Logo link to homepage

La Palma

Photo of this volcano
  • Spain
  • Atlantic Ocean
  • Stratovolcano(es)
  • 2021 CE
  • Country
  • Volcanic Region
  • Primary Volcano Type
  • Last Known Eruption
  • 28.57°N
  • 17.83°W

  • 2426 m
    7959 ft

  • 383010
  • Latitude
  • Longitude

  • Summit
    Elevation

  • Volcano
    Number
Most Recent Weekly Report: 24 November-30 November 2021 Citation IconCite this Report

The eruption at La Palma continued during 24-30 November, characterized by Strombolian explosions and lava fountaining/jetting from multiple existing and new vents, advancing and sometimes branching lava flows, and daily ash emissions. The eruption began on 19 September and had been active for 70 days by 28 November. Volcanic tremor levels were low, though during 28-29 November levels fluctuated and were sometimes intense. Seismicity persisted at variable but elevated levels, with earthquake locations distributed at depths of 10-15 km and 30-40 km. Deeper seismicity decreased to low levels by 27 November while mid-level seismicity intensified through the week. The largest earthquake was a M 5 recorded at 0935 on 29 November at a depth of 36 km. A M 4.2 earthquake at a depth of 13 km was the largest event at mid-levels since the eruption began.

Several vents in the main cone continued to effuse lava, eject tephra, and emit ash-and-gas plumes. Lava moved W through pre-existing lava channels, lava tubes, over older flows, and over new ground, increasing the flow field that consists of overlapping flows (numbered 1-11) and two lava deltas. During 23-25 November flows 4, 5, and 7 at the N end of the flow field continued to widen and advance, filling in gaps between the flows, and fed the N delta. Flows 1, 2, and 9 minimally fed the S delta. There was also an increasing number of active flows on the flow field as lava overflowed some channel margins or broke out of tubes. At around 0900 on 25 November the lava effusion rate increased at main crater vents, and around 1100 two small E-W fissures opened less than 1 km S of the main cone. The easternmost vent produced a fast-moving lava flow that traveled along the S margin of flow 10 and around the S side of Montaña Cogote. The flow advanced through the Las Manchas cemetery and inundated parts of a solar power plant; the newly covered areas were part of the exclusion zone and had already been evacuated. The flow rate slowed to about 25 m per hour and joined flow 11 by 26 November. An overflow of lava SW of flow 3 produced a small branch oriented laterally the flow margin. Flow 7 widened during 26-27 November as it continued to be fed.

New vents opened on the NE flank of the main cone at around 0300 on 28 November, producing fluid lava flows that traveled N and NW through the Tacande area and crossed the LP-212 road. The opening of the new vents was followed by landslides on the NW flank of the cone. In a video taken at 1145 lava fountains rose from one of the vents while another ejected tephra. Dense billowing ash plumes rose from the main crater. Video taken at 1050 on 29 November showed lava flows transporting large blocks downslope. Another video showed lava flowing at a rate of about 1 m per second. By noon the vents in the main cone became notably less active and remained only intermittently active through 30 November. Several streams of lava from the new vents continued to advance NW and then W along older flows and split into two branches. One branch traveled through tubes and fed flows 4, 5, and 7 between Montaña de Todoque and Montaña de La Laguna and the other descended towards flow 8 (the most northern flow). Flows inundated previously untouched forest and agricultural land. By 30 November the width of the flow field had grown to 3.35 km and lava covered an estimated 11.34 square kilometers. The number of people that had evacuated and were staying in hotels had increased to 537.

Gas and ash emissions again impacted island residents. Suspended ash and high concentrations of volcanic gases triggered a few air-quality alerts mostly affecting the W part of the island; authorities warned residents of some affected areas to stay indoors. Essential personnel were occasionally barred from entering the exclusion zones to irrigate crops and remove ash from streets and buildings. Heavy rains during 25-26 November triggered warnings from authorities to stay away from steep slopes and drainages due to the possibility of lahars. Ash plumes rose as high as 4.8 km and drifted E during 24-26 November, and continued to deposit ash at La Palma airport. By 27 November winds had shifted and the ash at the airport had been removed, allowing it to open for the first time since 20 November. Ash plumes rose 1.4-3.5 km and drifted SW and SSW during the rest of the week. Sulfur dioxide emissions continued an overall downward trend during 23-26 November, though heavy rain sometimes prevented ground-based measurements. The trend was broken on 27 and 28 November with values of 30,000-49,999 tons per day, characterized as “very high.” During 29-30 November emission values were “high” or between values of 1,000 and 29,999 tons per day.

Sources: Instituto Volcanológico de Canarias (INVOLCAN), Instituto Geográfico Nacional (IGN), Gobierno de Canaries


Most Recent Bulletin Report: October 2021 (BGVN 46:10) Citation IconCite this Report

First eruption since 1971 starts on 19 September; lava fountains, ash plumes, and lava flows

Multiple eruptions have occurred during the last 7,000 years at the Cumbra Vieja volcanic center on La Palma, the NW-most of the Canary Islands. The eruptions have created cinder cones and craters, and produced fissure-fed lava flows that reached the sea a number of times. Eruptions recorded since the 15th century have produced mild explosive activity and lava flows that damaged populated areas, most recently at the southern tip of the island in 1971. During the three-week eruption in October-November 1971, eruptive activity created a new cone, Teneguia, that had as many as six active vents (CSLP 90-71), and blocky lava flows that reached the sea on the SW flank.

A new eruption began at La Palma on 19 September 2021 in an area on the SW flank of the island about 20 km NW of the 1971 eruption, after a multi-year period of elevated seismicity. Two fissures opened and multiple vents produced lava fountains, ash plumes, and flows that traveled over 5 km W to the sea, destroying hundreds of properties in their path (figure 2). Activity through the end of September is covered in this report with information provided by Spain’s Instituto Geographico Nacional (IGN), the Instituto Volcanologico de Canarias (INVOLCAN), the Steering Committee of the Special Plan for Civil Protection and Attention to Emergencies due to Volcanic Risk (PEVOLCA), maps from Copernicus EMS, satellite data, and news and social media reports.

Figure (see Caption) Figure 2. A 3D-rendering of the extent of lava flows from the Cumbra Vieja eruption on La Palma as of 15 October 2021 is shown in red with flows from earlier eruptions shown in tan. Data provided by Copernicus EMS and IGN, courtesy of INVOLCAN.

Precursor seismicity. In early July 2017 IGN enhanced their Volcanic Surveillance Network at La Palma to include four GPS antennas, five seismic stations, and four hydrochemical groundwater control points. A seismic swarm of 68 events located on the southern third of the island was recorded during 7-9 October 2017. It was the first of a series of seismic swarms recorded during 2017-2021 (table 1) located in the same general area. This first swarm was followed by a similar set of events a few days later during 13-14 October. The magnitudes of the events during October 2017 (given as MbLg, or the magnitude from the amplitude of the Lg phase, similar to the local Richter magnitude) ranged from less than 1.5 to 2.7, and they occurred over a depth range of 12-35 km. The next seismic swarm of similar characteristics occurred during February 2018, followed by a smaller swarm of seven microseismic events recorded in the same area one year later, on 12 February 2019.

Table 1. Precursor seismicity episodes at La Palma between October 2017 and late June 2021 were all located in the southern third of the island. Magnitude is reported by IGN as MbLg, or the magnitude from the amplitude of the Lg phase, similar to the local Richter magnitude. Data courtesy of IGN Noticias.

Date Detected Events Located Events Magnitude Range (mbLg) Depth Range (km)
07-09 Oct 2017 -- 68 Less than 1.5-2.7 12-35
13-14 Oct 2017 352 44 Less than 1.5-2.1 15-22
10-14 Feb 2018 -- 85 1.8-2.6 25-30
12 Feb 2019 -- 7 0.7-1.1 15
24 Jul-02 Aug 2020 682 160 1.2-2.5 16-39
23-26 Dec 2020 602 126 1.3-2.3 30
31 Jan 2021 -- 27 1.2-2.5 10-29
25 Jun 2021 80 12 Less than 2.2 18-34

By the time the next seismic swarm began in July 2020, IGN had a network of 13 seismic stations installed around the island. There were 160 located events that occurred during 24 July-2 August 2020 with magnitudes of 1.2-2.5 and depths of 16-39 km. Reprocessing of the previous data indicated a distribution of seismicity for the three series (October 2017, February 2018, and July 2020) in a wide strip in an east-west direction, although the October 2017 series occurred at a shallower depth and with the epicenters more concentrated. IGN noted similarities between the February 2018 and July-August 2020 events in terms of location and magnitude (figure 3). Another very similar swarm of 602 detected events was recorded during 23-26 December 2020, with most events located on the western slope of Cumbre Vieja. Two swarms on 21 January and 25 June 2021 had fewer events but similar depths and magnitudes to the earlier events.

Figure (see Caption) Figure 3. Comparison of seismic event depth and locations at La Palma from swarms during 2017, 2018, and 24 July-2 August 2020. Courtesy of IGN (06-08-2020 16:45 UTC, Final de la actividad en La Palma).

Renewed seismicity began on 11 September 2021. The number, frequency, and magnitude of the events all increased over the next several days, while the depth of the events grew shallower. On 13 September a multi-agency scientific committee raised the Alert Level to Yellow (the second lowest level on a four-color scale) for the municipalities of El Paso, Los Llanos de Aridane, Mazo, and Fuencaliente de la Palma. IGN noted a migration of the seismicity toward the W side of the island on 14 September (figure 4). The accumulated surface deformation between 12 and 14 September measured 1.5 cm from the island GNSS network. Seismic activity on 15 September continued to migrate slightly NW at depths of around 7-9 km; in addition, 20 shallow earthquakes of 1-3 km depth were recorded. The accumulated deformation had reached 6 cm by 15 September. As of 0930 on 16 September 50 shallow earthquakes between 1-5 km depth had been located and the maximum vertical deformation was around 10 cm in the area of the seismicity. During 16-18 September seismic activity decreased, but a 3.2 magnitude earthquake located at 100 m depth was felt by the local population. Intense surface seismicity (between 0-6 km) increased in the early hours of 19 September and numerous earthquakes were felt by the local population (figure 4). The maximum accumulated deformation increased to 15 cm in the area close to the seismicity by 1100 on 19 September, and the eruption began about five hours later.

Figure (see Caption) Figure 4. Seismic events at La Palma during 12-19 September 2021 showed distinct changes during those days. During 12-14 September (left) the seismicity migrated westward and was located at depths of about 7-13 km. The color scale on the left indicates the time of the events in hours before 0925 on 14 September, with red as the most recent. An abrupt increase in shallow seismicity on 19 September 2021 occurred a few hours before the eruption began, as shown by the bright orange dots in the right image. The color bar on the right represents the dates of the seismic events beginning on 11 September. Courtesy of IGN (left: 14-09-2021 09:30 UTC, right: 19-09-2021 11:00 UTC, Actualización de la información sobre la actividad volcánica en el sur de la isla de La Palma).

Eruption begins 19 September 2021. A fissure eruption began at 1510 local time (1410 UTC) on 19 September after the intense seismic and deformation activity that began on 11 September. Observers near the eruption site in the area of Cabeza de Vaca, in the municipality of El Paso, witnessed a large explosion with ejecta that produced a gas-and-ash plume. Strombolian activity was accompanied by phreatomagmatic pulses along two 100-m-long N-S fissures about 200 m apart. INVOLCAN scientists observed seven vents along the fissures during the initial stage of the eruption (figure 5). Multiple tall lava fountains fed flows downslope to the W, igniting fires. The PEVOLCA steering committee briefly raised the Alert Level to Orange, and then to Red by 1700 for high-risk municipalities directly affected by the eruption. About 5,500 people evacuated with no injuries reported, and authorities recommended that residents stay at least 2 km from the vents. INVOLCAN scientists determined an average flow rate of 700 m/hour and lava temperatures of around 1,075°C at the start of the eruption (figure 6).

Figure (see Caption) Figure 5. INVOLCAN scientists observed seven active vents along the fissure at the start of the La Palma eruption at Cumbre Vieja on 19 September 2021. Photo by Alba, courtesy of INVOLCAN.
Figure (see Caption) Figure 6. INVOLCAN scientists determined a flow rate for the new lava flows at La Palma on 19 September 2021 of 700 m/hour and a temperature of 1,075°C. Courtesy of INVOLCAN.

The Toulouse VAAC issued the first ash advisory for the La Palma eruption about 90 minutes after it began. They reported ongoing lava fountains and an ash plume to about 1 km altitude. The plume drifted SW at less than 1.5 km altitude, while SO2 emissions were reported drifting ESE at 3 km altitude. Later that day, they noted continuing intense lava fountains and ashfall in the vicinity of the volcano. The next day ash emissions drifted S at 2.4 km altitude. Sulfur dioxide emissions were measured by satellite instruments beginning on 19 September; they increased dramatically and drifted hundreds of kilometers E and SE toward the NE coast of Africa over the next few days (figure 7). Ongoing ash emissions rose to 4.6 km altitude later on 20 September. The first Sentinel-2 satellite images of the eruption appeared on 20 September showing a strong point source thermal anomaly partly covered by meteoric clouds (figure 8).

Figure (see Caption) Figure 7. Sulfur dioxide emissions from the Cumbre Vieja eruption at La Palma were measured by the TROPOMI Instrument on the Sentinel-5P satellite beginning on 19 September 2021 (left); they increased dramatically over the next several days. The plume was detected by satellite over 400 km SE over the western Sahara on the NW coast of Africa by 20 September. The plume was reported as visible at Gomera Island (80 km SE) on 21 September, having increased significantly in area and mass from the previous day. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 8. Sentinel-2 satellite images of La Palma show a sharp contrast from a cloudless sky before any signs of surface activity on 10 September 2021 (left) to dense cloud cover on the lower slopes of La Palma with a strong thermal anomaly from the new fissure vent and flows with rising steam plumes drifting NE on 20 September (right). Images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

The first map of the new flow on 20 September produced by IGN in partnership with Copernicus Emergency Management Service (EMS) showed that the main channel of the lava flow had traveled more than 3 km W. The flows had covered about 1 km2 and destroyed an estimated 166 buildings (figure 9). A report of the PEVOLCA Scientific Committee indicated that activity on 20 and 21 September was concentrated at four main vents that produced parallel flows with an average flow rate of 200 m/hour; the maximum flow thickness was 10-12 m (figure 10). Strong lava fountaining continued both days and ash fell in the vicinity of the vents. By 0814 on 21 September an updated Copernicus EMS map showed that 350 homes had been covered by lava and the flow field had expanded to 1.54 km2. A few hundred more residents evacuated as lava advanced towards Tacande; bringing the number of evacuees to about 5,700. One lava flow branch was advancing slowly S at a rate of 2 m/hour. An ash cloud was observed later that day on the W flank of the volcano slowly drifting SW at 2.4 km altitude. Sulfur dioxide emissions were present over the SE part of the island and were visible at Gomera Island, 80 km SE. Late in the day, ash was observed in satellite imagery about 50 km W of the volcano, while intense lava fountaining continued at the source vent (figure 11).

Figure (see Caption) Figure 9. The first map of the new lava flow at La Palma on 20 September 2021 was produced by the Copernicus Emergency Management Service (EMS) in partnership with IGN. It showed that the main channel of the lava flow shown in red had traveled more than 3 km W covering about 1 km2 and had destroyed an estimated 166 buildings. Courtesy of Copernicus EMS.
Figure (see Caption) Figure 10. INVOLCAN scientists collected lava fragments from the Cumbre Vieja flow front at La Palma on 21 September 2021. The average flow thickness was 10-12 m. Courtesy of INVOLCAN.
Figure (see Caption) Figure 11. Intense fountaining continued at the vent of the Cumbre Vieja eruption on La Palma during the night of 21 September 2021; multiple small flows descended the flanks of the growing pyroclastic cone. Courtesy of Cabildo La Palma.

Activity during 22-25 September 2021. Ash emissions during 22 and 23 September drifted SW and S from 0-3 km altitude, and NE and E from 3-5 km altitude (figure 12); ashfall up to 3 cm thick was reported downwind. An SO2 plume was also noted drifting NE in satellite imagery. PEVOLCA reported on 23 September that two relatively slow-moving lava flows continued to advance downslope from the vent (figure 13). The northernmost flow was moving at 1 m/hour and was 12 m high and 500 m wide in some places. The southern flow, which surrounded Montaña Rajada, was moving at 4-5 m/hour and about 10 m high. The overall flow was 3.8 km long and 2.1 km from the coast (figure 14). By late on 23 September reports indicated 420 structures had been destroyed and the flow covered just under 2 km2.

Figure (see Caption) Figure 12. Ash emissions rose as high as 4.6 km altitude on 22 September 2021 at La Palma. Up to 3 cm of ashfall was reported downwind. Courtesy of El Periodico de Cataluny, S.L.U.
Figure (see Caption) Figure 13. Slow moving lava flows at La Palma continued downslope from the vents on 22 and 23 September 2021. Many businesses and homes in the community of Todoque, shown here, were destroyed by the lava flows on 22 September. Photo by Bomberos de Canarias, courtesy of RTVE.
Figure (see Caption) Figure 14 The original flow at La Palma as of 1913 on 20 September is shown in red. The progression of the lava flows each day from 20-23 September 2021 is shown in different colors. Lava flows covered almost 2 km2 of La Palma by the end of the day on 23 September 2021, and reports indicated 420 structures and 15.2 km of roads had been destroyed. The flow was about 3.8 km long and still 2.1 km from the coast. Courtesy of Copernicus EMS.

Lava fountains rose hundreds of meters above the summit crater of the new cone early on 24 September 2021 (figure 15). IGN reported an increase in explosive activity on 24 September that was accompanied by a sharp increase in tremor amplitude. This was followed a short while later by the opening of two new vents on the NW flank of the cone; the fast-moving flows merged into one and produced a new flow over top of the earlier flows. Part of the upper section of the S flank of the cone collapsed on 24 September and briefly caused flow speeds to increase to 250-300 m/hour overnight before slowing to an average speed of 40 m/hour. Due to the fast-moving flow, an evacuation order was issued in the early afternoon for Tajuya, Tacande de Abajo, and part of Tacande de Arriba, affecting 300-400 people. Three airlines also suspended flights to La Palma. The Toulouse VAAC reported ash plumes throughout the day. Ash plumes drifted SW below 3 km altitude and E and SE at 3-5.2 km altitude and resulted in significant ashfall in numerous locations by the next morning (figure 16). Pilots also reported ash near Tenerife and over La Gomera.

Figure (see Caption) Figure 15. Lava fountains several hundred meters high rose from the growing pyroclastic cone at La Palma in the early hours of 24 September 2021, seen from Tajuya. Dense ash emissions continued throughout the day. Photo by Tom Pfeiffer, courtesy of Volcano Discovery.
Figure (see Caption) Figure 16. Ashfall in El Paso on La Palma covered cars and flowers on the morning of 25 September 2021. Ash emissions produced ashfall in numerous places around the island over the next several days. Courtesy of Volcanes de Canarias.

By 25 September there were three active vents in the crater and one on the flank of the cone (figure 17), and two active lava flows. On 25 and 26 September dense ash emissions (figure 18) closed the airport and produced ashfall not only in the municipalities near the eruption, but also on the eastern slope of the island; it was reported in Villa de Mazo, Breña Alta and Breña Baja, and Santa Cruz de La Palma or Puntallana. Plumes were drifting SW at altitudes below 1.5 km and NE between 1.5 and 3.9 km altitude over a large area. Mapping by Copernicus EMS indicated that the ashfall covered an area of 13 km2 (figure 19).

Figure (see Caption) Figure 17. A new vent opened on the lower W flank of the pyroclastic cone at La Palma on 25 September 2021. Courtesy of INVOLCAN.
Figure (see Caption) Figure 18. Dense ash emissions on 25 September 2021 at La Palma forced closure of the island’s airport. Photo by Desiree Martin, AFT, courtesy of Corporación de Radio y Televisión Española (RTVE).
Figure (see Caption) Figure 19. A large area of La Palma, shown in blue, was affected by ashfall to the W and SW of the erupting vent on 25 September 2021. The extent of the lava flow as of 1913 UTC on 20 September is shown in red, and the extent of the flow by 1206 on 25 September is shown in orange. Courtesy of Copernicus EMS.

Activity during 26-28 September 2021. During the evening of 26 September jets of lava up to 1 km high were visible from La Laguna and some explosions were strong enough to be felt within 5 km of the vent (figure 20). The main, more northerly lava flow overtook the center of Todoque, in the municipality of Los llanos de Aridane, which had been evacuated several days earlier. It crossed the highway (LP-213) in the center of town and continued 150 m W. It was initially moving at about 100 m/hour, was 4-6 m high, and the front was about 600 m wide, but it slowed significantly after crossing through Todoque, and the height grew to 15 m; it was located about 1,600 m from the coast. The more southerly flow continued moving at about 30 m/hour and was about 2.5 km long.

Figure (see Caption) Figure 20. Jets of lava rose to nearly 1,000 m high at La Palma as seen from La Laguna on the evening of 26 September 2021. The lava flow remained active on the NW flank of the cone. Photo by Tom Pfeiffer, courtesy of Volcano Discovery.

The PEVOLCA Scientific Committee determined that the volume of erupted material from the beginning of the eruption on 19 September until 27 September was about 46.3 m3. By early on 27 September the front of the flow was close to the W side of Todoque Mountain (figure 21), and reports indicated that 589 buildings and 21 km of roads had been destroyed by the 2.5 km2 of lava. A seismic swarm on the morning of 27 September was located at about 10 km depth in the same area of the previous seismicity below the vent. In addition, pulses of tremor coincided with pulses of ash emissions. A new flow appeared on the N flank of the cone during the afternoon and partly covered previous flows through the center of Todoque, reaching about 2 km from the coast (figure 22). Ash emissions were more intermittent on 27 and 28 September, drifting SW to 1.5 km altitude and NE to 4.3 km altitude in sporadic pulses associated with lava fountains.

Figure (see Caption) Figure 21. The growth of the lava flow at La Palma during 20-27 September 2021 is shown in different colors. The flow as of 1913 on 20 September is shown in red. The extent of the flow as of 1206 on 25 September is shown in orange. The extent of the flow as of 1158 on 26 September is shown in blue, and the extent of the flow as of 0650 on 27 September is shown in green, nearly reaching Todoque Mountain by early on 27 September 2021. Reports indicated that 589 buildings and 21 km of roads had been destroyed from the 2.5 km2 of lava. Courtesy of Copernicus EMS.
Figure (see Caption) Figure 22. A new flow appeared on the N flank of the cone at La Palma during the afternoon of 27 September 2021 from a reactivated vent; it traveled rapidly downslope reaching the center of Todoque. Photo by Tom Pfeiffer, courtesy of Volcano Discovery.

The new flow moved through the upper outskirts of Todoque and had reached the road to El Pampillo on the border of the municipalities of Los Llanos and Tazacorte, about 1 km from the coast, early on 28 September (figure 23). A plume with moderate to high ash concentration rose to 5.2 km altitude and extended up to 25 km W. The altitude of the plume increased to 6.1 km drifting E later in the day. A significant SO2 cloud was clearly identifiable in satellite imagery in a 75 km radius around the island. In addition, satellite instruments measured very large plumes of SO2 drifting hundreds of kilometers E, S, and N over the next several days (figure 24).

Figure (see Caption) Figure 23. The new flow at La Palma moved through the upper outskirts of Todoque on 28 September 2021. Photo by Tom Pfeiffer, courtesy of Volcano Discovery.
Figure (see Caption) Figure 24. The TROPOMI instrument on the Sentinel-5P satellite measured very large plumes of SO2 hundreds of kilometers E, S, and N of La Palma during 28, 29, and 30 September 2021. In addition, plumes of SO2 were visible in satellite imagery in a 75 km radius around the island. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Activity during 28-30 September 2021. Effusive activity continued with a sharp decrease in tremor during the day on 28 September. By evening, sustained fountaining was continuing at the N flank vent, while pulsating jets from three vents within the main crater produced strong effusion into both lava flows. The volume of the cone that had formed at the vent was estimated by PEVOLCA to be 10 million m3. Around 2300 local time on 28 September the main lava flow passed on the S side of Todoque Mountain and entered the sea in the area of Playa de Los Guirres in Tazacorte. A continuous cascading flow of lava fell over the cliff (figure 25) and began to form a lava delta. By dawn on 29 September the delta was growing out from the cliff, producing dense steam explosions where the lava entered the sea (figure 26).

Figure (see Caption) Figure 25. A continuous cascade of lava fell over the cliff near El Guirre beach in Tazacorte at La Palma around midnight on 28-29 September 2021. Photo by Angel Medina/EFE, courtesy of RTVE.
Figure (see Caption) Figure 26. By dawn on 29 September 2021 the delta was growing out from the cliff producing dense steam explosions where the lava entered the sea in Tazacorte, La Palma. Image taken from Tijarafe. Photo by Borja Suarez/Reuters, courtesy of RTVE.

By nightfall on 29 September vigorous Strombolian activity was continuing at the pyroclastic cone, and the main lava flow was active all the way to the sea, with a growing delta into the ocean. Ash emissions continued on 29 and 30 September, rising in pulses to 5.2 km altitude and drifting SE, changing to S, SW, and finally NW. Sentinel-2 satellite imagery comparing 25 and 30 September showed the growth of the lava flow during that interval (figure 27). Strombolian and flow activity continued at the fissure vent on 30 September with new surges of activity sending fresh pulses of lava over existing flows (figure 28). The ocean delta continued to grow and reached a thickness of 24 m by the end of 30 September. Mapping of the flow indicated that 870 buildings had been destroyed and the flow covered 3.5 km2 by midday on 30 September (figure 29).

Figure (see Caption) Figure 27. The lava flow at the La Palma eruption traveled downslope to the W between 25 (left) and 30 (right) September 2021. It reached the ocean and began building a delta into the sea late on 28 September. Image uses Atmospheric penetration rendering with bands 12, 11, and 8a. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 28. Fresh pulses of lava flowed over earlier flows at La Palma on 30 September 2021. Photo by Tom Pfeiffer, courtesy of Volcano Discovery.
Figure (see Caption) Figure 29. Continued mapping of the lava flow at La Palma indicated that by midday on 30 September 2021 it covered about 3.5 km2 and 870 buildings had been damaged or destroyed. The progress of the flow at different dates is shown in different colors. The status of the flow as of 1913 on 20 September is shown in red. The status as of 1206 on 26 September is shown in green. The status as of 1136 on 29 September is shown in orange, and the status as of 1217 on 30 September is shown in purple. Courtesy of Copernicus EMS.

Late on 30 September 2021 two new vents emerged about 600 m NW of the base of the main cone. They created a new flow about 450 m away from, and parallel to, the main flow that crossed a local highway by the next morning and continued moving W (figure 30). Multiple vents also remained active within and on the flank of the main cone. As of 1 October, the front of the delta was 475 m out from the coastline and 30 m deep. IGN concluded that the volume of material erupted through the end of September was approximately 80 million m3.

Figure (see Caption) Figure 30. Two new vents opened about 600 m NW of the base of the cone late on 30 September 2021. The new flows joined and headed W parallel to the main flow. Drone footage of the new vent was taken on 1 October by the Bristol Flight Lab, courtesy of INVOLCAN.

Information Contacts: Instituto Geographico Nacional (IGN), C/ General Ibáñez de Íbero 3, 28003 Madrid – España, (URL: https://www.ign.es/web/ign/portal, https://www.ign.es/web/resources/volcanologia/html/CA_noticias.html); Instituto Volcanologico de Canarias (INVOLCAN) (URL: https://www.involcan.org/, https://www.facebook.com/INVOLCAN, Twitter: INVOLCAN, @involcan); Steering Committee of the Special Plan for Civil Protection and Attention to Emergencies due to Volcanic Risk (PEVOLCA), (URL: https://www3.gobiernodecanarias.org/noticias/los-planes-de-evacuacion-del-pevolca-evitan-danos-personales-en-la-erupcion-volcanica-de-la-palma/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus EMS (URL: https://emergency.copernicus.eu/, https://twitter.com/CopernicusEMS ); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Cabildo La Palma (URL: https://www.cabildodelapalma.es/es/algunas-de-las-imagenes-de-la-erupcion-volcanica-en-la-palma); El Periodico de Cataluny, S.L.U. (URL: https://www.elperiodico.com/es/fotos/sociedad/erupcion-palma-imagenes-12093812/12103264).Corporación de Radio y Televisión Española (RTVE) (URL: https://rtve.es, https://img2.rtve.es/imagenes/casas-todoque-alcanzadas-lava-este-miercoles-22-septiembre/1632308929494.jpg); Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/); Volcanes de Canarias (URL:https://twitter.com/VolcansCanarias/status/1441711738983002114); Agence France-Presse (AFP) (URL: http://www.afp.com/ ); Bristol Flight Lab, University of Bristol, England (URL: www.https://flight-lab.bristol.ac.uk, https://twitter.com/UOBFlightLab).

Weekly Reports - Index


2021: September | October | November


24 November-30 November 2021 Citation IconCite this Report

The eruption at La Palma continued during 24-30 November, characterized by Strombolian explosions and lava fountaining/jetting from multiple existing and new vents, advancing and sometimes branching lava flows, and daily ash emissions. The eruption began on 19 September and had been active for 70 days by 28 November. Volcanic tremor levels were low, though during 28-29 November levels fluctuated and were sometimes intense. Seismicity persisted at variable but elevated levels, with earthquake locations distributed at depths of 10-15 km and 30-40 km. Deeper seismicity decreased to low levels by 27 November while mid-level seismicity intensified through the week. The largest earthquake was a M 5 recorded at 0935 on 29 November at a depth of 36 km. A M 4.2 earthquake at a depth of 13 km was the largest event at mid-levels since the eruption began.

