high SO2 flux through April 2002

The following report covers activity at Miyake-jima after February 2001 and through April 2002, but a brief review of previous activity is included. Volcanism renewed at Miyake-jima on 27 June 2000 with a series of underwater eruptions (BGVN 25:05-25:07). Activity through October 2000 was characterized by intrusive events, collapse of the summit crater, explosive events, and degassing. SO2 emissions were high and low levels of ash were intermittently emitted (BGVN 25:09). During October 2000 through mid-February 2001 high volumes of volcanic gas emission continued (BGVN 26:02).

After a large eruption on 18 August 2000, large amounts of volcanic gas, especially SO2, started to discharge. SO2 flux monitoring by COSPEC V has been conducted since 26 August 2000. Monitoring is performed almost daily by the Japanese Meteorological Agency (JMA) and Geological Survey of Japan (GSJ). Figure 14 shows the daily average of SO2 flux during August 2000 through April 2002. The mean flux during September-December 2000 was ~40,000 metric tons per day (t/d). During 2000, the average SO2 flux was 40,000 t/d, and it decreased to 21,000 t/d during 2001. As of March 2002 the average SO2 flux was 10,000-20,000 t/d. During the 26 September 2001 explosion the amount of SO2 degassing was ~15,000 t/d.

Figure (see Caption) Figure 14. Daily averages of SO2 flux at Miyake-jima during August 2000 through April 2002. Courtesy JMA, GSJ, and KSVO.

In November 2001 the GSJ reported that the strong eruptions of July-August 2000, initially thought to be solely phreatic, had been phreatomagmatic. For instance, tephra from the 18 August 2000 eruption was ~30-40% juvenile in nature. Following the 29 August 2000 eruption, activity was much weaker. A summit pit crater or caldera, formed as a result of "drain back" as magma was intruded elsewhere, stabilized in August 2000 with a diameter of 1.4 km.

On 16 March 2001 the JMA reported that the strongest tremor since 29 August 2000 had occurred. Three days later, on 19 March, an eruption produced a black ash cloud that rose 800 m above the volcano.

In mid-May 2001, based on information from the JMA, the Volcanic Research Center reported that no ash clouds had been observed since 19 March. They also reported that steam plumes with abundant SO2 were continuously emitted from the summit caldera to 0.5-2 km above the caldera rim. Continuous SO2 emission released as much as 33,000 to 46,000 metric tons of SO2 per day (figure 14). Low-level seismic activity continued; on 5 May 2001 a total of 446 small low-frequency earthquakes were registered, and on 7 May an M 2.8 earthquake occurred. Global positioning system (GPS) measurements showed steady, continuous deflation of the volcano, though the rate was lower than before September 2000. Very small collapses of the caldera rims were occasionally seen during air inspections.

About 20 small eruptions were recorded by the JMA during 2001 through the end of March 2002. Major eruptions were reported on 27 May, 26-27 September, and 16 October 2001. The eruptions produced ash plumes up to 1,500 m high.

On 25 January 2002 at 1015 Air Force Weather Agency staff detected a faint E-drifting volcanic plume emanating from Miyake-jima on MODIS imagery (figure 15).

Figure (see Caption) Figure 15. MODIS imagery on 25 January 2002 at 1015 shows a plume drifting E from Miyake-jima. Courtesy AFWA and NASA.

The GSJ reported that as of 1 April 2002, eruptions were continuing and significant quantities of SO2 (10,000-20,000 t/d) discharged from the summit pit crater (figure 14). According to a news report, a minor eruption occurred at Miyake-jima on 2 April shortly after 1000. While evacuated residents were visiting the island, ash rose to ~300 m above the volcano and fell around Miyake-jima. The island is currently uninhabited because activity that began on 26-27 June 2000 prompted officials to order an evacuation on 1 September 2000.

Geologic Background. The circular, 8-km-wide island of Miyakejima forms a low-angle stratovolcano that rises about 1,100 m from the sea floor in the northern Izu Islands about 200 km SSW of Tokyo. The basaltic volcano is truncated by small summit calderas, one of which, 3.5 km wide, was formed during a major eruption about 2,500 years ago. Parasitic craters and vents, including maars near the coast and radially oriented fissure vents, dot the flanks of the volcano. Frequent historical eruptions have occurred since 1085 CE at vents ranging from the summit to below sea level, causing much damage on this small populated island. After a three-century-long hiatus ending in 1469, activity has been dominated by flank fissure eruptions sometimes accompanied by minor summit eruptions. A 1.6-km-wide summit caldera was slowly formed by subsidence during an eruption in 2000; by October of that year the crater floor had dropped to only 230 m above sea level.

Information Contacts: Japan Meteorological Agency (JMA), Volcanological Division, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan (URL: http://www.jma.go.jp/); Setsuya Nakada and Hidefumi Watanabe, Volcano Research Center, Earthquake Research Institute, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan (URL: http://www.eri.u-tokyo.ac.jp/VRC/index_E.html); Akihiko Tomiya, Geological Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 7, Tsukuba 305-8567, Japan (URL: http://staff.aist.go.jp/a.tomiya/miyakeE.html); Charles Holliday, Air Force Weather Agency (AFWA),106 Peacekeeper Dr., Ste 2NE; Offutt AFB, NE 68113-4039 USA; National Aeronautics and Space Administration (NASA), Washington, DC 20456-0001, USA (URL: https://www.nasa.gov/); Kusatsu-Shirane Volcano Observatory (KSVO), Tokyo Institute of Technology, Kusatsu, Agatsuma-gun, Gunma 377-17, Japan; Dow Jones News.


