Recently Published Bulletin Reports
Klyuchevskoy (Russia) Renewed activity in October 2020 with explosions, lava flows, and ash plumes
Kadovar (Papua New Guinea) Occasional ash and gas-and-steam plumes along with summit thermal anomalies
Tinakula (Solomon Islands) Intermittent gas-and-steam plumes and weak thermal anomalies during July-December 2020
Erebus (Antarctica) Fewer thermal anomalies during 2020 compared to recent years
Aira (Japan) Intermittent explosions continue during July through December 2020
Nishinoshima (Japan) Eruption ends in late August 2020; lengthy cooling from extensive lava flows and large crater
Nyiragongo (DR Congo) Strong thermal anomalies and gas emission from lava lake through November 2020
Whakaari/White Island (New Zealand) Gas-and-steam emissions with some re-suspended ash in November 2020
Kerinci (Indonesia) Intermittent ash plumes and gas-and-steam emissions during June-November 2020
Suwanosejima (Japan) Explosion rate increases during July-December 2020, bomb ejected 1.3 km from crater on 28 December
Karangetang (Indonesia) Hot material on the NW flank in November 2020; intermittent crater thermal anomalies
Nevado del Ruiz (Colombia) Dome growth and ash emissions continue during July-December 2020
Klyuchevskoy (Russia) — January 2021
Cite this Report
Klyuchevskoy
Russia
56.056°N, 160.642°E; summit elev. 4754 m
All times are local (unless otherwise noted)
Renewed activity in October 2020 with explosions, lava flows, and ash plumes
Klyuchevskoy, located in northern Kamchatka, has had historical eruptions dating back 3,000 years characterized by major explosive and effusive eruptions from the flank craters. The current eruption began in April 2019 and has recently consisted of Strombolian activity, ash plumes, and an active lava flow descending the SE flank (BGVN 45:09). This report covers September-December 2020 and describes similar activity of Strombolian explosions, ash plumes, and active lava flows beginning in early October. Information primarily comes from weekly and daily reports from the Kamchatkan Volcanic Eruption Response Team (KVERT), the Tokyo Volcanic Ash Advisory (VAAC), and satellite data.
Activity from July through September was relatively low, with no thermal activity detected during August-September. On 2 October renewed Strombolian explosions began at 1003, ejecting ash 300-400 m above the summit and producing gas-and-steam plumes with some ash that drifted down the E flank (figure 48). That night, crater incandescence was visible. On 5 October KVERT reported that a lava flow began to effuse along the Apakhonchich chute at 0100. During 7-8 October activity intensified and was characterized by strong explosions, collapses of the sides of the drainage, strong thermal anomalies, and ash plumes that extended over 200 km SE from the crater; the lava flow remained active and continued to descend the SE flank. A Tokyo VAAC advisory issued on 7 October reported that an ash plume rose to 8.8 km altitude and drifted E and SE; during 8-9 October ash plumes rose to 5.5 km altitude and drifted as far as 270 km SE. A strong, bright, thermal anomaly was observed daily in satellite imagery, which represented the new lava flow. Strombolian explosions continued throughout the month, accompanied by gas-and-steam plumes containing some ash and an active lava flow advancing down the Apakhonchich chute on the SE flank (figure 49).
Similar activity continued to be reported in November, consisting of Strombolian explosions, ash plumes, and a lava flow advancing down the SE flank. A bright thermal anomaly was observed in thermal satellite imagery each day during the month. During 16-19 November explosions recorded in satellite and video data showed ash plumes rising to 7.5 km altitude and drifting as far as 108 km to the NE, E, SE, and S (figure 50). On 19 November an ash cloud 65 x 70 km in size drifted 50 km SE, according to a KVERT VONA (Volcano Observatory Notice for Aviation). During 26-30 November video and satellite data showed that gas-and-steam plumes containing some ash rose to 7 km altitude and extended as far as 300 km NW and E, accompanied by persistent moderate explosive-effusive activity (figure 51).
Moderate explosive-effusive activity continued through December; a strong daily thermal anomaly was visible in satellite images. During 2-3 December gas-and-steam plumes containing some ash rose to 7 km altitude and extended 300 km NW and E. Intermittent gas-and-ash plumes continued through the month. On 7 December KVERT reported that a new lava flow began to advance down the Kozyrevsky chute on the S flank, while the flow on the SE flank continued. Strombolian explosions in the crater ejected incandescent material up to 300 m above the crater on 8 December while hot material was deposited and traveled 350 m below the crater. A cinder cone was observed growing in the summit crater and measured 75 m tall.
Strombolian and Vulcanian activity continued during 11-25 December, accompanied by the lava flow on the S flank; according to Sentinel-2 thermal satellite images, the effusion on the SE flank had stopped around 13 December and had begun to cool. The lava flow in the Kozyrevsky chute spalled off incandescent material that continued to travel an additional 350 m. Gas-and-steam plumes that contained some ash rose to 6 km altitude and drifted up to 350 km generally E. On 24 December the Kamchatka Volcanological Station field team visited Klyuchevskoy to do work on the field stations. The scientists observed explosions that ejected incandescent material 300 m above the crater and the S-flank lava flow (figure 52). On 28 December KVERT reported that the moderate explosive-effusive eruption continued, but the intensity of the explosions had significantly decreased. The lava flow on the S flank continued to effuse, but its flow rate had already decreased.
MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows frequent and strong thermal activity beginning in early October and continuing through December 2020, which is represented by the active lava flows reported in the summit crater (figure 53). According to the MODVOLC thermal algorithm, a total of 615 thermal alerts were detected at or near the summit crater from 1 October to 31 December; none were reported in September. Sentinel-2 thermal satellite imagery frequently showed the progression of the active lava flows as a strong thermal anomaly descending the SE flank during October through late November and the SW flank during December, sometimes even through weather clouds (figure 54). The thermal anomalies were commonly accompanied by a gas-and-steam plume that drifted mainly E and NE. A total of 164 VAAC advisories were issued from 2 October through 31 December.
Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.
Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Kamchatka Volcanological Station, Klyuchi, Kamchatka Krai, Russia (URL: http://volkstat.ru/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Kadovar (Papua New Guinea) — January 2021
Cite this Report
Kadovar
Papua New Guinea
3.608°S, 144.588°E; summit elev. 365 m
All times are local (unless otherwise noted)
Occasional ash and gas-and-steam plumes along with summit thermal anomalies
Kadovar is located in the Bismark Sea offshore from the mainland of Papua New Guinea about 25 km NNE from the mouth of the Sepik River. Its first confirmed eruption began in early January 2018, characterized by ash plumes and a lava extrusion that resulted in the evacuation of around 600 residents from the N side of the island (BGVN 43:03). Activity has recently consisted of intermittent ash plumes, gas-and-steam plumes, and thermal anomalies (BGVN 45:07). Similar activity continued during this reporting period of July-December 2020 using information from the Rabaul Volcano Observatory (RVO), the Darwin Volcanic Ash Advisory Center (VAAC), and various satellite data.
RVO issued an information bulletin on 15 July reporting minor eruptive activity during 1-5 July with moderate light-gray ash emissions rising a few hundred meters above the Main Crater. On 5 July activity intensified; explosions recorded at 1652 and 1815 generated a dense dark gray ash plume that rose 1 km above the crater and drifted W. Activity subsided that day, though fluctuating summit crater incandescence was visible at night. Activity increased again during 8-10 July, characterized by explosions detected on 8 July at 2045, on 9 July at 1145 and 1400, and on 10 July at 0950 and 1125, each of which produced a dark gray ash plume that rose 1 km above the crater. According to Darwin VAAC advisories issued on 10, 16, and 30 July ash plumes were observed rising to 1.5-1.8 km altitude and drifting NW.
Gas-and-steam emissions and occasional ash plumes were observed in Sentinel-2 satellite imagery on clear weather days during August through December (figure 56). Ash plumes rose to 1.2 and 1.5 km altitude on 3 and 16 August, respectively, and drifted NW, according to Darwin VAAC advisories. On 26 August an ash plume rose to 2.1 km altitude and drifted WNW before dissipating within 1-2 hours. Similar activity was reported during September-November, according to several Darwin VAAC reports; ash plumes rose to 0.9-2.1 km altitude and drifted mainly NW. VAAC notices were issued on 12 and 22 September, 4, 7-8, and 18 October, and 18 November. A single MODVOLC alert was issued on 27 November.
MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows intermittent low-power anomalies during July through December 2020 (figure 57). Some of this thermal activity in the summit crater was observed in Sentinel-2 thermal satellite imagery, accompanied by gas-and-steam emissions that drifted primarily NW (figure 58).
Geologic Background. The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the andesitic volcano, filling an arcuate landslide scarp open to the south; submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. A period of heightened thermal phenomena took place in 1976. An eruption began in January 2018 that included lava effusion from vents at the summit and at the E coast.
Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Tinakula (Solomon Islands) — January 2021
Cite this Report
Tinakula
Solomon Islands
10.386°S, 165.804°E; summit elev. 796 m
All times are local (unless otherwise noted)
Intermittent gas-and-steam plumes and weak thermal anomalies during July-December 2020
Tinakula is located 100 km NE of the Solomon Trench at the N end of the Santa Cruz. The current eruption began in December 2018 and has recently been characterized by intermittent small thermal anomalies and gas-and-steam plumes (BGVN 45:07), which continued into the current reporting period of July-December 2020. Information primarily comes from various satellite data, as ground observations are rarely available.
Infrared MODIS satellite data processed by MIROVA (Middle InfraRed Observation of Volcanic Activity) showed a total of ten low-power thermal anomalies during July through December; one anomaly was detected in early July, two in late August, three in November, and four in December (figure 44). A single MODVOLC alert was issued on 16 December, which was visible in Sentinel-2 thermal satellite imagery on 17 December (figure 45). Though clouds often obscured the view of the summit crater, Sentinel-2 satellite imagery showed intermittent dense gas-and-steam plumes rising from the summit that drifted in different directions (figure 45).
Geologic Background. The small 3.5-km-wide island of Tinakula is the exposed summit of a massive stratovolcano at the NW end of the Santa Cruz islands. Similar to Stromboli, it has a breached summit crater that extends from the summit to below sea level. Landslides enlarged this scarp in 1965, creating an embayment on the NW coast. The satellitic cone of Mendana is located on the SE side. The dominantly andesitic volcano has frequently been observed in eruption since the era of Spanish exploration began in 1595. In about 1840, an explosive eruption apparently produced pyroclastic flows that swept all sides of the island, killing its inhabitants. Frequent historical eruptions have originated from a cone constructed within the large breached crater. These have left the upper flanks and the steep apron of lava flows and volcaniclastic debris within the breach unvegetated.
Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Erebus (Antarctica) — January 2021
Cite this Report
Erebus
Antarctica
77.53°S, 167.17°E; summit elev. 3794 m
All times are local (unless otherwise noted)
Fewer thermal anomalies during 2020 compared to recent years
Erebus, located on Ross Island, Antarctica, and overlooking the McMurdo research station, is the southernmost active volcano in the world. The stratovolcano, which frequently has active lava lakes in its 250-m wide summit crater, is primarily monitored by satellite.
Thermal activity during 2020 was at lower levels than in recent years. The total number of thermal pixels, as recorded by MODIS thermal emission instruments aboard NASA’s Aqua and Terra satellites, was 76 (table 6), similar to low totals recorded in 2000 and 2015.
Table 6. Number of monthly MODIS-MODVOLC thermal alert pixels recorded at Erebus during 2017-2020. See BGVN 42:06 for data from 2000 through 2016. The table was compiled using data provided by the Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System.
Year |
Jan |
Feb |
Mar |
Apr |
May |
Jun |
Jul |
Aug |
Sep |
Oct |
Nov |
Dec |
SUM |
2017 |
0 |
21 |
9 |
0 |
0 |
1 |
11 |
61 |
76 |
52 |
0 |
3 |
234 |
2018 |
0 |
21 |
58 |
182 |
55 |
17 |
137 |
172 |
103 |
29 |
0 |
0 |
774 |
2019 |
2 |
21 |
162 |
151 |
55 |
56 |
75 |
53 |
29 |
19 |
1 |
0 |
624 |
2020 |
0 |
2 |
16 |
18 |
4 |
4 |
1 |
3 |
18 |
3 |
1 |
6 |
76 |
Sentinel-2 satellite images showed two lava lakes, with one diminishing in size during the year (figure 29). Occasionally a gas plume could be observed. The volcano was frequently covered by atmospheric clouds on days when the satellite passed over.
Geologic Background. Mount Erebus, the world's southernmost historically active volcano, overlooks the McMurdo research station on Ross Island. It is the largest of three major volcanoes forming the crudely triangular Ross Island. The summit of the dominantly phonolitic volcano has been modified by one or two generations of caldera formation. A summit plateau at about 3,200 m elevation marks the rim of the youngest caldera, which formed during the late-Pleistocene and within which the modern cone was constructed. An elliptical 500 x 600 m wide, 110-m-deep crater truncates the summit and contains an active lava lake within a 250-m-wide, 100-m-deep inner crater; other lava lakes are sometimes present. The glacier-covered volcano was erupting when first sighted by Captain James Ross in 1841. Continuous lava-lake activity with minor explosions, punctuated by occasional larger Strombolian explosions that eject bombs onto the crater rim, has been documented since 1972, but has probably been occurring for much of the volcano's recent history.
Information Contacts: Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Aira
Japan
31.593°N, 130.657°E; summit elev. 1117 m
All times are local (unless otherwise noted)
Intermittent explosions continue during July through December 2020
Sakurajima is the active volcano within the Aira Caldera in Kyushu, Japan. With several craters historically active, the current activity is concentrated in the Minamidake summit crater. Activity usually consists of small explosions producing ashfall and ballistic ejecta, with occasional pyroclastic flows and lahars. The current eruption has been ongoing since 25 March 2017, but activity has been frequent over the past few hundred years. This bulletin summarizes activity that occurred during July through December 2020 and is largely based on reports by the Japan Meteorological Agency (JMA) and satellite data. The Alert Level remains at 3 on a 5-level scale. There was no activity at the Showa crater in 2020.
The number of recorded explosive and ash eruptions for 2020 at the Minamidake crater were 221 and 432, respectively (228 and 393 the previous year). Activity declined in July and remained low through the end of December. There was ash reported on 79 days of the year, most frequently in January, and only 26 of those days during August-December (table 24 and figure 104). The largest ash plumes during this time reached 5 km at 0538 on 9 August, 3 km at 1959 on 17 December, and 3.5 km at 1614 on 29 December. The decline in events was reflected in thermal data, with a decline in energy detected during June through October (figure 105). Recorded SO2 was generally high in the first half of the year then began to decrease from April to around 1,000 tons/day until around late May. Emissions increased after August and were extremely high in October. There were no notable changes in the geothermal areas around the craters.
Table 24. Number of monthly total eruptions, explosive eruptions, days of ashfall, and ashfall amounts from Sakurajima's Minamidake crater at Aira during 2020. Note that smaller events that did not reach the threshold of explosions or eruptions also occurred. Ashfall was measured at Kagoshima Local Meteorological Observatory; ash weights are rounded down to the nearest 0.5 g/m2 and zero values indicate that less than this amount was recorded. Data courtesy of JMA.
Month | Explosive Eruptions | Ash Eruptions | Days of Ashfall | Ashfall Amount (g/m2) |
Jan 2020 |
65 |
104 |
12 |
75 |
Feb 2020 |
67 |
129 |
14 |
21 |
Mar 2020 |
10 |
26 |
8 |
3 |
Apr 2020 |
14 |
51 |
2 |
0 |
May 2020 |
24 |
51 |
8 |
19 |
Jun 2020 |
16 |
28 |
9 |
71 |
Jul 2020 |
0 |
0 |
0 |
0 |
Aug 2020 |
1 |
1 |
1 |
0 |
Sep 2020 |
0 |
7 |
4 |
2 |
Oct 2020 |
0 |
2 |
6 |
2 |
Nov 2020 |
6 |
8 |
11 |
5 |
Dec 2020 |
18 |
25 |
4 |
14 |
Total 2020 |
221 |
432 |
79 |
212 |
During July "very small" explosions were observed on the 1st, 2nd, and 8th, with the last explosion producing a plume up to 600 m above the crater. These events didn't generate enough of an ash plume to be counted as either a quiet or explosive eruption, leaving no eruptions reported during July. No incandescence was observed at the crater since 3 June. Field surveys on 2, 13, and 21 July detected 600 to 1,300 tons of SO2 per day.
An explosion occurred at 0538 on 9 August, producing an ash plume to 5 km above the crater, dispersing NE (figure 106). This was the largest explosion observed through the Sakurajima surveillance camera since 8 November 2019. Ashfall was reported in Kagoshima City, Aira City, Kirishima City, Yusui Town, and parts of Miyazaki and Kumamoto Prefectures. Ashfall measured to be 300 g/m2 in Shirahama on Sakurajima island (figure 106). No ballistic ejecta were observed due to clouds at the summit, but very small explosions were occasionally observed afterwards.
A small lake or pond in the eastern Minamidake crater was first observed in PlanetScope satellite imagery on 1 August (through light cloud cover) and intermittently observed when the summit was clear through to the 22nd (figure 107). The summit is obscured by cloud cover in many images before this date. An observation flight on 14 August confirmed weak gas emission from the inner southern wall of the Showa crater, and a 200-m-high gas plume rose from the Minamidake crater, dispersing SE (figure 108). Thermal imaging showed elevated temperatures within the crater. SO2 measurements were conducted during field surveys on the 3rd, 13th, 24th and 31st, with amounts similar to July at 600 to 1,400 tons per day.
Activity continued at Minamidake crater throughout September with seven observed eruptions sending plumes up to 1.7 km above the crater, and additional smaller events (figure 109). An ash plume reached 1 km at 0810 on the 15th. Ashfall was reported on four days through the month with a total of 2 g/m2 measured. Incandescence was observed in nighttime surveillance cameras from the 9-10th for the first time since 2 June, then continued through the month. There was an increase in detected SO2, with measurements on the 11th and 25th ranging from 1,300 to 2,000 tons per day.
During October two eruptions and occasional smaller events occurred at the Minamidake crater and there were six days where ashfall occurred at the Kagoshima Local Meteorology Observatory (including remobilized ash). An ash plume rose to 1.7 km above the crater at 1635 on the 3rd and 1 km on the 30th. Incandescence was observed at night through the month (figure 110). Gas surveys on the 20th, 21st, 23rd, and 26th recorded 2,200-6,600 tons of SO2 per day, which are high to very high levels and a large increase compared to previous months. An observation flight on the 13th confirmed lava in the bottom of the Minamidake crater (figure 111). Gas emissions were rising to 300 m above the Minamidake crater, but no emissions were observed at the Showa crater (figure 112).
Eight ash eruptions and six explosive eruptions occurred during November as well as additional very small events. At 1551 on the 3rd an ash plume reached 1.8 km above the crater and an event at 1335 on the 10th produced large ballistic ejecta out to 600-900 m from the crater (figure 113). Ashfall was reported on 11 days this month (including remobilized ash). Incandescence was observed at night and elevated temperatures in the Minamidake crater were detected by satellites (figure 114). Detected SO2 was lower this month, with amounts ranging between 1,300 and 2,200 on the 9th, 18th and 24th.
During December there were 25 ash eruptions and 18 explosive eruptions recorded, with large ballistic ejecta reaching 1.3-1.7 km from the crater (figure 115). An explosion on the 2nd sent an ash plume up to 1 km above the crater and ballistic ejecta out to 1-1.3 km, and an event at 0404 on the 12th produced incandescent ballistic ejecta reached out to 1.3-1.7 km from the crater. At 1959 on 17 December an explosion generated an ash plume up to 3 km above the crater and ejecta out to 1.3-1.7 km. A photograph that day showed an ash plume with volcanic lightning and incandescent ejecta impacting around the crater (figure 116). On the 18th an ash plume reached 1.8 km and ejecta impacted out to 1-1.3 km. An event at 1614 on the 29th produced an ash plume reaching 3.5 km above the crater. Elevated temperatures within the Minamidake crater and plumes were observed intermittently in satellite data through the month (figure 117). This month there were four days where ashfall was recorded with a total of 14 g/m2. Incandescence continued to be observed at night through the month. High levels of gas emission continued, with field surveys on 2nd, 7th, 16th and 21st recording values ranging from 1,500 to 2,900 tons per day at the Observatory located 11 km SW.
Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.
Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/); Kyodo/via REUTERS, "Photos of the Week" (URL: https://www.reuters.com/news/picture/photos-of-the-week-idUSRTX8HYLR); Volcano Time-Lapse, YouTube (URL: https://www.youtube.com/watch?v=jTgd152oGVo).
Nishinoshima (Japan) — February 2021
Cite this Report
Nishinoshima
Japan
27.247°N, 140.874°E; summit elev. 25 m
All times are local (unless otherwise noted)
Eruption ends in late August 2020; lengthy cooling from extensive lava flows and large crater
Japan’s Nishinoshima volcano, located about 1,000 km S of Tokyo in the Ogasawara Arc, erupted above sea level in November 2013 after 40 years of dormancy. Activity lasted for two years followed by two brief eruptions in 2017 and 2018. The next eruption, from early December 2019 through August 2020, included ash plumes, incandescent ejecta, and lava flows; it produced a large pyroclastic cone with a wide summit crater and extensive lava flows that significantly enlarged the island. This report covers the end of the eruption and cooling during September 2020-January 2021. Information is provided primarily from Japan Meteorological Agency (JMA) monthly reports and the Japan Coast Guard (JCG), which makes regular observation overflights.
Ash emissions were last reported on 27 August 2020. The very high levels of thermal energy from numerous lava flows, ash, and incandescent tephra that peaked during early July decreased significantly during August and September. Continued cooling of the fresh lava and the summit crater lasted into early January 2021 (figure 107). Monthly overflights and observations by scientists confirmed areas of steam emissions at the summit and on the flanks and discolored water around the island, but no eruptive activity.
Thermal activity declined significantly at Nishinoshima during August 2020 (BGVN 45:09). Only two days had two MODVOLC alerts (11 and 30), and four other days (18, 20, 21, 29) had single alerts. During JCG overflights on 19 and 23 August there were no ash emissions or lava flows observed, although steam plumes rose over 2 km above the summit crater during both visits. The last ash emission was reported by the Tokyo VAAC on 27 August 2020. No eruptive activity was observed by JMA during an overflight on 5 September, but steam plumes were rising from the summit crater (figure 108). No significant changes were observed in the shape of the pyroclastic cone or the coastline. Yellowish brown discolored water appeared around the western half of the island, and high temperature was still measured on the inner wall of the crater. Faint traces of SO2 plumes were present in satellite images in early September; the last plume identified was on 18 September. Six days with single MODVOLC alerts were recorded during 3-19 September, and the final thermal alert appeared on 1 October 2020.
Steam plumes and high temperatures were noted at the summit crater on 28 October, and brown discolored water was present around the S coast of the island (figure 109), but there were no other signs of volcanic activity. Observations from the sea conducted on 2 November 2020 by researchers aboard the Maritime Meteorological Observatory marine weather observation ship "Ryofu Maru" confirmed there was no ongoing eruptive activity. In addition to steam plumes at the summit, they also noted steam rising from multiple cracks on the cooling surface of the lava flow area on the N side of the pyroclastic cone (figure 110). Only steam plumes from inside the summit crater were observed during an overflight on 24 November.
JMA reduced the warning area around the crater on 18 December 2020 from 2.5 to 1.5 km due to decreased activity. On 7 December a steam plume rose from the inner wall of the summit crater and thermal imaging indicated the area was still hot. Brown discolored water was observed on the SE and SW coasts. Researchers aboard a ship from the Earthquake Research Institute at the University of Tokyo and the Marine Research and Development Organization reported continued steam plumes in the summit crater, around the lava flows on the N flank, and along the S coast during 15-29 December (figure 111). Steam plumes and elevated temperatures were still measured inside the summit crater during an overflight by the Japan Coast Guard on 25 January 2021, and discolored water persisted on the SE and SW coasts; there was no evidence of eruptive activity.
Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Another eruption that began offshore in 2013 completely covered the previous exposed surface and enlarged the island again. Water discoloration has been observed on several occasions since. The island is the summit of a massive submarine volcano that has prominent satellitic peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the sea surface 9 km SSE.
Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Japan Coast Guard (JCG) Volcano Database, Hydrographic and Oceanographic Department, 3-1-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8932, Japan (URL: http://www.kaiho.mlit.go.jp/info/kouhou/h29/index.html); Volcano Research Center (VRC-ERI), Earthquake Research Institute, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan (URL: http://www.eri.u-tokyo.ac.jp/topics/ASAMA2004/index-e.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).
Nyiragongo (DR Congo) — December 2020
Cite this Report
Nyiragongo
DR Congo
1.52°S, 29.25°E; summit elev. 3470 m
All times are local (unless otherwise noted)
Strong thermal anomalies and gas emission from lava lake through November 2020
Nyiragongo is a stratovolcano in the DR Congo with a deep summit crater containing a lava lake and a small active cone. During June 2018-May 2020, the volcano exhibited strong thermal signals primarily due to the lava lake, along with incandescence, seismicity, and gas-and-steam plumes (BGVN 44:05, 44:12, 45:06). The volcano is monitored by the Observatoire Volcanologique de Goma (OVG). This report summarizes activity during June-November 2020, based on satellite data.
Infrared MODIS satellite data showed almost daily strong thermal activity during June-November 2020 from MIROVA (Middle InfraRed Observation of Volcanic Activity), consistent with a large lava lake. Numerous hotspots were also identified every month by MODVOLC. Although clouds frequently obscured the view from space, a clear Sentinel-2 image in early June showed a gas-and-steam plume as well as a strong thermal anomaly (figure 76).
During the first half of June 2020, OVG reported that SO2 levels had decreased compared to levels in May (7,000 tons/day); during the second half of June the SO2 flux began to increase again. High levels of sulfur dioxide were recorded almost every day in the region above or near the volcano by the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor satellite (figure 77). According to OVG, SO2 flux ranged from 819-5,819 tons/day during June. The number of days with a high SO2 flux decreased somewhat in July and August, with high levels recorded during about half of the days. The volume of SO2 emissions slightly increased in early July, based on data from the DOAS station in Rusayo, measuring 6,787 tons/day on 8 July (the highest value reported during this reporting period), and then declined to 509 tons/day by 20 July. The SO2 flux continued to gradually decline, with high values of 5,153 tons/day in August and 4,468 tons/day in September. The number of days with high SO2 decreased further in September and October but returned to about half of the days in November.
During 12-13 July a multidisciplinary team of OVG scientists visited the volcano to take measurements of the crater using a TCRM1102 Plus2 laser. They noted that the crater had expanded by 47.3 mm in the SW area, due to the rise in the lava lake level since early 2020. The OVG team took photos of the small cone in the lava lake that has been active since 2014, recently characterized by white gas-and-steam emissions (figure 78). OVG noted that the active lava lake had subsided roughly 20 m (figure78).
Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.
Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).
Whakaari/White Island (New Zealand) — December 2020
Cite this Report
Whakaari/White Island
New Zealand
37.52°S, 177.18°E; summit elev. 294 m
All times are local (unless otherwise noted)
Gas-and-steam emissions with some re-suspended ash in November 2020
Whakaari/White Island, located in the Bay of Plenty 50 km offshore of North Island, has been New Zealand’s most active volcano since 1976. Activity has been previously characterized by phreatic activity, explosions, and ash emissions (BGVN 42:05). The most recent eruption occurred on 9 December 2019, which consisted of an explosion that generated an ash plume and pyroclastic surge that affected the entire crater area, resulting in 21 fatalities and many injuries (BGVN 45:02). This report updates information from February through November 2020, which includes dominantly gas-and-steam emissions along with elevated surface temperatures, using reports from the New Zealand GeoNet Project, the Wellington Volcanic Ash Advisory Centre (VAAC), and satellite data.
Activity at Whakaari/White Island has declined and has been dominated by white gas-and-steam emissions during the reporting period; no explosive eruptive activity has been detected since 9 December 2019. During February through 22 June, the Volcanic Activity Level (VAL) remained at a 2 (moderate to heightened volcanic unrest) and the Aviation Color Code was Yellow. GeoNet reported that satellite data showed some subsidence along the W wall of the Main Crater and near the 1914 landslide scarp, though the rate had reduced compared to previous months. Thermal infrared data indicated that the fumarolic gases and five lobes of lava that were first observed in early January 2020 in the Main Crater were 550-570°C on 4 February and 660°C on 19 February. A small pond of water had begun to form in the vent area and exhibited small-scale gas-and-steam-driven water jetting, similar to the activity during September-December 2019. Gas data showed a steady decline in SO2 and CO2 levels, though overall they were still slightly elevated.
Similar activity was reported in March and April; the temperatures of the fumaroles and lava in the Main Crater were 746°C on 10 March, the highest recorded temperature to date. SO2 and CO2 gas emissions remained elevated, though had overall decreased since December 2019. Small-scale water jetting continued to be observed in the vent area. During April, public reports mentioned heightened gas-and-steam activity, but no eruptions were detected. A GeoNet report issued on 16 April stated that high temperatures were apparent in the vent area at night.
Whakaari remained at an elevated state of unrest during May, consisting of dominantly gas-and-steam emissions. Monitoring flights noted that SO2 and CO2 emissions had increased briefly during 20-27 May. On 20 May, the lava lobes remained hot, with temperatures around 500°C; a nighttime glow from the gas emissions surrounding the lava was visible in webcam images. Tremor levels remained low with occasional slightly elevated episodes, which included some shallow-source volcanic earthquakes. Satellite-based measurements recorded several centimeters of subsidence in the ground around the active vent area since December 2019. During a gas observation flight on 28 May there was a short-lived gas pulse, accompanied by an increase in SO2 and CO2 emissions, and minor inflation in the vent area (figure 96).
An observation flight made on 3 June reported a decline in gas flux compared to the measurements made on 28 May. Thermal infrared images taken during the flight showed that the lava lobes were still hot, at 450°C, and continued to generate incandescence that was visible at night in webcams. On 16 June the VAL was lowered to 1 (minor volcanic unrest) and on 22 June the Aviation Color Code had decreased to Green.
Minor volcanic unrest continued in July; the level of volcanic tremors has remained generally low, with the exception of two short bursts of moderate volcanic tremors in at the beginning of the month. Temperatures in the active vents remained high (540°C) and volcanic gases persisted at moderate rate, similar to those measured since May, according to an observation flight made during the week of 30 July. Subsidence continued to be observed in the active vent area, as well as along the main crater wall, S and W of the active vents. Recent rainfall has created small ponds of water on the crater floor, though they did not infiltrate the vent areas.
Gas-and-steam emissions persisted during August through October at relatively high rates (figures 97 and 98). A short episode of moderate volcanic tremor was detected in early August, but otherwise seismicity remained low. Updated temperatures of the active vent area were 440°C on 15 September, which had decreased 100°C since July. Rain continued to collect at the crater floor, forming a small lake; minor areas of gas-and-steam emissions can be seen in this lake. Ongoing subsidence was observed on the Main Crater wall and S and W of the 2019 active vents.
Activity during November was primarily characterized by persistent, moderate-to-large gas-and-steam plumes that drifted downwind for several kilometers but did not reach the mainland. The SO2 flux was 618 tons/day and the CO2 flux was 2,390 tons/day. New observations on 11 November noted some occasional ash deposits on the webcams in conjunction with mainland reports of a darker than usual plume (figure 99). Satellite images provided by MetService, courtesy of the Japan Meteorological Agency, confirmed the ash emission, but later images showed little to no apparent ash; GNS confirmed that no eruptive activity had occurred. Initial analyses indicated that the ash originated from loose material around the vent was being entrained into the gas-and-steam plumes. Observations from an overflight on 12 November showed that there was no substantial change in the location and size of the active vents; rainfall continued to collect on the floor of the 1978/90 Crater, reforming the shallow lake. A small sequence of earthquakes was detected close to the volcano with several episodes of slightly increased volcanic tremors.
During 12-14 November the Wellington VAAC issued multiple advisories noting gas, steam, and ash plumes that rose to 1.5-1.8 km altitude and drifted E and SE, based on satellite data, reports from pilots, and reports from GeoNet. As a result, the VAL was increased to 2 and the Aviation Color Code was raised to Yellow. Scientists on another observation flight on 16 November reported that small amounts of ash continued to be present in gas-and-steam emissions, though laboratory analyses showed that this ash was resuspended material and not from new eruptive or magmatic activity. The SO2 and CO2 flux remained above background levels but were slightly lower than the previous week’s measurements: 710 tons/day and 1,937 tons/day. Seismicity was similar to the previous week, characterized by a sequence of small earthquakes, a larger than normal volcanic earthquake located near the volcano, and ongoing low-level volcanic tremors. During 16-17 November plumes with resuspended ash were observed rising to 460 m altitude, drifting E and NE, according to a VAAC advisory (figure 99). During 20-24 November gas-and-steam emissions that contained a minor amount of resuspended ash rose to 1.2 km altitude and drifted in multiple directions, based on webcam and satellite images and information from GeoNet.
MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows a total of eleven low-power thermal anomalies during January to late March 2020; a single weak thermal anomaly was detected in early July (figure 100). The elevated surface temperatures during February-May 2020 were detected in Sentinel-2 thermal satellite images in the Main Crater area, occasionally accompanied by gas-and-steam emissions (figure 101). Persistent white gas-and-steam emissions rising above the Main Crater area were observed in satellite imagery on clear weather days and drifting in multiple directions (figure 102). The small lake that had formed due to rainfall was also visible to the E of the active vents.
Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.
Information Contacts: New Zealand GeoNet Project, a collaboration between the Earthquake Commission and GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.geonet.org.nz/); GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.gns.cri.nz/); Wellington Volcanic Ash Advisory Centre (VAAC), Meteorological Service of New Zealand Ltd (MetService), PO Box 722, Wellington, New Zealand (URL: http://www.metservice.com/vaac/, http://www.ssd.noaa.gov/VAAC/OTH/NZ/messages.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Brad Scott, GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: https://twitter.com/Eruptn).
Kerinci (Indonesia) — December 2020
Cite this Report
Kerinci
Indonesia
1.697°S, 101.264°E; summit elev. 3800 m
All times are local (unless otherwise noted)
Intermittent ash plumes and gas-and-steam emissions during June-November 2020
Kerinci, located in Sumatra, Indonesia, has had numerous explosive eruptions since 1838, with more recent activity characterized by gas-and-steam and ash plumes. The current eruptive episode began in April 2018 and has recently consisted of intermittent brown ash emissions and white gas-and-steam emissions (BGVN 45:07); similar activity continued from June through November 2020. Information primarily comes from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), MAGMA Indonesia, the Darwin Volcanic Ash Advisory Centre (VAAC), and satellite data.
Activity has been characterized by dominantly white and brown gas-and-steam emissions and occasional ash plumes, according to PVMBG. Near daily gas-and-steam emissions were observed rising 50-6,400 m above the crater throughout the reporting period: beginning in late July and continuing intermittently though November. Sentinel-2 satellite imagery showed frequent brown emissions rising above the summit crater at varying intensities and drifting in different directions from July to November (figure 21).
During June through July the only activity reported by PVMBG consisted of white gas-and-steam emissions and brown emissions. On 4 June white gas-and-steam emissions rose to a maximum height of 6.4 km above the crater. White-and-brown emissions rose to a maximum height of 700 m above the crater on 2 June and 28 July.
Continuous white-and-brown gas-and-steam emissions were reported in August that rose 50-1,000 m above the crater. The number of ash plumes reported during this month increased compared to the previous months. In a Volcano Observatory Notice for Aviation (VONA) issued on 7 August at 1024, PVMBG reported an ash plume that rose 600 m above the crater and drifted E, SE, and NE. In addition, the Darwin VAAC released two notices that described continuous minor ash emissions rising to 4.3 km altitude and drifting E and NE. On 9 August an ash plume rose 600 m above the crater and drifted ENE at 1140. An ash plume was observed rising to a maximum of 1 km above the crater, drifting E, SE, and NE on 12 August at 1602, according to a PVMBG VONA and Darwin VAAC advisory. The following day, brown emissions rose to a maximum of 1 km above the crater and were accompanied by a 600-m-high ash plume that drifted ENE at 1225. Ground observers on 15 August reported an eruption column that rose to 4.6 km altitude; PVMBG described brown ash emissions up to 800 m above the crater drifting NW at 0731 (figure 22). During 20-21 August pilots reported an ash plume rising 150-770 m above the crater drifting NE and SW, respectively.
Activity in September had decreased slightly compared to the previous month, characterized by only white-and-brown gas-and-steam emissions that rose 50-300 m above the crater; solely brown emissions were observed on 30 September and rose 50-100 m above the crater. This low level of activity persisted into October, with white gas-and-steam emissions to 50-200 m above the crater and brown emissions rising 50-300 m above the crater. On 16 October PVMBG released a VONA at 0340 that reported an ash plume rising 687 m above the crater and drifting NE. On 17 October white, brown, and black ash plumes that rose 100-800 m above the crater drifted NE according to both PVMBG and a Darwin VAAC advisory (figure 23). During 18-19 October white, brown, and black ash emissions rose up to 400 m above the crater and drifted NE and E.
Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.
Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Suwanosejima (Japan) — January 2021
Cite this Report
Suwanosejima
Japan
29.638°N, 129.714°E; summit elev. 796 m
All times are local (unless otherwise noted)
Explosion rate increases during July-December 2020, bomb ejected 1.3 km from crater on 28 December
Suwanosejima, an andesitic stratovolcano in Japan's northern Ryukyu Islands, was intermittently active for much of the 20th century, producing ash plumes, Strombolian explosions, and ashfall. Continuous activity since October 2004 has included intermittent explosions which generate ash plumes that rise hundreds of meters above the summit to altitudes between 1 and 3 km. Incandescence is often observed at night and ejecta periodically reaches over a kilometer from the summit. Ashfall is usually noted several times each month in the nearby community on the SW flank of the island. Ongoing activity for the second half of 2020, which includes significantly increased activity in December, is covered in this report with information provided by the Japan Meteorological Agency (JMA), the Tokyo Volcanic Ash Advisory Center (VAAC), and several sources of satellite data.
A steady increase in activity was reported during July-December 2020. The number of explosions recorded increased each month from only six during July to 460 during December. The energy of the explosions increased as well; ejecta was reported 600 m from the crater during August, but a large bomb reached 1.3 km from the crater at the end of December. After an increased period of explosions late in December, JMA raised the Alert Level from 2 to 3 on a 5-level scale. The MIROVA graph of thermal activity indicated intermittent anomalies from July through December 2020, with a pulse of activity in the second half of December (figure 48).
Six explosions were recorded during July 2020, compared with only one during June. According to JMA, the tallest plume rose 2,000 m above the crater rim. Incandescent ejecta was occasionally observed at night. The Tokyo VAAC reported a number of ash plumes that rose to 1.2-2.7 km altitude and drifted NW and W during the second half of the month (figure 49). Activity increased during August 2020 when thirteen explosions were reported. The Tokyo VAAC reported a few ash plumes during 1-6 August that rose to 1.8-2.4 km altitude and drifted NW; a larger pulse of activity during 18-22 August produced plumes that rose to altitudes ranging from 1.8 to over 2.7 km. Ashfall was reported on 19 and 20 August in the village located 4 km SSW of the crater; incandescence was visible at the summit and ash plumes drifted SW in satellite imagery on 19 August (figure 50). A MODVOLC thermal alert was issued on 19 August. On 21 August a large bomb was ejected 600 m from the Otake crater in an explosion early in the day; later that afternoon, an ash plume rose to more than 2,000 m above the crater rim. During 19-22 August, SO2 emissions were recorded each day by the TROPOMI instrument on the Sentinel-5P satellite (figure 51).
Thirteen explosions were recorded during September 2020, with the highest ash plumes reaching 2,000 m above the crater rim, and bombs falling 400 m from the crater. Ashfall was recorded on 20 September in the community located 4 km SSW. The Tokyo VAAC reported intermittent ash plumes during the month that rose to 1.2-2.1 km altitude and drifted in several directions. Incandescence was frequently observed at night (figure 52). Explosive activity increased during October with 22 explosions recorded. Ash plumes rose over 2,000 m above the crater rim, and bombs reached 700 m from the crater. Steam plumes rose 2,300 m above the crater rim. Ashfall and loud noises were confirmed several times between 2 and 14 October in the nearby village. A MODVOLC thermal alert was issued on 6 October. The Tokyo VAAC reported multiple ash plumes throughout the month; they usually rose to 1.5-2.1 km altitude and drifted in many directions. The plume on 28 October rose to over 2.7 km altitude and was stationary.
Frequent explosions occurred during November 2020, with a sharp increase in the number of explosions to 105 events compared with October. Ash plumes rose to 1,800 m above the crater rim and bombs were ejected 700 m. Occasional ashfall and loud noises were reported from the nearby community throughout the month. Scientists measured no specific changes to the surface temperature around the volcano during an overflight early on 5 November compared with the previous year. At 0818 on 5 November a small ash explosion at the summit crater was photographed by the crew during an observation flight (figure 53). On 12 and 13 November, incandescent ejecta fell 600 m from the crater and ash emissions rose 1,500 m above the crater rim (figure 54).
During December 2020 there were 460 explosions reported, a significant increase from the previous months. Ash plumes reached 1,800 m above the summit. Three MODVOLC thermal alerts were issued on 25 December and two were issued the next day. The number of explosions increased substantially at the Otake crater between 21 and 29 December, and early on 28 December a large bomb was ejected to 1.3 km SE of the crater (figure 55). A second explosion a few hours later ejected another bomb 1.1 km SE. An overflight later that day confirmed the explosion, and ash emissions were still visible (figure 56), although cloudy weather prevented views of the crater. Ashfall was noted and loud sounds heard in the nearby village. A summary graph of observations throughout 2020 indicated that activity was high from January through May, quieter during June, and then increased again from July through the end of the year (figure 57).
Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.
Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html);
MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/);
Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/);
Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground);
NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).
Karangetang (Indonesia) — December 2020
Cite this Report
Karangetang
Indonesia
2.781°N, 125.407°E; summit elev. 1797 m
All times are local (unless otherwise noted)
Hot material on the NW flank in November 2020; intermittent crater thermal anomalies
Karangetang (also known as Api Siau) is located on the island of Siau in the Sitaro Regency, North Sulawesi, Indonesia and consists of two active summit craters: a N crater (Kawah Dua) and a S crater (Kawah Utama, also referred to as the “Main Crater”). More than 50 eruptions have been observed since 1675. The current eruption began in November 2018 and has recently been characterized by frequent incandescent block avalanches, thermal anomalies in the crater, and gas-and-steam plumes (BGVN 45:06). This report covers activity from June through November 2020, which includes dominantly crater anomalies, few ash plumes, and gas-and-steam emissions. Information primarily comes from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), MAGMA Indonesia, and various satellite data.
Activity decreased significantly after mid-January 2020 and has been characterized by dominantly gas-and-steam emissions and occasional ash plumes, according to PVMBG. Daily gas-and-steam emissions were observed rising 25-600 m above the Main Crater (S crater) during the reporting period and intermittent emissions rising 25-300 m above Kawah Dua (N crater).
The only activity reported by PVMBG in June, August, and October was daily gas-and-steam emissions above the Main Crater and Kawah Dua (figure 47). MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows intermittent low-power thermal anomalies during June through late July, which includes a slight increase in power during late July (figure 48). During 14-15 July strong rumbling from Kawah Dua was accompanied by white-gray emissions that rose 150-200 m above the crater. Crater incandescence was observed up to 10 m above the crater. According to webcam imagery from MAGMA Indonesia, intermittent incandescence was observed at night from both craters through 25 July. In a Volcano Observatory Notice for Aviation (VONA) issued on 5 September, PVMBG reported an ash plume that rose 800 m above the crater.
Thermal activity increased briefly during mid-November when hot material was reported extending 500-1,000 m NW of the Main Crater, accompanied by gas-and-steam emissions rising 200 m above the crater. Corresponding detection of MODIS thermal anomalies was seen in MIROVA graphs (see figure 48), and the MODVOLC system showed alerts on 13 and 15 November. On 16 November blue emissions were observed above the Main Crater drifting W. Sentinel-2 thermal images showed elevated temperatures in both summit craters throughout the reporting period, accompanied by gas-and-steam emissions and movement of hot material on the NW flank on 19 November (figure 49). White gas-and-steam emissions rose to a maximum height of 300 m above Kawah Dua on 22 November and 600 m above the Main Crater on 28 November.
Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.
Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Nevado del Ruiz (Colombia) — January 2021
Cite this Report
Nevado del Ruiz
Colombia
4.892°N, 75.324°W; summit elev. 5279 m
All times are local (unless otherwise noted)
Dome growth and ash emissions continue during July-December 2020
Colombia’s broad, glacier-capped Nevado del Ruiz has an eruption history documented back 8,600 years, including documented observations since 1570. Ruiz remained quiet for 20 years after the deadly September 1985-July 1991 eruption until a period of explosive activity from February 2012 into 2013. Renewed activity beginning in November 2014 included ash and gas-and-steam plumes, ashfall, and the appearance of a slowly growing lava dome inside the Arenas crater in August 2015. Additional information has caused a revision to earlier reporting that eruptive activity ended in May 2017 and began again that December (BGVN 44:12); activity appears to have continued throughout 2017 with intermittent ash emissions and thermal evidence of dome growth. Periods of increased thermal activity alternated with periods of increased explosive activity during 2018-2019 and into 2020; SO2 emissions persisted at significant levels. The lava dome has continued to grow through 2020. This report covers ongoing activity from July-December 2020 using information from reports by the Servicio Geologico Colombiano (SGC) and the Observatorio Vulcanológico y Sismológico de Manizales, the Washington Volcanic Ash Advisory Center (VAAC) notices, and various sources of satellite data.
Gas and ash emissions continued throughout July-December 2020; they generally rose to 5.8-6.1 km altitude with the highest reported plume at 6.7 km altitude on 7 December. SGC interpreted repeated episodes of “drumbeat seismicity” as an indication of continued dome growth throughout the period. Satellite thermal anomalies also suggested that dome growth continued. The MIROVA graph of thermal activity suggests that the dome was quiet in July and early August, but small pulses of thermal energy were recorded every few weeks for the remainder of 2020 (figure 115). Plots of the cumulative number and magnitude of seismic events at Nevado del Ruiz between January 2010 and November 2020 show a stable trend with periodic sharp increases in activity or magnitude throughout that time. SGC has adjusted the warning levels over time according to changes in the slope of the curves (figure 116).
Activity during July-December 2020. Seismic energy increased during July compared to June 2020 with events localized around the Arenas crater. The depth of the seismicity varied from 0.3-7.8 km. Some of these signals were associated with small emissions of gas and ash, which were confirmed through webcams and by reports from officials of the Los Nevados National Natural Park (NNNP). The Washington VAAC reported a possible ash emission on 8 July that rose to 6.1 km altitude and drifted NW. On 21 July a webcam image showed an ash emission that rose to the same altitude and drifted W; it was seen in satellite imagery possibly extending 35 km from the summit but was difficult to confirm due to weather clouds. Short- to moderate-duration (less than 40 minutes) episodes of drumbeat seismicity were recorded on 5, 13, 17, and 21 July. SCG interprets this type of seismic activity as related to the growth of the Arenas crater lava dome. Primarily WNW drifting plumes of steam and SO2 were observed in the webcams daily. The gas was occasionally incandescent at night. The tallest plume of gas and ash reached 1,000 m above the crater rim on 30 July and was associated with a low-energy tremor pulse; it produced ashfall in parts of Manizales and nearby communities (figure 117).
Seismicity increased in August 2020 with respect to July. Some of the LP and TR (tremor) seismicity was associated with small emissions of gas and ash, confirmed by web cameras, park personnel, and the Washington VAAC. The Washington VAAC received a report from the Bogota MWO of an ash emission on 1 August that rose to 6.1 km altitude and drifted NW; it was not visible in satellite imagery. Various episodes of short duration drumbeat seismicity were recorded during the month. The tallest steam and gas plume reached 1,800 m above the rim on 31 August. Despite the fact that in August the meteorological conditions made it difficult to monitor the surface activity of the volcano, three ash emissions were confirmed by SGC.
Seismicity decreased during September 2020 with respect to August. Some of the LP and TR (tremor) seismicity was associated with small emissions of gas and ash, confirmed by web cameras, park personnel and the Washington VAAC. The Washington VAAC reported an ash emission on 16 September that rose to 6.1 km altitude and drifted NW. A minor ash emission on 20 September drifted W from the summit at 5.8 km altitude. A possible emission on 23 September drifted NW at 6.1 km altitude for a brief period before dissipating. Two emissions were reported drifting WNW of the summit on 26 September at 5.8 and 5.5 km altitude. Continuous volcanic tremors were registered throughout September, with the higher energy activity during the second half of the month. One episode of drumbeat seismicity on 15 September lasted for 38 minutes and consisted of 25 very low energy earthquakes. Steam and gas plumes reached 1,800 m above the crater rim during 17-28 September (figure 118). Five emissions of ash were confirmed by the webcams and park officials during the month, in spite of difficult meteorological conditions; three of them occurred between 15 and 20 September.
Seismicity increased during October with respect to September. A few of the LP and tremor seismic events were associated with small emissions of gas and ash, confirmed by web cameras, park personnel, and the Washington VAAC. The Washington VAAC issued advisories of possible ash emissions on 2, 6, 9, 11, 15, 17, 18, and 21 October. The plumes rose to 5.6-6.4 km altitude and drifted primarily W and NW. Steam plumes were visible most days of the month (figure 119). Only a few were visible in satellite data, but most were visible in the webcams. Several episodes of drumbeat seismicity were recorded on 13, 22-25, and 27 October, which were characterized by being of short duration and consisting of very low energy earthquakes. The tallest plume during the month rose about 2 km above the crater rim on 18 October. Ash emissions were recorded eight times during the month by SGC.
During November 2020, the number of seismic events decreased relative to October, but the amount of energy released increased. Some of the seismicity was associated with small emissions of gas and ash, confirmed by webcams around the volcano. The Washington VAAC reported ash emissions on 22 and 30 November; the 22 November event was faintly visible in satellite images and was also associated with an LP seismic event. They rose to 5.8-6.1 km altitude and drifted W. Various episodes of drumbeat seismicity registered during November were short- to moderate-duration, very low energy, and consisted of seismicity associated with rock fracturing (VT). Multiple steam plumes were visible from communities tens of kilometers away (figure 120).
Seismic activity increased in December 2020 relative to November. It was characterized by continuous volcanic tremor, tremor pulses, long-period (LP) and very long-period (VLP) earthquakes. Some of these signals were associated with gas and ash emissions, one confirmed through the webcams. The Washington VAAC reported ash emissions on 5 and 7 December. The first rose to 5.8 km altitude and drifted NW. The second rose to 6.7 km altitude and drifted W. A single discrete cloud was observed 35 km W of the summit; it dissipated within six hours. Drumbeat seismic activity increased as well in December; the episode on 3 December was the most significant. Steam and gas emissions continued throughout the month; a plume of gas and ash reached 1,700 m above the summit on 20 December, and drifted NW.
Sentinel-2 satellite data showed at least one thermal anomaly inside the Arenas crater each month during August-December 2020, corroborating the seismic evidence that the dome continued to grow throughout the period (figure 121). Sulfur dioxide emissions were persistent, with many days every month recording DU values greater than two with the TROPOMI instrument on the Sentinel 5-P satellite (figure 122).
Additional reports of activity during 2017. Activity appears to have continued during June-December 2017. Ash emissions were reported by the Bogota Meteorological Weather Office (MWO) on 13 May, and by SGC on 28 May. During June, some of the recorded seismic events were associated with minor emissions of ash; these were confirmed by webcams and by field reports from both the staff of SGC and the Los Nevados National Natural Park (PNNN). Ash emissions were confirmed in webcams by park officials on 3, 16, and 17 June. Gas emissions from the Arenas crater during July 2017 averaged 426 m above the crater rim, generally lower than during June. The emissions were mostly steam with small amounts of SO2. Emissions were similar during August, with most steam and gas plumes drifting NW. No ash emissions were reported during July or August.
SGC reported steam and gas plumes during September that rose as high as 1,650 m above the crater rim and drifted NW. On 21 September the Washington VAAC received a report of an ash plume that rose to 6.4 km altitude and drifted NNW, although it was not visible in satellite imagery. Another ash emission rising to 6.7 km altitude was reported on 7 October; weather clouds prevented satellite observation. An episode of drumbeat seismicity was recorded on 9 October, the first since April 2017. While SGC did not explicitly mention ash emissions during October, several of the webcam images included in their report show plumes described as containing ash and gas (figure 123).
The Washington VAAC received a report from the Bogota MWO of an ash emission that rose to 6.1 km altitude and drifted NE on 8 November 2017. A faint plume was visible in satellite imagery extending 15 km NE from the summit. SGC reported that plumes rose as high as 2,150 m above the rim of Arenas crater during November. The plumes were mostly steam, with minor amounts of SO2. A diffuse plume of ash was photographed in a webcam on 24 November. SGC did not report any ash emissions during December 2017, but the Washington VAAC reported “a thin veil of volcanic ash and gases” visible in satellite imagery and webcams on 18 December that dissipated within a few hours. In addition to the multiple reports of ash emissions between May and December 2017, Sentinel-2 thermal satellite imagery recorded at least one image each month during June-December showing a thermal anomaly at the summit consistent with the slowly growing dome first reported in August 2015 (figure 124).
Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.
Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/);
Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground);
Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/);
Gonzalo (URL: https://twitter.com/chaloc22/status/1306581929651843076);
Jose Fdo Cuartas (URL: https://twitter.com/JoseFCuartas/status/1329212975434096640);
Vlucho666 (URL: https://twitter.com/vlucho666/status/1313791959954268161);
Efigas Oficial (URL: https://twitter.com/efigas_oficial/status/1329780287920873472).
Search Bulletin Archive by Publication Date
Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.
The default month and year is the latest issue available.
Bulletin of the Global Volcanism Network - Volume 35, Number 09 (September 2010)
Managing Editor: Richard Wunderman
Heard (Australia)
Quiet, with minor thermal anomalies, since March 2008
Lengai, Ol Doinyo (Tanzania)
Quiet in May, active vents and lava flows in October 2010
Manam (Papua New Guinea)
Ejecting lava fragments and ash plumes during August-October 2010
Montagu Island (United Kingdom)
Quiet, with minor thermal anomalies, since September 2007
Nyiragongo (DR Congo)
June 2010 crater expedition reveals continuously active lava lake
Rabaul (Papua New Guinea)
After months of quiet, ash-bearing eruptions on 23-25 July 2010
Rinjani (Indonesia)
Seismicity declined significantly in 2010
Sarychev Peak (Russia)
Lava flows on the E and SE flanks; aerosol layer detected by lidar
Heard (Australia) — September 2010
Cite this Report
Heard
Australia
53.106°S, 73.513°E; summit elev. 2745 m
All times are local (unless otherwise noted)
Quiet, with minor thermal anomalies, since March 2008
According to Matt Patrick (USGS) in a report dated 25 October 2010, satellite imagery has not detected unambiguous eruptive activity at Heard since March 2008. No MODVOLC thermal anomalies have been detected since that time, and recent cloud-free ASTER images generally lacked indications of eruptive activity. Given Heard's isolation, satellite imagery provides the only regular information on its behavior. As previously reported, numerous anomalies had been noted in 2006 and 2007, clearly indicating eruptions (BGVN 31:05, 31:11, 32:03, and 32:06). Rare thermal anomalies were recorded through 2 March 2008, with sufficient radiance and extent to suggest eruptions (BGVN 33:01).
Patrick found recent ASTER images that include faint thermal anomalies. The anomalies appeared at Big Ben volcano's Mawson Peak, which is both the volcano's and the island's summit, and hosts the active vent. The most recent cloud-free image, taken on 25 February 2010 (figure 15), shows a small (2-3 pixels in size) thermal anomaly, indicating either very low-level activity or simply warm ground in and around the vent.
Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben because of its extensive ice cover. The historically active Mawson Peak forms the island's high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported at this isolated volcano, but observations are infrequent and additional activity may have occurred.
Information Contacts: Matthew R. Patrick, Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI 96718, USA (URL: https://volcanoes.usgs.gov/observatories/hvo/); Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), Earth Remote Sensing Data Analysis Center (ERSDAC) in Japan, and the Jet Propulsion Laboratory in the U.S. (URL: http://asterweb.jpl.nasa.gov/).
Ol Doinyo Lengai (Tanzania) — September 2010
Cite this Report
Ol Doinyo Lengai
Tanzania
2.764°S, 35.914°E; summit elev. 2962 m
All times are local (unless otherwise noted)
Quiet in May, active vents and lava flows in October 2010
Two strong earthquakes within a 24-hour period occurred in the region of Ol Doinyo Lengai in early May 2010; these earthquakes were intense enough to shake the trees within a camp located 15 km NW. Observations were made during an ascent by scientists on 18 May 2010 and during an overflight in October.
Observations were made by scientists Laura Carmody, Adrian P. Jones, Matthew J. Genge, and Wendy Nelson, during their ascent on 18 May 2010 (Carmody and others, 2010). They used an infrared range finder to make measurements, reported to be accurate to ~1 m. The group found the active N crater to be elliptical in shape (N-S diameter = 262 m and E-W diameter = 289 m, both rim to rim). The irregular crater floor, at an estimated maximum depth of 172 m below the rim, was surrounded by near-vertical lower walls leading to the upper ~45-degree slopes.
Observations suggest that the volcano is in a period of reduced activity following the explosive eruption in 2007 (BGVN 32:02, 32:11, and 33:02), with no effusive lava production on the crater floor, although moving magma could be heard below the surface, with assumed pockets of degassing causing disturbances around cavities in the crater floor at intervals of 15-20 min.
Carmody observed at least four open vents on the crater floor that appeared darker than their surroundings. A few of these cavities looked to be the beginning of meter-scale hornito building. Some areas near the crater wall appeared to have darker lava flow-like features from recent lava extrusion.
The crater floor was covered with rocky debris, including tilted broken lava plates (5-10 m scale), possibly from recent magma withdrawal, and various gravity collapse material from the over-steepened and locally unstable inner crater walls. These collapses, from two sites around the ash cone (NE and SW sectors of the rim), developed debris scars ~30 m wide, with some material appearing to have fallen en masse into the crater, while other sections became destabilized.
The crater walls exposed an upper series of lapilli-dominated tephra with white to ochre colors up to 30 m thick that mantled the topography of underlying gray to white carbonatite lava flows and lapilli tuff formed within the previous crater. A ~5-m-wide sub-vertical dike-like intrusion with irregular boundaries was observed cutting most of the N wall of the crater, which may represent a vent plugged in the most recent (2007) activity. Remobilization of water-soluble carbonates from the white, lapilli-dominated tephra exposed on the rim of the crater was indicated by numerous meter-scale white stalactites appended to overhangs (figure 145).
There were at least three visible sites of active degassing, two from fissures on the crater rim ash cone (figure 146) and one from a vent on the crater floor. These plumes were white in color and had a "rotten-egg" sulfurous smell, suggesting the presence of hydrogen sulfide (H2S). The ash cone on the NW approach to the crater showed up to knee-deep alteration, with the lava's color turning to dark brown, yellow, and black soil-like products, with pockets of blue and green material accompanied by the distinctive "rotten-egg" (sulfurous) smell. Similar colorations could be seen on the steep W crater wall just below the slope of ash. Rocky exposures of pyroclastic breccia on the upper NW slopes, immediately below the ash cone, had numerous expansion cracks and fissures suspected of recently releasing gas, as indicated by large numbers of dead insects. A gas haze in the same area suggested additional diffuse degassing from the upper flanks.
The upper slopes were partly covered with indurated volcanic ash from 2007, recently flushed with water from seasonal rains (locally terminating a dry period from 2007). On the middle to lower slopes, the same white ashy crust on radial topographic highs (including the pathway) funneled surface water into deeply incised gullies and broke underfoot to reveal dark locally water-saturated ash.
Sprouting vegetation (especially grasses and acacia) were vigorously starting to return in response to the recent rain. The flanks varied in slope from 45-55 degrees beyond the halfway point, and much of the recent ash had been removed along deeply incised water-runoff gullies. A white aerated crust of carbonate, under 1 mm thick, covered much of the upper slopes. Actively erosive runoff channels extending down N towards Lake Natron were noted around perhaps half of the base of the volcano.
The large lava flows prior to the 2007 explosive eruption were visible on the upper flanks, with the 2006 flow extending down to the lower flanks. These flows appeared white in color, making them stand out "like glaciers" from the dark gray ash (figure 147).
During an overflight of the crater in October, Michael Dalton-Smith observed some magmatic activity typical of Ol Doinyo Lengai prior to the 2007-2008 eruption. Three active vents were on the SE crater floor surrounded by dark lava (figure 148). Two lava flows had traveled downslope of the vents.
Reference. Carmody, L., Jones, A.P., Genge, M.J., and Nelson, W., 2010, Monthly Bulletin-Oldoinyo Lengai May 2010, informal report.
Additional References. Dawson, J.B., 2008, The Gregory Rift Valley and Neogene-Recent Volcanoes of Northern Tanzania, Geological Society, London, Memoir 33, London, Bath, 102 pp.
Sherrod, D., Mollel, K., and Nantatwa, O., 2010, Oldonyo Lengai: Trip Report March 12-14, 2010, informal report (URL: http:/Sherrod_OldonyoLengai_March12_20106-1
Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.
Information Contacts: J.B. Dawson, The University of Edinburgh, Department of Geology and Geophysics, Edinburgh, United Kingdom; Frederick Belton, Developmental Studies Department, PO Box 16, Middle Tennessee State University, Murfreesboro, TN 37132, USA (URL: http://oldoinyolengai.pbworks.com/); Laura Carmody, Department of Earth Science, University College London, Gower Street, London, WC1E 6BT, United Kingdom; Adrian P. Jones, Department of Earth Science, University College London, Gower Street, London, WC1E 6BT, United Kingdom; Matthew J. Genge, Department of Earth Science and Engineering, Royal School of Mines, Prince Consort Road, Imperial College London, SW7 2BP United Kingdom; Wendy Nelson, Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Rd, NW Washington, DC 20015, USA; Michael Dalton-Smith (URL: http://digitalcrossing.ca/).
Manam (Papua New Guinea) — September 2010
Cite this Report
Manam
Papua New Guinea
4.08°S, 145.037°E; summit elev. 1807 m
All times are local (unless otherwise noted)
Ejecting lava fragments and ash plumes during August-October 2010
After an eruption produced a plume on 12 December 2009, Manam was quiet through February 2010 (BGVN 35:02). The volcano remained quiet until August 2010, when South Crater became active. Main Crater produced diffuse white vapor, sometimes tinged blue, in August and September.
According to the Rabaul Volcano Observatory (RVO), on 10 August, incandescence from Manam's South Crater was visible at 4-5 minute intervals. The next day, diffuse black ash plumes rose a few hundred meters above the rim. Steady incandescence was accompanied by periodic ejections of lava fragments to 400-500 m above the rim; most of the ash fell back into the crater. Based on analysis of satellite imagery, the Darwin Volcanic Ash Advisory Centre (VAAC) reported that, at 1232 on 14 August, ash plumes at an altitude of 2.4 km had drifted 55 km NW.
RVO reported that, during 13-28 August, incandescence from Manam's South Crater was visible at night. During 27-28 August, incandescence emanated from Main Crater also and brightened every 15-20 minutes. At that time, incandescent lava fragments ejected tens to hundreds of meters above South Crater according to observers in Bogia, ~23 km SSW. Weak explosions were heard at 15-20 minute intervals.
During 28-29 August, emissions from Main Crater were occasionally accompanied by diffuse gray ash plumes. Incandescent lava fragments continued to be ejected by South Crater and probably by Main Crater also. Based on analysis of satellite imagery, the Darwin VAAC reported that, at 1732 on 30 August, an ash plume reached an altitude of 2.4 km and drifted 55 km NW. On 30 August, plumes rose from both Manam's Main Crater and South Crater. The emissions rose from South Crater at 5-10 minute intervals. During 30 August-2 September, incandescence was observed.
During 5-7 September, ash plumes rose from Manam's South Crater, and light ashfall was reported on the NW part of the island. Subsequently, the Darwin VAAC reported ash plumes on 22 October (plume rose to an altitude 4.3 km and drifted 130 km NW) and on 28 October (plume rose to an altitude of 4.6 km and drifted ~95 km NW).
Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.
Information Contacts: Rabaul Volcano Observatory (RVO), PO Box 386, Rabaul, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).
Montagu Island (United Kingdom) — September 2010
Cite this Report
Montagu Island
United Kingdom
58.445°S, 26.374°W; summit elev. 1370 m
All times are local (unless otherwise noted)
Quiet, with minor thermal anomalies, since September 2007
As of late October 2010, Montagu Island displayed only very localized and minor thermal anomalies of insufficient size to indicate an eruption. As previously reported, Montagu Island displayed frequent thermal anomalies, several lava flows, and a low-level ash plume in December 2006, but eruptions ceased after September 2007 (BGVN 33:03 and 33:07).
MODVOLC thermal anomalies have remained absent between September 2007 and 31 October 2010, and ASTER thermal images over the past few years lacked indication of eruptive activity. The most recent cloud-free ASTER image (figure 21) shows relatively small thermal anomalies on the 2005 flow field that Patrick believes likely represent fumaroles venting residual heat from the lava flow.
According to Matt Patrick (USGS), several small (1-2 pixels in size) thermal anomalies are situated near the summit of Mt. Belinda on the proximal section of the 2005 flow. In addition, a larger (3 x 2 pixels) anomaly is at the E end of the delta formed in 2005 when lava entered the ocean. Patrick notes that this thermal anomaly on the delta has been present in ASTER images going back to 2008 and, as with the anomaly above, likely indicates residual heat escape.
Geologic Background. The largest of the South Sandwich Islands, Montagu consists of a massive shield volcano cut by a 6-km-wide ice-filled summit caldera. The summit of the 10 x 12 km wide island rises about 3000 m from the sea floor between Bristol and Saunders Islands. Around 90% of the island is ice-covered; glaciers extending to the sea typically form vertical ice cliffs. The name Mount Belinda has been applied both to the high point at the southern end of the summit caldera and to the young central cone. Mount Oceanite, an isolated 900-m-high peak with a 270-m-wide summit crater, lies at the SE tip of the island and was the source of lava flows exposed at Mathias Point and Allen Point. There was no record of Holocene or historical eruptive activity until MODIS satellite data, beginning in late 2001, revealed thermal anomalies consistent with lava lake activity that has been persistent since then. Apparent plumes and single anomalous pixels were observed intermittently on AVHRR images during the period March 1995 to February 1998, possibly indicating earlier unconfirmed and more sporadic volcanic activity.
Information Contacts: Matthew R. Patrick, Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI 96718, USA (URL: https://volcanoes.usgs.gov/observatories/hvo/); Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), Earth Remote Sensing Data Analysis Center (ERSDAC) in Japan, and the Jet Propulsion Laboratory in the U.S. (URL: http://asterweb.jpl.nasa.gov/).
Nyiragongo (DR Congo) — September 2010
Cite this Report
Nyiragongo
DR Congo
1.52°S, 29.25°E; summit elev. 3470 m
All times are local (unless otherwise noted)
June 2010 crater expedition reveals continuously active lava lake
The following is based on a report of a field expedition to Nyiragongo's summit crater (visits to the summit are infrequent) during June 2010 and satellite observations through September 2010. Lava fountaining, gas plumes, and tremor were detected at Nyiragongo during January-May 2009 (BGVN 35:04).
Crater expedition during 14-24 June. Field observations during a 14-24 June expedition into the crater showed the lava lake to be continuously active, with rapid movement of cooled plates of fresh rock.
The expedition team included members from the Société de Volcanologie Geneve (SEG, Geneva, Switzerland), the Second University of Naples (Naples, Italy), the University of Massachusetts-Boston, l'Observatoire Volcanologique de Goma (D.R. Congo), and the United Nations Office of Project Services (UNOPS) (Copenhagen, Denmark).
Sample collection areas included exterior flows from previous eruptions on the edifice flanks (1977 and 2002 flows) and within the crater, where the team labeled key features with Greek symbols (figure 45). The team recognized three lava terraces: 1) β (pre-1977 eruption), 2) γ (post-1977 eruption-2002 eruption), and 3) ε, a newly formed (post-2002) terrace.
Burgi and others (in preparation) devised a schematic to illustrate some of the key issues in Nyiragongo's magma storage and feeding systems at depth. Tentatively, the lower estimate of magma volume is ~10 x 106 m3. The morphology of the lava lake at depth is little-known, but it may be partly or completed filled by molten material. In this latter case, Burgi and others tentatively estimated the total volume of molten material inside the volcano to be ~50 x 106 m3.
Field collections included samples from each terrace, fresh lava samples from the lake (19-22 June 2010), and various samples from fumaroles. Samples collected at selected fumaroles included fumarolic gases, steam condensates, soils, and weathered volcanic clays.
Nyiragongo lavas generally display a distinctly alkaline-rich (ultra-potassic), low-silica, mafic foiditic basalt composition that results in the lowest recorded viscosity among terrestrial lavas. The major element chemistry of the 2010 lava samples was reasonably similar to the data reported for the 2002 eruption (e.g., Chakrabarti and others, 2008).
The team found the most intense zones of fumarolic activity along a N- and NNE-trending fracture set on the southern side of the edifice. Those fumaroles sit between Nyiragongo and the northern margin of Lake Kivu (including the city of Goma). Almost all of the observed fumarolic activity occurred in the crater on both the crater walls and on portions of terraces.
On terrace 3, fumaroles were mainly present in the E (E-NE quadrant) part of the crater floor, on a much smaller area than terraces 1 and 2.
The temperature of the fumaroles ranged to a maximum of over ~300°C. Fumaroles approximately in the center of terrace 2 showed high temperatures (up to 300°C) and high sulfur concentrations (~100-400 ppm S), as compared with consistently decreasing temperatures and sulfur contents towards the E (80-100°C and 7-40 ppm S). The team reported that this lineament was in line with fractures that produced lava flows during the 2002 eruption and with the Shaheru flank sub-edifice. The team noted that the observations of fumarolic activity and chemical composition may have been biased by their point of observation.
For the fumarolic samples, the team analyzed the composition of the condensates (table 10). In general, the condensates from each terrace can be characterized as acidic (pH 2.18-3.21), with widely variable chemistry.
Table 10. Chemical data determined at Nyiragongo crater fumaroles at terraces 1, 2, and 3 ("--" = not determined). Courtesy Burgi and others (in preparation).
Location |
Sample |
Temp. (°C) |
pH |
EC (µs) |
F- (mg/L) |
Cl- (mg/L) |
Br- (mg/L) |
NO3- (mg/L) |
PO43- (mg/L) |
SO42- (mg/L) |
Terrace 1 |
PT 2-1 |
85 |
-- |
-- |
1.4 |
3.7 |
6.2 |
0 |
0 |
97.2 |
Terrace 2 - SSW |
LT3-PT2 |
105 |
-- |
-- |
7.7 |
6.2 |
0 |
0 |
175.2 |
24 |
Terrace 2 - Central (south) |
S1-PT2 |
~300 |
-- |
-- |
6.5 |
41.9 |
0 |
2 |
344.1 |
412.8 |
Terrace 2 - Central (south) |
S2-PT2 |
115 |
2.18 |
1842 |
24.5 |
77 |
0 |
0 |
95.9 |
107.5 |
Terrace 2 - Central (south) |
S3-PT2 |
110 |
2.46 |
882 |
15.6 |
9 |
0 |
0 |
0 |
332.7 |
Terrace 2 - East |
PT2-LT1 |
80 |
2.57 |
322 |
0.1 |
0.2 |
0 |
0 |
0 |
42.5 |
Terrace 2 - East |
PT2-LT2 |
90 |
2.28 |
1520 |
0.8 |
19 |
0 |
0 |
0 |
190.6 |
Terrace 2 - East |
PT2-LT3 |
90 |
2.19 |
2359 |
1.1 |
3.9 |
0 |
0 |
0 |
365.3 |
Terrace 2 - East |
PT2-F |
100 |
2.79 |
48 |
0 |
0 |
0 |
0 |
0 |
6.9 |
Terrace 3 |
PT3-2 |
~100 |
3.21 |
464 |
14.2 |
18.4 |
less than 0.03 |
0.1 |
15.3 |
301.4 |
Terrace 3 |
PT3-1 |
~100 |
2.88 |
380 |
1.7 |
1.2 |
0 |
0.1 |
0 |
99.9 |
The team found that the lava lake's E-W axis was ~230 m across. In those instances where a proper cross-lake measurement was achieved, the team found the N-S distance to be ~220 m. Thus, the approximately circular lava lake's surface was ~40,000 m2 in area.
If the lava lake were ~500 m deep and in the shape of an inverted cone, with 40 m and 225 m for bottom and top diameters, respectively, the team conservatively estimated its volume as approximately 7.5-10 x 106 m3.
Since the last eruption (January 2002), the surface of the lava lake has risen regularly (figure 46). The surface ascends towards the crater rim due to a constant influx of magma at an approximate average rate of ~4.8 m per month (~57 m/year).
Satellite observations. A 5 May 2009 report by UNOSAT showed thermal anomalies, which defined a 1.5 x 3 km band centered over the crater during 10 April-4 May 2009. UNOSAT analysts considered the anomalies as "likely to represent active fires and/or volcanic material on the surface." Because of thermal radiance from its lava lake, MODVOLC alerts were frequent for years, through October 2010, centered over the crater. The number of alerts at Nyiragongo were dwarfed during January 2010 due to 17.65 ? 5.98 x 106 m2 of lavas erupted at Nyamuragira (as discussed in BGVN 35:08) and flowing in the area between the two volcanoes.
A small area of satellite-detected thermal anomalies located over the main crater of Nyiragongo was detected on the evening of 4 January 2010 by the MODIS on the Aqua satellite. In their 7 January 2010 report on this and a much larger anomaly over the Nyamuragira volcano area, UNOSAT analysts noted that it is likely that not all anomalies were detected in the area because of dense cloud cover or gaps in satellite coverage.
The Washington VAAC reported a large sulfur dioxide plume in the vicinity of Nyamuragira and Nyiragongo during 10-11 January 2010. Based on analyses of satellite imagery, the Toulouse VAAC reported that, during 30-31 January, a diffuse plume drifted 240 km W. The plume could have come from one or both of these volcanoes, but, given the known vigorous lava outpourings at Nyamuragira, that volcano would seem the dominant source.
The Advanced Land Imager (ALI) on NASA's Earth Observing-1 (EO-1) satellite captured images of a plume from the summit of Nyiragongo on 27 June and 28 July 2009 and again on 28 May (figure 47), 24 July, and 3 August 2010. The plume appeared pale blue-gray, suggesting it was rich in sulfur dioxide, and generally drifted S-SW.
References. Burgi, P.-Y., Darrah, T., Balagizi, C., Karume, K., Campbell, M. E., Poreda, R. J., Tedesco, D., [in preparation], Assessment of Eruptive Activity and Lava Chemistry at Mount Nyiragongo, DRC, June 2010.
Chakrabarti , R., Sims, R. W. W., Basu, A.R., Reagan , M. and Durieux, J., 2008, Timescales of Magmatic Processes and Eruption Ages of the Nyiragongo volcanics from 238U-230Th-226Ra-210Pb disequilibria: Earth and Planetary Science Letters, v. 288, 1-2, 30 October 2009, p. 149-157. doi:10.1016/j.epsl.2009.09.017.
Durieux, J., 2008, Rapport de mission de terrain au volcan Nyiragongo: UNOPS: Copenhagen, Denmark, 2 April 2008, 3 p.
Tedesco, D., Vaselli, O., Papale, P., Carn, S. A., Voltaggio, M., Sawyer, G. M., Durieux, J., Kasareka, M., Tassi, F., 2007, January 2002 Volcano-Tectonic Eruption of Nyiragongo Volcano, Democratic Republic of Congo: J. Geophys. Res., v. 112, B09202, doi:10.1029/2006JB004762.
Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.
Information Contacts: Pierre-Yves Burgi, Université de Genève, 24 rue du Général-Dufour, CH-1211 Genéve 4, Switzerland (URL: http://www.unige.ch/); Thomas Darrah, University of Massachusetts Boston, Boston, MA 02125, USA; Charles Balagizi, Goma Volcano Observatory, Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; Dario Tedesco, University of Napoli 2, Dipartimento di Scienze Ambientali, via Vivaldi 43, 81100 Caserta, Italy and AFO CDOC, Goma, DR Congo (URL: http://www.unops.org/); Jesse Allen and Robert Simmon, NASA Earth Observatory (URL: http://earthobservatory.nasa.gov/); UNOSAT/UNITAR, Palais des Nations CH-1211 Geneva 10, Switzerland (URL: https://unitar.org/unosat/); Toulouse Volcanic Ash Advisory Center (VAAC), Météo-France, 42 Avenue Gaspard Coriolis, F-31057 Toulouse cedex, France (URL: http://www.meteo.fr/vaac/); Washington Volcanic Ash Advisory Center, Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/).
Rabaul (Papua New Guinea) — September 2010
Cite this Report
Rabaul
Papua New Guinea
4.271°S, 152.203°E; summit elev. 688 m
All times are local (unless otherwise noted)
After months of quiet, ash-bearing eruptions on 23-25 July 2010
Eruptions at Rabaul's Tavurvur cone resumed on 23 July 2010 after nearly seven months without ash emissions. As previously noted, Tavurvur was quiet between 1 January to 8 April 2010 (BGVN 35:02).
On 9 April 2010, the Rabaul Volcano Observatory (RVO) reported that deformation measurements at Rabaul caldera during the previous 3-4 months had showed an inflationary trend with a total of 4 cm of uplift. During 2-8 April seismicity was low and variable amounts of white vapor rose from Tavurvur cone.
According to RVO, Tavurvur cone erupted on 23 July 2010 after increased seismicity, likely beneath Tavurvur cone, was detected the previous day. The series began with a few small hybrid earthquakes, followed by small low-frequency earthquakes, then continuous volcanic tremor starting at 1034 on 22 July; the eruption followed at 1300 on 23 July.
The eruption began with discharge of diffuse white plumes, followed by pink-gray fumes with low ash content. A strong odor of hydrogen sulfide was noted, and a diffuse cloud rose 1 km and drifted NW. A few hours later, observers saw billowing gray clouds, accompanied by roaring and rumbling noises. Ashfall was reported in areas to the cone's NW and NNW.
RVO reported that, during 23-25 July, seismicity was variable. Ash emissions and ashfall continued in areas to the NW. Visibility remained poor in Rabaul town (3-5 km NW of Tavurvur) due to ash made airborne by the passage of moving vehicles. Ash emissions ceased on 25 July. Later that day and into 26 July only diffuse brown-tinted vapor plumes were emitted and seismicity was very low.
After the eruption of 23-25 July, GPS data showed deflation of Tavurvur cone. Seismicity was very low, and diffuse white plumes were emitted during 26-30 July.
A video (by BlinkyBill55) showed the ash-bearing eruption of 24 July and the associated caption described it as a "short but explosive event." The eruption scene depicted on the 9-second-long video showed various eruptive phases that were sometimes dominated by steam and at other times by dark ash. No clear MODVOLC thermal alerts occurred in the year ending 21 November 2010.
Reference. Johnson, RW, Itikarai, I, Patia, H, and McKee, C, 2010, Rabaul Volcano Workshop Report; Volcanic systems of the Northeastern Gazelle Peninsula, Papua New Guinea: synopsis, evaluation, and a model for Rabaul volcano, Rabaul Observatory Twinning Program, Dept. Of Mineral Policy and Geohazards Management (DMPGM), Government. of Papua New Guinea and Australian Agency for International Development (AusAID), Australian Government, 84 p., ISBN 978-1-921672-89-7.
Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.
Information Contacts: Rabaul Volcano Observatory (RVO), PO Box 386, Rabaul, Papua New Guinea; BlinkyBill55 (URL: http://www.youtube.com/user/BlinkyBill55).
Rinjani (Indonesia) — September 2010
Cite this Report
Rinjani
Indonesia
8.42°S, 116.47°E; summit elev. 3726 m
All times are local (unless otherwise noted)
Seismicity declined significantly in 2010
Thermal anomalies on Rinjani island previously reported (BGVN 35:01) continue to be recorded by MODIS and caused alerts on the MODVOLC system. Between 1 January and 26 November 2010, MODVOLC thermal alerts occurred on 4, 18, and 27 February, 11 and 29 April, and 1 and 20 May. On 18 February, 9 and 22 pixels were recorded by the Terra and Aqua satellites, respectively.
The Center of Volcanology and Geological Hazard Mitigation (CVGHM) reported variable seismic activity during February-April 2010 (table 5), with "white to brown" emissions reaching 50-1500 m above the crater; the number of emissions increased each month, with 1, 26, and 41 emissions reported during February, March, and April, respectively.
Table 5. Summary of seismic events recorded at Rinjani, February-April 2010. Courtesy of CVGHM.
Date |
Eruption EQ |
Tremor |
Tremor EQ |
Low-frequency EQ |
Volcanic EQ |
Shallow volcanic EQ |
Feb 2010 |
177 |
20 |
151 |
16 |
3 |
23 |
Mar 2010 |
114 |
14 |
186 |
23 |
14 |
5 |
Apr 2010 |
93 |
10 |
72 |
9 |
30 |
10 |
During 1-2 May, 4-6 eruption earthquakes were registered each day, and dense brown emissions reached 900-1600 m above the crater.
The Darwin Volcanic Ash Advisory Centre reported that, on 5 May, a possible ash plume from Rinjani rose to an altitude of 5.5 km and drifted 150 km NW.
According to news articles, three eruptions from Rinjani during 22-23 May were accompanied by tremors. Ash and incandescent material was ejected as high as 2 km above the caldera. Plumes drifted 12 km and caused ashfall in multiple areas covering hectares of cropland. Lava flowed into the Segara Anak lake, which lies within the main caldera and caused the lake water temperature to rise from 21° to 35°C. Eruptions were not considered to be at a dangerous level, and evacuations were not ordered.
CVGHM reported that, during June through mid-November, seismicity from Rinjani decreased; visual observations indicated no activity since August. On 19 November, the alert level was lowered to 1 (normal, on a scale of 1-4).
Geologic Background. Rinjani volcano on the island of Lombok rises to 3726 m, second in height among Indonesian volcanoes only to Sumatra's Kerinci volcano. Rinjani has a steep-sided conical profile when viewed from the east, but the west side of the compound volcano is truncated by the 6 x 8.5 km, oval-shaped Segara Anak (Samalas) caldera. The caldera formed during one of the largest Holocene eruptions globally in 1257 CE, which truncated Samalas stratovolcano. The western half of the caldera contains a 230-m-deep lake whose crescentic form results from growth of the post-caldera cone Barujari at the east end of the caldera. Historical eruptions dating back to 1847 have been restricted to Barujari cone and consist of moderate explosive activity and occasional lava flows that have entered Segara Anak lake.
Information Contacts: Center of Volcanology and Geological Hazard Mitigation (CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://vsi.esdm.go.id/); Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); RTT News (URL: http://www.abc.net.au/).
Sarychev Peak (Russia) — September 2010
Cite this Report
Sarychev Peak
Russia
48.092°N, 153.2°E; summit elev. 1496 m
All times are local (unless otherwise noted)
Lava flows on the E and SE flanks; aerosol layer detected by lidar
Since the last eruption at Sarychev Peak, during 11-21 June 2009 (BGVN 34:06), there have been intermittent thermal anomalies detected and one ash plume. Later fieldwork also revealed lava flows from the 2009 activity. This volcano lacks a seismometer, so satellite observations are the Sakhalin Volcanic Eruptions Response Team's (SVERT) primary monitoring tool, as they are for many volcanoes of the Kuril Islands.
The June 2009 explosive eruption deposited pyroclastic flows and associated tephra that changed the landscape around on NE Matua Island. Hot pyroclastic flows completely buried vegetated slopes, covered wide areas to the W, N, and E, and reached the sea (BGVN 34:06).
Satellite imagery collected after June 2009 revealed lava flows on the E and SE flanks. Some imagery and photos (including radar and thermal data) and a lidar atmospheric sounding found aerosols interpreted as Sarychev Peak ash at 12 km altitude over Germany.
Additional June 2009 eruption observations. Gas-and-steam emissions were frequent in July 2009, possibly with some ash on the 27th (table 1). Low-altitude plumes were visible up to 75 km away. Thermal anomalies were then detected on 21 November 2009, and 3 February, 9 March, and 27 May 2010. An ash plume was seen on 20 September 2010.
Table 1. Emissions and plumes from Sarychev Peak during July 2009-September 2010. Courtesy of SVERT.
Date |
Activity |
04-05 Jul 2009 |
Gas-and-steam emission, plumes drifted 20-75 km NW, NE, and SE to altitudes of 1.5-3 km. |
08 Jul 2009 |
Gas-and-steam emission, plumes drifted 15 km E. |
09 Jul 2009 |
Gas-and-steam emission, plumes containing some ash drifted 50 km E. |
13 Jul 2009 |
Gas-and-steam emission, plumes drifted 40 km E. |
14 Jul 2009 |
Gas-and-steam emission, plumes drifted 25 km W and NW. |
15-21 Jul 2009 |
Gas-and-steam emission, plumes drifted 30-50 km W and S. |
22 Jul 2009 |
Gas-and-steam emission, plumes drifted 35 km N. |
27 Jul 2009 |
Steam-gas plume possibly containing some ash drifted 55 km NW at 3.7 km altitude. |
21 Nov 2009 |
Thermal anomaly, steam-gas emission. |
03 Feb 2010 |
Thermal anomaly. |
09 Mar 2010 |
Thermal anomaly. |
27 May 2010 |
Thermal anomaly. |
20 Sep 2010 |
Diffuse ash plume. |
As previously discussed (BGVN 34:06), a scientific expedition from the Institute of Marine Geology and Geophysics Far East Division Russian Academy of Sciences (FED RAS) and Pacific Institute of Geography (FED RAS) that visited the island during 26-28 June 2009 described the eruption as explosive in character (Levin and others, 2009). Also, the explosions were sufficiently strong to have created a deep crater. A 2007 photo of the summit crater disclosed a shallow depression, the floor of which was covered in pyroclastic material (figures 14 and 15). More recent images show a newly deepened and enlarged crater (figures 16 and 17).
Satellite images from 17-18 June 2009 (such as figure 16) disclosed two, roughly 100- to 150-m-wide streams of lava that first divided ~300 m from the crater's NE edge. More detailed satellite images (including thermal images) and photos from the field analyzed after the expedition also aided the recognition of the lava flows. Grishin and Melekestsev (2010) noted that the new lava flows extended 2.4 and 2.6 km from their source at the summit crater. The area of the lava flows was estimated as 0.8 km2; the volume was estimated as ~10 x 106 m3.
Analysis also determined that the lava flows proceeded downslope during the eruption's active phase. Field photos disclosed that the pyroclastic deposits overlapped and were coeval with the lava flows. In other words, lava flows moved roughly synchronous with the pyroclastic flows (figures 16 and 17).
In some images, fresh snow had blanketed and remained over the bulk of Matua Island, but the lava flows and thick pyroclastic flows remained devoid of, or with limited, snow cover. This effect was attributed to continued heat radiating from the lava flows and thick pyroclastic flows.
Satellite radar. Japan Aerospace Exploration Agency (JAXA) staff performed radar observations on 19 June 2009 (figure 18) using the Phased Array Type L-band Synthetic Aperture Radar (PALSAR) installed on the Advanced Land Observing Satellite (ALOS). Analysts compared an earlier radar image, from 14 March 2007, to detect surface changes between those two dates; many of the changes were attributed to the 2009 eruption (figure 18).
The two images revealed areas with profound changes (circled) both around the crater and at many points along the coast. Analysts interpreted the shoreline changes as due to pyroclastic flows or lahars, which issued from the crater and transported material radially. On the upper slopes, the strong radial pattern was primarily due to pyroclastic flows and, in some locations, lava flows.
Lidar. Mattis and others (2009) discussed aerosol data from lidar soundings over Leipzig, Germany, during the summer of 2008 through the first half of 2009. They associated high backscatter seen on 1 July 2009 with aerosols from Sarychev Peak's eruption and estimated the main peak from aerosols as residing at ~12 km altitude.
Earlier backscatter peaks were attributed to Okmok (Aleutians, 15-km altitude); Kasatochi (Aleutians, 15.2 km); Shiveluch (Kamchatka, 8.8 km); Cleveland (Aleutians, 6 km); and Redoubt (Alaska, 20 km). The authors noted that, prior to the onset of the aerosol layers seen in the summer of 2008, their measurements in the previous 12 years lacked any major effects from volcanic aerosols over Germany.
References. Grishin, S.Yu., Melekestsev, I.V., 2010, Lava flows from the 2009 eruption of Sarychev Peak, the Central Kuriles, Bulletin of Kamchatka Regional Association "Educational Scientific Center"; Earth Sciences, no. 1 (15), p. 232-239.
Levin, B.V., Rybin, A.V., Razzhigaeva, N.G., and others, 2009, Complex Expedition of the "Volcano-Sarychev 2009" (Kuril Islands), Bulletin Far East Division, Russian Academy of Sciences, no. 6, p. 98-104.
Mattis, I., Seifert, P., Muller, D., Tesche, M, Hiebsch, A., Kanitz, T., Schmidt, J., and Finger, F., 2009, Volcanic aerosol layers observed with multi-wavelength Raman lidar over Europe since summer 2008, in Proceedings of the 8th International Symposium on Tropospheric Profiling, Delft, The Netherlands, October 2009. Eds. A. Apituley, H.W.J. Russchenberg, W.A.A. Monna, ISBN 978-90-6960-233-2.
Geologic Background. Sarychev Peak, one of the most active volcanoes of the Kuril Islands, occupies the NW end of Matua Island in the central Kuriles. The andesitic central cone was constructed within a 3-3.5-km-wide caldera, whose rim is exposed only on the SW side. A dramatic 250-m-wide, very steep-walled crater with a jagged rim caps the volcano. The substantially higher SE rim forms the 1496 m high point of the island. Fresh-looking lava flows, prior to activity in 2009, had descended in all directions, often forming capes along the coast. Much of the lower-angle outer flanks of the volcano are overlain by pyroclastic-flow deposits. Eruptions have been recorded since the 1760s and include both quiet lava effusion and violent explosions. Large eruptions in 1946 and 2009 produced pyroclastic flows that reached the sea.
Information Contacts: Sakhalin Volcanic Eruptions Response Team (SVERT), Institute of Marine Geology and Geophysics (IMG&G) Far East Division Russian Academy of Sciences (FED RAS), 1B Science St., Yuzhno-Sakhalinsk, 693022, Russia (URL: http://www.imgg.ru/); B.W. Levin, A.V. Rybin, M.V. Chibisoba, and V.B. Gur'yanov, IMG&G; N.G. Razzhigaeva, Pacific Institute of Geography FED RAS, 7 Radio St., Vladivostok, 690041, Russia (URL: http://tig.dvo.ru/tig/); S. Yu. Grishin, Institute of Biology and Soil Science FED RAS, 159 Prospect Stoletiya, Vladivostok, 690022, Russia; I.V. Melekestsev, Institute of Volcanology and Seismology FED RAS; A.K. Klitin, Sakhalin Research Institute of Fisheries and Oceanography, Yuzhno-Sakhalinsk, Russia; Gennady Padalka, Frank De Winne, Roman Romanenko, Robert Thirsk, Michael Barratt, Nicole Stott, Tim Kopra, and Koichi Wakata (astronauts), International Space Station Expedition 20 (URL: http://www.nasa.gov/mission_pages/station/expeditions/expedition20/, http://www.eorc.jaxa.jp/ALOS/img_up/l_pan_sarychev_090622.htm); NASA Earth Observatory (URL: http://earthobservatory.nasa.gov/).