Several vents in the main cone continued to effuse lava, eject tephra, and emit ash-and-gas plumes. Lava moved W through pre-existing lava channels, lava tubes, over older flows, and over new ground, increasing the flow field that consists of overlapping flows (numbered 1-11) and two lava deltas. During 23-25 November flows 4, 5, and 7 at the N end of the flow field continued to widen and advance, filling in gaps between the flows, and fed the N delta. Flows 1, 2, and 9 minimally fed the S delta. There was also an increasing number of active flows on the flow field as lava overflowed some channel margins or broke out of tubes. At around 0900 on 25 November the lava effusion rate increased at main crater vents, and around 1100 two small E-W fissures opened less than 1 km S of the main cone. The easternmost vent produced a fast-moving lava flow that traveled along the S margin of flow 10 and around the S side of Montaña Cogote. The flow advanced through the Las Manchas cemetery and inundated parts of a solar power plant; the newly covered areas were part of the exclusion zone and had already been evacuated. The flow rate slowed to about 25 m per hour and joined flow 11 by 26 November. An overflow of lava SW of flow 3 produced a small branch oriented laterally the flow margin. Flow 7 widened during 26-27 November as it continued to be fed.

New vents opened on the NE flank of the main cone at around 0300 on 28 November, producing fluid lava flows that traveled N and NW through the Tacande area and crossed the LP-212 road. The opening of the new vents was followed by landslides on the NW flank of the cone. In a video taken at 1145 lava fountains rose from one of the vents while another ejected tephra. Dense billowing ash plumes rose from the main crater. Video taken at 1050 on 29 November showed lava flows transporting large blocks downslope. Another video showed lava flowing at a rate of about 1 m per second. By noon the vents in the main cone became notably less active and remained only intermittently active through 30 November. Several streams of lava from the new vents continued to advance NW and then W along older flows and split into two branches. One branch traveled through tubes and fed flows 4, 5, and 7 between Montaña de Todoque and Montaña de La Laguna and the other descended towards flow 8 (the most northern flow). Flows inundated previously untouched forest and agricultural land. By 30 November the width of the flow field had grown to 3.35 km and lava covered an estimated 11.34 square kilometers. The number of people that had evacuated and were staying in hotels had increased to 537.

Gas and ash emissions again impacted island residents. Suspended ash and high concentrations of volcanic gases triggered a few air-quality alerts mostly affecting the W part of the island; authorities warned residents of some affected areas to stay indoors. Essential personnel were occasionally barred from entering the exclusion zones to irrigate crops and remove ash from streets and buildings. Heavy rains during 25-26 November triggered warnings from authorities to stay away from steep slopes and drainages due to the possibility of lahars. Ash plumes rose as high as 4.8 km and drifted E during 24-26 November, and continued to deposit ash at La Palma airport. By 27 November winds had shifted and the ash at the airport had been removed, allowing it to open for the first time since 20 November. Ash plumes rose 1.4-3.5 km and drifted SW and SSW during the rest of the week. Sulfur dioxide emissions continued an overall downward trend during 23-26 November, though heavy rain sometimes prevented ground-based measurements. The trend was broken on 27 and 28 November with values of 30,000-49,999 tons per day, characterized as “very high.” During 29-30 November emission values were “high” or between values of 1,000 and 29,999 tons per day.

Sources: Instituto Volcanológico de Canarias (INVOLCAN); Instituto Geográfico Nacional (IGN); Gobierno de Canaries


17 November-23 November 2021 Citation IconCite this Report

The eruption at La Palma continued during 17-23 November, characterized by Strombolian explosions and lava fountaining/jetting from multiple vents, advancing and sometimes branching lava flows, and daily ash emissions. Eruption details are based on official sources including daily PEVOLCA (Plan de Emergencias Volcánicas de Canarias) steering committee summaries. Volcanic tremor levels increased during 16-17 November then returned to low levels. Seismicity persisted at variable but elevated levels, with earthquake locations distributed at depths of 10-15 km and 30-40 km. The number of located earthquakes peaked at 230 during 17-18 November, which was the highest daily total recorded since the beginning of the eruption. Additionally, a M 5.1 earthquake was detected at 0208 on 19 November at a depth of 36 km; this event was the largest earthquake recorded since the swarm heralding the magmatic intrusion began on 11 September. Dozens of events were felt by residents during the week.

Several vents in the main cone continued to effuse lava, eject tephra, and emit ash-and-gas plumes at varying intensities. Lava was transported W through pre-existing lava channels and tubes or descended over older flows and over new ground, increasing the area of the flow field, which was made up of overlapping flows numbered 1-11. Flows 1, 2, and 9 had merged and contributed lava to the main delta, which had grown more than 0.43 square kilometers by 23 November.

In the evening of 18 November lava overflowed one of the craters in the main cone and increased the lava-flow rate; crater overflows were again visible on 21 November. Lava filled in some gaps between the N flows, numbers 4 and 7. During 17-18 November flow 5 advanced along the N base of Montaña de Todoque and along the S edge of flow 4 which had also advanced and widened. By 21 November flow 4 had merged with flow 7, the branch to the N. Flow 7 advanced W and by 1303 on 22 November lava reached the sea at La Viña Beach. Plumes ranging from white to dark gray rising from the new ocean entry prompted an air quality warning to be issued for about 3,000 people living in areas of San Borondón, Tazacorte, El Cardón, and Camino Los Palomares, all within about a 2 km radius to the N and NE. A ban on maritime activities near the entry also went into effect, though it was lifted the next morning. By 23 November the width of the flow field had grown to 3.3 km and lava covered an estimated 10.73 square kilometers.

Sulfur dioxide emissions fluctuated at high levels between 900 and 32,000 tons per day, remaining at levels lower than the peak values of 50,000 tons per day recorded on 23 September. Suspended ash and high concentrations of volcanic gases triggered a few air-quality alerts mostly affecting the W part of the island; authorities warned residents of some affected areas (Los Llanos de Aridane, Tazacorte, El Paso, Puntagorda, and Tijarafe in particular) to stay indoors. High values of volcanic gases led to the evacuation of essential personnel working in plants in the exclusion zone during 16-17 November. After a lull in activity for a period of time on 17 November, Strombolian activity and ash emissions resumed later in the day and prompted a VONA the next day. Video posted at 1615 on 18 November showed jetting lava and billowing ash plumes containing some lightning flashes. Sometimes dense and billowing ash-and-gas plumes rose 2-3.7 km (6,600-12,100 ft) a.s.l. and drifted NE, E, ESE, and SW during the rest of the week. The 20 November PEVOLCA reported that the total volume of emitted tephra during the eruption had surpassed 10 million cubic meters. Ash deposits on runways and unfavorable flying conditions disrupted flights at La Palma airport during 21-23 November.

Sources: Instituto Volcanológico de Canarias (INVOLCAN); Instituto Geográfico Nacional (IGN); Gobierno de Canaries; Aena


10 November-16 November 2021 Citation IconCite this Report

The eruption at La Palma continued during 10-16 November, characterized by Strombolian explosions and lava fountaining from multiple vents, advancing and sometimes branching lava flows, and daily ash emissions. Eruption details are based on official sources including daily PEVOLCA (Plan de Emergencias Volcánicas de Canarias) steering committee summaries. Volcanic tremor levels continued to be low. Seismicity at intermediate depths of 10-15 km remained low compared to previous weeks. The number and magnitude of deeper events, 20-38 km deep, increased during 9-11 with the highest number of deeper events recorded since the beginning of the eruption; the rate of deeper events decreased during 11-12 November. Two M 5 earthquakes were the largest events recorded during the week, occurring at 0447 on 11 November at a depth of 30 km and at 0756 on 13 November at a depth of 38 km.

Several vents in the main cone continued to effuse lava, eject tephra, and emit ash-and-gas plumes. The activity levels varied in intensity, though decreased overall during the week. By 10 November the highest point of the main cone was 1,130 m a.s.l. Lava continued to flow west through pre-existing lava channels and tubes, over older flows, and occasionally formed new branches. Occasional short-lived overflows of lava ponds occurred at the main crater vents. The flow field was made up of overlapping flows numbered 1-11. Lava filled in some gaps between the N flows, numbers 4 and 7, though lava-flow advancement was mainly focused at and near the ocean entries, with lava feeding flows 1, 2, and 9. The first flow, number 1, had previously reached the sea, and flow 9 had stalled before reaching the coast. Flow number 2 (in between 1 and 9) had reached the sea at Los Guirres Beach on 9 November, and sent a new branch N that entered the ocean at 0144 on 10 November. Flow 2 continued to advance during the week, filling in gaps between flows 1 and 9, and adding to the new lava delta laterally. Areas of high turbidity in the water column as far as 1 km from the lava front were caused by underwater lava advancement. By 16 November the width of the flow field had grown to 3.2 km.

Sulfur dioxide emissions fluctuated at high levels between 7,000 and 43,000 tons per day on most days, but was as low as 2,000-4,000 tons per day on 13 and 15 November. Sometimes dense and billowing ash-and-gas plumes rose 1.8-3.1 km (5,900-10,200 ft) a.s.l. and drifted in multiple directions. Ash emissions intensified on 14 November. Clean-up of ash from streets and homes was conducted by both authorities and residents. According to a news report a resident that was granted permission to enter the exclusion zone to clean ash off of his roof died in the neighborhood of Corazoncillo of unknown causes. Fresh ash emissions from the volcano, and ash resuspended by people and vehicle movements, triggered a few air-quality alerts issued during 14-16 November; authorities warned residents of some affected areas (Los Llanos de Aridane, Tazacorte, El Paso, Puntagorda, and Tijarafe) to stay indoors. On 16 November ash drifted W and SW and caused some flight disruptions at the La Palma airport.

Sources: Instituto Volcanológico de Canarias (INVOLCAN); Instituto Geográfico Nacional (IGN); Gobierno de Canaries; EL PAÍS


3 November-9 November 2021 Citation IconCite this Report

The eruption at La Palma continued during 2-9 November, characterized by Strombolian explosions and lava fountaining from multiple vents, advancing and branching lava flows, and daily ash emissions. Eruption details are based on official sources including PEVOLCA (Plan de Emergencias Volcánicas de Canarias) steering committee daily summaries. Volcanic tremor levels decreased around noon on 2 November and again during 4-5 November, and remained at low levels through 9 November. Most earthquakes were located 10-15 km deep (though some were as deep as 38 km); dozens of events were felt by local residents and some were felt across the entire island. At 0824 on 3 November a M 4.8 located 36 km deep was followed three seconds later by a M 5 at 35 km depth; they were perceived by residents as one long event; the M 5 was the largest earthquake of the week. Two other notable earthquakes occurred consecutively; a M 4.6 at a depth of 37 km at 1807 on 7 November was followed eight seconds later by a M 4.5 at 38 km depth. Some of the larger earthquakes were felt across La Palma Island, as well as in some areas of La Gomera and Tenerife islands. In general, decreases were observed in the levels of seismicity, tremor, deformation, and sulfur dioxide emissions, though by 9 November the data continued to fluctuate with no consistent trends.

The vents in the main cone continued to effuse lava, eject tephra, sometimes producing dense billowing ash-and-gas plumes that rose 2.5-3.5 km (8,200-11,500 ft) a.s.l. and drifted WSW, SW, and SSE. Several vents in the main cone were active, though the activity levels varied in intensity throughout the week. Weather conditions and large amounts of emitted ash resulted in air quality alerts issued daily by authorities as they warned residents of some affected areas (Los Llanos de Aridane, Tazacorte, El Paso, Puntagorda, and Tijarafe) to stay indoors; air quality was “extremely unfavorable” on most days then upgraded to “unfavorable” on 9 November. Sulfur dioxide emissions fluctuated at high levels between 9,000 and 31,300 tons per day and showed an overall decrease. On 5 November photos showed sulfur deposits on the E flank on the main cone and in other areas near vents emitting volcanic gases.

Lava continued to flow west through pre-existing lava channels and tubes, over older flows, and occasionally formed new branches. The flows were numbered 1-11. Flow 11 originated at the end of October along the upper central part of the S margin of the flow field, N of Montaña Cogote; by 3 November it was 100 m from the LP-211 road and on 6 November the advancement rate increased. Lava number 2, located between the main flow, number 1, that had reached the ocean on 21 September and flow number 9 which had previously branched off of the main flow to the S, advanced during 8-9 November. The flow reached the sea cliff at Los Guirres Beach and then entered the ocean at 0245 on 9 November. Overall, the flow field covered an estimated 9.84 square kilometers by 8 November.

Sources: Instituto Volcanológico de Canarias (INVOLCAN); Instituto Geográfico Nacional (IGN); Gobierno de Canaries


27 October-2 November 2021 Citation IconCite this Report

The eruption at La Palma continued during 26 October-2 November, characterized by Strombolian explosions, lava fountaining from multiple vents, advancing and branching lava flows, and daily ash emissions. Eruption details are based on official sources including PEVOLCA (Plan de Emergencias Volcánicas de Canarias) steering committee summaries issued daily. Seismicity remained elevated, with most earthquakes located 10-15 km deep (though some were as deep as 38 km); dozens of events were felt by local residents and some were felt across the entire island. A M 5 earthquake was recorded at 0724 on 30 October at a depth of 35 km and was the largest earthquake recorded since the beginning of the eruption. A second M 5 earthquake was recorded at 1852 on 1 November and had a depth of 38 km. Both of these events, as well as some of the other notable earthquakes, were felt across La Palma Island and in some areas of La Gomera and Tenerife islands.

The vents in the main cone continued to effuse lava, eject tephra, and produce sometimes dense and billowing ash-and-gas plumes that rose 2.2-5 km (7,200-16,400 ft) a.s.l. Several vents in the main cone were active, though the activity levels varied in intensity throughout the week. A small collapse of the upper part of the main cone on 26 October caused lava to flow W over previous flows that filled in some small gaps where they had not previously covered. Beginning around noon on 29 October a series of intense and audible explosions occurred for several hours, generating a large amount of ash that was distributed across the valley. The tallest ash plumes were observed during 30-31 October. Audible explosions and significant ash emissions continued intermittently through 2 November, with ashfall affecting the entire W and NW parts of the island. Authorities issued multiple air quality alerts warning residents of some affected areas (Los Llanos de Aridane in particular), to stay indoors and, if going outside, to wear a filtering mask. For a period of time on 31 October the larger explosions were accompanied by shock waves and concurrently, the effusion rate at the NW flank vent notably increased. Sulfur dioxide emissions fluctuated at high levels between 4,990 and 22,000 tons per day during 27 October-2 November and showed an overall downward trend during the last week in October; no estimates were made on 29 October due to technical difficulties.

Lava effused at a high rate from a vent on the NW flank of the main cone, flowing through pre-existing lava channels and tubes, and occasionally breaking out and forming new flows. The lava-flow field was characterized by three main areas: the initial main flow that traveled W, flowing around the S part of Montaña de Todoque, toward the sea and creating a lava delta, a flow that had branched off of the main flow to the S, and the flows that traveled W along the N margins of the main flow. Lava flows sometimes overflowed their channels, forming ephemeral flows that spread laterally, descended short distances, and were also transported downslope in lava tubes. The initial flow that reached the sea and formed the delta was not notably fed and was 30 m thick in some areas. The lava flows that had advanced W along the S side of Montaña de La Laguna was 86 m from the coast of Tazacorte, near the beach of El Perdido. The southern flow had advanced at a low rate and by 28 October was 400 m from the sea by 27 October. Lava that travelled SW over older flows emplaced along the S margins of the flow field overflowed the channel, bifurcated, and quickly advanced 1.5 km W and SW over new ground during 28-30 October. This lava flow continued to advance and by 2 November it was 150 m from the LP-211 road, though the advancement rate had slowed considerably to 1 meter per hour. Overall, the flow field widened to 3.1 km, with most of the expansion occurring along the S margins, and covered an estimated 9.77 square kilometers by 2 November.

Sources: Instituto Volcanológico de Canarias (INVOLCAN); Instituto Geográfico Nacional (IGN); Gobierno de Canaries


20 October-26 October 2021 Citation IconCite this Report

The eruption at La Palma continued during 20-26 October, characterized by Strombolian explosions, lava fountaining from multiple vents, advancing and branching lava flows, and daily ash emissions. Eruption details are based on official sources including PEVOLCA (Plan de Emergencias Volcánicas de Canarias) steering committee summaries issued daily. Seismicity remained elevated, with most earthquakes located 10-15 km deep (though some were as deep as 39 km); dozens of events were felt by local residents and some were felt across the entire island. A M 4.8 earthquake was recorded at 2248 on 19 October at a depth of 39 km, and the largest earthquake recorded since the beginning of the eruption, a M 4.9 at 38 km deep, was recorded at 1634 on 23 October; both of these events were felt across La Palma Island, as well as in some areas of Gomera and Tenerife islands.

The vents in the main cone continued to effuse lava, eject tephra, and produce sometimes dense and billowing ash-and-gas plumes that rose 2.8-4 km (9,200-13,100 ft) a.s.l. Sulfur dioxide emissions fluctuated at high levels between 3,200 and 53,600 tons per day. Four vents in the main cone were active, though the activity levels varied in intensity throughout the week. A new vent opened on 19 October, in an area between the 16 October vent (located 300 m from the SE base of the main cone) and the main cone. The new vent began with explosive phreatomagmatic activity before Strombolian activity commenced. The main cone changed shape, with cycles of partial crater rim and wall collapses and growth as the eruption continued. Explosions and a lava overflow from the main cone were visible at 2000 on 22 October. A partial collapse of the NW flank of the main cone on 23 October intensified ash emissions and sent large blocks downslope; the blocks fell onto another vent, causing lava to spill out into numerous lava flows. Strong explosions were heard at 1230 and lava overflowed a vent on the flanks of the main cone at 1415. On 24 October tall lava fountains rose from at least two vents. During the afternoon, a new vent opened on the W flank and effused lava at a high rate. The vent grew taller and widened during 24-25 October. The vent located at the SE end of the fissure produced slow-moving lava flows that traveled SW. Very intense explosive activity was visible on 25 October. A small collapse of the cone was observed at 1700. At around 2100 a lava lake in the main cone increased in volume, causing a partial collapse of the upper part of the cone, and producing large, detached blocks that were carried downslope by several lava flows. Lava fountains rose about 600 m above the vent.

The lava-flow field was characterized by three main areas: the initial main flow that traveled W, flowing around the S part of Montaña de Todoque, toward the sea and created a lava delta, a flow that had branched off of the main flow to the S, and the flows that traveled W along the N margins of the main flow. Lava flows sometimes overflowed their channels, forming ephemeral flows that spread laterally, descended short distances, and were also transported downslope in lava tubes. The lava flows along the northern margins (the N flow) were the most active; the flow that traveled N of Montaña Todoque had stopped, while the flow to the S of Montaña de La Laguna continued to advance and spread laterally. A lull in lava advancement during 22-23 October allowed for some homeowners to retrieve items from their residences. Lava advanced over some areas in the flow field that were previously unaffected, particularly in Alcalá, and covered an estimated 8.79 square kilometers by 26 October. The farthest end of N flows was less than 100 m from the coastline.

Lava at the delta had reached 120 m water depth and rock fragments from the end of the flow were observed at depths of 360 m. The thickness of the flow at the delta was 10-30 m; lava had filled the upper and middle parts of underwater ravines and covered an area of about 0.11 square kilometers. Scientists observed an absence of marine life around the lava flows.

Sources: Instituto Volcanológico de Canarias (INVOLCAN); Instituto Geográfico Nacional (IGN); Gobierno de Canaries


13 October-19 October 2021 Citation IconCite this Report

The eruption at La Palma continued during 13-19 October, characterized by Strombolian explosions, lava fountaining from multiple vents, advancing and branching lava flows, and daily ash emissions. Eruption details are based on official sources, including PEVOLCA (Plan de Emergencias Volcánicas de Canarias) steering committee summaries. Seismicity continued to be elevated, with most earthquakes located 10-15 km deep (though some were deeper than 35 km); dozens of events were felt by local residents, and some were felt across the entire island. The earthquakes were located generally in the same area where the swarm first began on 11 September, though hypocenters slightly shifted S and E. A M 4.5 earthquake was recorded each day during 14-16 October at depths of 36-37 km, though the largest event recorded on 18 October was a M 4.6 that originated at a depth of 36 km.

The vents in the main cone continued to effuse lava and produced ash plumes that rose as high as 5 km (16,400 ft) a.s.l. A vent located 300 m from the SE base of the main cone was again active by 15 October and produced ash-and-gas emissions at least through 19 October; the vent reactivated simultaneously with a period of increased phreatomagmatic activity at the main vent. Sulfur dioxide emissions fluctuated at high levels between 2,882 tons per day and at least 20,000 tons per day. Sulfur dioxide plumes spread out in multiple directions, drifting NW through Spain, France, and Germany on 19 October.

The lava-flow field was characterized by three main areas: the initial main flow that traveled W, flowing around the S part of Montaña de Todoque toward the sea and creating a lava delta; a flow that had branched off of the main flow to the S; and flows that traveled W along the N margins of the main flow. During 13-19 October the lava flows along the northern margins (the N flow) were most active and were comprised of two main branches. On 13 October a preemptive evacuation of about 400 people from La Laguna in Los Llanos de Aridane was initiated as part of the N flow advanced NW. During 15-19 October large blocks were carried downslope by the advancing N flows, and on occasion, the flows would overflow their channels, forming ephemeral flows that spread laterally and descended short distances. The lava flow reached Montaña de La Laguna, traveled around the S part, and continued W toward the sea. By 19 October the end of the flow was 100-110 m from the coastline. The main and S lava flows were being only minimally fed. Small avalanches in areas with thick ash deposits descended slopes near the Tamanca ravine, generating small ash plumes.

By 19 October the flow field was 2.9 km wide and covered almost 7.8 square kilometers. More than 50 kilometers of roads had been damaged. Lava had engulfed 1,956 buildings, 60 of which were partially damaged, and almost 2.3 square kilometers of crops were lost. About 6,400 people had been evacuated. The Alert Level remained at Red (the highest level on a four-color scale) for affected communities.

Sources: Instituto Geográfico Nacional (IGN); Instituto Volcanológico de Canarias (INVOLCAN); Gobierno de Canaries


6 October-12 October 2021 Citation IconCite this Report

The eruption at La Palma continued during 6-12 October, characterized by Strombolian explosions, lava fountaining from multiple vents, advancing and branching lava flows, and daily ash emissions. Eruption details are based on official sources including PEVOLCA (Plan de Emergencias Volcánicas de Canarias) steering committee summaries. Seismicity continued to be elevated with most earthquakes located 10-15 km deep (though some deeper than 35 km) in the same area where the swarm first began on 11 September; dozens of events were felt by local residents and some were felt across the entire island.

The largest earthquake, at 0816 on 12 October, was a M 4.1 at a depth of 37 km. Sulfur dioxide emissions fluctuated at high levels between 4,522 and 21,868 tons per day. Sulfur dioxide plumes drifted in multiple directions; on 8 October they reached the Caribbean and on 12 October plumes were over northern Africa, Spain, and Portugal. The main cone had at least three effusive vents and another vent to the N was also active. Multiple collapses of parts of the cone sometimes sent large blocks of cooler lava rafting down the flows. The lava delta was fed by numerous streams of lava during most of the week. Plumes of steam containing hydrochloric acid rose from the edge of the lava delta and were quickly dissipated by the wind; local resident were not affected.

On 6 October a breakout lava flow from the W end of the main flow field traveled S between Los Guirres and El Charcó (previously evacuated), destroying crops and buildings. The flow covered about 0.4 square kilometers and was about 350 m from the coast. Ash plumes rose 3-3.2 km (10,000-10,500 ft) a.s.l. during 6-7 October. On 8 October a new vent formed on the main cone and ash plumes rose as high as 3.5 km (11,500 ft) a.s.l. Ash accumulation at the La Palma and Tenerife North (on Tenerife Island) airports caused a temporary shutdown of operations until the ash was removed. On 9 October a collapse of the N part of the cone sent a wide, multi-lobed flow carrying larger blocks NW over older flows that quickly advanced W along the N margins of the flow field, covering crops and destroying buildings in both Todoque and an industrial area. Ash plumes continued to rise from the vents; lightning was visible in the plume at times.

By 10 October the flow field was 1,520 m wide, and covered 4.9-5.7 square kilometers, depending on the source of the estimates. Between 726 and 1,323 buildings had been engulfed by lava and more than 1.3 square kilometers of crops were lost. About 6,000 people had been evacuated. A partial collapse of the cone allowed the inner lava lake to spill out, sending flows and very large cooled blocks downslope. Ash plumes rose 3.5 km a.s.l. and caused ashfall to the S. Video showed lava fountains rising 500 m above the vent late that night. By 11 October the lava delta had grown mainly to the N and S, and was an estimated 0.34 square kilometers in size, though flows feeding it had slowed. Dense dark ash plumes were seen rising from the main vents. The most northern flow had continued to advance and was 300 m from the coast. The flows overtook a concrete plant, prompting authorities to instruct residents in El Paso and Los Llanos de Aridane to remain indoors and take measures to reduce exposure to toxic fumes. On 12 October the advancing northern flow caused the pre-emptive evacuation of the La Laguna area, totaling 700-800 people. The flow continued to cover crops and was 200 m from the coast, but had slowed. The lockdown for El Paso and Los Llanos de Aridane was lifted after air quality improved. Ash plumes from the main vent rose 3.5 km a.s.l. The Alert Level remained at Red (the highest level on a four-color scale) for affected communities.

Sources: Instituto Volcanológico de Canarias (INVOLCAN); Instituto Geográfico Nacional (IGN); Gobierno de Canaries; Advanced geospatial Data Management Platform (ADAM); Asociación Volcanes de Canarias; Instituto Geológico y Minero de España (IGME); Aena; 1-1-2 Canarias


29 September-5 October 2021 Citation IconCite this Report

The eruption at La Palma continued during 29 September-5 October, characterized by Strombolian explosions, lava fountaining from multiple vents, lava flows, and daily ash emissions. Seismicity continued to be elevated with earthquakes located mainly 10-15 km deep (though some were 25-40 km deep) in the same area where the swarm first began on 11 September; dozens of events were felt by residents.

Within the first eight days of the eruption, 21-27 September, an estimated 50 million cubic meters of material had been erupted. Just before midnight on 28 September the lava reached the ocean, producing a steam-and-gas plume; within 45 minutes the lava created a 50-m-high delta. The sulfur dioxide flux was as high as 16,760 tons per day. On 29 September the PEVOLCA (Plan de Emergencias Volcánicas de Canarias) steering committee restated that the 2.5 km and maritime exclusion zones around the vents and ocean entry, respectively, remained in effect; residents were periodically allowed to collect belongings and care for animals and crops. The lava covered almost 4.8 square kilometers, burying or damaging 744 buildings. There were 185 evacuees in a local hotel. Ash plumes continued to rise from the active vents, and IGN noted a decrease in plume altitude to 3.5 km (11,500 ft) a.s.l. on 29 September and then a rise to 5 km (16,400 ft) a.s.l. the next day.

Lava continued flowing to the sea along the same path. The lava delta had grown three times in size by 30 September to an estimated 0.17 square kilometers; the furthest edge of the delta was 450 m from the coast, it had spread laterally 600-800 m, and was as thick as 24 m. PEVOLCA lifted access restrictions for residents of Tazacorte, San Borondón, Marina Alta, Marina Baja, and La Condesa (nearly 4,000 people); they had previously been warned to stay indoors to minimize coming into contact with potentially toxic gas plumes generated from the ocean entry. Restrictions for other residents living near the margins of the flows were also lifted.

Two vents opened about 600 m NW of the main cone on 1 October and within two days had formed small cones. Lava from the vents traveled W and joined the main flow field downslope. The lava delta had extended 540 m from the coastline. Ash plumes rose to 3-5 km a.s.l. and drifted S on 2 October, and sulfur dioxide emissions were 3,401 tons per day.

By 3 October an estimated 946 houses had been completely demolished and 128 had been partially damaged. The width of the flow field was a maximum of 1,250 m and lava tubes were identified in satellite images. The lava delta had developed four lobes being fed by multiple flows and had an estimated area of 0.32 square kilometers. In the afternoon the frequency and intensity of explosive activity increased and bombs were ejected as far as 800 m. Lava fountains rose hundreds of meters and ash plumes rose as high as 4.5 km (14,800 ft) a.s.l. The sulfur dioxide emission rate reached 16,000 tons per day. During 1900-1945 one of the new cones collapsed, which allowed the inner lava lake to spill out, sending flows downslope carrying blocks from the destroyed portion of the cone. Ash plumes rose as high as 4.5 km a.s.l. and explosions ejected bombs on 5 October according to a news report. Some explosions produced dense black plumes that billowed as they rose above the vent. The Alert Level remained at Red (the highest level on a four-color scale) for affected communities.

Sources: Instituto Volcanológico de Canarias (INVOLCAN); Instituto Geográfico Nacional (IGN); EL PAÍS; EL PAÍS; EL PAÍS; EL PAÍS; EL PAÍS; Jorge Eduardo Romero Moyano (University of Manchester); Gobierno de Canaries; 1-1-2 Canarias


22 September-28 September 2021 Citation IconCite this Report

The eruption at La Palma continued during 21-28 September, characterized by Strombolian explosions, lava fountaining from multiple vents, advancing lava flows, and sometimes dense, daily ash emissions. A strong increase in tremor amplitude during the afternoon of 21 September was coincident with intensifying Strombolian activity. Explosive activity again increased on 22 September and dense plumes with abundant amounts of ash rose 3-4.6 km (10,000-15,000 ft) a.s.l. and caused ashfall in areas downwind; ash deposits were 3 cm thick in an unspecified area 1 km from the vents. The main lava flow advanced W towards the coast. Ash emissions significantly increased on 23 September with plumes rising as high as 5 km (16,400 ft) a.s.l. A series of powerful explosions began at 1720 and shock waves could be seen propagating through the emission plumes. Vigorous lava fountaining was continuous. Volcanic tremor amplitude was high and variable, peaking at 1500 on 24 September with the highest values since the eruption started. The peak occurred just before two new vents opened on the flank of the main cone, and then notably decreased afterwards, but remained at high levels. Lava from the new vents rapidly traveled more than 1 km downslope, covering older flows, before slowing to 60-80 meters per hour. According to a news report, the explosions ejected tephra outside of the exclusion zone. An evacuation order was issued in the early afternoon for Tajuya, Tacande de Abajo, and part of Tacande de Arriba, affecting 300-400 people. Three airlines suspended flights to La Palma. The lava flow field had expanded to 1.9 square kilometers, destroyed more than 420 buildings, and covered 15.2 km of roads.

Tremor amplitude decreased around noon on 25 September, along with the intensity of the Strombolian explosions. During 25-26 September ash fell in nearby municipalities and as far as the E coast of the island. On 26 September the PEVOLCA steering committee recommended that residents who had evacuated two days earlier could return. The report described two main lava flows, with a highly fluid northern flow and a southern flow that was 2.5 km long. Sulfur dioxide emissions remained significant with an average rate of 25,000 tons per day, and ash plumes rose as high as 3 km above the vents. Lava continued to advance and flowed through Todoque, crossing the LP-213 road, just W of the main part of the town, at around 1900. The flow was 600 m across at the widest part and the leading edge was 4-6 m tall. Lava fountaining and low-intensity Strombolian explosions persisted. Copernicus EMS estimated that the lava covered 2.37 square kilometers, had destroyed 513 houses, and covered 18.9 km of roads. Multiple lava fountains feeding flows were visible on 27 September though the activity waned for a period of about eight hours. By the evening activity had resumed and low-intensity Strombolian explosions were visible.

Beginning at 0245 on 28 September lava fountains fed a new high-temperature, fast-moving flow that descended on top of older flank flows. The leading edge of the main flow continued to advance W and covered banana greenhouses, burning the plastic and igniting a storage of fertilizer resulting in small explosions and a brown odorous plume. About 140 more structures were covered by flows. In preparation for a possible ocean entry, authorities recommended that residents within a 5 km radius of the coastline keep their doors and windows closed, to stay away from windows in case they break, and to cover faces and skin in case of ashfall. Dense ash-and-gas plumes continued to rise from the main vents, as high as 5 km; the rising plume created gravity waves that looked like ripples moving away from the top of the plume. Late in the day lava reached the coastal area, descended a 100-m-high sea cliff, and by 2302 reached the ocean at Playa de los Guirres. Black-and-white plumes rose from where the lava contacted the water.

Sources: Instituto Geográfico Nacional (IGN); Instituto Volcanológico de Canarias (INVOLCAN); Gobierno de Canaries; EL PAÍS; CNN; EL PAÍS; Toulouse Volcanic Ash Advisory Centre (VAAC); Copernicus Emergency Management Service


15 September-21 September 2021 Citation IconCite this Report

An eruption began at La Palma after about a week of intensifying seismicity that showed hypocenters becoming shallower and moving NW, and significant related inflation. During 17-18 September the PEVOLCA (Plan de Emergencias Volcánicas de Canarias) steering committee (comprised of representatives from multiple agencies, local authorities, and institutions) reviewed mitigation, evacuation, and emergency plans. Helicopter and drone overflights were conducted in areas thought to be at risk from an eruption. IGN reported that during 17-18 September seismicity decreased, though an M 2 felt by local residents was located at 100 m depth, and vertical deformation occurred near the earthquake epicenters.

IGN noted that seismicity intensified during the morning of 19 September, with earthquakes located at 0-6 km depth; a M 4.2 event was recorded at 1116 and vertical deformation increased. Authorities evacuated about 50 residents with reduced mobility and their companions from Las Manchas de Abajo, Jedey, San Nicolás and El Paraíso (El Paso and Los Llanos de Aridane), El Charco (Fuencaliente), La Bombilla (Los Llanos de Aridane and Tazacorte), and El Remo and Puerto Naos (Los Llanos de Aridane). Residents in an area prone to landslides were also evacuated. Other preparations continued at the hospital, in neighborhoods, and at evacuation centers.

At 1510 on 19 September an eruption began in the area of Cabeza de Vaca, in the municipality of El Paso. Observers near the eruption site observed a large explosion that ejected material and produced a gas-and-ash plume; volcanic tremor was recorded by the seismic network. Two 200-m-long fissures aligned N-S opened about 200 m apart. INVOLCAN scientists observed seven vents along the fissures during the initial stage of the eruption. Multiple tall lava fountains fed flows downslope to the W, igniting forest fires. Photos and video posted by IGN showed multiple pulsating fountains fanning out from parts of the fissure. Ash plumes rose about 1.5 km and gas plumes rose 3 km and drifted ESE. The PEVOLCA steering committee briefly raised the Alert Level to Orange, and then to Red (the highest level on a four-color scale) by 1700 for high-risk municipalities directly affected by the eruption. About 5,500 people evacuated with no injuries reported, and authorities recommended that residents stay at least 2 km from the vents. The La Palma airport briefly closed, livestock were evacuated, and education centers were closed along with sections of multiple highways. Later that day INVOLCAN scientists who measured an area of the flows determined an average flow rate of 700 m per hour and temperatures around 1,075 degrees Celsius. By the next day a main cone had formed.

The sulfur dioxide gas emission rate was 6,000-11,500 tons per day during 19-20 September. Satellite data showed a plume of sulfur dioxide drifting 475 km SE and reaching the coastline of Africa by 20 September. A map produced on 20 September by IGN in partnership with Copernicus Emergency Management Service (EMS) showed that the main part of the lava flow had traveled more than 3 km W and another branch extended about 1.5 km WSW. The flows had covered about 1 square kilometer and destroyed an estimated 166 buildings. A news article noted that activity was concentrated at four main vents, the last (and ninth) of which opened at 1956 on 20 September about 900 m from the main vents. Strong lava fountaining continued during 20-21 September and ash fell in the vicinity of the vents. Ash plumes rose 2.4-4.6 km (8,000-15,000 ft) a.s.l. and drifted as far as 55 km SW and S according to the Toulouse VAAC. Sulfur dioxide gas plumes drifted W and E at an altitude of 3 km (10,000 ft) a.s.l. By 0814 on 21 September an updated Copernicus EMS map showed that 350 homes had been covered by lava and the flow field had expanded to 1.54 square kilometers. According to a news report lava up to 12 m thick was advancing at a rate of 200 m per hour. A few hundred more residents evacuated as lava advanced towards Tacande; bringing the number of evacuees to about 5,700. The S lava branch was advancing slowly, at a rate of 2 m per hour. Later that day INVOLCAN stated that increased volcanic tremor amplitude reflected greater intensity of Strombolian explosions at the vents.

Sources: Instituto Geográfico Nacional (IGN); Instituto Volcanológico de Canarias (INVOLCAN); Toulouse Volcanic Ash Advisory Centre (VAAC); Gobierno de Canaries; Gobierno de Canarias; Gobierno de Canarias; Advanced geospatial Data Management Platform (ADAM); Cabildo de La Palma; Cartografía Digital; 1-1-2 Canarias; Aviation24.be; El Periódico; rtvc Ente Público Radio Televisión Canaria; NOTICIAS 8 ISLAS


8 September-14 September 2021 Citation IconCite this Report

Instituto Geográfico Nacional (IGN) and Instituto Volcanológico de Canarias (INVOLCAN) reported that a seismic swarm beneath Cumbre Vieja at the S part of La Palma began at 1618 on 11 September and was likely associated with a magmatic intrusion. The swarm intensified in number of events and magnitude, and by 1600 on 12 September a total of 315 earthquakes had been recorded and ranged 8-13 km in depth. The largest event was a M 2.8 (on the Mb_lg scale). On 13 September a scientific committee comprised of representatives from multiple agencies and institutions raised the Alert Level to Yellow (the second lowest level on a four-color scale) for the municipalities of El Paso, Los Llanos de Aridane, Mazo, and Fuencaliente de la Palma. By 0800 on 14 September 2,935 earthquakes had been detected. Larger events were felt by residents during 13-14 September; the largest earthquake was a M 3.9, recorded at 0600 on 14 September. Overall, the events were becoming shallower (8-10 km) and hypocenters migrated slightly to the W. GPS and tiltmeter networks showed deformation totaling 1.5 cm centered over the clusters of epicenters.

A total of 10 seismic swarms have been detected at La Palma since 2017; one in 2017, one in 2018, five in 2020, and three in 2021. The earthquakes in the previous swarms were deeper, between 20 and 30 km, and were less intense than the current swarm.

Sources: Instituto Volcanológico de Canarias (INVOLCAN); Gobierno de Canarias; Instituto Geográfico Nacional (IGN)


Bulletin Reports - Index

Reports are organized chronologically and indexed below by Month/Year (Publication Volume:Number), and include a one-line summary. Click on the index link or scroll down to read the reports.

10/1971 (CSLP 90-71) Eruption produces lava fountains from three vents

11/1971 (CSLP 90-71) Activity from six different vents through 18 November builds Teneguia cone

06/1996 (BGVN 21:06) No surface deformation detected

10/2021 (BGVN 46:10) First eruption since 1971 starts on 19 September; lava fountains, ash plumes, and lava flows




Information is preliminary and subject to change. All times are local (unless otherwise noted)


October 1971 (CSLP 90-71)

Eruption produces lava fountains from three vents

Card 1305 (27 October 1971) Gas and tephra emission after several days of seismicity

The following cable was received from E.M. Fournier d'Albe on 27 October. "On 26 October after several days microseismic activity fissures opened in southern extremity Isla de La Palma Canaries with emission of gases and ejection rock fragments. No lava emission yet observed. Spanish Institute Geological Research sending team to observe eruption."

Card 1307 (28 October 1971) Three vents generated lava fountains and flows that reached the sea

The following cable was received from E.M. Fournier d'Albe on 28 October. "On 26 October 1640 GMT through the opened fissure mentioned in the previous report emission of gases and tephra started. Three main vents are working simultaneously. The vents evolved to lava fountains and formed two main lava flows which reached the sea at the southern tip of the island. Prof. Fuster and teams from Research Council of spain and University of Madrid and La Languna will arrive at La Palma 27 and 28 October."

Information Contacts:
Card 1305 (27 October 1971) Jose M. Fuster-Casas, University of Madrid, Spain; E.M. Fournier d'Albe, UNESCO, Paris, France.
Card 1307 (28 October 1971) Jose M. Fuster-Casas, University of Madrid, Spain; E.M. Fournier d'Albe, UNESCO, Paris, France.


November 1971 (CSLP 90-71)

Activity from six different vents through 18 November builds Teneguia cone

Card 1309 (02 November 1971) Northern vent builds spatter cone 180 m high

"...during 28 through 30 October only three vents were active. The fracture is 300 m long, its strike being 345 degrees. The northern vent throws lapilli and large bombs to a height of 500-700 m. It has a rhythm of 45 pulses per minute. This vent has built a spatter cone 180 m high and has spread a thin cover of lapilli over the area SE of the cone. The southern vent only throws bombs and scoriae. Lava is emitted through the upper vent and through a point in the middle of the fracture of the southern end of the island 2,500 m away from the vent. The flows from the central vent reached the sea forming a new platform. The lavas are alkaline basalts with hornblende phenocrysts. Casualties have happened but there is very little damage reported by Fuster."

Card 1310 (04 November 1971) Description of lava composition

The following cable from Professor Fuster was received on 4 November. "Teneguia volcano mineralogical lava composition 10 per cent of phenocrysts, including 5 DF augite 3 of basaltic hornblende of ore. Ninety per cent matrix containing mainly ore and augite and less abundant plagioclase microlites. Some samples have the same phenocrysts in a glassy matrix with plagioclase microlites."

Card 1311-1311a (04 November 1971) Eruptions and lava flows during 31 October-4 November

The following report was received through the courtesy of the Office of Naval Research, Washington, D.C., via Carl Hartdegen, Associate Director, Palisades Geophysical Institute, Sofar Station, Bermuda Island, who telephoned the Center and gave the following report radioed from the Hydrophone Station, La Palma, Canary Islands.

31 October. The activity of the fissure is located in two vents; the northern one, Teneguia One, is the most active erupting thick blocky lava flows which reached the sea to the E of the lighthouse of Fuencaliente. The emission of scoria bombs and lapillus is practically continous. The cinder and spatter cone that has been formed reaches 150 m and changes its form very quickly. The southern vent, Teneguia Two, emits only blocky lava flows which fall from the sea cliff to the sea. An exogenous dome is forming in this area, south of Teneguia One.

1 November. The activity of hot vents increases. Teneguia One emits a less viscous lava and the dome in the area of Teneguia Two also grows. At noon a new vent, Teneguia Three, opened 300 m to the north of Teneguia One. This vent erupts intermittently bombs and scoria bombs but no lava flow. During the afternoon in the Teneguia Two dome, multiple fissures began to appear and it started to collapse, fracture, and slumping slowly to the SE.

2 November. The activity of Teneguia One is similar to the previous days. Teneguia Three increases its activity during the morning, decreases the frequency and magnitude of the explosion in the afternoon. During the night it emits only gases. The dome of Teneguia Two has changed to a huge heap of lava block with secondary lava flows.

3 November. Teneguia Two emits very viscous lava flow and continues to emit bombs and lapillus relatively slowly 1-3 m/hour in the frontal part. Teneguia Three emits only some gases. Teneguia One also less active than yesterday. " The lava of the eruption is always anchibrolic trachy basalt and changes with time to a more vesicular type reported by Fuster-Casas."

The following report from Dr. Fuster-Casas was relayed to the Center by Leslie Schofield, Palisades Geophysical Institute, on 5 November.

4 November. The most important vent, Teneguia One, has emitted abundant lava flows that are always of block type. The flows have reached the seas to the E of the lighthouse. Aerial projections are less abundant than previous days. The other vents, Teneguia II and Teneguia III have been inactive and emitted only gases."

Card 1314-1314a (08 November 1971) Activity continues during 5-7 November; lava flows reach the sea

The following report was received through the courtesy of the Office of Naval Research, Washington, D.C.

5 November. Teneguia No. 1 has continued its activity of aerial projection and lava emission. A vertical crack has grown from the rim to the base of its cone. The cone has reached at this moment about 100 m from the surrounding plain. Teneguia No. 2 has had intermittent outbursts of aerial projection and during the night of 5-6 Nov. had enormous quantity of lava running in four lava flows from the western sea-cliff to the sea. Teneguia No. 3 has emitted only a little smoke and in an intermittent way.

6 November. During the early hours of this morning all the southern wall of the cone of the main vent, Teneguia No. 1, collapsed, and now the direction of the lava flows from this vent runs to the south towards Teneguia No. 2. At 1245 GMT all the materials of the former cones between Teneguia No. 1 and Teneguia No. 2 collapsed and a new cloud of pyrotechnic dust and gases at high temperatures ascended from this place falling over SW seaslope. This cloud ran also in NW direction along the western coast of island. During the afternoon and evening continous lava flows from Teneguia No. 1 and Teneguia No. 2 reached the sea on the SW coast.

7 November. The only change in the activity of Teneguia Volcano, that continues its aerial projections and outbursts of lava, is the apparition of fumaroles at crack in the western slopes of Teneguia No. 1 vent.

Card 1315 (10 November 1971) New vent opens on 9 November with strong bomb ejections

The following report was transmitted from Dr. Fuster-Casas.

8 November. The activity of Teneguia Volcano remains as during 7 November. Teneguia One vent emits abundant blocky lava which reaches the sea W of Fuencaliente lighthouse and projects continously lapilli and lava bombs. Teneguia Two and Three remain inactive. The fissures between Teneguia One and Three are growing steadily and new ones began to appear on the SW slope of the cone of Teneguia Three. The fissures emitt abundant white gases, rich in SO2.

9 November. At 2200 last night a new vent, Teneguia Four, was opened in the N-S fissure located in the place where the fumaroles were stronger. The new vent consists of three openings that emit gases at great pressures and project lava bombs 100 to 150 m high. During the night the three openings have built a spatter cone 20 m high and changed into a double jet that ejects two columns of incandescent gases and pulverized lava at a great pressure. The double jet sounds like the engine of a jet plane taking off. The activity of fumarolic area is growing and Teneguia One remains as in former days. Teneguia Two and Three remain inactive."

Card 1316 (12 November 1971) Increased activity at all active centers

The following report from Dr. Fuster-Casas was telephoned to the Center by Kevin Laudadio.

10 November. Teneguia One emits more lapilli than preceding days. The lava flowing from its center is more viscous and flows very slowly, forming blocks 5 to 25 m long. The lapilli shower is more abundant in the north SW zone of the volcano.

Teneguia Four continues acting as a powerful jet engine expelling a moderate amount of lava lumps and lapilli; the spatter cone formed around the double vent coalesces with the N slope of Teneguia One cone.

At 0345Z a little vent was opened 75 m ENE of Teneguia IV vent in the fumarolic area located between Teneguia One and Teneguia Three cones. The white gases of the fumarole formed white sulfur deposits in the surrounding field.

The activity of fumarole increased until 2200 Z but afterwards production of gases was smaller.

In the last hours of the day activity of all active centers inreased: Teneguia One emits abundant fluid lava through five or more points in the N-S fissure. In the Teneguia Four NE zone, five little vents are acting in the same forrm and rhythm as Teneguia Four.

Card 1317-1317a (15 November 1971) Continued activity from six centers during 11-14 November

The following report from Dr. Fuster-Casas was received on 15 November.

11 November. Teneguia One was very active during all the day. The effusion of the fluid lava started last night changed to a more viscous lava early this morning. During all the day projected continously lava fragments up to 400 m high. Teneguia Four acted exactly like the previous day increasing its activity from 2240 Z on. The new vents opened have formed two small spatter cones in the N slope of Teneguia Five, which started with two openings ended with one. The other one, Teneguia Six, had a single opening. Both centers were very active, expelling a powerful jet of gas and fragments of lava and emitting two small lava flows in a northeasterly direction at 0700 Z. The fumarole field has the same intensity as the last hours of yesterday.

12 November. Teneguia One, Four, and Five are sending lava lumps, scoria and lapilli continously. Teneguia One produces pyroclastic material with about 20 pulses per minute. Teneguia Four and Five alternate in periods with pulsating emissions and periods of continuous jet emission, and periods of continous jet emission, jointed by big noise. The spatter cone of Teneguia Four and Five are growing continuously reaching 50 and 25 m respectively; they coalesce with Teneguia One cone which reaches about 110 m.

Teneguia Six spatter cone is being buried by Teneguia Five. The lapilli and scoria from the vents have changed to a more vitreous black and vesiculated-type which floats on the sea; there are some fragments of white pumice, perhaps formed by fussion of phonolitic rock of the substrata.

Teneguia One keeps the emission of viscous lava which reaches the sea on the W coast. Teneguia Five has produced some short flows.

13 November. In the morning Teneguia Four emitted abundant lava which reached the W coast in the afternoon. Meanwhile, Teneguia One increases its activity emitting more lava than usual; this lava flows to the W coast by four branches. The lava is more fluid and has some olivine phenyl crystals. The aerial projections are abundant in all active vents, Teneguia Four, Five, and Six. After 2000 Z the emission of lava is less abundant.

14 November. The intensity of the eruption was less strong than yesterday. Teneguia One emits lava, lapilli and bombs. Teneguia Four, Five and Six emit only lapilli and some bombs and scoria."

Card 1318-1318a (19 November 1971) Complex cone growth and collapses during intense activity

The following report from Dr. Fuster-Casas was received on 19 November.

15 November. The activity of the volcano increased during the morning but maintained the same characteristics as the previous day. Teneguia One vents were pouring lava flows in an intermittent way. Teneguia Four and Five alternate the projection of jets of gases with the emission of clouds of lapilli. After a period of being practically inactive, at 1245 Z that lasted about half an hour, the Teneguia Five erupted a big lava flow that nearly reached the road to the lighthouse of Fuencaliente in a southeasterly direction. During the afternoon Teneguia One and Teneguia Four were increasing their activity with continuous projection of scoria and bombs that continued until midnight. The scoria and cinder cones of Teneguia One, Four, Five, and Six coalesced. The height is 125 m on the previous ground.

16 November. The activity of the several craters was intense. Teneguia One continues pouring blocky lava in six flows which increase in velocity in the scarp, adjoining the W coast where the lava is forming six blocky deposits. Teneguia Four is as active as Teneguia One, forming an elongated crater with at least four projection points--a line in a NW direction. Teneguia Six is acting in the same way with three or four projection points--a line in a NNE trend--and was pouring lava from their bases.

Teneguia Five was less active. Between Teneguia Four and Teneguia Five there are two little openings which emit continous bright flames and a few lava blocks. Teneguia One and Four send intermittently big columns of scoria and lapilli which cover the previous lava flows and the surroundings especially in the SE direction. Teneguia Six projects mainly scoria and lava lumps. The lava is changing to a more olivine type.

17 November. During the night of the 16th to the 17th the cone of Teneguia Four has grown steadily and buried the vents of Teneguia Five and Teneguia Six. A new opening was formed just under the NE rim of this crater. The whole day both Teneguia One and Four have continued emission of aerial projections with enormous amounts of lapilli and lava flows, the former one in a more intermittent and less powerful way. The lava from Teneguia Four is forming an intense platform at the foot of the W sea cliff that penetrates into the sea. During the afternoon a part of the N rim of the Teneguia Four vent collapsed under its own weight and its incandescent materials originated a big secondary flow of semi-fluid scoria and lava that filled the area between the main volcano and the little cone of Teneguia Three.

18 November. At 0130 Z Teneguia six started to produce fluid lava flows from an opening at the cone base. Teneguia Four decreased its lava emission. Teneguia One, Four and Six project simultaneously scoria, lapilli, and lava lumps; Teneguia One and Six with pulses, Teneguia Four continuously. Until noon Teneguia Six had periods of fast production of lava flows and periods of attenuated activity; until midnight only activity was emission of moderate amounts of gas from the vents. Seismic agitation stopped at the same time as the volcanic activity.

Information Contacts:
Card 1309 (02 November 1971) Jose M. Fuster-Casas, Instituto Lucas Mallada, Madrid, Spain; Sr. Firmado, special delegate of the government of the Canary Islands.
Card 1310 (04 November 1971) Jose M. Fuster-Casas, Instituto Lucas Mallada, Madrid, Spain.
Card 1311-1311a (04 November 1971) Jose M. Fuster-Casas, Instituto Lucas Mallada, Madrid, Spain; Palisades Hydrophone Station, La Palma Island, Canary Islands, Spain; Carl Hartdegen, Palisades Geophysical Institute Sofar Station, Bermuda.
Card 1314-1314a (08 November 1971) Jose M. Fuster-Casas, Instituto Lucas Mallada, Madrid, Spain; Palisades Hydrophone Station, La Palma Island, Canary Islands, Spain; Kevin Laudadio, Palisades Geophysical Institute Sofar Station, Bermuda.
Card 1315 (10 November 1971) Jose M. Fuster-Casas, Instituto Lucas Mallada, Madrid, Spain; Palisades Hydrophone Station, La Palma Island, Canary Islands, Spain; Kevin Laudadio, Palisades Geophysical Institute Sofar Station, Bermuda.
Card 1316 (12 November 1971) Jose M. Fuster-Casas, Instituto Lucas Mallada, Madrid, Spain; Palisades Hydrophone Station, La Palma Island, Canary Islands, Spain; Kevin Laudadio, Palisades Geophysical Institute Sofar Station, Bermuda.
Card 1317-1317a (15 November 1971) Jose M. Fuster-Casas, Instituto Lucas Mallada, Madrid, Spain; Palisades Hydrophone Station, La Palma Island, Canary Islands, Spain; Kevin Laudadio, Palisades Geophysical Institute Sofar Station, Bermuda.
Card 1318-1318a (19 November 1971) Jose M. Fuster-Casas, Instituto Lucas Mallada, Madrid, Spain; Palisades Hydrophone Station, La Palma Island, Canary Islands, Spain; Kevin Laudadio, Palisades Geophysical Institute Sofar Station, Bermuda.


June 1996 (BGVN 21:06) Citation IconCite this Report

No surface deformation detected

A March 1996 EDM survey of the active Cumbre Vieja rift volcano indicated no significant surface deformation since installation of the network in October 1994. The network contains 11 benchmarks (incorporating two Spanish survey triangulation pillars) and was measured using the infrared EDM method. Together with one 3-component seismic station NE of the main rift, the network provides the only current means of monitoring activity on the island.

The deformation network covers the area affected by faulting associated with the July 1949 eruption (figure 1), a zone where W-facing normal faults showed a maximum vertical displacement of ~4 m. The Cumbre Vieja ridge lies between the two 1949 eruptive centers (Duraznero and San Juan). Eyewitness accounts (Bonnelli, 1950) and detailed mapping of the eruptive products showed that during the 1949 eruption, fault displacements also had westward components with downslope movement on the volcano's flanks. La Palma is comparable in form and structure to other Canary Islands that have undergone large-scale slope failure. Steep topography, together with the prospect of a future magma intrusion, cause concern for the long-term stability of the Cumbre Vieja ridge.

Figure (see Caption) Figure 1. Sketch map of the Cumbre Vieja rift volcano showing the distribution of benchmarks, vents, and faults associated with the July 1949 eruption at La Palma. Courtesy of J.L. Moss and W.J. McGuire.

The wedge-shaped island of La Palma contains two large volcanic centers. The northern one is cut by the massive Caldera Taburiente. The southern Cumbre Vieja rift volcano, oriented N-S, has been the site of historical eruptions recorded since the 15th century. An eruption from the S tip of La Palma in 1971 produced the Teneguia cinder cone. Fissure-fed eruptions from vents ~1 km S of the 1677 San Antonio cone produced lava flows that reached the SW coast.

Reference. Bonnelli, R., 1950, Contribucion al estudio de la erupcion del volcan del Nambroque o San Juan (Isla de la Palma), 24 de Junio - Agosto de 1949: Instituto Geografico y Catastral, Madrid, Spain.

Information Contacts: J.L. Moss, W.J. McGuire, and S.J. Day, Center for Volcanic Research, Cheltenham & Gloucester College, Francis Close Hall, Swindon Road, Cheltenham GL50 4AZ, United Kingdom; S.J. Saunders, Brunel University, Department of Geography & Earth Science, Borough Road, Isleworth, Middlesex TW7 5DU, United Kingdom; J-C. Carracedo, Estacion Volcanologica de las Canarias, Tigua Carretera de la Esperanza 3, Apartado de Correos 195, 38206 La Laguna, Tenerife, Canary Islands, Spain.


October 2021 (BGVN 46:10) Citation IconCite this Report

First eruption since 1971 starts on 19 September; lava fountains, ash plumes, and lava flows

Multiple eruptions have occurred during the last 7,000 years at the Cumbra Vieja volcanic center on La Palma, the NW-most of the Canary Islands. The eruptions have created cinder cones and craters, and produced fissure-fed lava flows that reached the sea a number of times. Eruptions recorded since the 15th century have produced mild explosive activity and lava flows that damaged populated areas, most recently at the southern tip of the island in 1971. During the three-week eruption in October-November 1971, eruptive activity created a new cone, Teneguia, that had as many as six active vents (CSLP 90-71), and blocky lava flows that reached the sea on the SW flank.

A new eruption began at La Palma on 19 September 2021 in an area on the SW flank of the island about 20 km NW of the 1971 eruption, after a multi-year period of elevated seismicity. Two fissures opened and multiple vents produced lava fountains, ash plumes, and flows that traveled over 5 km W to the sea, destroying hundreds of properties in their path (figure 2). Activity through the end of September is covered in this report with information provided by Spain’s Instituto Geographico Nacional (IGN), the Instituto Volcanologico de Canarias (INVOLCAN), the Steering Committee of the Special Plan for Civil Protection and Attention to Emergencies due to Volcanic Risk (PEVOLCA), maps from Copernicus EMS, satellite data, and news and social media reports.

Figure (see Caption) Figure 2. A 3D-rendering of the extent of lava flows from the Cumbra Vieja eruption on La Palma as of 15 October 2021 is shown in red with flows from earlier eruptions shown in tan. Data provided by Copernicus EMS and IGN, courtesy of INVOLCAN.

Precursor seismicity. In early July 2017 IGN enhanced their Volcanic Surveillance Network at La Palma to include four GPS antennas, five seismic stations, and four hydrochemical groundwater control points. A seismic swarm of 68 events located on the southern third of the island was recorded during 7-9 October 2017. It was the first of a series of seismic swarms recorded during 2017-2021 (table 1) located in the same general area. This first swarm was followed by a similar set of events a few days later during 13-14 October. The magnitudes of the events during October 2017 (given as MbLg, or the magnitude from the amplitude of the Lg phase, similar to the local Richter magnitude) ranged from less than 1.5 to 2.7, and they occurred over a depth range of 12-35 km. The next seismic swarm of similar characteristics occurred during February 2018, followed by a smaller swarm of seven microseismic events recorded in the same area one year later, on 12 February 2019.

Table 1. Precursor seismicity episodes at La Palma between October 2017 and late June 2021 were all located in the southern third of the island. Magnitude is reported by IGN as MbLg, or the magnitude from the amplitude of the Lg phase, similar to the local Richter magnitude. Data courtesy of IGN Noticias.

Date Detected Events Located Events Magnitude Range (mbLg) Depth Range (km)
07-09 Oct 2017 -- 68 Less than 1.5-2.7 12-35
13-14 Oct 2017 352 44 Less than 1.5-2.1 15-22
10-14 Feb 2018 -- 85 1.8-2.6 25-30
12 Feb 2019 -- 7 0.7-1.1 15
24 Jul-02 Aug 2020 682 160 1.2-2.5 16-39
23-26 Dec 2020 602 126 1.3-2.3 30
31 Jan 2021 -- 27 1.2-2.5 10-29
25 Jun 2021 80 12 Less than 2.2 18-34

By the time the next seismic swarm began in July 2020, IGN had a network of 13 seismic stations installed around the island. There were 160 located events that occurred during 24 July-2 August 2020 with magnitudes of 1.2-2.5 and depths of 16-39 km. Reprocessing of the previous data indicated a distribution of seismicity for the three series (October 2017, February 2018, and July 2020) in a wide strip in an east-west direction, although the October 2017 series occurred at a shallower depth and with the epicenters more concentrated. IGN noted similarities between the February 2018 and July-August 2020 events in terms of location and magnitude (figure 3). Another very similar swarm of 602 detected events was recorded during 23-26 December 2020, with most events located on the western slope of Cumbre Vieja. Two swarms on 21 January and 25 June 2021 had fewer events but similar depths and magnitudes to the earlier events.

Figure (see Caption) Figure 3. Comparison of seismic event depth and locations at La Palma from swarms during 2017, 2018, and 24 July-2 August 2020. Courtesy of IGN (06-08-2020 16:45 UTC, Final de la actividad en La Palma).

Renewed seismicity began on 11 September 2021. The number, frequency, and magnitude of the events all increased over the next several days, while the depth of the events grew shallower. On 13 September a multi-agency scientific committee raised the Alert Level to Yellow (the second lowest level on a four-color scale) for the municipalities of El Paso, Los Llanos de Aridane, Mazo, and Fuencaliente de la Palma. IGN noted a migration of the seismicity toward the W side of the island on 14 September (figure 4). The accumulated surface deformation between 12 and 14 September measured 1.5 cm from the island GNSS network. Seismic activity on 15 September continued to migrate slightly NW at depths of around 7-9 km; in addition, 20 shallow earthquakes of 1-3 km depth were recorded. The accumulated deformation had reached 6 cm by 15 September. As of 0930 on 16 September 50 shallow earthquakes between 1-5 km depth had been located and the maximum vertical deformation was around 10 cm in the area of the seismicity. During 16-18 September seismic activity decreased, but a 3.2 magnitude earthquake located at 100 m depth was felt by the local population. Intense surface seismicity (between 0-6 km) increased in the early hours of 19 September and numerous earthquakes were felt by the local population (figure 4). The maximum accumulated deformation increased to 15 cm in the area close to the seismicity by 1100 on 19 September, and the eruption began about five hours later.

Figure (see Caption) Figure 4. Seismic events at La Palma during 12-19 September 2021 showed distinct changes during those days. During 12-14 September (left) the seismicity migrated westward and was located at depths of about 7-13 km. The color scale on the left indicates the time of the events in hours before 0925 on 14 September, with red as the most recent. An abrupt increase in shallow seismicity on 19 September 2021 occurred a few hours before the eruption began, as shown by the bright orange dots in the right image. The color bar on the right represents the dates of the seismic events beginning on 11 September. Courtesy of IGN (left: 14-09-2021 09:30 UTC, right: 19-09-2021 11:00 UTC, Actualización de la información sobre la actividad volcánica en el sur de la isla de La Palma).

Eruption begins 19 September 2021. A fissure eruption began at 1510 local time (1410 UTC) on 19 September after the intense seismic and deformation activity that began on 11 September. Observers near the eruption site in the area of Cabeza de Vaca, in the municipality of El Paso, witnessed a large explosion with ejecta that produced a gas-and-ash plume. Strombolian activity was accompanied by phreatomagmatic pulses along two 100-m-long N-S fissures about 200 m apart. INVOLCAN scientists observed seven vents along the fissures during the initial stage of the eruption (figure 5). Multiple tall lava fountains fed flows downslope to the W, igniting fires. The PEVOLCA steering committee briefly raised the Alert Level to Orange, and then to Red by 1700 for high-risk municipalities directly affected by the eruption. About 5,500 people evacuated with no injuries reported, and authorities recommended that residents stay at least 2 km from the vents. INVOLCAN scientists determined an average flow rate of 700 m/hour and lava temperatures of around 1,075°C at the start of the eruption (figure 6).

Figure (see Caption) Figure 5. INVOLCAN scientists observed seven active vents along the fissure at the start of the La Palma eruption at Cumbre Vieja on 19 September 2021. Photo by Alba, courtesy of INVOLCAN.
Figure (see Caption) Figure 6. INVOLCAN scientists determined a flow rate for the new lava flows at La Palma on 19 September 2021 of 700 m/hour and a temperature of 1,075°C. Courtesy of INVOLCAN.

The Toulouse VAAC issued the first ash advisory for the La Palma eruption about 90 minutes after it began. They reported ongoing lava fountains and an ash plume to about 1 km altitude. The plume drifted SW at less than 1.5 km altitude, while SO2 emissions were reported drifting ESE at 3 km altitude. Later that day, they noted continuing intense lava fountains and ashfall in the vicinity of the volcano. The next day ash emissions drifted S at 2.4 km altitude. Sulfur dioxide emissions were measured by satellite instruments beginning on 19 September; they increased dramatically and drifted hundreds of kilometers E and SE toward the NE coast of Africa over the next few days (figure 7). Ongoing ash emissions rose to 4.6 km altitude later on 20 September. The first Sentinel-2 satellite images of the eruption appeared on 20 September showing a strong point source thermal anomaly partly covered by meteoric clouds (figure 8).

Figure (see Caption) Figure 7. Sulfur dioxide emissions from the Cumbre Vieja eruption at La Palma were measured by the TROPOMI Instrument on the Sentinel-5P satellite beginning on 19 September 2021 (left); they increased dramatically over the next several days. The plume was detected by satellite over 400 km SE over the western Sahara on the NW coast of Africa by 20 September. The plume was reported as visible at Gomera Island (80 km SE) on 21 September, having increased significantly in area and mass from the previous day. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 8. Sentinel-2 satellite images of La Palma show a sharp contrast from a cloudless sky before any signs of surface activity on 10 September 2021 (left) to dense cloud cover on the lower slopes of La Palma with a strong thermal anomaly from the new fissure vent and flows with rising steam plumes drifting NE on 20 September (right). Images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

The first map of the new flow on 20 September produced by IGN in partnership with Copernicus Emergency Management Service (EMS) showed that the main channel of the lava flow had traveled more than 3 km W. The flows had covered about 1 km2 and destroyed an estimated 166 buildings (figure 9). A report of the PEVOLCA Scientific Committee indicated that activity on 20 and 21 September was concentrated at four main vents that produced parallel flows with an average flow rate of 200 m/hour; the maximum flow thickness was 10-12 m (figure 10). Strong lava fountaining continued both days and ash fell in the vicinity of the vents. By 0814 on 21 September an updated Copernicus EMS map showed that 350 homes had been covered by lava and the flow field had expanded to 1.54 km2. A few hundred more residents evacuated as lava advanced towards Tacande; bringing the number of evacuees to about 5,700. One lava flow branch was advancing slowly S at a rate of 2 m/hour. An ash cloud was observed later that day on the W flank of the volcano slowly drifting SW at 2.4 km altitude. Sulfur dioxide emissions were present over the SE part of the island and were visible at Gomera Island, 80 km SE. Late in the day, ash was observed in satellite imagery about 50 km W of the volcano, while intense lava fountaining continued at the source vent (figure 11).

Figure (see Caption) Figure 9. The first map of the new lava flow at La Palma on 20 September 2021 was produced by the Copernicus Emergency Management Service (EMS) in partnership with IGN. It showed that the main channel of the lava flow shown in red had traveled more than 3 km W covering about 1 km2 and had destroyed an estimated 166 buildings. Courtesy of Copernicus EMS.
Figure (see Caption) Figure 10. INVOLCAN scientists collected lava fragments from the Cumbre Vieja flow front at La Palma on 21 September 2021. The average flow thickness was 10-12 m. Courtesy of INVOLCAN.
Figure (see Caption) Figure 11. Intense fountaining continued at the vent of the Cumbre Vieja eruption on La Palma during the night of 21 September 2021; multiple small flows descended the flanks of the growing pyroclastic cone. Courtesy of Cabildo La Palma.

Activity during 22-25 September 2021. Ash emissions during 22 and 23 September drifted SW and S from 0-3 km altitude, and NE and E from 3-5 km altitude (figure 12); ashfall up to 3 cm thick was reported downwind. An SO2 plume was also noted drifting NE in satellite imagery. PEVOLCA reported on 23 September that two relatively slow-moving lava flows continued to advance downslope from the vent (figure 13). The northernmost flow was moving at 1 m/hour and was 12 m high and 500 m wide in some places. The southern flow, which surrounded Montaña Rajada, was moving at 4-5 m/hour and about 10 m high. The overall flow was 3.8 km long and 2.1 km from the coast (figure 14). By late on 23 September reports indicated 420 structures had been destroyed and the flow covered just under 2 km2.

Figure (see Caption) Figure 12. Ash emissions rose as high as 4.6 km altitude on 22 September 2021 at La Palma. Up to 3 cm of ashfall was reported downwind. Courtesy of El Periodico de Cataluny, S.L.U.
Figure (see Caption) Figure 13. Slow moving lava flows at La Palma continued downslope from the vents on 22 and 23 September 2021. Many businesses and homes in the community of Todoque, shown here, were destroyed by the lava flows on 22 September. Photo by Bomberos de Canarias, courtesy of RTVE.
Figure (see Caption) Figure 14 The original flow at La Palma as of 1913 on 20 September is shown in red. The progression of the lava flows each day from 20-23 September 2021 is shown in different colors. Lava flows covered almost 2 km2 of La Palma by the end of the day on 23 September 2021, and reports indicated 420 structures and 15.2 km of roads had been destroyed. The flow was about 3.8 km long and still 2.1 km from the coast. Courtesy of Copernicus EMS.

Lava fountains rose hundreds of meters above the summit crater of the new cone early on 24 September 2021 (figure 15). IGN reported an increase in explosive activity on 24 September that was accompanied by a sharp increase in tremor amplitude. This was followed a short while later by the opening of two new vents on the NW flank of the cone; the fast-moving flows merged into one and produced a new flow over top of the earlier flows. Part of the upper section of the S flank of the cone collapsed on 24 September and briefly caused flow speeds to increase to 250-300 m/hour overnight before slowing to an average speed of 40 m/hour. Due to the fast-moving flow, an evacuation order was issued in the early afternoon for Tajuya, Tacande de Abajo, and part of Tacande de Arriba, affecting 300-400 people. Three airlines also suspended flights to La Palma. The Toulouse VAAC reported ash plumes throughout the day. Ash plumes drifted SW below 3 km altitude and E and SE at 3-5.2 km altitude and resulted in significant ashfall in numerous locations by the next morning (figure 16). Pilots also reported ash near Tenerife and over La Gomera.

Figure (see Caption) Figure 15. Lava fountains several hundred meters high rose from the growing pyroclastic cone at La Palma in the early hours of 24 September 2021, seen from Tajuya. Dense ash emissions continued throughout the day. Photo by Tom Pfeiffer, courtesy of Volcano Discovery.
Figure (see Caption) Figure 16. Ashfall in El Paso on La Palma covered cars and flowers on the morning of 25 September 2021. Ash emissions produced ashfall in numerous places around the island over the next several days. Courtesy of Volcanes de Canarias.

By 25 September there were three active vents in the crater and one on the flank of the cone (figure 17), and two active lava flows. On 25 and 26 September dense ash emissions (figure 18) closed the airport and produced ashfall not only in the municipalities near the eruption, but also on the eastern slope of the island; it was reported in Villa de Mazo, Breña Alta and Breña Baja, and Santa Cruz de La Palma or Puntallana. Plumes were drifting SW at altitudes below 1.5 km and NE between 1.5 and 3.9 km altitude over a large area. Mapping by Copernicus EMS indicated that the ashfall covered an area of 13 km2 (figure 19).

Figure (see Caption) Figure 17. A new vent opened on the lower W flank of the pyroclastic cone at La Palma on 25 September 2021. Courtesy of INVOLCAN.
Figure (see Caption) Figure 18. Dense ash emissions on 25 September 2021 at La Palma forced closure of the island’s airport. Photo by Desiree Martin, AFT, courtesy of Corporación de Radio y Televisión Española (RTVE).
Figure (see Caption) Figure 19. A large area of La Palma, shown in blue, was affected by ashfall to the W and SW of the erupting vent on 25 September 2021. The extent of the lava flow as of 1913 UTC on 20 September is shown in red, and the extent of the flow by 1206 on 25 September is shown in orange. Courtesy of Copernicus EMS.

Activity during 26-28 September 2021. During the evening of 26 September jets of lava up to 1 km high were visible from La Laguna and some explosions were strong enough to be felt within 5 km of the vent (figure 20). The main, more northerly lava flow overtook the center of Todoque, in the municipality of Los llanos de Aridane, which had been evacuated several days earlier. It crossed the highway (LP-213) in the center of town and continued 150 m W. It was initially moving at about 100 m/hour, was 4-6 m high, and the front was about 600 m wide, but it slowed significantly after crossing through Todoque, and the height grew to 15 m; it was located about 1,600 m from the coast. The more southerly flow continued moving at about 30 m/hour and was about 2.5 km long.

Figure (see Caption) Figure 20. Jets of lava rose to nearly 1,000 m high at La Palma as seen from La Laguna on the evening of 26 September 2021. The lava flow remained active on the NW flank of the cone. Photo by Tom Pfeiffer, courtesy of Volcano Discovery.

The PEVOLCA Scientific Committee determined that the volume of erupted material from the beginning of the eruption on 19 September until 27 September was about 46.3 m3. By early on 27 September the front of the flow was close to the W side of Todoque Mountain (figure 21), and reports indicated that 589 buildings and 21 km of roads had been destroyed by the 2.5 km2 of lava. A seismic swarm on the morning of 27 September was located at about 10 km depth in the same area of the previous seismicity below the vent. In addition, pulses of tremor coincided with pulses of ash emissions. A new flow appeared on the N flank of the cone during the afternoon and partly covered previous flows through the center of Todoque, reaching about 2 km from the coast (figure 22). Ash emissions were more intermittent on 27 and 28 September, drifting SW to 1.5 km altitude and NE to 4.3 km altitude in sporadic pulses associated with lava fountains.

Figure (see Caption) Figure 21. The growth of the lava flow at La Palma during 20-27 September 2021 is shown in different colors. The flow as of 1913 on 20 September is shown in red. The extent of the flow as of 1206 on 25 September is shown in orange. The extent of the flow as of 1158 on 26 September is shown in blue, and the extent of the flow as of 0650 on 27 September is shown in green, nearly reaching Todoque Mountain by early on 27 September 2021. Reports indicated that 589 buildings and 21 km of roads had been destroyed from the 2.5 km2 of lava. Courtesy of Copernicus EMS.
Figure (see Caption) Figure 22. A new flow appeared on the N flank of the cone at La Palma during the afternoon of 27 September 2021 from a reactivated vent; it traveled rapidly downslope reaching the center of Todoque. Photo by Tom Pfeiffer, courtesy of Volcano Discovery.

The new flow moved through the upper outskirts of Todoque and had reached the road to El Pampillo on the border of the municipalities of Los Llanos and Tazacorte, about 1 km from the coast, early on 28 September (figure 23). A plume with moderate to high ash concentration rose to 5.2 km altitude and extended up to 25 km W. The altitude of the plume increased to 6.1 km drifting E later in the day. A significant SO2 cloud was clearly identifiable in satellite imagery in a 75 km radius around the island. In addition, satellite instruments measured very large plumes of SO2 drifting hundreds of kilometers E, S, and N over the next several days (figure 24).

Figure (see Caption) Figure 23. The new flow at La Palma moved through the upper outskirts of Todoque on 28 September 2021. Photo by Tom Pfeiffer, courtesy of Volcano Discovery.
Figure (see Caption) Figure 24. The TROPOMI instrument on the Sentinel-5P satellite measured very large plumes of SO2 hundreds of kilometers E, S, and N of La Palma during 28, 29, and 30 September 2021. In addition, plumes of SO2 were visible in satellite imagery in a 75 km radius around the island. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Activity during 28-30 September 2021. Effusive activity continued with a sharp decrease in tremor during the day on 28 September. By evening, sustained fountaining was continuing at the N flank vent, while pulsating jets from three vents within the main crater produced strong effusion into both lava flows. The volume of the cone that had formed at the vent was estimated by PEVOLCA to be 10 million m3. Around 2300 local time on 28 September the main lava flow passed on the S side of Todoque Mountain and entered the sea in the area of Playa de Los Guirres in Tazacorte. A continuous cascading flow of lava fell over the cliff (figure 25) and began to form a lava delta. By dawn on 29 September the delta was growing out from the cliff, producing dense steam explosions where the lava entered the sea (figure 26).

Figure (see Caption) Figure 25. A continuous cascade of lava fell over the cliff near El Guirre beach in Tazacorte at La Palma around midnight on 28-29 September 2021. Photo by Angel Medina/EFE, courtesy of RTVE.
Figure (see Caption) Figure 26. By dawn on 29 September 2021 the delta was growing out from the cliff producing dense steam explosions where the lava entered the sea in Tazacorte, La Palma. Image taken from Tijarafe. Photo by Borja Suarez/Reuters, courtesy of RTVE.

By nightfall on 29 September vigorous Strombolian activity was continuing at the pyroclastic cone, and the main lava flow was active all the way to the sea, with a growing delta into the ocean. Ash emissions continued on 29 and 30 September, rising in pulses to 5.2 km altitude and drifting SE, changing to S, SW, and finally NW. Sentinel-2 satellite imagery comparing 25 and 30 September showed the growth of the lava flow during that interval (figure 27). Strombolian and flow activity continued at the fissure vent on 30 September with new surges of activity sending fresh pulses of lava over existing flows (figure 28). The ocean delta continued to grow and reached a thickness of 24 m by the end of 30 September. Mapping of the flow indicated that 870 buildings had been destroyed and the flow covered 3.5 km2 by midday on 30 September (figure 29).

Figure (see Caption) Figure 27. The lava flow at the La Palma eruption traveled downslope to the W between 25 (left) and 30 (right) September 2021. It reached the ocean and began building a delta into the sea late on 28 September. Image uses Atmospheric penetration rendering with bands 12, 11, and 8a. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 28. Fresh pulses of lava flowed over earlier flows at La Palma on 30 September 2021. Photo by Tom Pfeiffer, courtesy of Volcano Discovery.
Figure (see Caption) Figure 29. Continued mapping of the lava flow at La Palma indicated that by midday on 30 September 2021 it covered about 3.5 km2 and 870 buildings had been damaged or destroyed. The progress of the flow at different dates is shown in different colors. The status of the flow as of 1913 on 20 September is shown in red. The status as of 1206 on 26 September is shown in green. The status as of 1136 on 29 September is shown in orange, and the status as of 1217 on 30 September is shown in purple. Courtesy of Copernicus EMS.

Late on 30 September 2021 two new vents emerged about 600 m NW of the base of the main cone. They created a new flow about 450 m away from, and parallel to, the main flow that crossed a local highway by the next morning and continued moving W (figure 30). Multiple vents also remained active within and on the flank of the main cone. As of 1 October, the front of the delta was 475 m out from the coastline and 30 m deep. IGN concluded that the volume of material erupted through the end of September was approximately 80 million m3.

Figure (see Caption) Figure 30. Two new vents opened about 600 m NW of the base of the cone late on 30 September 2021. The new flows joined and headed W parallel to the main flow. Drone footage of the new vent was taken on 1 October by the Bristol Flight Lab, courtesy of INVOLCAN.

Information Contacts: Instituto Geographico Nacional (IGN), C/ General Ibáñez de Íbero 3, 28003 Madrid – España, (URL: https://www.ign.es/web/ign/portal, https://www.ign.es/web/resources/volcanologia/html/CA_noticias.html); Instituto Volcanologico de Canarias (INVOLCAN) (URL: https://www.involcan.org/, https://www.facebook.com/INVOLCAN, Twitter: INVOLCAN, @involcan); Steering Committee of the Special Plan for Civil Protection and Attention to Emergencies due to Volcanic Risk (PEVOLCA), (URL: https://www3.gobiernodecanarias.org/noticias/los-planes-de-evacuacion-del-pevolca-evitan-danos-personales-en-la-erupcion-volcanica-de-la-palma/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus EMS (URL: https://emergency.copernicus.eu/, https://twitter.com/CopernicusEMS ); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Cabildo La Palma (URL: https://www.cabildodelapalma.es/es/algunas-de-las-imagenes-de-la-erupcion-volcanica-en-la-palma); El Periodico de Cataluny, S.L.U. (URL: https://www.elperiodico.com/es/fotos/sociedad/erupcion-palma-imagenes-12093812/12103264).Corporación de Radio y Televisión Española (RTVE) (URL: https://rtve.es, https://img2.rtve.es/imagenes/casas-todoque-alcanzadas-lava-este-miercoles-22-septiembre/1632308929494.jpg); Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/); Volcanes de Canarias (URL:https://twitter.com/VolcansCanarias/status/1441711738983002114); Agence France-Presse (AFP) (URL: http://www.afp.com/ ); Bristol Flight Lab, University of Bristol, England (URL: www.https://flight-lab.bristol.ac.uk, https://twitter.com/UOBFlightLab).

This compilation of synonyms and subsidiary features may not be comprehensive. Features are organized into four major categories: Cones, Craters, Domes, and Thermal Features. Synonyms of features appear indented below the primary name. In some cases additional feature type, elevation, or location details are provided.

Eruptive History

There is data available for 14 Holocene eruptive periods.

Start Date Stop Date Eruption Certainty VEI Evidence Activity Area or Unit
2021 Sep 19 2021 Oct 14 (continuing) Confirmed   Historical Observations
1971 Oct 26 1971 Nov 18 Confirmed 2 Historical Observations Teneguia
1949 Jun 24 1949 Jul 30 Confirmed 2 Historical Observations San Juan, Llano del Banco, Hoyo Negro
1712 Oct 9 1712 Dec 3 Confirmed 2 Historical Observations El Charco
1677 Nov 17 1678 Jan 21 Confirmed 2 Historical Observations N & S flanks of San Antonio (Fuentecaliente)
1646 Oct 2 1646 Dec 21 Confirmed 2 Historical Observations South flank of San Martín (Tigalate)
1585 May 19 1585 Aug 10 Confirmed 2 Historical Observations Tahuya
1480 ± 10 years Unknown Confirmed 2 Historical Observations Tacande (Montaña Quemada)
0900 ± 100 years Unknown Confirmed   Radiocarbon (uncorrected) Nambroque II-Malforada
0360 BCE ± 50 years Unknown Confirmed   Radiocarbon (uncorrected) El Fraile
1320 BCE ± 100 years Unknown Confirmed   Radiocarbon (uncorrected) La Fajana (Volcán Fuego)
4050 BCE ± 3000 years Unknown Confirmed   Potassium-Argon L'Amendrita, Birigoyo
4900 BCE ± 50 years Unknown Confirmed   Radiocarbon (uncorrected)
6050 BCE ± 1500 years Unknown Confirmed   Potassium-Argon
Deformation History

There is data available for 2 deformation periods. Expand each entry for additional details.


Deformation during 1992 - 2000 [Subsidence; Observed by InSAR]

Start Date: 1992 Stop Date: 2000 Direction: Subsidence Method: InSAR
Magnitude: Unknown Spatial Extent: 1.00 km Latitude: 28.000 Longitude: -18.000

Remarks: Centered on the Teneguia volcano

Figure (see Caption)

Stack results shown onto a shaded DEM. Differential interferograms were corrected for atmospheric elevation-phase dependence. Results are only from coherent points (pixels), which exhibit LOS linear velocity (positive away from satellite, indicated with the arrows). (a) Stacking of 82 long temporal separation ERS differential interferograms for the period 1992?2000, accompanied by vertical GPS linear velocity between 1994 and 2007. (b) Stacking of 18 long temporal separation ENVISAT differential interferograms for the period 2003?2008. We also show estimates of horizontal GPS linear velocities between 2006 and 2007. Note the linear rate from the 2003 to 2008 results is noisier than the 1992 to 2000 results, mainly due to the smaller dataset, so these results should be considered with caution. The largest magnitude subsidence signal corresponds to the Teneguia volcano (T symbol).

From: Gonzalez et al. 2010.


Reference List: Perlock et al. 2008; Prieto et al. 2009; Gonzalez et al. 2010.

Full References:

Gonzalez P J, Tiampo K F, Camacho A G, Fernandez J, 2010. Shallow flank deformation at Cumbre Vieja volcano (Canary Islands): Implications on the stability of steep-sided volcano flanks at oceanic islands. Earth and Planetary Science Letters, 297: 545-557. https://doi.org/10.1016/j.epsl.2010.07.006

Perlock, P. A., P. J. Gonzalez, K. F. Tiampo, G. Rodriguez-Velasco, S. Samsonov, and J. Fernández, 2008. Time evolution of deformation using time series of differential interferograms: Application to La Palma island (Canary islands). Pure Applied Geophys, 165: 1531-1554. https://doi.org/10.1007/s00024-004-0388-7

Prieto, J.F., Gonzalez, P.J., Seco, A., Rodriguez-Velasco, G., Tunini, L., Perlock, P.A., Arjona, A., Aparicio, A., Camacho, A.G., Rundle, J.B. and Tiampo, K.F.,, 2009. Geodetic and Structural Research in La Palma, Canary Islands, Spain: 1992-2007 Results. Pure Applied Geophys, 166(8-9): 1461-1484.

Deformation during 1992 - 2008 [Subsidence; Observed by InSAR]

Start Date: 1992 Stop Date: 2008 Direction: Subsidence Method: InSAR
Magnitude: Unknown Spatial Extent: 10.00 km Latitude: 29.000 Longitude: -18.000

Remarks: Western flank of Cumbre Vieja

Figure (see Caption)

Stack results shown onto a shaded DEM. Differential interferograms were corrected for atmospheric elevation-phase dependence. Results are only from coherent points (pixels), which exhibit LOS linear velocity (positive away from satellite, indicated with the arrows). (a) Stacking of 82 long temporal separation ERS differential interferograms for the period 1992?2000, accompanied by vertical GPS linear velocity between 1994 and 2007. (b) Stacking of 18 long temporal separation ENVISAT differential interferograms for the period 2003?2008. We also show estimates of horizontal GPS linear velocities between 2006 and 2007. Note the linear rate from the 2003 to 2008 results is noisier than the 1992 to 2000 results, mainly due to the smaller dataset, so these results should be considered with caution. The largest magnitude subsidence signal corresponds to the Teneguia volcano (T symbol).

From: Gonzalez et al. 2010.


Reference List: Gonzalez et al. 2010.

Full References:

Gonzalez P J, Tiampo K F, Camacho A G, Fernandez J, 2010. Shallow flank deformation at Cumbre Vieja volcano (Canary Islands): Implications on the stability of steep-sided volcano flanks at oceanic islands. Earth and Planetary Science Letters, 297: 545-557. https://doi.org/10.1016/j.epsl.2010.07.006

Emission History

There is no Emissions History data available for La Palma.

Photo Gallery

The steep-walled Caldera de Taburiente is the most prominent feature of La Palma island. The caldera extends 10 km in a NE-SW direction and is breached to the sea on the SW side through a narrow notch at the left. Historical eruptions on La Palma have been restricted to a series of fissures and cones along a N-S-trending dorsal ridge extending to the southern tip of the island.

Copyrighted photo by Katia and Maurice Krafft, 1977.
Cumbre Vieja, the southernmost of two large volcanoes forming the wedge-shaped island of La Palma, is one of the most active in the Canaries. The elongated volcano is oriented N-S and has been the site of numerous historical eruptions, many of which produced lava flows that descended steeply to the sea. Abundant cinder cones and craters line the crest of the volcano and dots its flanks. Historical eruptions, recorded since the 15th century, have produced mild explosive activity and lava flows that damaged populated areas.

Copyrighted photo by Katia and Maurice Krafft, 1977.
The dorsal spine of La Palma island is sprinkled with cinder cones, craters, and fissure vents formed during historical eruptions dating back to the 16th century. Many of these produced lava flows that reached the sea. The entire southern tip of the island was covered by lava flows during eruptions from the San Antonio (Fuencaliente) vent in 1678 and Teneguía cinder cone in 1971.

Copyrighted photo by Katia and Maurice Krafft, 1977.
The caldera rim of the Taburiente volcano, which makes up the northern section of the island of La Palma, is seen here from a lava flow field on the southern volcano, Cumbre Vieja. Bejenado volcano (left center) is located on the southern edge of the breached Taburiente caldera. Cumbre Nueva Ridge (right) was formed by a large-scale collapse. Cumbre Vieja is the most recently active volcanic center on the island, with numerous cones and lava flows.

Photo by Yasuo Miyabuchi, 1997 (Forestry and Forest Products Research Institute, Kyushu).
GVP Map Holdings

The Global Volcanism Program has no maps available for La Palma.

Smithsonian Sample Collections Database

There are no samples for La Palma in the Smithsonian's NMNH Department of Mineral Sciences Rock and Ore collection.

External Sites