Nyiragongo (DR Congo) — March 2002 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Report of field work; MODIS imagery from January 2002 eruption

During 17-18 January 2002 Nyiragongo, located ~18 km N of Lake Kivu in the Democratic Republic of Congo (DRC) close to the border of Rwanda, erupted an estimated 20 x 106 m3 volume of lava (BGVN 26:12). Lava flows originated from the central crater and from several locations along a huge system of fractures that rapidly developed along the entire S flank of the volcano down to the city of Goma (~400,000 people) on the N shore of Lake Kivu. Goma was then invaded by extensive lava flows, which destroyed at least 13% of the surface of the city before reaching the lake. The advancing lava flows caused the spontaneous evacuation of at least 300,000 people, mostly toward the neighboring town of Gisenyi in Rwanda, and left more than 40,000 people homeless. About 100 people died as a consequence (direct or indirect) of the eruption. This disaster required an urgent public health response to evaluate the hazards to life and health. The assessment was especially important because of the humanitarian crisis in the eastern DRC that led many of the people who had fled from the lava flows to return to the city within one or two days, despite the danger of further eruptive activity or the possible risks arising from the proximity of the cooling lava flows (Baxter, 2002).

The following report, with the exception of the Moderate Resolution Imaging Spectroradiometer (MODIS) imagery, was compiled from field visits carried out by the volcanologists representing the United Nations Office for the Coordination of Human Affairs (UN-OCHA): Dario Tedesco, Paolo Papale, Orlando Vaselli, and Jacques Durieux. The team flew over the volcano and Goma in a helicopter on 22 and 24 January, and made field observations during 23 January-4 February. One team member continued studies on Lake Kivu until 13 February. The report provides an initial reconstruction of the main events of the eruption based on reports from local witnesses, observations and reports by researchers at the Goma Volcano Observatory (GVO), a closer inspection of seismograms recorded by GVO seismic stations, and field work by the UN-OCHA team. The UN-OCHA team worked closely with a French-British team of scientists (Patrick Allard, Peter Baxter, Michel Halbwachs, and Jean-Christophe Komorowski), whose report (Allard and others, 2002) will be summarized in a future Bulletin.

Activity during December 2000-January 2002. Since December 2000 the two GVO seismic stations had recorded long-period (LP) earthquake swarms. Commonly, each LP event was shortly followed by volcanic tremor.

On 6 February 2001 Nyamuragira erupted (BGVN 26:01). Following the 2-week eruption, seismicity did not decrease. On the contrary, volcanic tremor and LP earthquakes reappeared at both stations (Bulengo, BSS, S of Nyiragongo and Katale, KSS, NE of Nyiragongo, ~40 km from Bulengo), without showing any particular pattern, from March 2001 through January 2002. During the 10 months that preceded the January 2002 eruption, it was impossible to distinguish which volcano was the source of the seismicity.

In addition to the increased seismic activity, on 5 October strong vibrations were felt and on 7 October a strong tectonic earthquake (M 3.5-4.0), unusual for this region, was felt by the population. This earthquake was followed a few hours later by high-amplitude volcanic tremor.

Field trips by GVO personnel to the summit of Nyiragongo during 29 October-1 November and 8-10 December 2001 revealed several important changes. Immediately after the October tectonic event a white plume was visible inside the 1977 eruptive fracture on top of and inside the Shaheru crater (2 km S of the summit crater) at 2,700 m elevation. A similar plume was emerging from new cracks in the inner wall of the central crater, while a dark plume was visible from the small 1995 spatter cone inside the volcano. The new fumaroles on the side of the small central crater had a temperature of 70°C; the ground temperature, which was normally at 5-9°C, was recorded as 28°C; cracks near Shaheru crater were at ~50°C.

An increase in seismicity similar to that observed during early October occurred beginning on 4 January 2002, when an M > 4 earthquake occurred. On 7 January seismic activity triggered some visible changes, including reactivation of fumarolic activity. Following the 4 January earthquake seismicity remained high until 16 January. The onset of the eruption was preceded by about 8 hours of calm consisting of very low seismicity (without tremor or LP earthquakes).

Eruption during 17-18 January 2002. Early on 17 January a huge system of fractures began to develop on the S flank and eventually extended from high elevations down to Goma and Lake Kivu. The main trend of fractures was N15°W, which is similar to the general trend of the rift valley in the Nyiragongo region. The system of fractures appears to have propagated down from the volcano, starting at 2,800-3,000 m elevation (300-400 m N of the old Shaheru crater), and covering a distance of ~10 km towards Goma in less than 8 hours. The uppermost portion of the fracture started erupting at 0835 on 17 January. A single fracture ~2 m wide was visible above and inside Shaheru. Reactivated during the January event, it corresponded to the eruptive fracture of January 1977. Below the Shaheru crater the fracture was replaced by a more complex system, with two parallel main fractures ~300 m apart, also propagating N15°W. At about 1000 the system of fractures had reached ~1,900 m elevation; they then took ~30 minutes to cross the last system of ancient cones N of Goma, at ~1,700 m. By about 1400 the fractures were in the proximity of the Munigi village on the outskirts of Goma.

As the fractures advanced, several started erupting. Beginning around 1000 and lasting for at least two hours, lava flows escaped at ~1,950-2,000 m elevation S of the ancient Kanyambuzi-Mudjoga tuff cones. Fractures on the gentle slopes N of Goma lacked venting lava along a portion a few kilometers in length, but, at several locations the tips of intruded dykes ascended within only a few ten's of centimeters to a few meters below the ground surface.

At 1610 on 17 January the southernmost system of vents opened S of Munigi village and on the outskirts of Goma at 1,570-1,580 m elevation. Lava flows from these vents affected the Goma airport and destroyed part of the city before reaching the lake. About 10-20 minutes later a new N15°W-oriented fracture began to erupt at 1,950-2,000 m elevation, located ~1.5 km W of the main fracture system. Lava flows from this fracture partially destroyed the western part of Goma without reaching the lake.

Around the same time a fracture a few hundred meters long opened on the NW flank of the cone, at ~2,700-3,000 m elevation as estimated by helicopter, producing a lava flow that did not affect inhabited areas. Unlike the southern fracture system, this fracture had an estimated N30°E to N60°E trend. The eruptive activity at several places along the fracture system on the S flank reportedly lasted through part of the night or even up to daylight on 18 January.

MODIS images on 18, 21, and 27 January showed a hot spot in the vicinity of the volcano (figure 13). The 18 January image showed a single, large hot spot (3-4 pixels wide and ~11 pixels long on the S flank of Nyiragongo. The elongate hot spot had a NNE-SSW orientation. Its proximal section was located about mid-way up the S flank of the volcano (in the vicinity of the Shaheru-Djoga cinder cones and 1977 S-flank fissure) and the distal section was directly over Goma. The hot spot decreased over the following days, and by 27 January was barely visible.

Figure (see Caption) Figure 13. Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images on 18, 21, and 27 January showing a hot spot near Nyiragongo during the eruption. The 18 January image shows a single, large hot spot (3-4 pixels wide and ~ 11 pixels long) on the S flank. The hot spot decreased over the following days, and by 27 January was barely visible. Courtesy HIGP/SOEST.

Activity following the eruption. During the night of 21 January some earthquake swarms created panic in the population. During about 0600-1800 on 22 January no earthquakes were felt. However, at about 1800 a sequence began during which ~20 earthquakes were felt in less than 3 hours. The following days were characterized by periods of intense seismicity, alternating with intervals (~10-15 hours) of lower seismic activity.

Seismic events showed quite a range of magnitude, frequency content, and S-P times, suggesting several different origins. The earthquakes that occurred in the days following the eruption were ~M > 5. During the 5 days following the eruption ~100 tectonic earthquakes (M > 3.5) occurred with epicenters in the Goma-Nyiragongo region. Several houses collapsed or were seriously damaged due to seismic loading in Gisenyi, where nine people died as a direct result of roof collapse. Seismic signals showed a typical sequence of tectonic events, followed within minutes to hours by LP events and volcanic tremor lasting continuously for more than 10 hours. Such a sequence, which is identical to the typical sequence recorded during the year preceding the eruption, suggested rock fracturing followed by the intrusion and ascent of magma.

An estimate of the location of seismic events made by comparing the arrival time differences of P- and S-waves at the three seismic stations of Bulengo, Katale, and Goma (the last one provided by the French-British team) showed that on 27 and 28 January the shocks were concentrated in the area between the Nyiragongo crater and Goma, probably 4-6 km N of Lake Kivu. During the first days of February the epicenters of earthquakes were clustered in two areas. The first was along the system of fractures, stretching a few kilometers N and S of Goma (in part, beneath Lake Kivu). The second cluster lay S of the town of Sake, 15-20 km W of Goma, close to the W border of the rift.

Observations during a helicopter flight over the volcano on 21 January revealed that the crater floor (old surface of the 1994-95 lava lake) was cut by a N-S elongated depression (like a small graben) underlain by steaming cracks. The next day witnesses from villages 6 km SW and ~10 km N of the summit crater reported that at about 2100 an earthquake was felt and immediately followed by a red glow or "flames" above the crater. Later that evening fine ash fell along the road from Goma to Sake. On the morning of 23 January ash fell in Goma and at the airport. A helicopter survey revealed a layer of ash on the volcano's upper S and E flanks and devastated vegetation on the crater's N flank.

On 24 January the inside of the crater appeared as a huge cavity with an estimated depth of 800 m and a grayish-yellow colored floor. The old terraces that represented the remnants of the lava lake at different stages of its long history were nearly totally absent. The interpretation is that either the emptying of the lava lake, the fracturing of the system, or more likely both, destabilized the inner part of the crater. Seismic records showed higher-amplitude tremor, presumably related to the crater-floor collapses, starting on 22 January at 2051 and lasting for ~4 hours. During the same flight on 24 January an explosion or a new collapse at the crater produced a small cloud of steam and ash that reached a few hundred meters above the crater rim.

Gas blasts sporadically occurred, mainly after the eruption, ~100-200 m away from the main path of the lava flow in Goma causing displacement of pavement in small buildings. In a small garage in Goma a thick (~10 cm) concrete pavement was cracked and uplifted up to 50-70 cm by the gas blasts.

Observations and research at Lake Kivu. Interesting phenomena were noted on the shore of Lake Kivu in the area of Himbi. Women who used to wash clothes close to the lake observed that the water level had decreased a few centimeters 3-5 days before the eruption. During the night and early morning of 17-18 January waiters at a restaurant observed crabs and crayfish jumping out of the lake. During 20-21 January dead fish and bubbling spots were observed in the small bay close to the restaurant. Waiters stated that the temperature of the lake in those zones had increased and a brown-black stain appeared from the bottom of the lake in an area of several square meters. At the same time an odor of spoiled eggs (suggesting presence of H2S) was present. A similar phenomenon occurred early in the morning (at about 0230) on 30 January after an M 4.5 earthquake. The owners of the restaurant suddenly awoke due to difficulty breathing and the strong smell of rotten eggs. In both cases, the "normal" conditions were reestablished in a "short" (not well-defined) time. Soil-gas measurements indicated that CO2 concentrations reached values up to 20%.

A geochemical survey of the main fluid manifestations in and around the S part of Nyiragongo was carried out during the days after the 17 January eruption. Sampling included water from Lake Kivu, cold and thermal springs, dry vents, and soil gases. The main conclusions of this survey were: 1) contrary to rumors following the entry of lava flows into the lake, lake water only a few meters away from the lava front was not polluted; 2) the geochemical characteristics of water from the lake and from springs on land are close to those found previously by Tietze and others (1980) and Tuttle and others (1990); and 3) the analyzed gases appear to have a clear magmatic origin as revealed by their isotopic signature. An exception to the final conclusion is that gases from the Rambo sampling point, which sits next to a brewery in Gisenyi, appear to represent mixtures between biogenic (organic) and magmatic sources.

Immediately following the eruption, fishermen reported visible changes in the water level at Lake Kivu. This was confirmed by women who visited the lake shore daily for washing or collecting water. A series of measurements was started in close cooperation with the UN field officer Dominic Garcin, who has a vast knowledge of the lake. The first measurements were obtained on 28 January along the shoreline from Gisenyi to Sake. The results confirmed a significant subsidence of the ground and rise of the water level. The subsidence was highest (37 cm) in Goma, then progressively vanished towards the E (~10 cm in Gisenyi but 0 cm ~2 km farther E) and W (0 cm ~15 km W of Goma). After these first measurements, several others were systematically taken along the N shoreline of Lake Kivu as well as around the lake up to ten's of kilometers S of Goma, and at Idjwi Island, ~30 km S of Goma. The measurements showed that ground subsidence is an ongoing phenomenon in the entire rift area near Lake Kivu. One month after the eruption, maximum measured ground subsidence was 50-60 cm at the Goma harbor and at Idjwi Island (figure 14). Scientists note that the February-March westward shifting of the ground subsidence corresponds to a similar westward shifting of epicenters.

Figure (see Caption) Figure 14. Plots showing cumulative, asymmetrical land subsidence in the Goma area across the far S flanks of Nyiragongo. The subsidence was measured with respect to pre-subsidence surface of Lake Kivu, and surveyed along an E-W transect. The four survey dates (all in early 2002) each established the greatest subsidence at Goma, and lesser subsidence towards the East African rift's margins. Courtesy UN-OCHA team.

Conclusions. The characteristics of the erupted products and associated lava flows, together with the available information on the state of the volcano prior the eruption, suggest different dynamics of magma emission in the upper and lower portions of the fracture system. Two different interpretations have been offered. The "magmatic" hypothesis is that the energy for intense fracturing of the volcanic apparatus came from deep magma pushing from below inside the volcanic system. The "tectonic" hypothesis is that the energy for fracturing came from a non-volcanic source and was due to a rifting event related to regional tectonics. Further discussion of both hypotheses is offered in the report by the UN-OCHA team (Tedesco and others, 2002).

Goma is considered at a very high risk should reactivation of the volcano and rift system occur. The security of its inhabitants cannot be guaranteed even with the most sophisticated instrumental network. Thousands of lives can be saved by increased surveillance, continued scientific investigation, contingency plans, and information campaigns.

An outstanding effort by the UN and several donors allowed for the development of short and long-term aid to the Goma Volcano Observatory (GVO). This effort included support for foreign volcanologists, purchase of new equipment, establishing a new monitoring network, and help with logistics (transportation, communications, salaries, etc.). GVO is now publishing weekly reports on volcano activities.

References. Allard, P., Baxter, P., Halbwachs, M., and Komorowski, J-C, 2002, Final report of the French-British scientific team: submitted to the Ministry for Foreign Affairs, Paris, France, Foreign Office, London, United Kingdom and respective Embassies in Democratic Republic of Congo and Republic of Rwanda, 24 p.

Baxter, P.J., 2002, Eruption at Nyiragongo volcano, Democratic Republic of Congo, 17-18 January 2002: a report on a field visit to assess the initial hazards of the eruption, 15 p.

Tedesco, D., Papale, P., Vaselli, O., and Durieux, J., 2002, The January 17th, 2002 eruption of Nyiragongo, Democratic Republic of Congo: UN-OCHA report, 17 p.

Tietze, K., Geyh, M., Muller, H., Schroder, L. Stahl, W., and Wehner, H., 1980, Geol. Rund., v. 69, p. 452-472.

Tuttle, M.L., Lockwood, J.P., and Evans, W.C., 1990, Natural hazards associated with Lake Kivu in Rwanda and Zaire, central Africa: U.S. Geological Survey, Open File Report 90-691, 47 p.

General Reference. Tazieff, H., 1979, Nyiragongo, the forbidden volcano, translated by J. F. Bernard: Barron's, New York, 287 p. Originally published as Nyiragongo: Flammarion, Paris, 1975.

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Dario Tedesco, Dipartimento Scienze Ambientali, Seconda Universita' di Napoli, Via Vivaldi 43, 81100 Caserta, Italy; Paolo Papale, Istituto Nazionale di Geofisica e Vulcanologia, via S. Maria, 53, I-56126 Pisa, Italy; Orlando Vaselli, Dipartimento Scienze della Terra, via G. La Pira, 4, 50121 Firenze, Italy; Jacques Durieux, Groupe d'Etude des Volcans Actifs, 6, Rue des Razes 69320 Feyzin, France; Dieudonné Wafula, Goma Volcano Observatory, Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DRC; Andy Harris, Eric Pilger and Luke Flynn, Hawaii Institute of Geophysics and Planetology at the School of Ocean and Earth Science Technology (HIGP/SOEST), University of Hawaii, 2525 Correa Road, Honolulu, HI 96822 USA; Peter Baxter, Department of Community Medicine, Institute of Public Health, University of Cambridge, University Forvie Site, Robinson Way, Cambridge, CB2 2SR, United Kingdom.


Pacaya (Guatemala) — March 2002 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Costly 1999 aircraft-ash encounters due to ash plumes

At least two commercial aircraft flew through airborne ash near the Guatemala City airport on 21 May 1999. An eruption from Fuego that day was the first at that volcano since 1987 (BGVN 24:04). Although the aviator's reports attributed the ash from this encounter to Fuego, their aircraft intersected multiple ash plumes in widely different locations, and thus they may also have crossed plumes from Pacaya. The most likely plume near the southern approach to the airport (La Aurora, ~23 km N of Pacaya; ~40 km NE of Fuego) is from the almost constantly active Pacaya. In contrast, Fuego lies 32 km W of Pacaya and was the likely source of a plume intersected later during the flight, at higher altitude, and for much longer duration.

During the encounters the ~100 or more people on board the two aircraft, and many more on the ground, were at risk. Both encounters seriously damaged the aircraft but ended in safe landings without reported injuries. Volcanic ash can cause jet-engine failure, which creates a hazard not only to passengers, but to people on the ground as well. The risk in this situation was amplified by the airport's proximity to urban Guatemala City (population, >1.1 million).

This example leads to two conclusions discussed further below. First, ash avoidance methodology needs further refinement. Second, there exists an apparent bias towards under-reporting of aircraft-ash encounters, which could short-change their cost to air carriers, their perceived risk, and their funding allocation.

The original report of an aircraft-ash encounter was brought to our attention by Captain Edward Miller of the Air Line Pilots Association and provided on the condition that the air carrier remain anonymous. Bulletin editors also wish to acknowledge conversations with several additional anonymous contacts (commercial pilots). This case occurred in Guatemala; however, analogous situations exist at many airports adjacent to volcanoes. Modest eruptions from nearby volcanoes may be uncertain or difficult to see; they may be hard to detect or characterize; yet they still may yield mobile ash plumes carried by complex local winds to confront air traffic (Salinas, 2001; Hefter, 1998; Casadevall, 1994).

Although in most Bulletin reports we favor the use of local time to emphasize the reference frame of people on the scene, most of the source material (satellite and aviation) for this report refer to UTC (Coordinated Universal Time). UTC is the time on the Greenwich meridian (longitude zero), formerly GMT, a term which has fallen out of use. Accordingly, there are cases in this report that lack conversion to local time. Local time in Guatemala is 6 hours behind UTC.

Activity at Fuego and Pacaya. Fuego erupted on 21 May 1999 sending ash to the S, SE, and SW and ultimately dropping up to 40 cm of ash on local settlements (BGVN 24:04). The eruption occurred at 1800 local time (in terms of UTC, at 0000 the next day). Three hours later the eruption decreased and the Aeronautica Civil recommended that planes go no closer to Fuego than 40 km. One hour after that (at 2200 local, 0400 UTC), the atmospheric ash had settled, and Aeronautica Civil recommended flying no closer to Fuego than 15 km.

Bulletin reports for Pacaya in mid-1999 suggested relative calm, in harmony with the observation that it had chiefly been fuming. However, Pacaya is well-known for Strombolian outbursts. It lies directly in-line and only 23 km S of the N10°E-oriented airstrip. As is common for commercial aircraft there, the approaches described below passed very close to Pacaya. Pacaya typically has lower and smaller eruptions than Fuego, but because it lies so close to the southern approach to the airport, Pacaya's ash plumes easily enter the path of landing aircraft. The situation was particularly complex during this eruption because Fuego's ash was reported on cities that lie below the flight path as well as on the Pacaya's flanks.

Pilot's report of aircraft-ash encounter. What follows was taken from one flight crew's description of events and from later reports and dialog on the topic. In order to preserve the confidentiality of the airlines, the precise times of events on 21 May 1999 have been omitted. Pilots reported clear visibility and light wind, with both the capital and the airport in sight. They maneuvered the aircraft for a final approach from the S. Pilots were advised by air traffic control about erupted particulate ("volcanic sand") about 24 km (15 miles) SE of the airport, well away from their projected path to Runway 01. In addition, based on winds they detected as they neared the airport, the pilots concluded that the erupted particulate to the SE was downwind from their projected flight path to the airport. (In retrospect, this conclusion appears tenuous considering the possibility of either a fresh injection of ash from Fuego, or lingering ash in the trailing portion of the plume that lay to the SE.)

At ~32 km (20 miles) distance from the runway, the pilots maneuvered the plane through ~3,000 m (9,700 feet) altitude on a final approach to the airport with the plane's flaps partially extended (at ~15°, which slowed their aircraft to ~260 km/hour (160 mph), its auxiliary power unit (a small jet engine) on, and its landing gear down. Around this point in their descent, pilots saw bright yellow sparks through the windshield lasting a few seconds, a display unlike static electricity, but rather like that from a grinding wheel. This occurred again at 2,500 m (8,200 feet) altitude, but was more intense yet intermittent.

At this time, air-traffic control announced to the pilots that the aircraft landing in front of them had encountered volcanic particulate; they instructed the pilots to abort their landing and climb to 3,350 m (11,000 feet) altitude. Discussions of options and ash avoidance ensued between pilots and air-traffic control; ash had by this time accumulated on the runway, further complicating landing, even for approaches in the opposite direction. The pilots retracted the landing gear, accelerated to ~410 km/hour (~250 mph), began to climb, and after some discussion with air-traffic control, held on a course NE of the airport. They were subsequently cleared to climb to 6,700 m (22,000 feet) altitude and advised to proceed to an alternate airfield.

During the climb, at ~5,800 m (19,000 feet) altitude en-route to the alternate airport, the aircraft encountered volcanic particulate for 10 minutes. Within that interval the plane spent 2 minutes during ascent engulfed in denser and heavier particulate. During that period, window arcing was constant and the beam of their landing lights revealed a conspicuous cloud of reflecting particles. During ash ingestion the engines's speed lacked noticeable fluctuations. The aircraft exited the plume at about 6,100 m (20,000 feet) altitude and landed without encountering additional ash.

Upon landing, the pilots noticed reduced visibility through abraded windshields. Post-flight examination of the airplane revealed heavy damage, requiring the replacement of the engines (US $2 million each) and auxiliary-power-unit engine. (Note, however, that no deterioration in engine power or performance was noticed during the flight.) Other replaced parts included windshields, a heat exchanger, and coalescer bags. Minor damage was seen on the horizontal stabilizer and wing leading-edges.

Volcanic Ash Advisory Statements. The U.S. National Oceanic and Atmospheric Administration (NOAA), Satellite Services Division website contains two archived statements issued by the Volcanic Ash Advisory Center (VAAC) at Washington, D.C. for Fuego on 21-22 May 1999. The statements, issued to the aviation cummunity to warn of volcanic hazards, are intended for an audience accustomed to special terminology (figures 31 and 32). In the interest of advancing understanding of how volcanological and atmospheric data get transmitted to aviators, we offer brief explanations for many of the terms used (figure 31).

Figure (see Caption) Figure 31. The first archived Volcanic Ash Advisory Statement (VAAS) for the 21 May 1999 eruption at Fuego, Guatemala. The boxes contain added notes to explain some of the basic conventions and specific details seen here. This Statement currently appears on the NOAA Satellite Services Division website (see "Information Contacts," below). Local names are frequently anglicized, dropping all accents and other non-English characters (eg. México would be written MEXICO). Later Advisories adopted the abbreviation "Z" (pronounced 'Zulu' by aviators) for UTC, as in 1300 UTC written as 1300Z.
Figure (see Caption) Figure 32. A later Volcanic Ash Advisory Statement (VAAS) for the 21 May 1999 eruption at Fuego, Guatemala. The statement, which was issued the next day, discloses that the eruption had then stopped and the hazard status was lowered. The statement appears on the NOAA Satellite Services Division website (see "Information Contacts," below).

The Washington VAAC received first notification of the Fuego eruption from a routine surface weather observation from Guatemala City at 2000 local time (0200 UTC) on 22 May. They issued the first Volcanic Ash Advisory Statement a half-hour later (figure 31). Six hours later they issued the second Advisory Statement (figure 32). The Advisories were composed by staff of the Satellite Analysis Branch, one of the two NOAA components forming the Washington VAAC (Streett, 1999; Washington VAAC).

The section "Details of ash cloud" first says that the "surface observation from Guatemala City indicate that the Fuego volcano is in eruption" and that no additional information is available and then briefly describes in words observations that came from satellite imagery. The first sentence, "No eruption..." is self-explanatory, but highlights a limitation of the method in use that needs to be emphasized to aviators: an eruption may have occurred but its status is not revealed on the imagery. The sentence, "No eruption could be detected due to thunderstorm cloudiness covering the area around the volcano" is self-explanatory. Less clear is the term convective debris. It does not refer to ash; rather, it refers to remnants of thunderstorms. The gist of these latter two sentences is simply that the thunderstorms that covered the area made it challenging or impossible to see the ash on satellite imagery. Central American thunderstorm clouds typically can reach altitudes of more than 12,000 m (40,000 feet), and can mask or obscure airborne ash residing below that level.

Members of the Washington VAAC commented that this eruption demonstrates key problems that can arise when cloudy conditions prevent satellite detection of ash, foiling a primary mode of analysis. In such cases, they rely on ground observers (including observatories and weather observers), pilot reports, and reports from airlines. Thus, their ability to issue useful information in cloudy conditions depends on the quality of communications with local observers, the Meteorological Watch Office, volcanologists, geophysical observatories, and the aviation community.

The Advisory Statement listed México City weather balloon data acquired 1,050 km NW of Guatemala City. In retrospect, the Washington VAAC noted that they generally avoid using such distant sounding data. If a closer sounding cannot be found, they prefer to use upper-level wind forecasts taken from a numerical weather model. In any case, the scarcity of local sounding data presents a challenge to the realistic analysis of airborne ash.

The outlook section says to "see SIGMETS." SIGMETS are the true warnings to aircraft for SIGnificant METeorological events. They are issued by regional Meteorological Watch Offices (MWOs), in this case the MWO (for Guatemala) is in Tegucigalpa, Honduras. SIGMETS were lacking for this eruption; although the Washington VAAC tried to contact the MWO without response. Another complexity confronted at the VAAC is a lack of a single scale for communicating a volcano's hazard status.

Reporting of aviation ash encounters. In personal communications with Bulletin editors, airline personnel stated that many more encounters have occurred than have yet been tallied in publically accessible literature. In accord with those assertions, the 21 May 1999 encounters are absent from reports compiled by the International Civil Aviation Organization (ICAO, 2001). In that document (Appendix I, table 3A, p. I-12) Fuego fails to appear as a source vent for any aircraft-ash encounter. Pacaya is listed for two encounters, in January 1987 and in May 1998 (BGVN 23:05).

Even though the number of encounters was probably under-represented and thus reflects a minimum, ICAO (2001) notes that the international costs to aviation since 1982 summed to well in excess of $250 million. They noted, "In addition to its potential to cause a major aircraft accident, the economic cost of volcanic ash to international civil aviation is staggering. This involves numerous complete engine changes, engine overhauls, airframe refurbishing... aircraft downtime... [and] volcanic ash clearance from airports and the damage caused to equipment and buildings on the ground."

The incidents here suggest that there has been a strong bias toward under-reporting aircraft-ash encounters. If this tentative conclusion is correct, it implies consistent understatements of the hazard's magnitude. This, in turn, may have thwarted meaningful analysis of how and whether to proceed with designing more robust hazard-reduction systems. Accordingly, resources that could have been devoted to the problem have not yet been committed (see Gimmestad and others, 2001 for a discussion of a prototype on-board ash-detection instrument).

Communication challenges. While much of the aviation community needs to learn about volcanism rapidly, dependably, and with the aid of the Internet, some observers charged with reporting volcanic-ash hazards in Central and South America lack access to basic communication devices like reliable telephones and fax machines. To reduce the risks, the aviation, meteorological, remote sensing, and volcanological communities need to improve their ability to pass critical information to each other rapidly and precisely. The operational systems related to volcanic ash and aviation must transcend numerous boundaries (eg., languages, infrastructure, funding, governments, agencies, air carriers, pilots, aircraft manufactures, etc.). The systems need to portray complex, dynamic processes such as the rapid rise of an explosive plume, or large-scale ash-cloud movement.

Although the infrastructure for ash avoidance is greater than ever, members of the Washington VAAC have told Bulletin editors that they still depend heavily on people on the scene of the eruption to notify them promptly when eruptions occur. They said that thus far in parts of Central and South America a problem has been the expense of communication (eg., by phone, fax, and Internet). They also said that for the same regions the U.S. meteorological database regularly lacks pilot reports. Though serious, these problems have at least been identified and their solutions would appear to lack great technical or economic barriers.

The pilots involved in the May 1999 encounter recommended that far more emphasis be placed on forecasting and avoiding ash plumes. Other pilots cited the need for fast and accurate communications between those who observe eruptive activity and air traffic control personnel.

Issues like these continue to be an important subject at gatherings on the topic of ash hazards in aviation (Casadevall, 1994; Streett, D., 1999; Washington VAAC, 1999). The Airline Dispatcher's Federation (ADF) will participate in a 7-9 May 2002 conference and workshop: "Operational Implications of Airborne Volcanic Ash: Detection, Avoidance, and Mitigation." The gathering will provide the pilot and dispatcher with insights into volcanic ash, including its characteristics, affects on aircraft, detection/tracking, effective warning systems, and mitigation. A "hands-on" exercise will make this the first gathering of its kind to provide lab-style instruction on interpretation of satellite and wind data, and on models of ash trajectory and dispersion. Representatives from the Boeing company, and a host of US government agencies and non-governmental organizations will attend. The workshop will include lectures, demonstrations, laboratory exercises, and a simulated-eruption exercise involving volcanologists, forecasters, controllers, dispatchers, and pilots.

A second international symposium on ash and aviation safety is being planned by the U.S. Geological Survey, organized by Marianne Guffanti. It will be held in Washington, D.C. in September 2003.

References. Casadevall, T.J. (ed.), 1994, Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety: U.S. Geological Survey Bulletin 2047, 450 p.

Gimmestad, G.G., Papanicolopoulos, C.D., Richards, M.A., Sherman, D.L., and West, L.L., 2001, Feasibility study of radiometry for airborne detection of aviation hazards, NASA/CR-2001-210855; Georgia Tech Research Institute, Atlanta, Georgia, 51 p. (URL: http://techreports.larc.nasa.gov/ltrs/PDF/2001/cr/).

Hefter, J.L., 1998, Verifying a volcanic ash forecasting model, Airline Pilot, v. 67, no. 5, pp. 20-23, 54.

International Civil Aviation Organization (ICAO), 2001, Manual on volcanic ash, radioactive material, and toxic chemical clouds, doc 9691-AN/954 (first edition): 999 University St., Montreal, Quebec, Canada H3C 5H7 (purchasing information: sales_unit@icao.int).

Rose, W.I., Bluth, J.S.G., Schneider, D.L., Ernst, G.G.J., Riley, C.M., Henderson, L.J., and McGimsey, R.G., 2001, Observations of volcanic clouds in the first few days of atmospheric residence: The 1992 eruptions of Crater Peak, Mount Spurr volcano, Alaska, Jour. of Geology, v. 109, p. 677-694.

Salinas, Leonard J., 2001, Volcanic ash clouds pose a real threat to aircraft safety: United Airlines, Chicago, Illinois (URL: http://www.dispatcher.org/library/VolcanicAsh.htm).

Simkin, T., and Siebert, L., 1994, Volcanoes of the World, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Streett, D., 1999, Satellite-based Volcanic Ash Advisories and an Ash Trajectory Model from the Washington VAAC: Eighth Conference on Aviation, Range, and Aerospace Meteorology, 10-15 January 1999, Dallas, Texas; American Meteorological Society, p. 290-294.

Washington VAAC, 1999, Operations of the Washington Volcanic Ash Advisory Center, in Aeronautical meteorological offices and their functions, and meteorological observation networks: Third Caribbean/South American Regional Air Navigation Meeting (Car/sam/ran/3); Buenos Aires, Argentina, 5 - 15 October, 1999; International Civil Aviation Organization (http://www.ssd.noaa.gov/ VAAC/PAPERS/carsam.html).

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Captain Edward Miller, Air Line Pilots Association (ALPA), Air Safety & Engineering Department, 535 Herndon Parkway, PO Box 1169, Herndon, VA 22070-1169, USA; Grace Swanson and Davida Streett, Washington VAAC, Satellite Analysis Branch (NOAA/NESDIS), 4700 Silver Hill Road, Stop 9910, Washington, DC 20233-9910, USA (URL: http://www.ssd.noaa.gov/); Bill Rose, Geological Engineering and Sciences, Michigan Technological University, Houghton, MI 49931, USA.


Rabaul (Papua New Guinea) — March 2002 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


M 5.6 earthquakes during March 2002 not related to volcanism

After explosions at Tavurvur during June and August 2001, activity decreased through October. During February-March 2002, the Rabaul Volcanological Observatory (RVO) reported that volcanic and seismic activity remained low, with some low-frequency earthquakes recorded. The active vent emitted weak-to-moderate amounts of white vapor. Ground deformation measurements showed no significant changes.

During mid-February, moderate-to-strong gas emissions drifted to the SE and E and damaged vegetation on the adjacent cone South Daughter, suggesting the presence of volcanic gases like sulphur dioxide within the emissions. The last ash-producing activity from Tavurvur occurred in early September 2001. RVO reported that the chance of mild ash activity occurring in the near future is very remote.

A few tectonic earthquakes were felt during mid-February. They were located 35-80 km NW and SW from the Rabaul-Kokopo area. An M 5.6 tectonic earthquake was felt at 0650 on 17 March. The earthquake was located offshore in the Pomio area. On 21 March, some high-frequency earthquakes occurred NE of Rabaul. Since 1995, these high-frequency earthquakes have been associated with eruptive activity at Tavurvur. During mid-March, some earthquakes were felt, unrelated to volcanic activity, that had magnitudes of 5.3-5.6.

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: Ima Itikarai, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.


Sheveluch (Russia) — March 2002 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Growing dome, greater seismicity, and plumes to 10 km in early 2002

During late January to early April 2002, seismic activity at Shiveluch remained above background levels and the lava dome in the active crater continued to grow. Explosions, avalanches, pyroclastic flows, and plumes from combinations of steam, gas, and ash, all occurred without warning and rose as high as 7-10 km altitude. Many shallow earthquakes (ML less than or equal to 2.5) occurred within the volcano's edifice along with other shallow seismic events. The Alert Level was raised from Yellow to Orange during a period of increased activity, 12 February-mid-March. Then the Level was returned to Yellow.

Typical activities from the end of January through the first half of February 2002 included weak seismic events and short-lived explosions, which sent ash-gas plumes to heights of 0.8-1.0 km above the ~2.5 km-high dome (reaching 3.3-3.5 km altitude). Occasional explosions sent plumes to higher altitudes; on 25 January a plume rose to ~4.5 km altitude, while an explosive eruption on 1 February sent ash-gas plumes to heights over 5.0 km.

For the latter eruption, Advanced Very High Resolution Radiometer (AVHRR) satellite images show thermal anomalies up to 10 pixels. Many of these "hot" pixels were at the detector saturation level of 48°C, and appeared against typical background temperatures as low as -25°C. A satellite image on 2 February revealed a 40-pixel thermal anomaly; however, only 5-7 of the pixels had temperatures above 40°C, indicating that only those pixels were influenced by hot material on the ground. The other pixels with elevated temperatures were associated with a cloud caused by hot avalanches.

On the evening of 12 February, the character of the seismicity changed suggesting the occurrence of more intense gas-ash explosions. During the next 30 days, explosions occurred frequently, producing ash-and-gas plumes that rose over 1 km above the dome and occasionally over 3 km above it. On 22 February, a series of shallow seismic events registered for ~1 hour, possibly related to ash-gas explosions or a hot rock avalanche. A similar series was recorded on the night of 27 February, and the next morning observers from Klyuchi town (46 km S) reported a 2-km-long pyroclastic flow to the SE of the dome.

AVHRR images of the resulting plumes showed that some extended to distances of 100 km in various directions, depending upon local wind conditions. A satellite image on 21 February showed a circular ash cloud, 20 km in diameter, at an altitude of ~7.1 km. By 15 March seismic activity declined but remained above background levels. Short-lived explosions continued to send plumes as high as 7.5 km altitude during the last week of March.

Thermal anomalies and pixel size on AVHRR imagery. Dave Schneider (USGS, AVO) provided an explanation of relevant aspects of pixel size and thermal anomalies. The size of a "raw" AVHRR pixel varies across and along the scan of the sensor. The instrument scans from side to side as the satellite moves in orbit. Along the nadir (the line directly beneath the satellite sensor), the pixel size is ~1.1 km on a side. At the far extreme of the scan (55° from nadir) the pixel size increases to 2.4 x 6.5 km. The raw image looks very distorted due to this change in pixel size, so the raw data are resampled to a resolution of 1 x 1 km when processing the data for display. This resampling can generate artifacts, including duplicate "hot" pixels. Analysts usually recognize and account for this problem, and then accurately report the appropriate number of hot pixels.

Another complication is the cause and significance of hot pixels. An AVHRR pixel will begin to appear anomalously warm, compared to its neighbors, when very hot material (hundred's of degrees) occupy a very small percentage of the total pixel area (much less that 1%). So, when a report mentions four hot pixels, and the pixel is 1 km square, one might be tempted to interpret this as 4 km2 of hot material. However, this is not correct. Typically, only a very small portion of a pixel area is hot, but sufficiently hot to reach the pixel's saturation value of ~50°C. The numbers of hot pixels are not all that relevant in an absolute sense. In a relative sense, however, the number of hot pixels can be important, for example, during episodes where we have seen anomalies grow from 1-4 hot pixels and then reach 10-20 hot pixels after an eruption.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller and Dave Schneider, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Ulawun (Papua New Guinea) — March 2002 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Isolated tremor episodes and slow deflation through March 2002

An eruption occurred at Ulawun during 25-30 April 2001 (BGVN 26:06). Limited evacuations occurred on 3 May due to the occurrence of relatively high seismic activity and the possibility of further volcanic activity. On 14 June the Rabaul Volcanological Observatory (RVO) recommended that the Alert Level be reduced from 2 to 1. At this stage of alert, people could move back to their homes with the approval of the local disaster committee.

Volcanic tremor began at 2200 on 24 September. It peaked at about 1000 on 27 September and generally declined afterward. By 30 September seismic activity was at moderate levels. During 27-30 September a very slow deflationary trend was detected. Volcanic tremor continued to occur at moderate-to-high levels until it dropped dramatically on 11 October. After 11 October seismicity only consisted of discrete low-frequency earthquakes. On 8 and 9 October loud roaring noises emanated from the volcano.

During October through March 2002 activity was generally low. The main crater produced weak-to-moderate volumes of white and white-gray vapor. The N valley vent occasionally released weak volumes of thin white vapor. RSAM data revealed conspicuous seismicity on 26 October; incandescence was observed that night. A rapid trend of deflation beneath the summit area during the previous two weeks stopped on 24 December.

During mid-February tremor increased to moderate levels for the first time since December 2001. On 21 February weak roaring noises were heard and weak incandescence was visible for a short time. After 22 February tremor returned to background levels. Seismic activity returned to background levels after volcanic tremor ceased on 18 March. Discrete low-frequency earthquakes continued to occur in small numbers. The electronic tiltmeter continued to show long-term deflation of the summit area. Based on recent observations, activity at Ulawun is expected to remain low.

General References. Johnson, R.W., Davies, R.A., and White, A.J.R., 1972, Ulawun volcano, New Britain: Australia Bureau of Mineral Resources, Geology and Geophysics, Bulletin 142, 42 p.

McKee, C.O., 1983, Volcanic hazards at Ulawun volcano: Geological Survey of Papua New Guinea Report 83/13, 21 p.

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: Ima Itikarai, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports