Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Ebeko (Russia) Continued explosions, ash plumes, and ashfall; June-November 2020

Kuchinoerabujima (Japan) Intermittent thermal anomalies and small eruptions in May and August 2020

Nyamuragira (DR Congo) Numerous thermal anomalies and gas emissions from the lava lake through November 2020

Raung (Indonesia) Explosions with ash plumes and a thermal anomaly at the summit crater, July-October 2020

Sinabung (Indonesia) Explosions begin again on 8 August 2020; dome growth confirmed in late September

Heard (Australia) Persistent thermal anomalies in the summit crater from June through October 2020

Sabancaya (Peru) Daily explosions produced ash plumes, SO2 plumes, and thermal anomalies during June-September 2020

Rincon de la Vieja (Costa Rica) Frequent small phreatic explosions with intermittent ash plumes during April-September 2020

Fuego (Guatemala) Daily explosions, ash emissions, and block avalanches during August-November 2020

Kikai (Japan) Explosion on 6 October 2020 and thermal anomalies in the crater

Manam (Papua New Guinea) Intermittent ash plumes, thermal anomalies, and SO2 emissions in April-September 2020

Karymsky (Russia) New eruption during April-July 2020; ash explosions in October 2020



Ebeko (Russia) — December 2020 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Continued explosions, ash plumes, and ashfall; June-November 2020

Volcanism at Ebeko, located on the N end of the Paramushir Island in the Kuril Islands, has been ongoing since October 2016, characterized by frequent moderate explosions, ash plumes, and ashfall in Severo-Kurilsk (7 km ESE) (BGVN 45:05). Similar activity during this reporting period of June through November 2020 continues, consisting of frequent explosions, dense ash plumes, and occasional ashfall. Information for this report primarily comes from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.

Activity during June was characterized by frequent, almost daily explosions and ash plumes that rose to 1.6-4.6 km altitude and drifted in various directions, according to KVERT reports and information from the Tokyo VAAC advisories using HIMAWARI-8 satellite imagery and KBGS (Kamchatka Branch of the Geophysical Service) seismic data. Satellite imagery showed persistent thermal anomalies over the summit crater. On 1 June explosions generated an ash plume up to 4.5 km altitude drifting E and S, in addition to several smaller ash plumes that rose to 2.3-3 km altitude drifting E, NW, and NE, according to KVERT VONA notices. Explosions on 11 June generated an ash plume that rose 2.6 km altitude and drifted as far as 85 km N and NW. Explosions continued during 21-30 June, producing ash plumes that rose 2-4 km altitude, drifting up to 5 km in different directions (figure 26); many of these eruptive events were accompanied by thermal anomalies that were observed in satellite imagery.

Figure (see Caption) Figure 26. Photo of a dense gray ash plume rising from Ebeko on 22 June 2020. Photo by L. Kotenko (color corrected), courtesy of IVS FEB RAS, KVERT.

Explosions continued in July, producing ash plumes rising 2-5.2 km altitude and drifting for 3-30 km in different directions. On 3, 6, 15 July explosions generated an ash plume that rose 3-4 km altitude that drifted N, NE, and SE, resulting in ashfall in Severo-Kurilsk. According to a Tokyo VAAC advisory, an eruption on 4 July produced an ash plume that rose up to 5.2 km altitude drifting S. On 22 July explosions produced an ash cloud measuring 11 x 13 km in size and that rose to 3 km altitude drifting 30 km SE. Frequent thermal anomalies were identified in satellite imagery accompanying these explosions.

In August, explosions persisted with ash plumes rising 1.7-4 km altitude drifting for 3-10 km in multiple directions. Intermittent thermal anomalies were detected in satellite imagery, according to KVERT. On 9 and 22 August explosions sent ash up to 2.5-3 km altitude drifting W, S, E, and SE, resulting in ashfall in Severo-Kurilsk. Moderate gas-and-steam activity was reported occasionally during the month.

Almost daily explosions in September generated dense ash plumes that rose 1.5-4.3 km altitude and drifted 3-5 km in different directions. Moderate gas-and-steam emissions were often accompanied by thermal anomalies visible in satellite imagery. During 14-15 September explosions sent ash plumes up to 2.5-3 km altitude drifting SE and NE, resulting in ashfall in Severo-Kurilsk. On 22 September a dense gray ash plume rose to 3 km altitude and drifted S. The ash plume on 26 September was at 3.5 km altitude and drifted SE (figure 27).

Figure (see Caption) Figure 27. Photos of dense ash plumes rising from Ebeko on 22 (left) and 26 (right) September 2020. Photos by S. Lakomov (color corrected), IVS FEB RAS, KVERT.

During October, near-daily ash explosions continued, rising 1.7-4 km altitude drifting in many directions. Intermittent thermal anomalies were identified in satellite imagery. During 7-8, 9-10, and 20-22 October ashfall was reported in Severo-Kurilsk.

Explosions in November produced dense gray ash plumes that rose to 1.5-5.2 km altitude and drifted as far as 5-10 km, mainly NE, SE, E, SW, and ENE. According to KVERT, thermal anomalies were visible in satellite imagery throughout the month. On clear weather days on 8 and 11 November Sentinel-2 satellite imagery showed ashfall deposits SE of the summit crater from recent activity (figure 28). During 15-17 November explosions sent ash up to 3.5 km altitude drifting NE, E, and SE which resulted in ashfall in Severo-Kurilsk on 17 November. Similar ashfall was observed on 22-24 and 28 November due to ash rising to 1.8-3 km altitude (figure 29). Explosions on 29 November sent an ash plume up to 4.5 km altitude drifting E (figure 29). A Tokyo VAAC advisory reported that an ash plume drifting SSE on 30 November reached an altitude of 3-5.2 km.

Figure (see Caption) Figure 28. Sentinel-2 satellite imagery of a gray-white gas-and-ash plume at Ebeko on 8 (left) and 11 (right) November 2020, resulting in ashfall (dark gray) to the SE of the volcano. Images using “Natural Color” rendering (bands 4, 3, 2), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 29. Photos of continued ash explosions from Ebeko on 28 October (left) and 29 November (right) 2020. Photos by S. Lakomov (left) and L. Kotenko (right), courtesy of IVS FEB RAS, KVERT.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows a pulse in low-power thermal activity beginning in early June through early August (figure 30). On clear weather days, the thermal anomalies in the summit crater are observed in Sentinel-2 thermal satellite imagery, accompanied by occasional white-gray ash plumes (figure 31). Additionally, the MODVOLC algorithm detected a single thermal anomaly on 26 June.

Figure (see Caption) Figure 30. A small pulse in thermal activity at Ebeko began in early June and continued through early August 2020, according to the MIROVA graph (Log Radiative Power). The detected thermal anomalies were of relatively low power but were persistent during this period. Courtesy of MIROVA.
Figure (see Caption) Figure 31. Sentinel-2 satellite imagery showed gray ash plumes rising from Ebeko on 11 June (top left) and 16 July (bottom left) 2020, accompanied by occasional thermal anomalies (yellow-orange) within the summit crater, as shown on 24 June (top right) and 25 August (bottom right). The ash plume on 11 June drifted N from the summit. Images using “Natural Color” rendering (bands 4, 3, 2) on 11 June (top left) and 16 July (bottom left) and the rest have “Atmospheric penetration” rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Kamchatka Branch of the Geophysical Service, Russian Academy of Sciences (KB GS RAS) (URL: http://www.emsd.ru/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kuchinoerabujima (Japan) — November 2020 Citation iconCite this Report

Kuchinoerabujima

Japan

30.443°N, 130.217°E; summit elev. 657 m

All times are local (unless otherwise noted)


Intermittent thermal anomalies and small eruptions in May and August 2020

Kuchinoerabujima encompasses a group of young stratovolcanoes located in the northern Ryukyu Islands. All historical eruptions have originated from the Shindake cone, with the exception of a lava flow that originated from the S flank of the Furudake cone. The current eruptive period began in January 2020 and has been characterized by small explosions, ash plumes, ashfall, a pyroclastic flow, and gas-and-steam emissions. This report covers activity from May to October 2020, which includes small explosions, ash plumes, crater incandescence, and gas-and-steam emissions. The primary source of information for this report comes from monthly and annual reports from the Japan Meteorological Agency (JMA) and advisories from the Tokyo Volcanic Ash Advisory Center (VAAC).

Volcanism at Kuchinoerabujima remained relatively low during May through October 2020, according to JMA. During this time, SO2 emissions ranged from 40 to 3,400 tons/day; occasional gas-and-steam emissions were reported, rising to a maximum of 900 m above the crater. Sentinel-2 satellite images showed a particularly strong thermal anomaly in the Shindake crater on 1 May (figure 10). The thermal anomaly decreased in power after 1 May and was only visible on clear weather days, which included 19 August and 3 and 13 October. Global Navigation Satellite System (GNSS) observations identified continued slight inflation at the base of the volcano during the entire reporting period.

Figure (see Caption) Figure 10. Sentinel-2 thermal satellite images showed a strong thermal anomaly (bright yellow-orange) in the Shindake crater at Kuchinoerabujima on 1 May 2020 (top left). Weaker thermal anomalies were also seen in the Shindake crater during 19 August (top right) and 3 (bottom left) and 13 (bottom right) October 2020. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images; courtesy of Sentinel Hub Playground.

Three small eruptions were detected by JMA on 5, 6, and 13 May, which produced an ash plume rising 500 m above the crater on each day, resulting in ashfall on the downwind flanks. Incandescence was observed at night using a high-sensitivity surveillance camera (figure 11). On 5 and 13 May the Tokyo VAAC released a notice that reported ash plumes rising 0.9-1.2 km altitude, drifting NE and S, respectively. On 20 May weak fumaroles were observed on the W side of the Shindake crater. The SO2 emissions ranged from 700-3,400 tons/day.

Figure (see Caption) Figure 11. Webcam images of an eruption at Kuchinoerabujima on 6 May 2020 (top), producing a gray ash plume that rose 500 m above the crater. Crater incandescence was observed from the summit crater at night on 25 May 2020 (bottom). Courtesy of JMA (Monthly bulletin report 509, May 2020).

Activity during June and July decreased compared to May, with gas-and-steam emissions occurring more prominently. On 22 June weak incandescence was observed, accompanied by white gas-and-steam emissions rising 700 m above the crater. Weak crater incandescence was also seen on 25 June. The SO2 emissions measured 400-1,400 tons/day. White gas-and-steam emissions were again observed on 31 July rising to 800 m above the crater. The SO2 emissions had decreased during this time to 300-700 tons/day.

According to JMA, the most recent eruptive event occurred on 29 August at 1746, which ejected bombs and was accompanied by some crater incandescence, though the eruptive column was not visible due to the cloud cover. However, white gas-and-steam emissions could be seen rising 1.3 km above the Shindake crater drifting SW. The SO2 emissions measured 200-500 tons/day. During August, the number of volcanic earthquakes increased significantly to 1,032, compared to the number in July (36).

The monthly bulletin for September reported white gas-and-steam emissions rising 900 m above the crater on 9 September and on 11 October the gas-and-steam emissions rose 600 m above the crater. Seismicity decreased between September and October from 1,920 to 866. The SO2 emissions continued to decrease compared to previous months, totaling 80-400 tons/day in September and 40-300 tons/day in October.

Geologic Background. A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. All historical eruptions have occurred from Shindake, although a lava flow from the S flank of Furudake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shindake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nyamuragira (DR Congo) — December 2020 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Numerous thermal anomalies and gas emissions from the lava lake through November 2020

Nyamuragira (also known as Nyamulagira) is a shield volcano in the Democratic Republic of the Congo with a 2 x 2.3 km caldera at the summit. A summit crater lies in the NE part of the caldera. In the recent past, the volcano has been characterized by intra-caldera lava flows, lava emissions from its lava lake, thermal anomalies, gas-and-steam emissions, and moderate seismicity (BGVN 44:12, 45:06). This report reviews activity during June-November 2020, based on satellite data.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed numerous thermal anomalies associated with the volcano during June-November 2020, although some decrease was noted during the last half of August and between mid-October to mid-November (figure 91). Between six and seven thermal hotspots per month were identified by MODVOLC during June-November 2020, with as many as 4 pixels on 11 August. In the MODVOLC system, two main hotspot groupings are visible, the largest being at the summit crater, on the E side of the caldera.

Figure (see Caption) Figure 91. MIROVA graph of thermal activity (log radiative power) at Nyamuragira during March 2020-January 2021. During June-November 2020, most were in the low to moderate range, with a decrease in power during November. Courtesy of MIROVA.

Sentinel-2 satellite images showed several hotspots in the summit crater throughout the reporting period (figure 92). By 26 July and thereafter, hotspots were also visible in the SW portion of the caldera, and perhaps just outside the SW caldera rim. Gas-and-steam emissions from the lava lake were also visible throughout the period.

Figure (see Caption) Figure 92. Sentinel-2 satellite images of Nyamuragira on 26 July (left) and 28 November (right) 2020. Thermal activity is present at several locations within the summit crater (upper right of each image) and in the SW part of the caldera (lower left). SWIR rendering (bands 12, 8A, 4). Courtesy of Sentinel Hub Playground.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/exp).


Raung (Indonesia) — December 2020 Citation iconCite this Report

Raung

Indonesia

8.119°S, 114.056°E; summit elev. 3260 m

All times are local (unless otherwise noted)


Explosions with ash plumes and a thermal anomaly at the summit crater, July-October 2020

A massive stratovolcano in easternmost Java, Raung has over sixty recorded eruptions dating back to the late 16th Century. Explosions with ash plumes, Strombolian activity, and lava flows from a cinder cone within the 2-km-wide summit crater have been the most common activity. Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) has installed webcams to monitor activity in recent years. An eruption from late 2014 through August 2015 produced a large volume of lava within the summit crater and formed a new pyroclastic cone in the same location as the previous one. The eruption that began in July 2020 is covered in this report with information provided by PVMBG, the Darwin Volcanic Ash Advisory Center (VAAC), and several sources of satellite data.

The 2015 eruption was the largest in several decades; Strombolian activity was reported for many months and fresh lava flows covered the crater floor (BGVN 45:09). Raung was quiet after the eruption ended in August of that year until July of 2020 when seismicity increased on 13 July and brown emissions were first reported on 16 July. Tens of explosions with ash emissions were reported daily during the remainder of July 2020. Explosive activity decreased during August, but thermal activity didn’t decrease until mid-September. The last ash emissions were reported on 3 October and the last thermal anomaly in satellite data was recorded on 7 October 2020.

Eruption during July-October 2020. No further reports of activity were issued after August 2015 until July 2020. Clear Google Earth imagery from October 2017 and April 2018 indicated the extent of the lava from the 2015 eruption, but no sign of further activity (figure 31). By August 2019, many features from the 2015 eruption were still clearly visible from the crater rim (figure 32).

Figure (see Caption) Figure 31. Little change can be seen at the summit of Raung in Google Earth images dated 19 October 2017 (left) and 28 April 2018 (right). The summit crater was full of black lava flows from the 2015 eruption. Courtesy of Google Earth.
Figure (see Caption) Figure 32. A Malaysian hiker celebrated his climbing to the summit of Raung on 30 August 2019. Weak fumarolic activity was visible from the base of the breached crater of the cone near the center of the summit crater, and many features of the lava flow that filled the crater in 2015 were still well preserved. Courtesy of MJ.

PVMBG reported that the number and type of seismic events around the summit of Raung increased beginning on 13 July 2020, and on 16 July the height of the emissions from the crater rose to 100 m and the emission color changed from white to brown. About three hours later the emissions changed to gray and white. The webcams captured emissions rising 50-200 m above the summit that included 60 explosions of gray and reddish ash plumes (figure 33). The Raung Volcano Observatory released a VONA reporting an explosion with an ash plume that drifted N at 1353 local time (0653 UTC). The best estimate of the ash cloud height was 3,432 m based on ground observation. They raised the Aviation Color Code from unassigned to Orange. About 90 minutes later they reported a second seismic event and ash cloud that rose to 3,532 m, again based on ground observation. The Darwin VAAC reported that neither ash plume was visible in satellite imagery. The following day, on 17 July, PVMBG reported 26 explosions between midnight and 0600 that produced brown ash plumes which rose 200 m above the crater. Based on these events, PVMBG raised the Alert Level of Raung from I (Normal) to II (Alert) on a I-II-III-IV scale. By the following day they reported 95 explosive seismic events had occurred. They continued to observe gray ash plumes rising 100-200 m above the summit on clear days and 10-30 daily explosive seismic events through the end of July; plume heights dropped to 50-100 m and the number of explosive events dropped below ten per day during the last few days of the month.

Figure (see Caption) Figure 33. An ash plume rose from the summit of Raung on 16 July 2020 at the beginning of a new eruption. The last previous eruption was in 2015. Courtesy of Volcano Discovery and PVMBG.

After a long period of no activity, MIROVA data showed an abrupt return to thermal activity on 16 July 2020; a strong pulse of heat lasted into early August before diminishing (figure 34). MODVOLC thermal alert data recorded two alerts each on 18 and 20 July, and one each on 21 and 30 July. Satellite images showed no evidence of thermal activity inside the summit crater from September 2015 through early July 2020. Sentinel-2 satellite imagery first indicated a strong thermal anomaly inside the pyroclastic cone within the crater on 19 July 2020; it remained on 24 and 29 July (figure 35). A small SO2 signature was measured by the TROPOMI instrument on the Sentinel-5P satellite on 25 July.

Figure (see Caption) Figure 34. MIROVA thermal anomaly data indicated renewed activity on 16 July 2020 at Raung as seen in this graph of activity from 13 October 2019 through September 2020. Satellite images indicated that the dark lines at the beginning of the graph are from a large area of fires that burned on the flank of Raung in October 2019. Heat flow remained high through July and began to diminish in mid-August 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 35. Thermal anomalies were distinct inside the crater of the pyroclastic cone within the summit crater of Raung on 19, 24, and 29 July 2020. Data is from the Sentinel-2 satellite shown with Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

After an explosion on 1 August 2020 emissions from the crater were not observed again until steam plumes were seen rising 100 m on 7 August. They were reported rising 100-200 m above the summit intermittently until a dense gray ash plume was reported by PVMBG on 11 August rising 200 m. After that, diffuse steam plumes no more than 100 m high were reported for the rest of the month except for white to brown emissions to 100 m on 21 August. Thermal anomalies of a similar brightness to July from the same point within the summit crater were recorded in satellite imagery on 3, 8, 13, 18, and 23 August. Single MODVOLC thermal alerts were reported on 1, 8, 12, and 19 August.

In early September dense steam plumes rose 200 m above the crater a few times but were mostly 50 m high or less. White and gray emissions rose 50-300 m above the summit on 15, 20, 27, and 30 September. Thermal anomalies were still present in the same spot in Sentinel-2 satellite imagery on 2, 7, 12, 17, and 27 September, although the signal was weaker than during July and August (figure 36). PVMBG reported gray emissions rising 100-300 m above the summit on 1 October 2020 and two seismic explosion events. Gray emissions rose 50-200 m the next day and nine explosions were recorded. On 3 October, emissions were still gray but only rose 50 m above the crater and no explosions were reported. No emissions were observed from the summit crater for the remainder of the month. Sentinel-2 satellite imagery showed a hot spot within the summit crater on 2 and 7 October, but clear views of the crater on 12, 17, and 22 October showed no heat source within the crater (figure 37).

Figure (see Caption) Figure 36. The thermal anomaly at Raung recorded in Sentinel-2 satellite data decreased in intensity between August and October 2020. It was relatively strong on 13 August (left) but had decreased significantly by 12 September (middle) and remained at a lower level into early October (right). Data shown with Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground
Figure (see Caption) Figure 37. A small but distinct thermal anomaly was still present within the pyroclastic cone inside the summit crater of Raung on 7 October 2020 (left) but was gone by 12 October (middle) and did not reappear in subsequent clear views of the crater through the end of October. Satellite imagery of 7 and 12 October processed with Atmospheric penetration rendering (bands 12, 11, 8A). Natural color rendering (bands 4, 3, 2) from 17 October (right) shows no clear physical changes to the summit crater during the latest eruption. Courtesy of Sentinel Hub Playground.

Geologic Background. Raung, one of Java's most active volcanoes, is a massive stratovolcano in easternmost Java that was constructed SW of the rim of Ijen caldera. The unvegetated summit is truncated by a dramatic steep-walled, 2-km-wide caldera that has been the site of frequent historical eruptions. A prehistoric collapse of Gunung Gadung on the W flank produced a large debris avalanche that traveled 79 km, reaching nearly to the Indian Ocean. Raung contains several centers constructed along a NE-SW line, with Gunung Suket and Gunung Gadung stratovolcanoes being located to the NE and W, respectively.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Google Earth (URL: https://www.google.com/earth/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/); MJ (URL: https://twitter.com/MieJamaludin/status/1167613617191043072).


Sinabung (Indonesia) — November 2020 Citation iconCite this Report

Sinabung

Indonesia

3.17°N, 98.392°E; summit elev. 2460 m

All times are local (unless otherwise noted)


Explosions begin again on 8 August 2020; dome growth confirmed in late September

Indonesia’s Sinabung volcano in north Sumatra has been highly active since its first confirmed Holocene eruption during August and September 2010. It remained quiet after the initial eruption until September 2013, when a new eruptive phase began that continued through June 2018. A summit dome emerged in late 2013 and produced a large lava “tongue” during 2014. Multiple explosions produced ash plumes, block avalanches, and deadly pyroclastic flows during the eruptive period. A major explosion in February 2018 destroyed most of the summit dome. After a pause in eruptive activity from September 2018 through April 2019, explosions resumed during May and June 2019. The volcano was quiet again until an explosion on 8 August 2020 began another eruption that included a new dome. This report covers activity from July 2019 through October 2020 with information provided by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), referred to by some agencies as CVGHM or the Indonesian Center of Volcanology and Geological Hazard Mitigation, the Darwin Volcanic Ash Advisory Centre (VAAC), and the Badan Nacional Penanggulangan Bencana (National Disaster Management Authority, BNPB). Additional information comes from satellite instruments and local news reports.

Only steam plumes and infrequent lahars were reported at Sinabung during July 2019-July 2020. A new eruption began on 8 August 2020 with a phreatic explosion and dense ash plumes. Repeated explosions were reported throughout August; ashfall was reported in many nearby communities several times. Explosions decreased significantly during September, but SO2 emissions persisted. Block avalanches from a new growing dome were first reported in early October; pyroclastic flows accompanied repeated ash emissions during the last week of the month. Thermal data suggested that the summit dome continued growing slowly during October.

Activity during July 2019-October 2020. After a large explosion on 9 June 2019, activity declined significantly, and no further emissions or incandescence was reported after 25 June (BGVN 44:08). For the remainder of 2019 steam plumes rose 50-400 m above the summit on most days, occasionally rising to 500-700 m above the crater. Lahars were recorded by seismic instruments in July, August, September, and December. During January-July 2020 steam plumes were reported usually 50-300 m above the summit, sometimes rising to 500 m. On 21 March 2020 steam plumes rose to 700 m, and a lahar was recorded by seismic instruments. Lahars were reported on 26 and 28 April, 3 and 5 June, and 11 July.

A swarm of deep volcanic earthquakes was reported by PVMBG on 7 August 2020. This was followed by a phreatic explosion with a dense gray to black ash plume on 8 August that rose 2,000 m above the summit and drifted E; a second explosion that day produced a plume that rose 1,000 m above the summit. According to the Jakarta Post, ash reached the community of Berastagi (15 km E) along with the districts of Naman Teran (5-10 km NE), Merdeka (15 km NE), and Dolat Rayat (20 km E). Continuous tremor events were first recorded on 8 August and continued daily until 26 August. Two explosions were recorded on 10 August; the largest produced a dense gray ash plume that rose 5,000 m above the summit and drifted NE and SE (figure 77). The Darwin VAAC reported the eruption clearly visible in satellite imagery at 9.7 km altitude and drifting W. Later they reported a second plume drifting ESE at 4.3 km altitude. After this large explosion the local National Disaster Management Authority (BNPB) reported significant ashfall in three districts: Naman Teran, Berastagi and Merdeka. Emissions on 11 and 12 August were white and gray and rose 100-200 m. Multiple explosions on 13 August produced white and gray ash plumes that rose 1,000-2,000 m above the summit. Explosions on 14 August produced gray and brown ash plumes that rose 1,000-4,200 m above the summit and drifted S and SW (figure 77). The Darwin VAAC reported that the ash plume was partly visible in satellite imagery at 7.6 km altitude moving W; additional plumes were moving SE at 3.7 km altitude and NE at 5.5 km altitude.

Figure (see Caption) Figure 77. Numerous explosions were recorded at Sinabung during August 2020. An ash plume rose to 5,000 m above the summit on 10 August (left) and drifted both NE and SE. On 14 August gray and brown ash plumes rose 1,000-4,200 m above the summit and drifted S, SW, SE and NE (right) while ashfall covered crops SE of the volcano. Courtesy of PVMBG (Sinabung Eruption Notices, 10 and 14 August 2020).

White, gray, and brown emissions rose 800-1,000 m above the summit on 15 and 17 August. The next day white and gray emissions rose 2,000 m above the summit. The Darwin VAAC reported an ash plume visible at 5.2 km altitude drifting SW. A large explosion on 19 August produced a dense gray ash plume that rose 4,000 above the summit and drifted S and SW. Gray and white emissions rose 500 m on 20 August. Two explosions were recorded seismically on 21 August, but rainy and cloudy weather prevented observations. White steam plumes rose 300 m on 22 August, and a lahar was recorded seismically. On 23 August, an explosion produced a gray ash plume that rose 1,500 m above the summit and pyroclastic flows that traveled 1,000 m down the E and SE flanks (figure 78). Continuous tremors were accompanied by ash emissions. White, gray, and brown emissions rose 600 m on 24 August. An explosion on 25 August produced an ash plume that rose 800 m above the peak and drifted W and NW (figure 79). During 26-30 August steam emissions rose 100-400 m above the summit and no explosions were recorded. Dense gray ash emissions rose 1,000 m and drifted E and NE after an explosion on 31 August. Significant SO2 emissions were associated with many of the explosions during August (figure 80).

Figure (see Caption) Figure 78. On 23 August 2020 an explosion at Sinabung produced a gray ash plume that rose 1,500 m above the summit and produced pyroclastic flows that traveled 1,000 m down the E and SE flanks. Courtesy of PVMBG (Sinabung Eruption Notice, 23 August 2020).
Figure (see Caption) Figure 79. An explosion on 25 August 2020 at Sinabung produced an ash plume that rose 800 m above the peak and drifted W and NW. Courtesy of PVMBG (Sinabung Eruption Notice, 25 August 2020).
Figure (see Caption) Figure 80. Significant sulfur dioxide emissions were measured at Sinabung during August 2020 when near-daily explosions produced abundant ash emissions. A small plume was also recorded from Kerinci on 19 August 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Explosive activity decreased substantially during September 2020. A single explosion reported on 5 September produced a white and brown ash plume that rose 800 m above the summit and drifted NNE. During the rest of the month steam emissions rose 50-500 m above the summit before dissipating. Two lahars were reported on 7 September, and one each on 11 and 30 September. Although only a single explosion was reported, anomalous SO2 emissions were present in satellite data on several days.

The character of the activity changed during October 2020. Steam plumes rising 50-300 m above the summit were reported during the first week and a lahar was recorded by seismometers on 4 October. The first block avalanches from a new dome growing at the summit were reported on 8 October with material traveling 300 m ESE from the summit (figure 81). During 11-13 October block avalanches traveled 300-700 m E and SE from the summit. They traveled 100-150 m on 14 October. Steam plumes rising 50-500 m above the summit were reported during 15-22 October with two lahars recorded on 21 October. White and gray emissions rose 50-1,000 m on 23 October. The first of a series of pyroclastic flows was reported on 25 October; they were reported daily through the end of the month when the weather permitted, traveling 1,000-2,500 m from the summit (figure 82). In addition, block avalanches from the growing dome were observed moving down the E and SE flanks 500-1,500 m on 25 October and 200-1,000 m each day during 28-31 October (figure 83). Sentinel-2 satellite data indicated a very weak thermal anomaly at the summit in late September; it was slightly larger in late October, corroborating with images of the slow-growing dome (figure 84).

Figure (see Caption) Figure 81. A new lava dome appeared at the summit of Sinabung in late September 2020. Block avalanches from the dome were first reported on 8 October. Satellite imagery indicating a thermal anomaly at the summit was very faint at the end of September and slightly stronger by the end of October. The dome grew slowly between 30 September (top) and 22 October 2020 (bottom). Photos taken by Firdaus Surbakti, courtesy of Rizal.
Figure (see Caption) Figure 82. Pyroclastic flows at Sinabung were accompanied ash emissions multiple times during the last week of October, including the event seen here on 27 October 2020. Courtesy of PVMBG and CultureVolcan.
Figure (see Caption) Figure 83. Block avalanches from the growing summit dome at Sinabung descended the SE flank on 28 October 2020. The dome is visible at the summit. Courtesy of PVMBG and MAGMA.
Figure (see Caption) Figure 84. A very faint thermal anomaly appeared at the summit of Sinabung in Sentinel 2 satellite imagery on 28 September 2020 (left). One month later on 28 October the anomaly was bigger, corroborating photographic evidence of the growing dome. Atmospheric penetration rendering (bands 12, 11, 8A) courtesy of Sentinel Hub Playground.

Geologic Background. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. The youngest deposit is a SE-flank pyroclastic flow 14C dated by Hendrasto et al. (2012) at 740-880 CE. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); The Jakarta Post, 3rd Floor, Gedung, Jl. Palmerah Barat 142-143 Jakarta 10270 (URL: https://www.thejakartapost.com/amp/news/2020/08/08/mount-sinabung-erupts-again-after-year-of-inactivity.html);Rizal (URL: https://twitter.com/Rizal06691023/status/1319452375887740930); CultureVolcan (URL: https://twitter.com/CultureVolcan/status/1321156861173923840).


Heard (Australia) — November 2020 Citation iconCite this Report

Heard

Australia

53.106°S, 73.513°E; summit elev. 2745 m

All times are local (unless otherwise noted)


Persistent thermal anomalies in the summit crater from June through October 2020

The remote Heard Island is located in the southern Indian Ocean and contains the Big Ben stratovolcano, which has had intermittent activity since 1910. The island’s activity, characterized by thermal anomalies and occasional lava flows (BGVN 45:05), is primarily monitored by satellite instruments. This report updates activity from May through October 2020 using information from satellite-based instruments.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed frequent thermal activity in early June that continued through July (figure 43). Intermittent, slightly higher-power thermal anomalies were detected in late August through mid-October, the strongest of which occurred in October. Two of these anomalies were also detected in the MODVOLC algorithm on 12 October.

Figure (see Caption) Figure 43. A small pulse in thermal activity at Heard was detected in early June and continued through July 2020, according to the MIROVA system (Log Radiative Power). Thermal anomalies appeared again starting in late August and continued intermittently through mid-October 2020. Courtesy of MIROVA.

Sentinel-2 thermal satellite imagery showed a single thermal anomaly on 3 May. In comparison to the MIROVA graph, satellite imagery showed a small pulse of strong thermal activity at the summit of Big Ben in June (figure 44). Some of these thermal anomalies were accompanied by gas-and-steam emissions. Persistent strong thermal activity continued through July. Starting on 2 July through at least 17 July two hotspots were visible in satellite imagery: one in the summit crater and one slightly to the NW of the summit (figure 45). Some gas-and-steam emissions were seen rising from the S hotspot in the summit crater. In August the thermal anomalies had decreased in strength and frequency but persisted at the summit through October (figure 45).

Figure (see Caption) Figure 44. Thermal satellite images of Heard Island’s Big Ben volcano showed strong thermal signatures (bright yellow-orange) sometimes accompanied by gas-and-steam emissions drifting SE (top left) and NE (bottom right) during June 2020. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 45. Thermal satellite images of Heard Island’s Big Ben volcano showed persistent thermal anomalies (bright yellow-orange) near the summit during July through October 2020. During 14 (top left) and 17 (top right) July a second hotspot was visible NW of the summit. By 22 October (bottom right) the thermal anomaly had significantly decreased in strength in comparison to previous months. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben because of its extensive ice cover. The historically active Mawson Peak forms the island's high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported at this isolated volcano, but observations are infrequent and additional activity may have occurred.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sabancaya (Peru) — October 2020 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Daily explosions produced ash plumes, SO2 plumes, and thermal anomalies during June-September 2020

Sabancaya, located in Peru, is a stratovolcano that has been very active since 1986. The current eruptive period began in November 2016 and has recently been characterized by lava dome growth, daily explosions, ash plumes, ashfall, SO2 plumes, and ongoing thermal anomalies (BGVN 45:06). Similar activity continues into this reporting period of June through September 2020 using information from weekly reports from the Observatorio Vulcanologico INGEMMET (OVI), the Instituto Geofisico del Peru (IGP), and various satellite data. The Buenos Aires Volcanic Ash Advisory Center (VAAC) issued a total of 520 reports of ongoing ash emissions during this time.

Volcanism during this reporting period consisted of daily explosions, nearly constant gas-and-ash plumes, SO2 plumes, and persistent thermal anomalies in the summit crater. Gas-and-ash plumes rose to 1.5-4 km above the summit crater, drifting up to 35 km from the crater in multiple directions; several communities reported ashfall every month except for August (table 7). Sulfur dioxide emissions were notably high and recorded almost daily with the TROPOMI satellite instrument (figure 83). The satellite measurements of the SO2 emissions exceeded 2 DU (Dobson Units) at least 20 days each month of the reporting period. These SO2 plumes sometimes persisted over multiple days and ranged between 1,900-10,700 tons/day. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows frequent thermal activity through September within 5 km of the summit crater, though the power varied; by late August, the thermal anomalies were stronger compared to the previous months (figure 84). This increase in power is also reflected by the MODVOLC algorithm that detected 11 thermal anomalies over the days of 31 August and 4, 6, 13, 17, 18, 20, and 22 September 2020. Many of these thermal hotspots were visible in Sentinel-2 thermal satellite imagery, occasionally accompanied by gas-and-steam and ash plumes (figure 85).

Table 7. Persistent activity at Sabancaya during June through September included multiple daily explosions that produced ash plumes rising several kilometers above the summit and drifting in multiple directions; this resulted in ashfall in communities within 35 km of the volcano. Satellite instruments recorded daily SO2 emissions. Data courtesy of OVI-INGEMMET, IGP, and the NASA Global Sulfur Dioxide Monitoring Page.

Month Avg. daily explosions by week Max plume heights (km above the crater) Plume drift (km) and direction Communities reporting ashfall Minimum days with SO2 over 2 DU SO2 emissions per day (tons) by week
Jun 2020 20, 10, 9, 13 1.5-4 30 km, SE, S, SW, NE, W, E Chivay, Achoma, Ichupampa, Yanque, and Coporaque, Sallali, Madrigal, Lari, and Ichupampa 28 8,400, 2,200, 3,100, 7,600
Jul 2020 20, 15, 11, 12, 19 2-2.6 15-30 km E, NE, NW, SE, SW, S, W Achoma and Chivay 23 4,400, 6,000, 1,900, 2,100, 5,900
Aug 2020 18, 12, 9, 29 1.7-3.6 20-30 km W, SW, SE, S, E, NW - 20 2,300, 3,800, 5,300, 10,700
Sep 2020 39, 35, 33, 38, 40 1.8-3.5 25-35 km SE, S, SW, W, E, NE, N, NW, W Lari, Achoma, Maca, Chivay, Taya, Huambo, Huanca, and Lluta 28 9,700, 2,600, 8,800, 7,800, 4,100
Figure (see Caption) Figure 83. Sulfur dioxide plumes were captured almost daily from Sabancaya during June through September 2020 by the TROPOMI instrument on the Sentinel-5P satellite. Some of the largest SO2 plumes occurred on 19 June (top left), 5 July (top right), 30 August (bottom left), and 10 September (bottom right) 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 84. Thermal activity at Sabancaya varied in power from 13 October 2019 through September 2020, but was consistent in frequency, according to the MIROVA graph (Log Radiative Power). A pulse in thermal activity is shown in late August 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 85. Sentinel-2 thermal satellite imagery showed frequent gas-and-steam and ash plumes rising from Sabancaya, accompanied by ongoing thermal activity from the summit crater during June through September 2020. On 23 June (top left) a dense gray-white ash plume was visible drifting E from the summit. On 3 July (top right) and 27 August (bottom left) a strong thermal hotspot (bright yellow-orange) was accompanied by some degassing. On 1 September (bottom right) the thermal anomaly persisted with a dense gray-white ash plume drifting SE from the summit. Images using “Natural Color” rendering (bands 4, 3, 2) on 23 June 2020 (top left) and the rest have “Atmospheric penetration” rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

OVI detected slight inflation on the N part of the volcano, which continued to be observed throughout the reporting period. Persistent thermal anomalies caused by the summit crater lava dome were observed in satellite data. The average number of daily explosions during June ranged from 18 during 1-7 June to 9 during 15-21 June, which generated gas-and-ash plumes that rose 1.5-4 km above the crater and drifted 30 km SE, S, SW, NE, W, and E (figure 86). The strongest sulfur dioxide emissions were recorded during 1-7 June measuring 8,400 tons/day. On 20 June drone video showed that the lava dome had been destroyed, leaving blocks on the crater floor, though the crater remained hot, as seen in thermal satellite imagery (figure 85). During 22-28 June there were an average of 13 daily explosions, which produced ash plumes rising to a maximum height of 4 km, drifting NE, E, and SE. As a result, ashfall was reported in the districts of Chivay, Achoma, Ichupampa, Yanque, and Coporaque, and in the area of Sallali. Then, on 27 June ashfall was reported in several areas NE of the volcano, which included the districts of Madrigal, Lari, Achoma, Ichupampa, Yanque, Chivay, and Coporaque.

Figure (see Caption) Figure 86. Multiple daily explosions at Sabancaya produced ash plumes that rose 1.5-4 km above the crater during June 2020. Images are showing 8 (left) and 27 (right) June 2020. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-24-2020/INGEMMET Semana del 08 al 14 de junio del 2020 and RSSAB-26-2020/INGEMMET Semana del 22 al 28 de junio del 2020).

Slight inflation continued to be monitored in July, occurring about 4-6 km N of the crater, as well as on the SE flank. Daily explosions continued, producing gas-and-ash plumes that rose 2-2.6 km above the crater and drifting 15-30 km E, NE, NW, SE, SW, S, and W (figure 87). The number of daily explosions increased slightly compared to the previous month, ranging from 20 during 1-5 July to 11 during 13-19 July. SO2 emissions that were measured each week ranged from 1,900 to 6,000 tons/day, the latter of which occurred during 6-12 July. Thermal anomalies continued to be observed in thermal satellite data over the summit crater throughout the month. During 6-12 July gas-and-ash plumes rose 2.3-2.5 km above the crater, drifting 30 km SE, E, and NE, resulting in ashfall in Achoma and Chivay.

Figure (see Caption) Figure 87. Multiple daily explosions at Sabancaya produced ash plumes that rose 2-3.5 km above the crater during July 2020. Images are showing 7 (left) and 26 (right) July 2020. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-28-2020/INGEMMET Semanal: del 06 al 12 de julio del 2020 and RSSAB-30-2020/INGEMMET Semanal: del 20 al 26 de julio del 2020).

OVI reported continued slight inflation on the N and SE flanks during August. Daily explosive activity had slightly declined in the first part of the month, ranging from 18 during the 3-9 August to 9 during 17-23 August. Dense gray gas-and-ash plumes rose 1.7-3.6 km above the crater, drifting 20-30 km in various directions (figure 88), though no ashfall was reported. Thermal anomalies were observed using satellite data throughout the month. During 24-30 August a pulse in activity increased the daily average of explosions to 29, as well as the amount of SO2 emissions (10,700 tons/day); nighttime incandescence accompanied this activity. During 28-29 August higher levels of seismicity and inflation were reported compared to the previous weeks. The daily average of explosions increased again during 31 August-6 September to 39; nighttime incandescence remained.

Figure (see Caption) Figure 88. Multiple daily explosions at Sabancaya produced ash plumes that rose 1.7-3.6 km above the crater during August 2020. Images are showing 1 (left) and 29 (right) August 2020. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-31-2020/INGEMMET Semanal del 27 de julio al 02 de agosto del 2020 and RSSAB-35-2020/INGEMMET Semanal del 24 al 30 de agosto del 2020).

Increased volcanism was reported during September with the daily average of explosions ranging from 33 during 14-20 September to 40 during 28 September-4 October. The resulting gas-and-ash plumes rose 1.8-3.5 km above the crater drifting 25-35 km in various directions (figure 89). SO2 flux was measured by OVI ranging from 2,600 to 9,700 tons/day, the latter of which was recorded during 31 August to 6 September. During 7-13 September an average of 35 explosions were reported, accompanied by gas-and-ash plumes that rose 2.6-3.5 km above the crater and drifting 30 km SE, SW, W, E, and S. These events resulted in ashfall in Lari, Achoma, and Maca. The following week (14-20 September) ashfall was reported in Achoma and Chivay. During 21-27 September the daily average of explosions was 38, producing ash plumes that resulted in ashfall in Taya, Huambo, Huanca, and Lluta. Slight inflation on the N and SE flanks continued to be monitored by OVI. Strong activity, including SO2 emissions and thermal anomalies over the summit crater persisted into at least early October.

Figure (see Caption) Figure 89. Multiple daily explosions at Sabancaya produced ash plumes that rose 1.8-2.6 km above the crater during September 2020. Images are showing 4 (left) and 27 (right) September 2020. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-36-2020/INGEMMET Semanal del 31 de agosto al 06 de septiembre del 2020 and RSSAB-39-2020/INGEMMET Semanal del 21 al 27 de septiembre del 2020).

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); Instituto Geofisico del Peru (IGP), Calle Badajoz N° 169 Urb. Mayorazgo IV Etapa, Ate, Lima 15012, Perú (URL: https://www.gob.pe/igp); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Rincon de la Vieja (Costa Rica) — October 2020 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Frequent small phreatic explosions with intermittent ash plumes during April-September 2020

Rincón de la Vieja is a remote volcanic complex in Costa Rica that contains an acid lake. Frequent weak phreatic explosions have occurred since 2011 (BGVN 44:08). The most recent eruption period began in January 2020, which consisted of small phreatic explosions, gas-and-steam plumes, pyroclastic flows, and lahars (BGVN 45:04). This reporting period covers April through September 2020, with activity characterized by continued small phreatic explosions, three lahars, frequent gas-and-steam plumes, and ash plumes. The primary source of information for this report is the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA) using weekly bulletins and the Washington Volcanic Ash Advisory Center (VAAC).

Small, frequent, phreatic explosions were common at Rincón de la Vieja during this reporting period. One to several eruptions were reported on at least 16 days in April, 15 days in May, 8 days in June, 10 days in July, 18 days in August, and 13 days in September (table 5). Intermittent ash plumes accompanied these eruptions, rising 100-3,000 m above the crater and drifting W, NW, and SW during May and N during June. Occasional gas-and-steam plumes were also observed rising 50-2,000 m above the crater rim.

Table 5. Monthly summary of activity at Rincón de la Vieja during April through September 2020. Courtesy of OVSICORI-UNA.

Month Minimum total days of eruptions Ash plume height (m above the crater) Notable plume drift Gas-and-steam plume height (m above the crater)
Apr 2020 16 200-1,000 - 50-1,500
May 2020 15 200-3,000 W, NW, SW 200-2,000
Jun 2020 8 100-2,000 N -
Jul 2020 10 1,000 - -
Aug 2020 18 500-1,000 - 500
Sep 2020 13 700 - 50

During April small explosions were detected almost daily, some of which generated ash plumes that rose 200-1,000 m above the crater and gas-and-steam emissions that rose 50-1,500 m above the crater. On 4 April an eruption at 0824 produced an ash plume that rose 1 km above the crater rim. A small hydrothermal explosion at 0033 on 11 April, recorded by the webcam in Sensoria (4 km N), ejected water and sediment onto the upper flanks. On 15 April a phreatic eruption at 0306 resulted in lahars in the Pénjamo, Azufrada, and Azul rivers, according to local residents. Several small explosions were detected during the morning of 19 April; the largest phreatic eruption ejected water and sediment 300 m above the crater rim and onto the flanks at 1014, generated a lahar, and sent a gas-and-steam plume 1.5 km above the crater (figure 30). On 24 April five events were recorded by the seismic network during the morning, most of which produced gas-and-steam plumes that rose 300-500 m above the crater. The largest event on this day occurred at 1020, ejecting water and solid material 300 m above the crater accompanied by a gas-and-steam plume rising up to 1 km.

Figure (see Caption) Figure 30. Webcam image of small hydrothermal eruptions at Rincón de la Vieja on 19 April 2020. Image taken by the webcam in Dos Ríos de Upala; courtesy of OVSICORI-UNA.

Similar frequent phreatic activity continued in May, with ash plumes rising 200-1,500 m above the crater, drifting W, NW, and SW, and gas-and-steam plumes rising up to 2 km. On 5 May an eruption at 1317 produced a gas-and-steam plume 200 m above the crater and a Washington VAAC advisory reported that an ash plume rose to 2.1 km altitude, drifting W. An event at 1925 on 9 May generated a gas-and-steam plume that rose almost 2 km. An explosion at 1128 on 15 May resulted in a gas-and-steam plume that rose 1 km above the crater rim, accompanied by a gray, sediment-laden plume that rose 400 m. On 21 May a small ash eruption at 0537 sent a plume 1 km above the crater (figure 31). According to a Washington VAAC advisory, an ash plume rose 3 km altitude, drifting NW on 22 May. During the early evening on 25 May an hour-long sequence of more than 70 eruptions and emissions, according to OVSICORI-UNA, produced low gas-and-steam plumes and tephra; at 1738, some ejecta was observed above the crater rim. The next day, on 26 May, up to 52 eruptive events were observed. An eruption at 2005 was not visible due to weather conditions; however, it resulted in a minor amount of ashfall up to 17 km W and NW, which included Los Angeles of Quebrada Grande and Liberia. A phreatic explosion at 1521 produced a gray plume that rose 1.5 km above the crater (figure 31). An eruption at 1524 on 28 May sent an ash plume 3 km above the crater that drifted W, followed by at least three smaller eruptions at 1823, 1841, and 1843. OVSICORI-UNA reported that volcanism began to decrease in frequency on 28-29 May. Sulfur dioxide emissions ranged between 100 and 400 tons per day during 28 May to 15 June.

Figure (see Caption) Figure 31. Webcam images of gray gas-and-steam and ash emissions at Rincón de la Vieja on 21 (left), and 27 (right) May 2020. Both images taken by the webcam in Dos Ríos de Upala and Sensoria; courtesy of OVSICORI-UNA.

There were eight days with eruptions in June, though some days had multiple small events; phreatic eruptions reported on 1-2, 13, 16-17, 19-20, and 23 June generated plumes 1-2 km above the crater (figure 32). During 2-8 June SO2 emissions were 150-350 tons per day; more than 120 eruptions were recorded during the preceding weekend. Ashfall was observed N of the crater on 4 June. During 9-15 June the SO2 emissions increased slightly to 100-400 tons per day. During 16-17 June several small eruptive events were detected, the largest of which occurred at 1635 on 17 June, producing an ash plume that rose 1 km above the crater.

Figure (see Caption) Figure 32. Webcam images of gray gas-and-steam and ash plumes rising from Rincón de la Vieja on 1 (top left), 2 (top right), 7 (bottom left), and 13 (bottom right) June 2020. The ash plume on 1 June rose between 1.5 and 2 km above the crater. The ash plume on 13 June rose 1 km above the crater. Courtesy of OVSICORI-UNA.

Explosive hydrothermal activity was lower in June-September compared to January-May 2020, according to OVSICORI-UNA. Sporadic small phreatic explosions and earthquakes were registered during 22-25 and 29 July-3 August, though no lahars were reported. On 25 July an eruptive event at 0153 produced an ash plume that rose 1 km above the crater. Similar activity continued into August. On 5 and 6 August phreatic explosions were recorded at 0546 and 0035, respectively, the latter of which generated a plume that rose 500 m above the crater. These events continued to occur on 10, 16, 19-20, 22-25, 27-28, and 30-31 August, generating plumes that rose 500 m to 1 km above the crater.

On 3 September geologists observed that the acid lake in the main crater had a low water level and exhibited strong gas emissions; vigorous fumaroles were observed on the inner W wall of the crater, measuring 120°C. Gas-and-steam emissions continued to be detected during September, occasionally accompanied by phreatic eruptions. On 7 September an eruption at 0750 produced an ash plume that rose 50 m above the crater while the accompanying gas-and-steam plume rose 500 m. Several low-energy phreatic explosions occurred during 8-17, 20, and 22-28 September, characterized primarily by gas-and-steam emissions. An eruption on 16 September ejected material from the crater and generated a small lahar. Sulfur dioxide emissions were 100 tons per day during 16-21 September. On 17 September an eruption at 0632 produced an ash plume that rose 700 m above the crater (figure 33). A relatively large eruptive event at 1053 on 22 September ejected material out of the crater and into N-flank drainages.

Figure (see Caption) Figure 33. Webcam image of an eruption plume rising above Rincón de la Vieja on 17 September 2020. Courtesy of OVSICORI-UNA.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/, https://www.facebook.com/OVSICORI/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html).


Fuego (Guatemala) — December 2020 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Daily explosions, ash emissions, and block avalanches during August-November 2020

Guatemala's Volcán de Fuego has been erupting vigorously since 2002 with reported eruptions dating back to 1531. These eruptions have resulted in major ashfalls, pyroclastic flows, lava flows, and damaging lahars, including a series of explosions and pyroclastic flows in early June 2018 that caused several hundred fatalities. Eruptive activity consisting of explosions with ash emissions, block avalanches, and lava flows began again after a short break and has continued; activity during August-November 2020 is covered in this report. Daily reports are provided by the Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH); aviation alerts of ash plumes are issued by the Washington Volcanic Ash Advisory Center (VAAC). Satellite data provide valuable information about heat flow and emissions.

Summary of activity during August-November 2020. Eruptive activity continued at Fuego during August-November 2020, very similar to that during the first part of the year (table 22). Ash emissions were reported daily by INSIVUMEH with explosions often in the 6-12 per hour range. Most of the ash plumes rose to 4.5-4.7 km altitude and generally drifted SW, W, or NW, although rarely the wind direction changed and sent ash to the S and SE. Multiple daily advisories were issued throughout the period by the Washington VAAC warning aviators about ash plumes, which were often visible on the observatory webcam (figure 136). Some of the communities located SW of the volcano received ashfall virtually every day during the period. Block avalanches descended the major drainages daily as well. Sounds were heard and vibrations felt from the explosions most days, usually 7-12 km away. The stronger explosions could be felt and heard 20 km or more from the volcano. During late August and early September a lava flow was active on the SW flank, reaching 700 m in length during the second week of September.

Table 22. Eruptive activity was consistently high at Fuego throughout August – November 2020 with multiple explosions every hour, ash plumes, block avalanches, and near-daily ashfall in the communities in certain directions within 10-20 km of the volcano. Courtesy of INSIVUMEH daily reports.

Month Explosions per hour Ash Plume Heights (km) Ash plume distance (km) and direction Drainages affected by block avalanches Communities reporting ashfall
Aug 2020 2-15 4.3-4.8 SW, W, NW, S, N, 8-20 km Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa Panimaché I and II, Morelia, Rochela, Finca Palo Verde, Yepocapa, Santa Sofia, El Porvenir, Palo Verde, Sangre de Cristo, Santa Lucía Cotzumalguapa
Sep 2020 3-16 4.3-4.9 W, SW, NW, N, S, 8-20 km Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa Panimaché I and II, Morelia, Santa Sofía, Finca Palo Verde, Sangre de Cristo, Yepocapa, Porvenir, Yucales, Ojo de Agua, Finca La Conchita
Oct 2020 3-19 4.1-4.8 SW, W, S, SE, N, E, 10-20 km Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa Panimache I and II, Morelia, Sangre de Cristo, Yepocapa, La Rochela, El Porvenir, Ceilán, Santa Sofía, Yucales, Finca Palo Verde
Nov 2020 4-14 4.0-4.8 S, SW, SE, W, NW, 10-35 km Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa El Jute Panimaché I and II, Sangre de Cristo, Morelia, Ceilan, La Rochela, El Zapote, Santa Sofía, Yucales, San Juan Alotenango, Ciudad Vieja, San Miguel Dueñas y Antigua Guatemala, Palo Verde, El Porvenir, San Pedro Yepocapa, Quisaché, Santa Emilia
Figure (see Caption) Figure 136. Consistent daily ash emissions produced similar looking ash plumes at Fuego during August-November 2020. Plumes usually rose to 4.5-4.8 km altitude and drifted SW. Courtesy of INSIVUMEH.

The frequent explosions, block avalanches, and lava flows produced a strong thermal signal throughout the period that was recorded in both the MIROVA project Log Radiative Power graph (figure 137) and in numerous Sentinel-2 satellite images (figure 138). MODVOLC data produced thermal alerts 4-6 days each month. At least one lahar was recorded each month; they were most frequent in September and October.

Figure (see Caption) Figure 137. The MIROVA graph of activity at Fuego for the period from 15 January through November 2020 suggested persistent moderate to high-level heat flow for much of the time. Courtesy of MIROVA.
Figure (see Caption) Figure 138. Atmospheric penetration rendering of Sentinel-2 satellite images (bands 12, 11, 8A) of Fuego during August-November 2020 showed continued thermal activity from block avalanches, explosions, and lava flows at the summit and down several different ravines. Courtesy of Sentinel Hub Playground.

Activity during August-November 2020. The number of explosions per hour at Fuego during August 2020 was most often 7-10, with a few days that were higher at 10-15. The ash plumes usually rose to 4.5-4.8 km altitude and drifted SW or W up to 15 km. Incandescence was visible 100-300 m above the summit crater on most nights. All of the major drainages including the Seca, Santa Teresa, Ceniza, Trinidad, Taniluyá, Las Lajas, and Honda were affected by block avalanches virtually every day. In addition, the communities of Panimaché I and II, Morelia, Santa Sofía, Finca Palo Verde, El Porvenir, San Pedro Yepocapa, and Sangre de Cristo reported ashfall almost every day. Sounds and vibrations were reported multiple days every week, often up to 12 km from the volcano, but occasionally as far as 20 km away. Lahars carrying blocks of rocks and debris 1-2 m in diameter descended the SE flank in the Las Lajas and Honda ravines on 6 August. On 27 August a lava flow 150 m long appeared in the Ceniza ravine. It increased in length over the subsequent few days, reaching 550 m long on 30 August, with frequent block avalanches falling off the front of the flow.

The lava flow in the Ceniza ravine was reported at 100 m long on 5 September. It grew to 200 m on 7 September and reached 700 m long on 12 September. It remained 200-350 m long through 19 September, although instruments monitored by INSIVUMEH indicated that effusive activity was decreasing after 16 September (figure 139). A second flow was 200 m long in the Seca ravine on 19 September. By 22 September, active flows were no longer observed. The explosion rate varied from a low of 3-5 on 1 September to a high of 12-16 on 4, 13, 18, and 22-23 September. Ash plumes rose to 4.5-4.9 km altitude nearly every day and drifted W, NW, and SW occasionally as far as 20 km before dissipating. In addition to the active flow in the Ceniza ravine, block avalanches persisted in the other ravines throughout the month. Ashfall continued in the same communities as in August, but was also reported in Yucales on 4 September along with Ojo de Agua and Finca La Conchita on 17 September. The Las Lajas, Honda, and El Jute ravines were the sites of lahars carrying blocks up to 1.5 m in diameter on 8 and 18 September. On 19 and 24 September lahars again descended Las Lajas and El Jute ravines; the Ceniza ravine had a lahar on 19 September.

Figure (see Caption) Figure 139. Avalanche blocks descended the Ceniza ravine (left) and the Las Lajas ravine (right) at Fuego on 17 September 2020. The webcam that captured this image is located at Finca La Reunión on the SE flank. Courtesy of INSIVUMEH (BOLETÍN VULCANOLÓGICO ESPECIAL BEVFGO # 76-2020, 18 de septiembre de 2020, 14:30 horas).

The same activity continued during October 2020 with regard to explosion rates, plume altitudes, distances, and directions of drift. All of the major ravines were affected by block avalanches and the same communities located W and SW of the summit reported ashfall. In addition, ashfall was reported in La Rochela on 2, 3, 7-9 and 30 October, in Ceilán on 3 and 7-9 October, and in Yucales on 5, 14, 18 and 19 October. Multiple strong explosions with abundant ash were reported in a special bulletin on 14 October; high levels of explosive activity were recorded during 16-23 October. Vibrations and sounds were often felt up to 15 km away and heard as far as 25 km from the volcano during that period. Particularly strong block avalanches were present in the Seca and Ceniza ravines on 20, 25, and 30 October. Abundant rain on 9 October resulted in lahars descending all of the major ravines. The lahar in the Las Lajas ravine overflowed and forced the closure of route RN-14 road affecting the community of San Miguel on the SE flank (figure 140). Heavy rains on 15 October produced lahars in the Ceniza, Las Lajas, and Hondas ravines with blocks up to 2 m in diameter. Multiple lahars on 27 October affected Las Lajas, El Jute, and Honda ravines.

Figure (see Caption) Figure 140. Heavy rains on 9 October 2020 at Fuego caused lahars in all the major ravines. Debris from Las Lajas ravine overflowed highway RN-14 near the community of San Miguel on the SE flank, the area devastated by the pyroclastic flow of June 2018. Courtesy of INSIVUMEH (BEFGO #96 VOLCAN DE FUEGO- ZONA CERO RN-14, SAN MIGUEL LOS LOTES y BARRANCA LAS LAJAS, 09 de octubre de 2020).

On 8 November 2020 a lahar descended the Seca ravine, carrying rocks and debris up to 1 meter in diameter. During the second week of November 2020, the wind direction changed towards the SE and E and brought ashfall to San Juan Alotenango, Ciudad Vieja, San Miguel Dueñas, and Antigua Guatemala on 8 November. Especially strong block avalanches were noted in the Seca and Ceniza ravines on 14, 19, 24, and 29 November. During a period of stronger activity in the fourth week of November, vibrations were felt and explosions heard more than 20 km away on 22 November and more than 25 km away on 27 November. In addition to the other communities affected by ashfall during August-November, Quisaché and Santa Emilia reported ashfall on 30 November.

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground);Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html).


Kikai (Japan) — November 2020 Citation iconCite this Report

Kikai

Japan

30.793°N, 130.305°E; summit elev. 704 m

All times are local (unless otherwise noted)


Explosion on 6 October 2020 and thermal anomalies in the crater

Kikai is a mostly submarine caldera, 19-km-wide, just S of the Ryukyu Islands of Japan. At the NW rim of the caldera lies the island of Satsuma Iwo Jima (also known as Satsuma-Iojima and Tokara Iojima), and the island’s highest peak, Iodake, a steep stratovolcano. Recent weak ash explosions at Iodake occurred on 2 November 2019 and 29 April 2020 (BGVN 45:02, 45:05). The volcano is monitored by the Japan Meteorological Agency (JMA) and satellite sensors. This report covers the period May-October 2020. During this time, the Alert Level remained at 2 (on a 5-level scale).

Activity at Kikai has been relatively low since the previous eruption on 29 April 2020. During May through October occasional white gas-and-steam emissions rose 0.8-1.3 km above the Iodake crater, the latter of which was recorded in September. Emissions were intermittently accompanied by weak nighttime incandescence, according to JMA (figure 17).

Figure (see Caption) Figure 17. White gas-and-steam emissions rose 1 km above the crater at Satsuma Iwo Jima (Kikai) on 25 May (top) 2020. At night, occasional incandescence could be seen in the Iodake crater, as seen on 29 May (bottom) 2020. Both images taken by the Iwanoue webcam. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, May 2nd year of Reiwa [2020]).

A small eruption at 0757 on 6 October occurred in the NW part of the Iodake crater, which produced a grayish white plume rising 200 m above the crater (figure 18). Faint thermal anomalies were detected in Sentinel-2 thermal satellite imagery in the days just before this eruption (28 September and 3 October) and then after (13 and 23 October), accompanied by gas-and-steam emissions (figures 19 and 20). Nighttime crater incandescence continued to be observed. JMA reported that sulfur dioxide emissions measured 700 tons per day during October, compared to the previous eruption (400-2,000 tons per day in April 2020).

Figure (see Caption) Figure 18. Webcam images of the eruption at Satsuma Iwo Jima (Kikai) on 6 October 2020 that produced an ash plume rising 200 m above the crater (top). Nighttime summit crater incandescence was also observed (bottom). Images were taken by the Iwanoue webcam. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, October 2nd year of Reiwa [2020]).
Figure (see Caption) Figure 19. Weak thermal hotspots (bright yellow-orange) were observed at Satsuma Iwo Jima (Kikai) during late September through October 2020. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 20. Webcam image of a white gas-and-steam plume rising 1.1 km above the crater at Satsuma Iwo Jima (Kikai) on 27 October 2020. Image was taken by the Iwanoue webcam. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, October 2nd year of Reiwa [2020]).

Geologic Background. Kikai is a mostly submerged, 19-km-wide caldera near the northern end of the Ryukyu Islands south of Kyushu. It was the source of one of the world's largest Holocene eruptions about 6,300 years ago when rhyolitic pyroclastic flows traveled across the sea for a total distance of 100 km to southern Kyushu, and ashfall reached the northern Japanese island of Hokkaido. The eruption devastated southern and central Kyushu, which remained uninhabited for several centuries. Post-caldera eruptions formed Iodake lava dome and Inamuradake scoria cone, as well as submarine lava domes. Historical eruptions have occurred at or near Satsuma-Iojima (also known as Tokara-Iojima), a small 3 x 6 km island forming part of the NW caldera rim. Showa-Iojima lava dome (also known as Iojima-Shinto), a small island 2 km E of Tokara-Iojima, was formed during submarine eruptions in 1934 and 1935. Mild-to-moderate explosive eruptions have occurred during the past few decades from Iodake, a rhyolitic lava dome at the eastern end of Tokara-Iojima.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Manam (Papua New Guinea) — October 2020 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Intermittent ash plumes, thermal anomalies, and SO2 emissions in April-September 2020

Manam, located 13 km off the N coast of Papua New Guinea, is a basaltic-andesitic stratovolcano with historical eruptions dating back 400 years. Volcanism has been characterized by low-level ash plumes, occasional Strombolian activity, lava flows, pyroclastic avalanches, and large ash plumes from Main and South, the two active summit craters. The current eruption period has been ongoing since 2014, typically with minor explosive activity, thermal activity, and SO2 emissions (BGVN 45:05). This reporting period updates information from April through September 2020, consisting of intermittent ash plumes from late July to mid-September, persistent thermal anomalies, and SO2 emissions. Information comes from Papua New Guinea's Rabaul Volcano Observatory (RVO), part of the Department of Mineral Policy and Geohazards Management (DMPGM), the Darwin Volcanic Ash Advisory Center (VAAC), and various satellite data.

Explosive activity was relatively low during April through late July; SO2 emissions and low power, but persistent, thermal anomalies were detected by satellite instruments each month. The TROPOMI instrument on the Sentinel-5P satellite recorded SO2 emissions, many of which exceeded two Dobson Units, that drifted generally W (figure 76). Distinct SO2 emissions were detected for 10 days in April, 4 days in May, 10 days in June, 4 days in July, 11 days in August, and 8 days in September.

Thermal anomalies recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system were sparse from early January through June 2020, totaling 11 low-power anomalies within 5 km of the summit (figure 77). From late July through September a pulse in thermal activity produced slightly stronger and more frequent anomalies. Some of this activity could be observed in Sentinel-2 thermal satellite imagery (figure 78). Occasionally, these thermal anomalies were accompanied by gas-and-steam emissions or ash plumes, as shown on 28 July. On 17 August a particularly strong hotspot was detected in the S summit crater. According to the MODVOLC thermal alert data, a total of 10 thermal alerts were detected in the summit crater over four days: 29 July (5), 16 August (1), and 3 (1) and 8 (3) September.

Figure (see Caption) Figure 76. Distinct sulfur dioxide plumes rising from Manam and drifting generally W were detected using data from the TROPOMI instrument on the Sentinel-5P satellite on 28 April (top left), 24 May (top right), 16 July (bottom left), and 12 September (bottom right) 2020. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 77. Intermittent thermal activity at Manam increased in power and frequency beginning around late July and continuing through September 2020, as shown on the MIROVA Log Radiative Power graph. Courtesy of MIROVA.
Figure (see Caption) Figure 78. Sentinel-2 thermal satellite images showing a persistent thermal anomaly (yellow-orange) at Manam’s summit craters (Main and South) each month during April through August; sometimes they were seen in both summit craters, as shown on 8 June (top right), 28 July (bottom left), and 17 August (bottom right). A particularly strong anomaly was visible on 17 August (bottom right). Occasional gas-and-steam emissions accompanied the thermal activity. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Activity during mid-July slightly increased compared to the previous months. On 16 July seismicity increased, fluctuating between low and moderate RSAM values through the rest of the month. In Sentinel-2 satellite imagery a gray ash plume was visible rising from the S summit crater on 28 July (figure 78). RSAM values gradually increased from a low average of 200 to an average of 1200 on 30 July, accompanied by thermal hotspots around the summit crater; a ground observer reported incandescent material was ejected from the summit. On 31 July into 1 August ash plumes rose to 4.3 km altitude, accompanied by an incandescent lava flow visible at the summit, according to a Darwin VAAC advisory.

Intermittent ash plumes continued to be reported by the Darwin VAAC on 1, 6-7, 16, 20, and 31 August. They rose from 2.1 to 4.6 km altitude, the latter of which occurred on 31 August and drifted W. Typically, these ash plumes extended SW, W, NW, and WSW. On 11 September another ash plume was observed rising 2.4 km altitude and drifting W.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Karymsky (Russia) — October 2020 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


New eruption during April-July 2020; ash explosions in October 2020

Karymsky is an active volcano, part of Kamchatka’s eastern volcanic zone. Eruptive activity has been frequent since 1996 and has included ash explosions, gas-and-steam and ash emissions, and thermal anomalies. The most recent eruptive period ended in September 2019 (BGVN 44:11) with a new one beginning in April 2020. Both eruptions consisted of moderate explosive activity and ash plumes. This report updates information from November 2019 through October 2020, which describes a short-lived eruption from April to July and renewed activity in October. Information comes from daily, weekly, and special reports from the Kamchatka Volcanic Eruptions Response Team (KVERT), the Tokyo Volcanic Ash Advisory Center (VAAC), and satellite data.

Activity at Karymsky after November 2019 primarily consisted of moderate gas-and-steam emissions and rare weak thermal anomalies in the summit crater (on 2, 8, and 17 December 2019, according to KVERT). No thermal activity was reported during January through March 2020.

Over the weeks of late March to early April 2020, minor amounts of ash were present in gas-and-steam emissions that led to trace ashfall deposits on the snowy flanks and were visible in satellite imagery (figure 47). A weak thermal anomaly was observed in satellite imagery on 6 April. On 13 April the Tokyo VAAC reported an ash plume to 2.1 km altitude drifting SE. Gas-and-steam emissions containing some ash rose 2 km altitude on 17 April and drifted up to 80 km SE on both 17 and 21 April, accompanied by a weak thermal anomaly seen in satellite data. On 18 April the Tokyo VAAC released an advisory noting an ash plume at 1.5-2.1 km altitude drifting S.

Figure (see Caption) Figure 47. Sentinel-2 natural color satellite images showing ash deposits (dark gray) on the snowy flanks at Karymsky from just before the eruptive period began on 20 March 2020 (top left) through April 2020. Images with “Natural Color” (bands 4, 3, 2) rendering; courtesy of Sentinel Hub Playground.

KVERT reported intermittent thermal anomalies during May, along with moderate gas-and-steam emissions. On 10 May gas-and-steam plumes containing some ash drifted 77 km SE while ash plumes observed in HIMAWARI-8 satellite imagery rose to 2.7 km altitude. A dense plume drifting S resulted in large ash deposits covering all but the N flank of the volcano by 14 May, as observed in Sentinel-2 natural color satellite imagery (figure 48). KVERT reported that ash continued to be observed during 24-31 May, rising to a maximum altitude of 7 km on 27 May and extending in multiple directions. On 29 and 31 May explosions generated ash plumes that rose to 6 and 4 km altitude, respectively, and both extended up to 380 km SW, SE, and E. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows a pulse in thermal activity within 5 km of the summit crater starting in late May, reflecting the renewed activity (figure 49). On 1 June another strong brown-gray ash plume was seen rising from Karymsky, drifting SE in satellite imagery, depositing large amounts of ash on all flanks (figure 48).

Figure (see Caption) Figure 48. Sentinel-2 natural color satellite images showing ash deposits (dark gray) on the all the snowy flanks at Karymsky on 14 May (left) and 1 June (right) 2020. Images with “Natural Color” (bands 4, 3, 2) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 49. A pulse of thermal activity at Karymsky during late May through July 2020 was seen in the MIROVA graph (Log Radiative Power). Courtesy of MIROVA.

Intermittent ash emissions and moderate explosive activity continued in June. During 1-4 June continuous ash plumes rose to a high of 4.6 km altitude and drifted up to 400 km generally E, according to KVERT and the Tokyo VAAC advisories. By 19 June, KVERT stated that possible Strombolian activity was occurring, accompanied by moderate gas-and-steam emissions and frequent thermal anomalies; Sentinel-2 thermal satellite imagery also showed a thermal anomaly in the crater (figure 50). Ash plumes and gas-and-steam plumes containing some amount of ash were seen drifting SW and NW on 30 June (figure 51).

Figure (see Caption) Figure 50. Sentinel-2 thermal satellite images show a bright thermal hotspot (yellow-orange) in the summit crater of Karymsky during June 2020, sometimes accompanied by gas-and-steam emissions. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 51. Photos of an ash plume rising from Karymsky on 30 June drifting SW (top) and a fumarolic gas plume containing some amount of ash drifting NW (bottom). Both photos by A. Sokorenko; courtesy of IVS FEB RAS, KVERT.

Similar activity continued into July, which included possible Strombolian activity, moderate gas-and-steam emissions, and frequent thermal anomalies. On 14 July a gas-and-steam plume that contained some ash drifted 26 km SW (figure 52); the Tokyo VAAC advisory reported a continuous ash plume that rose 3 km altitude and drifted SW. During 27-30 July Strombolian and Vulcanian explosions generated ash plumes that rose 3-3.7 km altitude and extended 250 km SW and SE. The frequency of thermal anomalies seen in MIROVA decreased in July; the MODVOLC system detected one thermal hotspot on 28 July.

Figure (see Caption) Figure 52. Fumarolic activity at Karymsky on 14 July 2020. Photo has been color corrected. Photo by Ivan Nuzhdaev; courtesy of IVS FEB RAS, KVERT.

Activity decreased in August; thermal anomalies were reported on 5-7, 10, 18, and 21 August, the latter of which was last observed thermal anomaly, according to KVERT. Moderate gas-and-steam emissions continued to occur through the week of 3 September (figure 53). On 26 September, the Tokyo VAAC issued an advisory for a small ash plume that rose to 1.8 km altitude and extended SE.

Figure (see Caption) Figure 53. Minor gas-and-steam emissions rose from Karymsky on 2 September 2020. Photo by A. Gerasimov; courtesy of KVERT.

After a brief period of little to no activity, Tokyo VAAC advisories on 10 and 11 October both reported small ash plumes that rose 1.8 km altitude and drifted SE. An ash plume on 17 October rose to 3.9 km altitude drifting E; on 20 October an ash plume drifted up to 50 km SE. KVERT reported that a new eruption began on 21 October; pilots observed explosions at 1430 that generated ash plumes up to 4 km altitude and extended 40 km SE (figure 54). Multiple ash plumes during that day rose up to 6.4 km altitude and drifted as far as 530 km SE, accompanied by a thermal anomaly. Frequent ash explosions continued through the end of the month, with the highest plume rising to an altitude of 6 km on 30 October. In late October two thermal anomalies were detected in MIROVA.

Figure (see Caption) Figure 54. Frame from a video of the eruption at Karymsky on 21 October 2020. The ash plume is rising 6 km altitude. Video by Bel-Kam-Tour, courtesy of Russia Today.

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Bel-Kam-Tour, st. Elizova, 39 Paratunka Kamchatka Krai, 684000, Russia (URL: https://bel-kam-tour.business.site/); Russia Today (RT), Borovaya St., 3 bldg. 1, Moscow 111020 (URL: https://www.rt.com/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 32, Number 09 (September 2007)

Managing Editor: Richard Wunderman

Arenal (Costa Rica)

Ongoing activity during 2005-7 included lava flows and pyroclastic flows

Etna (Italy)

4-5 September eruption emitted long-duration fountains; lava flows extend 4.6 km

Ijen (Indonesia)

2007 field visit found degassing and increasing fumarole temperatures

Krakatau (Indonesia)

Minor eruptions beginning October 2007; seismic data for 2005-2007

Lascar (Chile)

Occasional aviation reports of ash plumes during November 2006-July 2007

Poas (Costa Rica)

Many fumaroles active; small phreatic emission from crater lake in December 2006

Raung (Indonesia)

Uncertain July 2007 ash plume; August 2007 ash plume seen for several hours

Salak (Indonesia)

Six gas-related fatalities during July 2007

San Miguel (El Salvador)

Background seismicity since October 2006; crater visit in July 2007



Arenal (Costa Rica) — September 2007 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Ongoing activity during 2005-7 included lava flows and pyroclastic flows

Since our last report on Arenal in 2005 (BGVN 31:10), silicic lava emissions were continuous with some occasional more intense periods, including events in May 2006 and September 2007. The agency OVSICORI-UNA noted that from October 2005 through September 2007 the generally low level of activity at the main vent area at Crater C was characterized by continuous emissions of lava, gases, and periodic strombolian eruptions. Pyroclastic flows were occasionally produced, the result of collapse of an active lava flow front. The volcanism was accompanied by characteristic seismic activity, which is indicated in table 25 for the interval September 2005 - December 2006. During this period, Crater D displayed fumarolic activity only; accordingly, the discussion below focuses on activity at Crater C and the Arenal edifice. Note that during the reporting interval, the directions of materials descending the flanks has shifted from time to time.

Table 25. Seismic activity registered at Arenal's station VACR, located 2.7 km NE of the active crater, during September 2005-December 2006. Months with "--" indicate that data were not reported for that month. Data were normalized from mean values for months when the station had incomplete data (25 days in March 2006 and 27 days in April 2006). Courtesy of OVSICORI-UNA.

Month Eruption earthquakes Daily average LP Events Tremor (hours)
Sep 2005 548 18 16 576
Oct 2005 631 20 34 468
Nov 2005 877 29 17 561
Dec 2005 -- -- -- --
Jan 2006 -- -- -- --
Feb 2006 867 31 24 536
Mar 2006 969 39 24 399
Apr 2006 804 28 33 436
May 2006 -- -- -- --
Jun 2006 987 33 14 424
Jul 2006 754 24 37 342
Aug 2006 -- -- -- --
Sep 2006 -- -- -- --
Oct 2006 244 8 2 597
Nov 2006 204 7 -- 626
Dec 2006 221 7 -- 644

During October and November 2005, lava flows of comparatively low volume occurred on the cones's SW, W, and NW flanks. In early November, an incandescent pyroclastic flow descended the cone's W flank. Lava continued to descend the SW flank during December and into January 2006 and new flows also took paths down the W and NW flanks. Blocks of lava on the SW and NW flanks tumbled down the slopes, shifting primarily to the N and NE flanks in February. Wherever these viscous blocks of lava detached and tumbled down the flanks of the cone, they started small fires in areas of vegetation.

Mild activity continued through March, April, and the beginning of May 2006, with a few sporadic localized increases. In April, the W lava flow temporarily increased in volume for a short while, then ceased. A new flow developed on the N slope.

10 May 2006 pyroclastic flow. On 10 May a significant pyroclastic flow traveled down Arenal's N flank. Tumbling incandescent blocks of lava, with temperatures up to 1,000°C, collided with each other and the slope of the volcano and broke apart, producing great amounts of ash. An ash-and-gas cloud drifted SW. Although the pyroclastic flow was not coupled with any clearly distinguishable recorded seismic event, it descended the slope in an incandescent torrent, burning and devastating everything in its path. On 20 November 2006, the Arenal Mountain Lodge observatory reported suspected tumbling blocks on the S flank.

Small lava flows on the N slope continued through at least February 2007. Sporadically, small avalanches of lava detached from the flow fronts (these events also occurred on the NE and NW slopes), producing small ash columns that seldom exceeded 500 m above the crater rim.

Eliecer Duarte reported a new lava flow moving SW based on his visit of 28 March 2007, when he found Arenal "as energetic as usual" (figure 100). He wrote that the new SW-directed flow was producing a significant amount of debris that rolled down a wide area. Some of the biggest pieces arrived intact at distal vegetated areas, including ~ 2 km maximum from the source vent at crater C. A lava tongue was visible from the tourist and residential areas. Small pyroclastic flows, derived from dome fragments, broke off and produced small clouds of ash that blew W.

Figure (see Caption) Figure 100. Advancing lava flows (masked by low-hanging dusty plumes) on the SW flanks of Arenal, 28 March 2007. The lava flows generated occasional avalanches, small pyroclastic flows, and block-and-ash flows. The inset photo shows the summit area in clear conditions revealing a spire-encrusted lava dome clinging to the upper flanks. Courtesy of E. Duarte, OVSICORI-UNA.

OVSICORI-UNA reports noted generally low-level activity at Arenal continued through August and September 2007, with little variation, except for infrequent, more active events (such as the one noted below). Ash emissions and their dispersal were generally nominal. The lava fronts continued to tumble down in small avalanches and slides, sometimes reaching the upper part of the forest on the N side, starting small fires. Eruptions produced ash plumes that rose up to 2.2 km altitude. During September 2007, lava domes, lava flows, and hornitos continued to develop.

18 September 2007 pyroclastic flows. According to Jorge Barquero, at about 1000 on 18 September, eyewitnesses at the Arenal Mountain Lodge observatory saw rocks loosening at the base of the dome, first sending small avalanches S and SW and ultimately dropping sufficient quantities of the dome to form somewhat larger pyroclastic flows. The event was recorded by a local seismograph.

Multiple pyroclastic flows traveled S to a runout distance of ~ 1 km (figure 101). During the night, small avalanches continued sporadically; some resulting explosions contained ash. Explosions occurred that occasionally produced airborne ash. Although mainly small avalanches were noted, one larger glowing one descended the S flank and at 1930 that evening a large part of the S flank glowed red. By dawn on 19 September observers saw a new lava flow had emerged from Crater C, the front of which soon became the source of rock avalanches.

Figure (see Caption) Figure 101. A photo of looking straight along the path (and resulting deposits) of the 18 September pyroclastic flow, which traveled directly down Arenal's S flank. The flow had a runout distance of ~ 1 km. Note areas of relatively intact vegetation adjacent the lower portions of the deposit. Courtesy of Jorge Barquero H., Instituto Costarricense de Electricidad (ICE).

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: E. Fernández, E. Duarte, W. Sáenz, V. Barboza, M. Martinez, E. Malavassi, and R. Sáenz, Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); Jorge Barquero Hernandez, Instituto Costarricense de Electricidad (ICE), Apartado 5 -2400, Desamparados, San José, Costa Rica.


Etna (Italy) — September 2007 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


4-5 September eruption emitted long-duration fountains; lava flows extend 4.6 km

Although BGVN 32:08 discussed the eruption of 4-5 September 2007, this report goes on to more fully describe Etna's lava fountaining at the Southeast Crater (SEC) observed during that eruption, and also adds other details such as a map of the resulting lava flow. The fountain associated with the eruption was spectacular, though by far not the tallest seen on Etna (that was 8 years earlier, on 4 September 1999, at the Voragine, when a fountain rose over 2 km high). The fountaining lasted a full 10 hours, whereas most other recent fountains on Etna only lasted 15-20 minutes.

As background, Etna became active on 15 August 2007 following four eruptive episodes on these dates: 29 March 2007, 11 April, 29 April, and 6-7 May 2007. At the end of August, ash emissions were nearly entirely replaced by Strombolian activity.

The header at the top of this report contains a new summit elevation corrected to the latest LIDAR (light detection and ranging) data, which was acquired in the Spring of 2007. It revises an older estimate of 3,350 m to 3,330 m.

A significant increase in tremor amplitude took place at ~ 1600 on 4 September. After that, a sustained lava fountain rose from the SEC's August-September vent, jetting to 400-600 m above the vent for the next ~ 10 hours (figure 127). A dense tephra plume blew E toward the Ionian Sea. Lava flowed over the vent's E and SE rims, initially forming three branches that coalesced at a short distance from the SEC and descended as a single flow toward the Valle del Bove, to a distance of 4.6 km (figure 128).

Figure (see Caption) Figure 127. Lava fountain and flow emitted at the SEC on 4 September 2007. The photo was taken from the Acireale in Catania, ~ 20 km SE of Etna. Courtesy of INGV-CT and Alfio Amantia (credit on the photo).
Figure (see Caption) Figure 128. Preliminary map of Etna's lava flow emitted during the 4-5 September 2007 lava fountain of the Southeast Crater. The eruptive August-September vent is indicated on the eastern slope of the Southeast Crater cone. Courtesy of Boris Behncke and Marco Neri (INGV).

Heavy showering of tephra occurred on the E flank in the areas between the towns of Fornazzo, Milo, and Giarre. As a precaution, the International Airport of Catania was closed for a few hours early on 5 September.

Renewed activity at Etna in late September and early October was similar to that seen in mid-August; incandescence was noted in some of the emissions in early-mid October. Observations were frequently hampered by bad weather, but as of 22 October, sporadic emissions continued without significant variations in their intensity.

References. Behncke, B., and Neri, M., 2007, L'eruzione del 4-5 settembre 2007 al Cratere di Sud-Est (Etna): osservazioni di terreno in prossimit? della bocca eruttiva. Report published on-line at: http://www.ct.ingv.it/Report/RPTVGSTR20070906.pdf.

Calvari, S., and Behncke, B., 2007, Rapporto sull'attivit? eruttiva dell'Etna. Aggiornamento del 26 agosto 2007. Report published on-line at: http://www.ct.ingv.it/Report/RPTVGREP20070826.pdf.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Boris Behncke and Marco Neri, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy.


Ijen (Indonesia) — September 2007 Citation iconCite this Report

Ijen

Indonesia

8.058°S, 114.242°E; summit elev. 2769 m

All times are local (unless otherwise noted)


2007 field visit found degassing and increasing fumarole temperatures

Researchers from Simon Fraser University, McGill University, and the Institut Teknologi Bandung (ITB) conducted fieldwork at Ijen from 6 July to 2 August 2007. During this period, volcanic activity was restricted to persistent degassing of the solfatara (sulfurous fumarole) located on a small dome in the SE part of the crater (figure 7). However, local sulfur miners reported a decrease in the amount of mineable sulfur, a change presumably linked to increasing exit temperatures of the fumarole gases. Visual observation revealed no change in the crater lake level or fumarole activity compared to observations (BGVN 32:02) at roughly the same time last year (dry season).

Figure (see Caption) Figure 7. Overview of the N flank of the dome-like fumarole field (solfatara) as viewed from the crater rim of Ijen. Miners have installed pipes leading down from the dome. The pipes are used to condense sulphur, which is subsequently mined. Temperatures were measured in the pipes (numbered 1-21) and in fumaroles (lettered a-d) (see table 8). Fumarole temperatures were measured near the top of the dome. For scale, note sulphur miners near pipes 18 and 8/9. Courtesy of V. van Hinsberg.

During the visit, exit temperatures measured at the pipes ranged from 115 to 270°C (table 8), similar to those measured in 2006. Fumaroles on top of the dome had substantially higher temperatures, ranging up to 600°C, with the hottest emitting orange flames. By comparison, fumarole temperatures reported for the top of the dome in 1999, the last year for which there are published data (BGVN 24:09), were less than 250°C.

Table 8. Temperature (°C) of gases measured at ~ 50 cm depth in pipes and fumaroles using a K-type thermocouple. Courtesy of Glyn Williams-Jones.

Location Temperature
Pipe 1 --
Pipe 2 235°C
Pipe 3 --
Pipe 4 255°C
Pipe 5 215°C
Pipe 6 210°C
Pipe 7 267°C
Pipe 8 216°C
Pipe 9 230°C
Pipe 10 210°C
Pipe 11 175°C
Pipe 12 116°C
Pipe 13 168°C
Pipe 14 199°C
Pipe 15 205°C
Pipe 16 155°C
Pipe 17 194°C
Pipe 18 178°C
Pipe 19 --
Pipe 20 187°C
Pipe 21 194°C
Fumarole A >495°C
Fumarole B 331°C
Fumarole C 335°C
Fumarole D 601°C

Fumarolic sampling techniques included condensate bottles, and sublimates collected in silica tubes. In addition, they also used a Giggenbach bottle, a technique in which the escaping gases are bubbled through a caustic solution of NaOH in an evacuated flask. Reactions, such as those between the caustic solution and CO2 in the sampled gas, both remove some species from the gas and result in residual gases collected at the top of the flask. The samples obtained with the various techniques are typically studied and analyzed later in the lab.

Distinct variations in fumarole temperature observed during the course of the field campaign linked closely to weather conditions. On clear, wind-free days, fumarole temperatures were highest. The escaping fumes were generally white in color, and miners were forced to pour water on the pipes to induce sulfur condensation. On windy, clouded days, fumes were much denser and yellow in color, covering all surfaces in a veneer of sulfur. At Fumarole d, this change in weather conditions from clear and wind free to windy and cloudy corresponded to a drop in fumarole temperature from 600 to 450°C. The changes in fumarole conditions were observed to occur rapidly (i.e., within 15 minutes of a cold front moving in), suggesting to the researchers the likelihood of extensive interaction between magmatic and atmospheric gases immediately below the dome's surface.

Crater lake and Banyu Pahit river. The temperature of the crater lake was monitored daily on the S shore below the dome from 8 to 21 July 2007; it varied between 36.1 and 37.4°C. These variations also corresponded to changes in the weather. A transect along the Banyu Pahit river (see map, below) from the dam to the bridge at Watu Capil, revealed that the water was a few degrees above ambient where it emerged, but was close to the air temperature from 500 m downstream. A strong, persistent increase in discharge was observed on 21 July 2007, returning flow to the levels of 1999.

Elemental fluxes. A survey of sulfur dioxide (SO2) fluxes was made using a portable UV spectrometer (FLYSPEC) on 11, 12, and 27 July 2007 along the SE rim of the crater (~ 2,350 m elevation) and involved, respectively, eight, sixteen, and seven walking traverses under the plume with the instrument pointed upwards.

The gas plume produced directly from the active solfatara (~ 2,150 m elevation) rose buoyantly before flowing over the crater rim. On 11 July, the maximum concentration path length of the gas in the plume fluctuated between 1,800 and 2,600 ppm-m over the eight scans made during a period of 3.5 hours. The wind speed (measured with a handheld anemometer at plume height) during this time averaged 2.9 m/s and the resultant SO2 flux was therefore calculated to average 219 metric tons per day (t/d), with a standard deviation of 99 t/d. On 12 July, the average gas concentration was similar, ranging between 1,600 and 3,000 ppm-m. The average wind speed during this survey period (3 hours) fluctuated between 2.0 and 4.5 m/s and the resultant SO2 flux averaged 185 t/d, with a standard deviation of 60 t/d.

On 27 July average gas concentrations were considerably higher, ranging from 2,200 to 13,000 ppm-m over two hours. The higher concentrations were a result of the plume being less dispersed. The average wind speed during this period ranged from 2.6 to 4 m/s and the resultant SO2 flux averaged 215 t/d, with a standard deviation of 68 t/d. Based on this very limited three-day survey, the average daily flux of SO2 was estimated to be 206 t/d and was lower than that measured during a two day survey last year by ~ 130 t/d (BGVN 32:02).

The amount of native sulfur precipitating at the solfatara can be roughly estimated from that mined, given that the bulk of this sulfur is recovered. Approximately 100 miners extract sulfur, removing it from the crater in two trips each day, and carrying on average 60-80 kg of sulfur per trip. This corresponds to the deposition of 14 t/d.

Fumarole gas samples collected using Giggenbach flasks complemented the FLYSPEC measurements and determine the flux of elements other than SO2, CO2, and H2O. Rock samples and water samples taken from the lake and acid springs will allow further quantification of the output of volatiles and metals.

Self-potential surveys. These are surveys that involve measurement at the ground surface of the local, static, direct-current potentials between electrodes inserted to shallow depth at known separation distances. The method is sometimes also called spontaneous potential and abbreviated as SP. These potentials develop from numerous sources, including fluid flow, diffusion, and oxidation and reduction reactions between minerals in contact with water.

As in 2006 (BGVN 32:02), SP surveys were conducted on the summit rim and also down the S flank to the intersection of the Banyupuhit river (dashed line, figure 8) and the main road. The survey was complemented by ground temperature measurements, which found the only thermal anomaly was located in the immediate vicinity of the dome. In comparison to 2006, only the N rim of the crater showed a significant SP variation, with a decrease of SP of ~ 100mV. This variation may indicate a slight decrease of the hydrothermal activity. While the SP values are minima, the SP/elevation gradient is still slightly positive (+0.03 mV/m) suggesting that the hydrothermal system on the N rim is strong enough to compensate for the influence of the hydrological zone, characterized on the E and NE by negative SP (with a minimum at -120 mV) and an inverse SP/elevation gradient of -1.07 mV/m. This almost certainly represents the inflow of meteoric water and groundwater.

Figure (see Caption) Figure 8. Self-potential (SP) survey results overlain on a digital elevation model (DEM) of the active crater of Kawah Ijen. All the SP data were referenced to the upper Banyupuhit river and to a spring on the inner E slope of the crater (triangles). Contour intervals are 100 m. Courtesy of G. Mauri and V. van Hinsberg.

The 2006 SP survey suggested that the S and W flanks of the crater were characterized by a hydrothermal system; however, this year's SP and temperature study shows greater complexity. The main SP/elevation gradient is between -0.31 and -0.56 mV/m with a higher SP average than on the E rim (-4 mV in the S versus -70 mV in the E). This suggests that the S part of the crater is controlled mainly by the hydrological and underlying hydrothermal systems of the acid lake. Although some other small hydrothermal anomalies were found along the S and SW slopes (1 and 2 on figure 8), the area was principally characterized by hydrological systems.

Thus, while the presence of strong hydrothermal activity within the crater is unequivocal, the temperature and self-potential surveys to date show no evidence of it extending beyond the crater rim.

Geologic Background. The Ijen volcano complex at the eastern end of Java consists of a group of small stratovolcanoes constructed within the large 20-km-wide Ijen (Kendeng) caldera. The north caldera wall forms a prominent arcuate ridge, but elsewhere the caldera rim is buried by post-caldera volcanoes, including Gunung Merapi, which forms the high point of the complex. Immediately west of the Gunung Merapi stratovolcano is the historically active Kawah Ijen crater, which contains a nearly 1-km-wide, turquoise-colored, acid lake. Picturesque Kawah Ijen is the world's largest highly acidic lake and is the site of a labor-intensive sulfur mining operation in which sulfur-laden baskets are hand-carried from the crater floor. Many other post-caldera cones and craters are located within the caldera or along its rim. The largest concentration of cones forms an E-W zone across the southern side of the caldera. Coffee plantations cover much of the caldera floor, and tourists are drawn to its waterfalls, hot springs, and volcanic scenery.

Information Contacts: Nathalie Vigouroux, Guillaume Mauri, and Glyn Williams-Jones, Department of Earth Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada (URL: http://www.sfu.ca/earth-sciences.html); Vincent van Hinsberg and Willy (A.E.) Williams-Jones, Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec, Canada (URL: http://www.mcgill.ca/eps/); Asnawir Nasution, Department of Geology, Institut Teknologi Bandung, Bandung, Indonesia (URL: http://www.itb.ac.id).


Krakatau (Indonesia) — September 2007 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 155 m

All times are local (unless otherwise noted)


Minor eruptions beginning October 2007; seismic data for 2005-2007

Eruptive activity in recent years was low at Krakatau. The Indonesian volcanological monitoring agency, now called the Center of Volcanology and Geological Hazard Mitigation (CVGHM), did not report any eruptive activity between June 2005 and September 2007. Seismic data collected during this period (figures 15 and 17), although intermittent and variable, suggests mainly low-level activity (discussed in more detail below).

Figure (see Caption) Figure 15. Volcano-tectonic earthquakes recorded at Anak Krakatau, June 2005-early September 2007. Grayed-out areas represent periods when seismic data were not available. Courtesy of CVGHM.
Figure (see Caption) Figure 16. Photograph of an ash plume from Anak Krakatau, 1 November 2007. View is to the SE from a monitoring station on Sertung island. Rakata island is in the background. Courtesy of CVGHM.
Figure (see Caption) Figure 17. Satellite image of Anak Krakatau showing part of the monitoring network. Stations KM01, KM02, and KM03 are equipped with seismometers (broad-band at KM01) and GPS systems for deformation monitoring. A weather station is installed at KM01, a sea-level sensor at KM02. An electro-magnetic station (KM05) is located near station KM01. Gases are monitored at a nearby fumarole. Courtesy of CVGHM.

Starting on 23 October 2007 reports noted multiple gray plumes from eruptions lasting 3-6 minutes; these vented from a crater near the summit of Anak Krakatau (figure 16). The eruptions and associated increased seismicity during 23-26 October 2007 prompted CVGHM to raise the Alert Level to 3. Poor weather conditions allowed only intermittent observations, but plumes rose to an altitude of ~ 1 km during 23-26 and 30 October. Similar eruptions were continuing in early November (figure 16).

Activity during April 2005-September 2007. On 13 April 2005 increased seismicity prompted authorities to raise the Alert Level to 2 (on a scale of 1-4). Seismic activity decreased over the next four days to a normal level. Visitors were banned from the summit and crater of Anak Krakatau due to toxic gas emission. Another increase in seismic activity was reported around 16 May. Elevated seismicity was also recorded on 24 September 2005, 8 December 2005, and 18-19 June 2006 (figure 15).On figure 15, a conspicuous, longer period of high seismicity occurred during most of December 2006, when tremor and low-frequency events also increased. That peak on figure 15 ended prior to the end of the month. No eruptions were noted in available reports by CVGHM for these episodes of elevated seismicity in 2005 or 2006. For the intervals where data were available during the first eight months of 2007, seismicity was generally moderate to low.

Monitoring. The monitoring system (KRAKMON) consists of a number of geophysical, gas-geochemical, and environmental measuring sites on the Krakatau island complex. All data are acquired continuously and are transmitted to the Pasauran Observatory (western Java) via digital radio telemetry. In Pasauran, the data are collected and transmitted to a server in Jakarta. From there, the data were accessible through internet (http://krakmon.vsi.esdm.go.id/). Three stations are located on Anak Krakatau (figure 17). A fourth station on Sertung island consists of a short-period seismometer and a digital camera with a view of Anak Krakatau.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Center of Volcanology and Geological Hazard Mitigation (CVGHM), Saut Simatupang, 57, Bandung 40122, Indonesia (URL: http://vsi.esdm.go.id/).


Lascar (Chile) — September 2007 Citation iconCite this Report

Lascar

Chile

23.37°S, 67.73°W; summit elev. 5592 m

All times are local (unless otherwise noted)


Occasional aviation reports of ash plumes during November 2006-July 2007

Our last Bulletin report on Láscar (BGVN 31:11) discussed minor explosions and ash plumes during September-October 2006, morphological changes in the central active crater since the May 2005 eruption, and an ongoing investigation on fumarolic gases venting in the active crater.

Reports since November 2006 and into late 2007 indicated that Láscar continued to emit ash plumes. On 22 January 2007, based on satellite imagery, the Buenos Aires Volcanic Ash Advisory Center (VAAC) reported continuous emissions from the volcano that drifted NNE. Then, according to the VAAC, on11 March 2007 an ash cloud from Láscar rose to 5.5-6.7 km altitude and drifted E. The VAAC's next report on Láscar indicated that on 23 May, an ash plume from Láscar rose to an altitude of 9.1 km and drifted SSE, based upon a Significant Meteorological Information (SIGMET) advisory and satellite image observations. Finally, the VAAC reported that, based on pilot reports and satellite image observations, on 18 July 2007 an ash plume rose to altitudes of 7.6-9.1 km and drifted NE. We have not seen any activity reports on Láscar between this July report and 23 October 2007, perhaps suggesting an absence of unusually vigorous activity during that interval.

Geologic Background. Láscar is the most active volcano of the northern Chilean Andes. The andesitic-to-dacitic stratovolcano contains six overlapping summit craters. Prominent lava flows descend its NW flanks. An older, higher stratovolcano 5 km E, Volcán Aguas Calientes, displays a well-developed summit crater and a probable Holocene lava flow near its summit (de Silva and Francis, 1991). Láscar consists of two major edifices; activity began at the eastern volcano and then shifted to the western cone. The largest eruption took place about 26,500 years ago, and following the eruption of the Tumbres scoria flow about 9000 years ago, activity shifted back to the eastern edifice, where three overlapping craters were formed. Frequent small-to-moderate explosive eruptions have been recorded since the mid-19th century, along with periodic larger eruptions that produced ashfall hundreds of kilometers away. The largest historical eruption took place in 1993, producing pyroclastic flows to 8.5 km NW of the summit and ashfall in Buenos Aires.

Information Contacts: Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/productos.php).


Poas (Costa Rica) — September 2007 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Many fumaroles active; small phreatic emission from crater lake in December 2006

The last Bulletin report on Poás provided information on the phreatic eruption on 25-26 September 2006 (BGVN 32:07). This report discusses continuing hydrothermal variations and one minor phreatic eruption (to 30 m above the crater lake) during October 2006 through September 2007. The pyroclastic cone continued fumarolic activity issuing columns of gases that reached 300 to 400 m above the crater. Information for this report were provided by the Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad Nacional (OVSICORI-UNA).

Crater lake. During the period October 2006 through September 2007, Laguna Caliente the active crater lake of Poás volcano, displayed a greenish-gray color with convection cells in the center and temperatures ranging from 41 to 58 °C. As depicted in table 12, between 5 and 12 October 2006, the temperature and level of the lake increased suddenly suggesting a greater heat flow into the lake. By late October, the temperature decreased slightly and the level of the lake began to fall. Overall, the lake level fell 6.45 m from September 2006 through August 2007, and then stabilized. Often gases originating from the bottom of the lake produced a ring of dark gray material 80 m in diameter floating at the center of the lake. In the NE wall at the lake level, fumaroles produced yellowish particles that floated on the lake.

Table 12. For Poás, the temperature of Laguna Caliente and changes in lake level from September 2006 through September 2007. Courtesy OVSICORI-UNA.

Date Lake temperature Relative elevation change in lake surface
Sep 2006 41°C --
05 Oct 2006 46°C --
12 Oct 2006 55°C + 0.43 m
27 Oct 2006 53°C - 0.46 m
Nov 2006 48°C - 0.33 m
Dec 2006 48°C --
Jan 2007 -- --
Feb 2007 48°C - 0.70 m
Mar 2007 49°C - 1.11 m
Apr 2007 51°C - 1.18 m
May 2007 27°C - 1.45 m
Jun 2007 58°C - 1.58 m
Jul 2007 57°C - 0.15 m
Aug 2007 58°C - 0.59 m
Sep 2007 56°C + 0.08 m

Small phreatic eruption. According to reports of a park ranger, a phreatic eruption occurred at 1230 on 16 December 2006. The eruption reached a height of 30 m and the erupted material fell back into the lake.

Fumaroles. In October 2006 the fumaroles of the N terrace emitted columns of gases and deposits of sulfur forming a small dome. One fumarole produced a whistling noise and had temperature of 144°C. By February 2007, the fumarole cooled to 124°C but continued building a small sulfur cone (figure 82). Sulfur depositions continued through September 2007 when the fumarole closed. Table 13 depicts fumarole temperatures through September 2007.

Figure (see Caption) Figure 82. Fumarolic activity at Poás formed a sulfur cone during late 2006 and into 2007. This shot shows the upper part of the sulfur cone in the left foreground. Parts of the steaming pyroclastic cone and adjacent crater lake appear in the background. Courtesy of OVSICORI-UNA.

Table 13. Temperature of N terrace fumarole at Poás depositing sulfur during October 2006 through September 2007. Courtesy OVSICORI-UNA.

Date Temperature
Oct 2006 144°C
Nov 2006 143°C
Dec 2006 --
Jan 2007 --
Feb 2007 124°C
Mar 2007 118°C
Apr 2007 116°C
May 2007 110°C
Jun 2007 117°C
Jul 2007 108°C
Aug 2007 108°C
Sep 2007 67°C

On the SE and NW walls, hot springs with gas temperatures between 89°C and 94°C also deposited sulfur. By March 2007, the hot springs had largely dried and only two gave off very low volume emissions with a temperature of ~55°C. Throughout the reporting period, cracks on the intermediate terrace and on the NE edge of the crater widened with new points of gases appearing and deposition of sulfurous material. By February 2007, emission levels began to diminish, and they continued diminishing through September. Fumarole gas temperatures in this area remained steady at near 94° C.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: E. Fernández, E. Duarte, W. Sáenz, V. Barboza, M. Martinez, E. Malavassi, and R. Sáenz, Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/).


Raung (Indonesia) — September 2007 Citation iconCite this Report

Raung

Indonesia

8.119°S, 114.056°E; summit elev. 3260 m

All times are local (unless otherwise noted)


Uncertain July 2007 ash plume; August 2007 ash plume seen for several hours

Nine anomalous Moderate Resolution Imaging Spectroradiometer (MODIS) observations of volcanic hot spots were reported during 3 June-8 October 2004 (BGVN 30:01). No other activity was reported from Raung until 26 July 2007. That day the Darwin Volcanic Ash Advisory Center (VAAC) indicated that a pilot had observed an ash plume, possibly from Raung, which their ash advisory reported as follows: "AIREP [an aircraft observation] reported ash cloud observed over volcano on eastern tip of Java. Plume up to 5000 feet [~ 1.2 km] above summit. Volcano assumed to be Raung. Ash not seen on latest satellite pass due to cloud."

Darwin VAAC produced five reports in reference to a Raung ash plume emitted on 26 August 2007. Visible wavelength imagery on MT SAT disclosed a plume at FL 150 (15,000 feet, or 4.6 km altitude) drifting E at ~ 10 km/hr (at 0430 UTC on 26 August). The last view of the cloud was reported at 0833 UTC, still at the same altitude and moving at the same velocity. That plume rose to an altitude of 1.5 km. Ash was not visible on satellite imagery. The Darwin VAAC reported that satellite imagery had detected an ash plume from Raung during 26-27 August that rose to an altitude of 4.6 km and drifted E.

Geologic Background. Raung, one of Java's most active volcanoes, is a massive stratovolcano in easternmost Java that was constructed SW of the rim of Ijen caldera. The unvegetated summit is truncated by a dramatic steep-walled, 2-km-wide caldera that has been the site of frequent historical eruptions. A prehistoric collapse of Gunung Gadung on the W flank produced a large debris avalanche that traveled 79 km, reaching nearly to the Indian Ocean. Raung contains several centers constructed along a NE-SW line, with Gunung Suket and Gunung Gadung stratovolcanoes being located to the NE and W, respectively.

Information Contacts: Darwin Volcanic Ash Advisory Center, Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, Northern Territory 0811, Australia (URL: http://www.bom.gov.au/info/vaac/).


Salak (Indonesia) — September 2007 Citation iconCite this Report

Salak

Indonesia

6.72°S, 106.73°E; summit elev. 2211 m

All times are local (unless otherwise noted)


Six gas-related fatalities during July 2007

Salak is a stratovolcano near the W end of Java (figure 1). Historical records indicate the last eruption occurred in 1938, and the volcano remains in repose; this report discusses gas-related fatalities. The last section of this report reviews gas exposure limits, gas-mask filters, and monitoring devices to enhance understanding of two sulfurous volcanic gases (SO2 and H2S).

Figure (see Caption) Figure 1. Satellite imagery from Google Earth showing Salak (center, ~60 km SSW of Jakarta) and other volcanoes of western Java. Courtesy of Google Earth.

According to news articles, sulfur-gas poisoning from one of Salak's fume-filled craters was suspected in the deaths of six teenagers on 7 July 2007. The victims, who were between the ages of 14 and 16, were part of a group of about 50 students camping on the volcano for the weekend. The bodies were found with blood and foam on their mouths and noses. According to a Reuters report of 9 July 2007, police officer Thomas Alexander reported that "one of the students was found dead with foam on his mouth, a strong indicator of sulfur poisoning." Several more poisoned students were taken to a nearby hospital for treatment.

Deadly gases. A data sheet on SO2, a common and potentially hazardous sulfurous gas found at volcanoes appears on the Center for Disease Control website (NIOSH, 2007). The gas's density is 2.26 times heavier than air of the same temperature. (In other words, when near the ambient air temperature, SO2 gas will generally tend to descend into low-lying places such as closed craters, lava tubes, etc.) The NIOSH recommended exposure limit for a 40 hour work-week composed of up to10-hour days is 2 ppm. Their stated recommended exposure limit for short-term (15-minute) exposure is 13 ppm.

These guidelines apply only to healthy adults, and exclude the effects of multiple gases, strong physical exertion, etc. Another hazardous sulfurous gas emitted by volcanoes is H2S. It has a density of 1.2 times that of air and a recommended exposure limit that is a more stringent (NIOSH ceiling) value that should not be exceeded: 10 ppm for 10 minutes. But, this gas is thought to quickly react to form SO2 in many circumstances. The NIOSH website also discusses appropriate filters for gas masks. Small, portable, digital monitors now exist for many gases; some will operate as remote sensors with dedicated telemetry.

Reference. NIOSH, 2007, NIOSH Pocket Guide to Chemical Hazards, Sulfur dioxide: US Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health (URL: http://www.cdc.gov/niosh/npg/npgd0575.html).

Geologic Background. Salak volcano was constructed at the NE end of an eroded volcanic range. Satellitic cones occur on the SW flank and at the northern foot of the forested volcano. Two large breached craters truncate the summit of Gunung Salak. One crater is breached to the NE and the westernmost crater was the source of a debris-avalanche deposit that extends 10 km WNW of the summit. Historical eruptions from Gunung Salak have been restricted to phreatic explosions from craters in a prominent solfataric area at 1400 m on the western flank. Salak volcano has been the site of extensive geothermal exploration.

Information Contacts: Reuters (URL: http://www.reuters.com/); Asia-Pacific News (URL: http://www.asiapacificnews.com/); Associated Press (URL: http://www.ap.org/); Deutsche-Presse Agentur (URL: http://www.dpa.de/).


San Miguel (El Salvador) — September 2007 Citation iconCite this Report

San Miguel

El Salvador

13.434°N, 88.269°W; summit elev. 2130 m

All times are local (unless otherwise noted)


Background seismicity since October 2006; crater visit in July 2007

A sudden increase in seismicity occurred on 9 October 2006 but no landslides or rock falls were associated with the event and it was attributed to gas emissions in the crater (BGVN 31:10). This report carries on from 9 October 2006.

During the morning of 10 October 2006, seismic activity declined to a continuous vibration with an amplitude that oscillated between 50 and 75 RSAM (real-time seismic amplitude measurement) units. This condition continued until 0600 on 11 October, when the seismicity increased to 125 continuous RSAM units.

The responsible authorities issued an alert that encompassed an area within 4 km from the center of the crater. Because of the elevated energy level of seismicity relative to the previous activity, the National Service of Territorial Studies elected to monitor the volcano and report developments to the National System of Civil Defense.

As of 15 October 2006, the level of activity at San Miguel was considered to be moderate, implying the possibility of an eruption sometime in the next several months. The civil defense authorities established a Yellow alert level (phase 3) for the area within 4 km of the crater center but later reduced it to Green. Around 15 October the RSAM continued to vary from 8 units to 45 units. During the preceding 24 hours, 55 earthquakes were registered; however, none were noticed by the local population. Sulfur dioxide (SO2) fluxes reached 150-250 metric tons per day, which was considered a low level. On 16 October, tremor fluctuated between 45 and 50 units, and 25 earthquakes were recorded but not felt by residents.

The period from the October 2006 activity through July 2007 was essentially devoid of any abnormal variations in seismicity, volcanism, or elevated gas emissions.

On 4 July 2007, volcanologists from Servicio Nacional de Estudios Territoriales (SNET) and Michigan Technological University climbed San Miguel to make observations and take fumarole temperatures. The volcano remained at a low level of activity. The crater morphology and the intensity and location of fumaroles within the crater remained similar to that observed in recent visits (e.g., October 2006 BGVN 31:10). The main fumarolic area was near the bottom of the crater on the S wall (figure 8). Other sparse fumaroles were present, with most clustered near the crater bottom and on the crater's W wall.

Figure (see Caption) Figure 8. View of the crater at San Miguel, looking S on 4 July 2007. The whitish area in the bottom right of the photo reflects steaming from the main fumarole field. Courtesy of Servicio Nacional de Estudios Territoriales (SNET) and Michigan Technological University.

Fumarole measurements: Temperatures were measured at two fumarolic areas on the upper W crater wall (figure 9). These are visited by SNET on a regular basis and comprise the only fumaroles safely accessible from the rim. Temperatures at fumaroles 1 and 2 were 67°C and 57°C, respectively. The gas lacked any sulfurous smell, suggesting water vapor only. These fumarole temperatures are similar to those measured in recent visits.

Figure (see Caption) Figure 9. View of the W side of San Miguel's crater, taken from the N rim. Fumaroles 1 (F1) and 2 (F2) are in the right central portion of the image. Courtesy of Servicio Nacional de Estudios Territoriales (SNET) and Michigan Tech University.

References. Chesner, C.A., Pullinger, C., Escobar, C.D., 2003, Physical and chemical evolution of San Miguel Volcano, El Salvador. GSA Special Paper 375.

Escobar, C.D., 2003, San Miguel Volcano and its Volcanic Hazards: MS thesis, Michigan Technological University, December 2003, 163 p.

Major, J.J., Schilling, S.P., Pullinger, C.R., Escobar, C.D., Chesner, C.A, and Howell, M.M., 2001, Lahar-Hazard Zonation for San Miguel Volcano, El Salvador: U.S. Geological Survey Open-File Report 01-395 (Available on-line).

Geologic Background. The symmetrical cone of San Miguel volcano, one of the most active in El Salvador, rises from near sea level to form one of the country's most prominent landmarks. The unvegetated summit rises above slopes draped with coffee plantations. A broad, deep crater complex that has been frequently modified by historical eruptions (recorded since the early 16th century) caps the truncated summit, also known locally as Chaparrastique. Radial fissures on the flanks of the basaltic-andesitic volcano have fed a series of historical lava flows, including several erupted during the 17th-19th centuries that reached beyond the base of the volcano on the N, NE, and SE sides. The SE-flank flows are the largest and form broad, sparsely vegetated lava fields crossed by highways and a railroad skirting the base of the volcano. The location of flank vents has migrated higher on the edifice during historical time, and the most recent activity has consisted of minor ash eruptions from the summit crater.

Information Contacts: Eduardo Gutierrez, Demetrio Escobar, and Francisco Montalvo, Servicio Nacional de Estudios Territoriales (SNET), Km. 5 ½ carretera a Santa Tecla y Calle las Mercedes, contiguo a Parque de Pelota, Edificio SNET, Apartado Postal #27, Centro de Gobierno, El Salvador (URL: http://www.snet.gob.sv/); Matthew Patrick and Anna Colvin, Dept. of Geological and Mining Engineering and Sciences, Michigan Tech University, 1400 Townsend Drive, Houghton, MI 49931, USA.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports