Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Masaya (Nicaragua) Lava lake level drops but remains active through May 2020; weak gas plumes

Shishaldin (United States) Intermittent thermal activity and a possible new cone at the summit crater during February-May 2020

Krakatau (Indonesia) Strombolian explosions, ash plumes, and crater incandescence during April 2020

Taal (Philippines) Eruption on 12 January with explosions through 22 January; steam plumes continuing into March

Unnamed (Tonga) Additional details and pumice raft drift maps from the August 2019 submarine eruption

Klyuchevskoy (Russia) Strombolian activity November 2019 through May 2020; lava flow down the SE flank in April

Nyamuragira (DR Congo) Intermittent thermal anomalies within the summit crater during December 2019-May 2020

Nyiragongo (DR Congo) Activity in the lava lake and small eruptive cone persists during December 2019-May 2020

Kavachi (Solomon Islands) Discolored water plumes seen using satellite imagery in 2018 and 2020

Kuchinoerabujima (Japan) Eruption and ash plumes begin on 11 January 2020 and continue through April 2020

Soputan (Indonesia) Minor ash emissions during 23 March and 2 April 2020

Heard (Australia) Eruptive activity including a lava flow during October 2019-April 2020



Masaya (Nicaragua) — June 2020 Citation iconCite this Report

Masaya

Nicaragua

11.985°N, 86.165°W; summit elev. 594 m

All times are local (unless otherwise noted)


Lava lake level drops but remains active through May 2020; weak gas plumes

Masaya, which is about 20 km NW of the Nicaragua’s capital of Managua, is one of the most active volcanoes in that country and has a caldera that contains a number of craters (BGVN 43:11). The Santiago crater is the one most currently active and it contains a small lava lake that emits weak gas plumes (figure 85). This report summarizes activity during February through May 2020 and is based on Instituto Nicaragüense de Estudios Territoriales (INETER) monthly reports and satellite data. During the reporting period, the volcano was relatively calm, with only weak gas plumes.

Figure (see Caption) Figure 85. Satellite images of Masaya from Sentinel-2 on 18 April 2020, showing and a small gas plume drifting SW (top, natural color bands 4, 3, 2) and the lava lake (bottom, false color bands 12, 11, 4). Courtesy of Sentinel Hub Playground.

According to INETER, thermal images of the lava lake and temperature data in the fumaroles were taken using an Omega infrared gun and a forward-looking infrared (FLIR) SC620 thermal camera. The temperatures above the lava lake have decreased since November 2019, when the temperature was 287°C, dropping to 96°C when measured on 14 May 2020. INETER attributed this decrease to subsidence in the level of the lava lake by 5 m which obstructed part of the lake and concentrated the gas emissions in the weak plume. Convection continued in the lava lake, which in May had decreased to a diameter of 3 m. Many landslides had occurred in the E, NE, and S walls of the crater rim due to rock fracturing caused by the high heat and acidity of the emissions.

During the reporting period, the MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system recorded numerous thermal anomalies from the lava lake based on MODIS data (figure 86). Infrared satellite images from Sentinel-2 regularly showed a strong signature from the lava lake through 18 May, after which the volcano was covered by clouds.

Figure (see Caption) Figure 86. Thermal anomalies at Masaya during February through May 2020. The larger anomalies with black lines are more distant and not related to the volcano. Courtesy of MIROVA.

Measurements of sulfur dioxide (SO2) made by INETER in the section of the Ticuantepe - La Concepción highway (just W of the volcano) with a mobile DOAS system varied between a low of just over 1,000 metric tons/day in mid-November 2019 to a high of almost 2,500 tons/day in late May. Temperatures of fumaroles in the Cerro El Comalito area, just ENE of Santiago crater, ranged from 58 to 76°C during February-May 2020, with most values in the 69-72°C range.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Historical lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Shishaldin (United States) — June 2020 Citation iconCite this Report

Shishaldin

United States

54.756°N, 163.97°W; summit elev. 2857 m

All times are local (unless otherwise noted)


Intermittent thermal activity and a possible new cone at the summit crater during February-May 2020

Shishaldin is located near the center of Unimak Island in Alaska, with the current eruption phase beginning in July 2019 and characterized by ash plumes, lava flows, lava fountaining, pyroclastic flows, and lahars. More recently, in late 2019 and into January 2020, activity consisted of multiple lava flows, pyroclastic flows, lahars, and ashfall events (BGVN 45:02). This report summarizes activity from February through May 2020, including gas-and-steam emissions, brief thermal activity in mid-March, and a possible new cone within the summit crater. The primary source of information comes from the Alaska Volcano Observatory (AVO) reports and various satellite data.

Volcanism during February 2020 was relatively low, consisting of weakly to moderately elevated surface temperatures during 1-4 February and occasional small gas-and-steam plumes (figure 37). By 6 February both seismicity and surface temperatures had decreased. Seismicity and surface temperatures increased slightly again on 8 March and remained elevated through the rest of the reporting period. Intermittent gas-and-steam emissions were also visible from mid-March (figure 38) through May. Minor ash deposits visible on the upper SE flank may have been due to ash resuspension or a small collapse event at the summit, according to AVO.

Figure (see Caption) Figure 37. Photo of a gas-and-steam plume rising from the summit crater at Shishaldin on 22 February 2020. Photo courtesy of Ben David Jacob via AVO.
Figure (see Caption) Figure 38. A Worldview-2 panchromatic satellite image on 11 March 2020 showing a gas-and-steam plume rising from the summit of Shishaldin and minor ash deposits on the SE flank (left). Aerial photo showing minor gas-and-steam emissions rising from the summit crater on 11 March (right). Some erosion of the snow and ice on the upper flanks is a result of the lava flows from the activity in late 2019 and early 2020. Photo courtesy of Matt Loewen (left) and Ed Fischer (right) via AVO.

On 14 March, lava and a possible new cone were visible in the summit crater using satellite imagery, accompanied by small explosion signals. Strong thermal signatures due to the lava were also seen in Sentinel-2 satellite data and continued strongly through the month (figure 39). The lava reported by AVO in the summit crater was also reflected in satellite-based MODIS thermal anomalies recorded by the MIROVA system (figure 40). Seismic and infrasound data identified small explosions signals within the summit crater during 14-19 March.

Figure (see Caption) Figure 39. Sentinel-2 thermal satellite images (bands 12, 11, 8A) show a bright hotspot (yellow-orange) at the summit crater of Shishaldin during mid-March 2020 that decreases in intensity by late March. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 40. MIROVA thermal data showing a brief increase in thermal anomalies during late March 2020 and on two days in late April between periods of little to no activity. Courtesy of MIROVA.

AVO released a Volcano Observatory Notice for Aviation (VONA) stating that seismicity had decreased by 16 April and that satellite data no longer showed lava or additional changes in the crater since the start of April. Sentinel-2 thermal satellite imagery continued to show a weak hotspot in the crater summit through May (figure 41), which was also detected by the MIROVA system on two days. A daily report on 6 May reported a visible ash deposit extending a short distance SE from the summit, which had likely been present since 29 April. AVO noted that the timing of the deposit corresponds to an increase in the summit crater diameter and depth, further supporting a possible small collapse. Small gas-and-steam emissions continued intermittently and were accompanied by weak tremors and occasional low-frequency earthquakes through May (figure 42). Minor amounts of sulfur dioxide were detected in the gas-and-steam emissions during 20 and 29 April, and 2, 16, and 28 May.

Figure (see Caption) Figure 41. Sentinel-2 thermal satellite images (bands 12, 11, 8A) show occasional gas-and-steam emissions rising from Shishaldin on 26 February (top left) and 24 April 2020 (bottom left) and a weak hotspot (yellow-orange) persisting at the summit crater during April and early May 2020. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 42. A Worldview-1 panchromatic satellite image showing gas-and-steam emissions rising from the summit of Shishaldin on 1 May 2020 (local time) (left). Aerial photo of the N flank of Shishaldin with minor gas-and-steam emissions rising from the summit on 8 May (right). Photo courtesy of Matt Loewen (left) and Levi Musselwhite (right) via AVO.

Geologic Background. The beautifully symmetrical Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." A steam plume often rises from its small summit crater. Constructed atop an older glacially dissected volcano, it is largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the W and NE sides at 1,500-1,800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Krakatau (Indonesia) — June 2020 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 155 m

All times are local (unless otherwise noted)


Strombolian explosions, ash plumes, and crater incandescence during April 2020

Krakatau, located in the Sunda Strait between Indonesia’s Java and Sumatra Islands, experienced a major caldera collapse around 535 CE, forming a 7-km-wide caldera ringed by three islands. On 22 December 2018, a large explosion and flank collapse destroyed most of the 338-m-high island of Anak Krakatau (Child of Krakatau) and generated a deadly tsunami (BGVN 44:03). The near-sea level crater lake inside the remnant of Anak Krakatau was the site of numerous small steam and tephra explosions. A larger explosion in December 2019 produced the beginnings of a new cone above the surface of crater lake (BGVN 45:02). Recently, volcanism has been characterized by occasional Strombolian explosions, dense ash plumes, and crater incandescence. This report covers activity from February through May 2020 using information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, also known as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), the Darwin Volcanic Ash Advisory Center (VAAC), and various satellite data.

Activity during February 2020 consisted of dominantly white gas-and-steam emissions rising 300 m above the crater, according to PVMBG. According to the Darwin VAAC, a ground observer reported an eruption on 7 and 8 February, but no volcanic ash was observed. During 10-11 February, a short-lived eruption was detected by seismograms which produced an ash plume up to 1 km above the crater drifting E. MAGMA Indonesia reported two eruptions on 18 March, both of which rose to 300 m above the crater. White gas-and-steam emissions were observed for the rest of the month and early April.

On 10 April PVMBG reported two eruptions, at 2158 and 2235, both of which produced dark ash plumes rising 2 km above the crater followed by Strombolian explosions ejecting incandescent material that landed on the crater floor (figures 108 and 109). The Darwin VAAC issued a notice at 0145 on 11 April reporting an ash plume to 14.3 km altitude drifting WNW, however this was noted with low confidence due to the possible mixing of clouds. During the same day, an intense thermal hotspot was detected in the HIMAWARI thermal satellite imagery and the NASA Global Sulfur Dioxide page showed a strong SO2 plume at 11.3 km altitude drifting W (figure 110). The CCTV Lava93 webcam showed new lava flows and lava fountaining from the 10-11 April eruptions. This activity was evident in the MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data (figure 111).

Figure (see Caption) Figure 108. Webcam (Lava93) images of Krakatau on 10 April 2020 showing Strombolian explosions, strong incandescence, and ash plumes rising from the crater. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 109. Webcam image of incandescent Strombolian explosions at Krakatau on 10 April 2020. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 110. Strong sulfur dioxide emissions rising from Krakatau and drifting W were detected using the TROPOMI instrument on the Sentinel-5P satellite on 11 April 2020 (top row). Smaller volumes of SO2 were visible in Sentinel-5P/TROPOMI maps on 13 (bottom left) and 19 April (bottom right). Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 111. Thermal activity at Anak Krakatau from 29 June-May 2020 shown on a MIROVA Log Radiative Power graph. The power and frequency of the thermal anomalies sharply increased in mid-April. After the larger eruptive event in mid-April the thermal anomalies declined slightly in strength but continued to be detected intermittently through May. Courtesy of MIROVA.

Strombolian activity rising up to 500 m continued into 12 April and was accompanied by SO2 emissions that rose 3 km altitude, drifting NW according to a VAAC notice. PVMBG reported an eruption on 13 April at 2054 that resulted in incandescence as high as 25 m above the crater. Volcanic ash, accompanied by white gas-and-steam emissions, continued intermittently through 18 April, many of which were observed by the CCTV webcam. After 18 April only gas-and-steam plumes were reported, rising up to 100 m above the crater; Sentinel-2 satellite imagery showed faint thermal anomalies in the crater (figure 112). SO2 emissions continued intermittently throughout April, though at lower volumes and altitudes compared to the 11th. MODIS satellite data seen in MIROVA showed intermittent thermal anomalies through May.

Figure (see Caption) Figure 112. Sentinel-2 thermal satellite images showing the cool crater lake on 20 March (top left) followed by minor heating of the crater during April and May 2020. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Taal (Philippines) — June 2020 Citation iconCite this Report

Taal

Philippines

14.002°N, 120.993°E; summit elev. 311 m

All times are local (unless otherwise noted)


Eruption on 12 January with explosions through 22 January; steam plumes continuing into March

Taal volcano is in a caldera system located in southern Luzon island and is one of the most active volcanoes in the Philippines. It has produced around 35 recorded eruptions since 3,580 BCE, ranging from VEI 1 to 6, with the majority of eruptions being a VEI 2. The caldera contains a lake with an island that also contains a lake within the Main Crater (figure 12). Prior to 2020 the most recent eruption was in 1977, on the south flank near Mt. Tambaro. The United Nations Office for the Coordination of Humanitarian Affairs in the Philippines reports that over 450,000 people live within 40 km of the caldera (figure 13). This report covers activity during January through February 2020 including the 12 to 22 January eruption, and is based on reports by Philippine Institute of Volcanology and Seismology (PHIVOLCS), satellite data, geophysical data, and media reports.

Figure (see Caption) Figure 12. Annotated satellite images showing the Taal caldera, Volcano Island in the caldera lake, and features on the island including Main Crater. Imagery courtesy of Planet Inc.
Figure (see Caption) Figure 13. Map showing population totals within 14 and 17 km of Volcano Island at Taal. Courtesy of the United Nations Office for the Coordination of Humanitarian Affairs (OCHA).

The hazard status at Taal was raised to Alert Level 1 (abnormal, on a scale of 0-5) on 28 March 2019. From that date through to 1 December there were 4,857 earthquakes registered, with some felt nearby. Inflation was detected during 21-29 November and an increase in CO2 emission within the Main Crater was observed. Seismicity increased beginning at 1100 on 12 January. At 1300 there were phreatic (steam) explosions from several points inside Main Crater and the Alert Level was raised to 2 (increasing unrest). Booming sounds were heard in Talisay, Batangas, at 1400; by 1402 the plume had reached 1 km above the crater, after which the Alert Level was raised to 3 (magmatic unrest).

Phreatic eruption on 12 January 2020. A seismic swarm began at 1100 on 12 January 2020 followed by a phreatic eruption at 1300. The initial activity consisted of steaming from at least five vents in Main Crater and phreatic explosions that generated 100-m-high plumes. PHIVOLCS raised the Alert Level to 2. The Earth Observatory of Singapore reported that the International Data Center (IDC) for the Comprehensive test Ban Treaty (CTBT) in Vienna noted initial infrasound detections at 1450 that day.

Booming sounds were heard at 1400 in Talisay, Batangas (4 km NNE from the Main Crater), and at 1404 volcanic tremor and earthquakes felt locally were accompanied by an eruption plume that rose 1 km; ash fell to the SSW. The Alert Level was raised to 3 and the evacuation of high-risk barangays was recommended. Activity again intensified around 1730, prompting PHIVOLCS to raise the Alert Level to 4 and recommend a total evacuation of the island and high-risk areas within a 14-km radius. The eruption plume of steam, gas, and tephra significantly intensified, rising to 10-15 km altitude and producing frequent lightning (figures 14 and 15). Wet ash fell as far away as Quezon City (75 km N). According to news articles schools and government offices were ordered to close and the Ninoy Aquino International Airport (56 km N) in Manila suspended flights. About 6,000 people had been evacuated. Residents described heavy ashfall, low visibility, and fallen trees.

Figure (see Caption) Figure 14. Lightning produced during the eruption of Taal during 1500 on 12 January to 0500 on 13 January 2020 local time (0700-2100 UTC on 12 January). Courtesy of Chris Vagasky, Vaisala.
Figure (see Caption) Figure 15. Lightning strokes produced during the first days of the Taal January 2020 eruption. Courtesy of Domcar C Lagto/SIPA/REX/Shutterstock via The Guardian.

In a statement issued at 0320 on 13 January, PHIVOLCS noted that ashfall had been reported across a broad area to the north in Tanauan (18 km NE), Batangas; Escala (11 km NW), Tagaytay; Sta. Rosa (32 km NNW), Laguna; Dasmariñas (32 km N), Bacoor (44 km N), and Silang (22 km N), Cavite; Malolos (93 km N), San Jose Del Monte (87 km N), and Meycauayan (80 km N), Bulacan; Antipolo (68 km NNE), Rizal; Muntinlupa (43 km N), Las Piñas (47 km N), Marikina (70 km NNE), Parañaque (51 km N), Pasig (62 km NNE), Quezon City, Mandaluyong (62 km N), San Juan (64 km N), Manila; Makati City (59 km N) and Taguig City (55 km N). Lapilli (2-64 mm in diameter) fell in Tanauan and Talisay; Tagaytay City (12 km N); Nuvali (25 km NNE) and Sta (figure 16). Rosa, Laguna. Felt earthquakes (Intensities II-V) continued to be recorded in local areas.

Figure (see Caption) Figure 16. Ashfall from the Taal January 2020 eruption in Lemery (top) and in the Batangas province (bottom). Photos posted on 13 January, courtesy of Ezra Acayan/Getty Images, Aaron Favila/AP, and Ted Aljibe/AFP via Getty Images via The Guardian.

Magmatic eruption on 13 January 2020. A magmatic eruption began during 0249-0428 on 13 January, characterized by weak lava fountaining accompanied by thunder and flashes of lightning. Activity briefly waned then resumed with sporadic weak fountaining and explosions that generated 2-km-high, dark gray, steam-laden ash plumes (figure 17). New lateral vents opened on the N flank, producing 500-m-tall lava fountains. Heavy ashfall impacted areas to the SW, including in Cuenca (15 km SSW), Lemery (16 km SW), Talisay, and Taal (15 km SSW), Batangas (figure 18).

Figure (see Caption) Figure 17. Ash plumes seen from various points around Taal in the initial days of the January 2020 eruption, posted on 13 January. Courtesy of Eloisa Lopez/Reuters, Kester Ragaza/Pacific Press/Shutterstock, Ted Aljibe/AFP via Getty Images, via The Guardian.
Figure (see Caption) Figure 18. Map indicating areas impacted by ashfall from the 12 January eruption through to 0800 on the 13th. Small yellow circles (to the N) are ashfall report locations; blue circles (at the island and to the S) are heavy ashfall; large green circles are lapilli (particles measuring 2-64 mm in diameter). Modified from a map courtesy of Lauriane Chardot, Earth Observatory of Singapore; data taken from PHIVOLCS.

News articles noted that more than 300 domestic and 230 international flights were cancelled as the Manila Ninoy Aquino International Airport was closed during 12-13 January. Some roads from Talisay to Lemery and Agoncillo were impassible and electricity and water services were intermittent. Ashfall in several provinces caused power outages. Authorities continued to evacuate high-risk areas, and by 13 January more than 24,500 people had moved to 75 shelters out of a total number of 460,000 people within 14 km.

A PHIVOLCS report for 0800 on the 13th through 0800 on 14 January noted that lava fountaining had continued, with steam-rich ash plumes reaching around 2 km above the volcano and dispersing ash SE and W of Main Crater. Volcanic lighting continued at the base of the plumes. Fissures on the N flank produced 500-m-tall lava fountains. Heavy ashfall continued in the Lemery, Talisay, Taal, and Cuenca, Batangas Municipalities. By 1300 on the 13th lava fountaining generated 800-m-tall, dark gray, steam-laden ash plumes that drifted SW. Sulfur dioxide emissions averaged 5,299 metric tons/day (t/d) on 13 January and dispersed NNE (figure 19).

Figure (see Caption) Figure 19. Compilation of sulfur dioxide plumes from TROPOMI overlaid in Google Earth for 13 January from 0313-1641 UT. Courtesy of NASA Global Sulfur Dioxide Monitoring Page and Google Earth.

Explosions and ash emission through 22 January 2020. At 0800 on 15 January PHIVOLCS stated that activity was generally weaker; dark gray, steam-laden ash plumes rose about 1 km and drifted SW. Satellite images showed that the Main Crater lake was gone and new craters had formed inside Main Crater and on the N side of Volcano Island.

PHIVOLCS reported that activity during 15-16 January was characterized by dark gray, steam-laden plumes that rose as high as 1 km above the vents in Main Crater and drifted S and SW. Sulfur dioxide emissions were 4,186 t/d on 15 January. Eruptive events at 0617 and 0621 on 16 January generated short-lived, dark gray ash plumes that rose 500 and 800 m, respectively, and drifted SW. Weak steam plumes rose 800 m and drifted SW during 1100-1700, and nine weak explosions were recorded by the seismic network.

Steady steam emissions were visible during 17-21 January. Infrequent weak explosions generated ash plumes that rose as high as 1 km and drifted SW. Sulfur dioxide emissions fluctuated and were as high as 4,353 t/d on 20 January and as low as 344 t/d on 21 January. PHIVOLCS reported that white steam-laden plumes rose as high as 800 m above main vent during 22-28 January and drifted SW and NE; ash emissions ceased around 0500 on 22 January. Remobilized ash drifted SW on 22 January due to strong low winds, affecting the towns of Lemery (16 km SW) and Agoncillo, and rose as high as 5.8 km altitude as reported by pilots. Sulfur dioxide emissions were low at 140 t/d.

Steam plumes through mid-April 2020. The Alert Level was lowered to 3 on 26 January and PHIVOLCS recommended no entry onto Volcano Island and Taal Lake, nor into towns on the western side of the island within a 7-km radius. PHIVOLCS reported that whitish steam plumes rose as high as 800 m during 29 January-4 February and drifted SW (figure 20). The observed steam plumes rose as high as 300 m during 5-11 February and drifted SW.

Sulfur dioxide emissions averaged around 250 t/d during 22-26 January; emissions were 87 t/d on 27 January and below detectable limits the next day. During 29 January-4 February sulfur dioxide emissions ranged to a high of 231 t/d (on 3 February). The following week sulfur dioxide emissions ranged from values below detectable limits to a high of 116 t/d (on 8 February).

Figure (see Caption) Figure 20. Taal Volcano Island producing gas-and-steam plumes on 15-16 January 2020. Courtesy of James Reynolds, Earth Uncut.

On 14 February PHIVOLCS lowered the Alert Level to 2, noting a decline in the number of volcanic earthquakes, stabilizing ground deformation of the caldera and Volcano Island, and diffuse steam-and-gas emission that continued to rise no higher than 300 m above the main vent during the past three weeks. During 14-18 February sulfur dioxide emissions ranged from values below detectable limits to a high of 58 tonnes per day (on 16 February). Sulfur dioxide emissions were below detectable limits during 19-20 February. During 26 February-2 March steam plumes rose 50-300 m above the vent and drifted SW and NE. PHIVOLCS reported that during 4-10 March weak steam plumes rose 50-100 m and drifted SW and NE; moderate steam plumes rose 300-500 m and drifted SW during 8-9 March. During 11-17 March weak steam plumes again rose only 50-100 m and drifted SW and NE.

PHIVOLCS lowered the Alert Level to 1 on 19 March and recommended no entry onto Volcano Island, the area defined as the Permanent Danger Zone. During 8-9 April steam plumes rose 100-300 m and drifted SW. As of 1-2 May 2020 only weak steaming and fumarolic activity from fissure vents along the Daang Kastila trail was observed.

Evacuations. According to the Disaster Response Operations Monitoring and Information Center (DROMIC) there were a total of 53,832 people dispersed to 244 evacuation centers by 1800 on 15 January. By 21 January there were 148,987 people in 493 evacuation. The number of residents in evacuation centers dropped over the next week to 125,178 people in 497 locations on 28 January. However, many residents remained displaced as of 3 February, with DROMIC reporting 23,915 people in 152 evacuation centers, but an additional 224,188 people staying at other locations.

By 10 February there were 17,088 people in 110 evacuation centers, and an additional 211,729 staying at other locations. According to the DROMIC there were a total of 5,321 people in 21 evacuation centers, and an additional 195,987 people were staying at other locations as of 19 February.

The number of displaced residents continued to drop, and by 3 March there were 4,314 people in 12 evacuation centers, and an additional 132,931 people at other locations. As of 11 March there were still 4,131 people in 11 evacuation centers, but only 17,563 staying at other locations.

Deformation and ground cracks. New ground cracks were observed on 13 January in Sinisian (18 km SW), Mahabang Dahilig (14 km SW), Dayapan (15 km SW), Palanas (17 km SW), Sangalang (17 km SW), and Poblacion (19 km SW) Lemery; Pansipit (11 km SW), Agoncillo; Poblacion 1, Poblacion 2, Poblacion 3, Poblacion 5 (all around 17 km SW), Talisay, and Poblacion (11 km SW), San Nicolas (figure 21). A fissure opened across the road connecting Agoncillo to Laurel, Batangas. New ground cracking was reported the next day in Sambal Ibaba (17 km SW), and portions of the Pansipit River (SW) had dried up.

Figure (see Caption) Figure 21. Video screenshots showing ground cracks that formed during the Taal unrest and captured on 15 and 16 January 2020. Courtesy of James Reynolds, Earth Uncut.

Dropping water levels of Taal Lake were first observed in some areas on 16 January but reported to be lake-wide the next day. The known ground cracks in the barangays of Lemery, Agoncillo, Talisay, and San Nicolas in Batangas Province widened a few centimeters by 17 January, and a new steaming fissure was identified on the N flank of the island.

GPS data had recorded a sudden widening of the caldera by ~1 m, uplift of the NW sector by ~20 cm, and subsidence of the SW part of Volcano Island by ~1 m just after the main eruption phase. The rate of deformation was smaller during 15-22 January, and generally corroborated by field observations; Taal Lake had receded about 30 cm by 25 January but about 2.5 m of the change (due to uplift) was observed around the SW portion of the lake, near the Pansipit River Valley where ground cracking had been reported.

Weak steaming (plumes 10-20 m high) from ground cracks was visible during 5-11 February along the Daang Kastila trail which connects the N part of Volcano Island to the N part of the main crater. PHIVOLCS reported that during 19-24 February steam plumes rose 50-100 m above the vent and drifted SW. Weak steaming (plumes up to 20 m high) from ground cracks was visible during 8-14 April along the Daang Kastila trail which connects the N part of Volcano Island to the N part of the main crater.

Seismicity. Between 1300 on 12 January and 0800 on 21 January the Philippine Seismic Network (PSN) had recorded a total of 718 volcanic earthquakes; 176 of those had magnitudes ranging from 1.2-4.1 and were felt with Intensities of I-V. During 20-21 January there were five volcanic earthquakes with magnitudes of 1.6-2.5; the Taal Volcano network (which can detect smaller events not detectable by the PSN) recorded 448 volcanic earthquakes, including 17 low-frequency events. PHIVOLCS stated that by 21 January hybrid earthquakes had ceased and both the number and magnitude of low-frequency events had diminished.

Geologic Background. Taal is one of the most active volcanoes in the Philippines and has produced some of its most powerful historical eruptions. Though not topographically prominent, its prehistorical eruptions have greatly changed the landscape of SW Luzon. The 15 x 20 km Talisay (Taal) caldera is largely filled by Lake Taal, whose 267 km2 surface lies only 3 m above sea level. The maximum depth of the lake is 160 m, and several eruptive centers lie submerged beneath the lake. The 5-km-wide Volcano Island in north-central Lake Taal is the location of all historical eruptions. The island is composed of coalescing small stratovolcanoes, tuff rings, and scoria cones that have grown about 25% in area during historical time. Powerful pyroclastic flows and surges from historical eruptions have caused many fatalities.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, University of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph/); Disaster Response Operations Monitoring and Information Center (DROMIC) (URL: https://dromic.dswd.gov.ph/); United Nations Office for the Coordination of Humanitarian Affairs, Philippines (URL: https://www.unocha.org/philippines); James Reynolds, Earth Uncut TV (Twitter: @EarthUncutTV, URL: https://www.earthuncut.tv/, YouTube: https://www.youtube.com/user/TyphoonHunter); Chris Vagasky, Vaisala Inc., Louisville, Colorado, USA (URL: https://www.vaisala.com/en?type=1, Twitter: @COweatherman, URL: https://twitter.com/COweatherman); Earth Observatory of Singapore, Nanyang Technological University, 50 Nanyang Avenue, Singapore (URL: https://www.earthobservatory.sg/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Relief Web, Flash Update No. 1 - Philippines: Taal Volcano eruption (As of 13 January 2020, 2 p.m. local time) (URL: https://reliefweb.int/report/philippines/flash-update-no-1-philippines-taal-volcano-eruption-13-january-2020-2-pm-local); Bloomberg, Philippines Braces for Hazardous Volcano Eruption (URL: https://www.bloomberg.com/news/articles/2020-01-12/philippines-raises-alert-level-in-taal-as-volcano-spews-ash); National Public Radio (NPR), Volcanic Eruption In Philippines Causes Thousands To Flee (URL: npr.org/2020/01/13/795815351/volcanic-eruption-in-philippines-causes-thousands-to-flee); Reuters (http://www.reuters.com/); Agence France-Presse (URL: http://www.afp.com/); Pacific Press (URL: http://www.pacificpress.com/); Shutterstock (URL: https://www.shutterstock.com/); Getty Images (URL: http://www.gettyimages.com/); Google Earth (URL: https://www.google.com/earth/).


Unnamed (Tonga) — March 2020 Citation iconCite this Report

Unnamed

Tonga

18.325°S, 174.365°W; summit elev. -40 m

All times are local (unless otherwise noted)


Additional details and pumice raft drift maps from the August 2019 submarine eruption

In the northern Tonga region, approximately 80 km NW of Vava’u, large areas of floating pumice, termed rafts, were observed starting as early as 7 August 2019. The area of these andesitic pumice rafts was initially 195 km2 with the layers measuring 15-30 cm thick and were produced 200 m below sea level (Jutzeler et al. 2020). The previous report (BGVN 44:11) described the morphology of the clasts and the rafts, and their general westward path from 9 August to 9 October 2019, with the first sighting occurring on 9 August NW of Vava’u in Tonga. This report updates details regarding the submarine pumice raft eruption in early August 2019 using new observations and data from Brandl et al. (2019) and Jutzeler et al. (2020).

The NoToVE-2004 (Northern Tonga Vents Expedition) research cruise on the RV Southern Surveyor (SS11/2004) from the Australian CSIRO Marine National Facility traveled to the northern Tonga Arc and discovered several submarine basalt-to-rhyolite volcanic centers (Arculus, 2004). One of these volcanic centers 50 km NW of Vava’u was the unnamed seamount (volcano number 243091) that had erupted in 2001 and again in 2019, unofficially designated “Volcano F” for reference purposes by Arculus (2004) and also used by Brandl et al. (2019). It is a volcanic complex that rises more than 1 km from the seafloor with a central 6 x 8.7 km caldera and a volcanic apron measuring over 50 km in diameter (figures 19 and 20). Arculus (2004) described some of the dredged material as “fresh, black, plagioclase-bearing lava with well-formed, glassy crusts up to 2cm thick” from cones by the eastern wall of the caldera; a number of apparent flows, lava or debris, were observed draping over the northern wall of the caldera.

Figure (see Caption) Figure 19. Visualization of the unnamed submarine Tongan volcano (marked “Volcano F”) using bathymetric data to show the site of the 6-8 August 2020 eruption and the rest of the cone complex. Courtesy of Philipp Brandl via GEOMAR.
Figure (see Caption) Figure 20. Map of the unnamed submarine Tongan volcano using satellite imagery, bathymetric data, with shading from the NW. The yellow circle indicates the location of the August 2019 activity. Young volcanic cones are marked “C” and those with pit craters at the top are marked with “P.” Courtesy of Brandl et al. (2019).

The International Seismological Centre (ISC) Preliminary Bulletin listed a particularly strong (5.7 Mw) earthquake at 2201 local time on 5 August, 15 km SSW of the volcano at a depth of 10 km (Brandl et al. 2019). This event was followed by six slightly lower magnitude earthquakes over the next two days.

Sentinel-2 satellite imagery showed two concentric rings originating from a point source (18.307°S 174.395°W) on 6 August (figure 21), which could be interpreted as small weak submarine plumes or possibly a series of small volcanic cones, according to Brandl et al. (2019). The larger ring is about 1.2 km in diameter and the smaller one measures 250 m. By 8 August volcanic activity had decreased, but the pumice rafts that were produced remained visible through at least early October (BGVN 44:11). Brandl et al. (2019) states that, due to the lack of continued observed activity rising from this location, the eruption was likely a 2-day-long event during 6-8 August.

Figure (see Caption) Figure 21. Sentinel-2 satellite image of possible gas/vapor emissions (streaks) on 6 August 2019 drifting NW, which is the interpreted site for the unnamed Tongan seamount. The larger ring is about 1.2 km in diameter and the smaller one measures 250 m. Image using False Color (urban) rendering (bands 12, 11, 4); courtesy of Sentinel Hub Playground.

The pumice was first observed on 9 August occurred up to 56 km from the point of origin, according to Jutzeler et al. (2020). By calculating the velocity (14 km/day) of the raft using three satellites, Jutzeler et al. (2020) determined the pumice was erupted immediately after the satellite image of the submarine plumes on 6 August (UTC time). Minor activity at the vent may have continued on 8 and 11 August (UTC time) with pale blue-green water discoloration (figure 22) and a small (less than 1 km2) diffuse pumice raft 2-5 km from the vent.

Figure (see Caption) Figure 22. Sentinel-2 satellite image of the last visible activity occurring W of the unnamed submarine Tongan volcano on 8 August 2019, represented by slightly discolored blue-green water. Image using Natural Color rendering (bands 4, 3, 2) and enhanced with color correction; courtesy of Sentinel Hub Playground.

Continuous observations using various satellite data and observations aboard the catamaran ROAM tracked the movement and extent of the pumice raft that was produced during the submarine eruption in early August (figure 23). The first visible pumice raft was observed on 8 August 2019, covering more than 136.7 km2 between the volcanic islands of Fonualei and Late and drifting W for 60 km until 9 August (Brandl et al. 2019; Jutzeler 2020). The next day, the raft increased to 167.2-195 km2 while drifting SW for 74 km until 14 August. Over the next three days (10-12 August) the size of the raft briefly decreased in size to less than 100 km2 before increasing again to 157.4 km2 on 14 August; at least nine individual rafts were mapped and identified on satellite imagery (Brandl et al. 2019). On 15 August sailing vessels observed a large pumice raft about 75 km W of Late Island (see details in BGVN 44:11), which was the same one as seen in satellite imagery on 8 August.

Figure (see Caption) Figure 23. Map of the extent of discolored water and the pumice raft from the unnamed submarine Tongan volcano between 8 and 14 August 2019 using imagery from NASA’s MODIS, ESA’s Sentinel-2 satellite, and observations from aboard the catamaran ROAM (BGVN 44:11). Back-tracing the path of the pumice raft points to a source location at the unnamed submarine Tongan volcano. Courtesy of Brandl et al. (2019).

By 17 August high-resolution satellite images showed an area of large and small rafts measuring 222 km2 and were found within a field of smaller rafts for a total extent of 1,350 km2, which drifted 73 km NNW through 22 August before moving counterclockwise for three days (figure f; Jutzeler et al., 2020). Small pumice ribbons encountered the Oneata Lagoon on 30 August, the first island that the raft came into contact (Jutzeler et al. 2020). By 2 September, the main raft intersected with Lakeba Island (460 km from the source) (figure 24), breaking into smaller ribbons that started to drift W on 8 September. On 19 September the small rafts (less than 100 m x less than 2 km) entered the strait between Viti Levu and Vanua Levu, the two main islands of Fiji, while most of the others were stranded 60 km W in the Yasawa Islands for more than two months (Jutzeler et al., 2020).

Figure (see Caption) Figure 24. Time-series map of the raft dispersal from the unnamed submarine Tongan volcano using multiple satellite images. A) Map showing the first days of the raft dispersal starting on 7 August 2019 and drifting SW from the vent (marked with a red triangle). Precursory seismicity that began on 5 August is marked with a white star. By 15-17 August the raft was entrained in an ocean loop or eddy. The dashed lines represent the path of the sailing vessels. B) Map of the raft dispersal using high-resolution Sentinel-2 and -3 imagery. Two dispersal trails (red and blue dashed lines) show the daily dispersal of two parts of the raft that were separated on 17 August 2019. Courtesy of Jutzeler et al. (2020).

References: Arculus, R J, SS2004/11 shipboard scientists, 2004. SS11/2004 Voyage Summary: NoToVE-2004 (Northern Tonga Vents Expedition): submarine hydrothermal plume activity and petrology of the northern Tofua Arc, Tonga. https://www.cmar.csiro.au/data/reporting/get file.cfm?eovpub id=901.

Brandl P A, Schmid F, Augustin N, Grevemeyer I, Arculus R J, Devey C W, Petersen S, Stewart M , Kopp K, Hannington M D, 2019. The 6-8 Aug 2019 eruption of ‘Volcano F’ in the Tofua Arc, Tonga. Journal of Volcanology and Geothermal Research: https://doi.org/10.1016/j.jvolgeores.2019.106695

Jutzeler M, Marsh R, van Sebille E, Mittal T, Carey R, Fauria K, Manga M, McPhie J, 2020. Ongoing Dispersal of the 7 August 2019 Pumice Raft From the Tonga Arc in the Southwestern Pacific Ocean. AGU Geophysical Research Letters: https://doi.orh/10.1029/2019GL086768.

Geologic Background. A submarine volcano along the Tofua volcanic arc was first observed in September 2001. The newly discovered volcano lies NW of the island of Vava'u about 35 km S of Fonualei and 60 km NE of Late volcano. The site of the eruption is along a NNE-SSW-trending submarine plateau with an approximate bathymetric depth of 300 m. T-phase waves were recorded on 27-28 September 2001, and on the 27th local fishermen observed an ash-rich eruption column that rose above the sea surface. No eruptive activity was reported after the 28th, but water discoloration was documented during the following month. In early November rafts and strandings of dacitic pumice were reported along the coast of Kadavu and Viti Levu in the Fiji Islands. The depth of the summit of the submarine cone following the eruption determined to be 40 m during a 2007 survey; the crater of the 2001 eruption was breached to the E.

Information Contacts: Jan Steffen, Communication and Media, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany; Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Klyuchevskoy (Russia) — June 2020 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Strombolian activity November 2019 through May 2020; lava flow down the SE flank in April

Klyuchevskoy is part of the Klyuchevskaya volcanic group in northern Kamchatka and is one of the most frequently active volcanoes of the region. Eruptions produce lava flows, ashfall, and lahars originating from summit and flank activity. This report summarizes activity during October 2019 through May 2020, and is based on reports by the Kamchatkan Volcanic Eruption Response Team (KVERT) and satellite data.

There were no activity reports from 1 to 22 October, but gas emissions were visible in satellite images. At 1020 on 24 October (2220 on 23 October UTC) KVERT noted that there was a small ash component in the ash plume from erosion of the conduit, with the plume reaching 130 km ENE. The Aviation Colour Code was raised from Green to Yellow, then to Orange the following day. An ash plume continued on the 25th to 5-7 km altitude and extending 15 km SE and 70 km SW and reached 30 km ESE on the 26th. Similar activity continued through to the end of the month.

Moderate gas emissions continued during 1-19 November, but the summit was obscured by clouds. Strong nighttime incandescence was visible at the crater during the 10-11 November and thermal anomalies were detected on 8 and 10-13 November. Explosions produced ash plumes up to 6 km altitude on the 20-21st and Strombolian activity was reported during 20-22 November. Degassing continued from 23 November through 12 December, and a thermal anomaly was visible on the days when the summit was not covered by clouds. An ash plume was reported moving to the NW on the 13th, and degassing with a thermal anomaly and intermittent Strombolian activity then resumed, continuing through to the end of December with an ash plume reported on the 30th.

Gas-and-steam plumes continued into January 2020 with incandescence noted when the summit was clear (figure 33). Strombolian activity was reported again starting on the 3rd. A weak ash plume produced on the 6th extended 55 km E, and on the 21st an ash plume reached 5-5.5 km altitude and extended 190 km NE (figure 34). Another ash plume the next day rose to the same altitude and extended 388 km NE. During 23-29 Strombolian activity continued, and Vulcanian activity produced ash plumes up to 5.5 altitude, extending to 282 km E on the 30th, and 145 km E on the 31st.

Figure (see Caption) Figure 33. Incandescence and degassing were visible at Klyuchevskoy through January 2020, seen here on the 11th. Courtesy of KVERT.
Figure (see Caption) Figure 34. A low ash plume at Klyuchevskoy on 21 January 2020 extended 190 km NE. Courtesy of KVERT.

Strombolian activity continued throughout February with occasional explosions producing ash plumes up to 5.5 km altitude, as well as gas-and-steam plumes and a persistent thermal anomaly with incandescence visible at night. Starting in late February thermal anomalies were detected much more frequently, and with higher energy output compared to the previous year (figure 35). A lava fountain was reported on 1 March with the material falling back into the summit crater. Strombolian activity continued through early March. Lava fountaining was reported again on the 8th with ejecta landing in the crater and down the flanks (figure 36). A strong persistent gas-and-steam plume containing some ash continued along with Strombolian activity through 25 March (figure 37), with Vulcanian activity noted on the 20th and 25th. Strombolian and Vulcanian activity was reported through the end of March.

Figure (see Caption) Figure 35. This MIROVA thermal energy plot for Klyuchevskoy for the year ending 29 April 2020 (log radiative power) shows intermittent thermal anomalies leading up to more sustained energy detected from February through March, then steadily increasing energy through April 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 36. Strombolian explosions at Klyuchevskoy eject incandescent ash and gas, and blocks and bombs onto the upper flanks on 8 and 10 March 2020. Courtesy of IVS FEB RAS, KVERT.
Figure (see Caption) Figure 37. Weak ash emission from the Klyuchevskoy summit crater are dispersed by wind on 19 and 29 March 2020, with ash depositing on the flanks. Courtesy of IVS FEB RAS, KVERT.

Activity was dominantly Strombolian during 1-5 April and included intermittent Vulcanian explosions from the 6th onwards, with ash plumes reaching 6 km altitude. On 18 April a lava flow began moving down the SE flank (figures 38). A report on the 26th reported explosions from lava-water interactions with avalanches from the active lava flow, which continued to move down the SE flank and into the Apakhonchich chute (figures 39 and 40). This continued throughout April and May with sustained Strombolian and intermittent Vulcanian activity at the summit (figures 41 and 42).

Figure (see Caption) Figure 38. Strombolian activity produced ash plumes and a lava flow down the SE flank of Klyuchevskoy on 18 April 2020. Courtesy of IVS FEB RAS, KVERT.
Figure (see Caption) Figure 39. A lava flow descends the SW flank of Klyuchevskoy and a gas plume is dispersed by winds on 21 April 2020. Courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.
Figure (see Caption) Figure 40. Sentinel-2 thermal satellite images show the progression of the Klyuchevskoy lava flow from the summit crater down the SE flank from 19-29 April 2020. Associated gas plumes are dispersed in various directions. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 41. Strombolian activity at Klyuchevskoy ejects incandescent ejecta, gas, and ash above the summit on 27 April 2020. Courtesy of D. Bud'kov, IVS FEB RAS, KVERT.
Figure (see Caption) Figure 42. Sentinel-2 thermal satellite images of Klyuchevskoy show the progression of the SE flank lava flow through May 2020, with associated gas plumes being dispersed in multiple directions. Courtesy of Sentinel Hub Playground.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nyamuragira (DR Congo) — June 2020 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Intermittent thermal anomalies within the summit crater during December 2019-May 2020

Nyamuragira (also known as Nyamulagira) is located in the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo and consists of a lava lake that reappeared in the summit crater in mid-April 2018. Volcanism has been characterized by lava emissions, thermal anomalies, seismicity, and gas-and-steam emissions. This report summarizes activity during December 2019 through May 2020 using information from monthly reports by the Observatoire Volcanologique de Goma (OVG) and satellite data.

According to OVG, intermittent eruptive activity was detected in the lava lake of the central crater during December 2019 and January-April 2020, which also resulted in few seismic events. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows thermal anomalies within the summit crater that varied in both frequency and power between August 2019 and mid-March 2020, but very few were recorded afterward through late May (figure 88). Thermal hotspots identified by MODVOLC from 15 December 2019 through March 2020 were mainly located in the active central crater, with only three hotspots just outside the SW crater rim (figure 89). Sentinel-2 thermal satellite imagery also showed activity within the summit crater during January-May 2020, but by mid-March the thermal anomaly had visibly decreased in power (figure 90).

Figure (see Caption) Figure 88. The MIROVA graph of thermal activity (log radiative power) at Nyamuragira during 27 July through May 2020 shows variably strong, intermittent thermal anomalies with a variation in power and frequency from August 2019 to mid-March 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 89. Map showing the number of MODVOLC hotspot pixels at Nyamuragira from 1 December 2019 t0 31 May 2020. 37 pixels were registered within the summit crater while 3 were detected just outside the SW crater rim. Courtesy of HIGP-MODVOLC Thermal Alerts System.
Figure (see Caption) Figure 90. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed ongoing thermal activity (bright yellow-orange) at Nyamuragira from February into April 2020. The strength of the thermal anomaly in the summit crater decreased by late March 2020, but was still visible. Courtesy of Sentinel Hub Playground.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Information contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/exp.


Nyiragongo (DR Congo) — June 2020 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Activity in the lava lake and small eruptive cone persists during December 2019-May 2020

Nyiragongo is located in the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo, part of the western branch of the East African Rift System and contains a 1.2 km-wide summit crater with a lava lake that has been active since at least 1971. Volcanism has been characterized by strong and frequent thermal anomalies, incandescence, gas-and-steam emissions, and seismicity. This report summarizes activity during December 2019 through May 2020 using information from monthly reports by the Observatoire Volcanologique de Goma (OVG) and satellite data.

In the December 2019 monthly report, OVG stated that the level of the lava lake had increased. This level of the lava lake was maintained for the duration of the reporting period, according to later OVG monthly reports. Seismicity increased starting in November 2019 and was detected in the NE part of the crater, but it decreased by mid-April 2020. SO2 emissions increased in January 2020 to roughly 7,000 tons/day but decreased again near the end of the month. OVG reported that SO2 emissions rose again in February to roughly 8,500 tons/day before declining to about 6,000 tons/day. Unlike in the previous report (BGVN 44:12), incandescence was visible during the day in the active lava lake and activity at the small eruptive cone within the 1.2-km-wide summit crater has since increased, consisting of incandescence and some lava fountaining (figure 72). A field survey was conducted on 3-4 March where an OVG team observed active lava fountains and ejecta that produced Pele’s hair from the small eruptive cone (figure 73). During this survey, OVG reported that the level of the lava lake had reached the second terrace, which was formed on 17 January 2002 and represents remnants of the lava lake at different eruption stages. There, the open surface lava lake was observed; gas-and-steam emissions accompanied both the active lava lake and the small eruptive cone (figures 72 and 73).

Figure (see Caption) Figure 72. Webcam image of Nyiragongo in February 2020 showing an open lava lake surface and incandescence from the active crater cone within the 1.2 km-wide summit crater visible during the day, accompanied by white gas-and-steam emissions. Courtesy of OVG (Rapport OVG February 2020).
Figure (see Caption) Figure 73. Webcam image of Nyiragongo on 4 March 2020 showing an open lava lake surface and incandescence from the active crater cone within the 1.2 km-wide summit crater visible during the day, accompanied by white gas-and-steam emissions. Courtesy of OVG (Rapport OVG Mars 2020).

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data continued to show frequent strong thermal anomalies within 5 km of the summit crater through May 2020 (figure 74). Similarly, the MODVOLC algorithm reported multiple thermal hotspots almost daily within the summit crater between December 2019 and May 2020. These thermal signatures were also observed in Sentinel-2 thermal satellite imagery within the summit crater (figure 75).

Figure (see Caption) Figure 74. Thermal anomalies at Nyiragongo from 27 July through May 2020 as recorded by the MIROVA system (Log Radiative Power) were frequent and strong. Courtesy of MIROVA.
Figure (see Caption) Figure 75. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) showed ongoing thermal activity (bright yellow-orange) in the summit crater at Nyiragongo during January through April 2020. Courtesy of Sentinel Hub Playground.

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kavachi (Solomon Islands) — May 2020 Citation iconCite this Report

Kavachi

Solomon Islands

8.991°S, 157.979°E; summit elev. -20 m

All times are local (unless otherwise noted)


Discolored water plumes seen using satellite imagery in 2018 and 2020

Kavachi is a submarine volcano located in the Solomon Islands south of Gatokae and Vangunu islands. Volcanism is frequently active, but rarely observed. The most recent eruptions took place during 2014, which consisted of an ash eruption, and during 2016, which included phreatomagmatic explosions (BGVN 42:03). This reporting period covers December 2016-April 2020 primarily using satellite data.

Activity at Kavachi is often only observed through satellite images, and frequently consists of discolored submarine plumes for which the cause is uncertain. On 1 January 2018 a slight yellow discoloration in the water is seen extending to the E from a specific point (figure 20). Similar faint plumes were observed on 16 January, 25 February, 2 March, 26 April, 6 May, and 25 June 2018. No similar water discoloration was noted during 2019, though clouds may have obscured views.

Figure (see Caption) Figure 20. Satellite images from Sentinel-2 revealed intermittent faint water discoloration (yellow) at Kavachi during the first half of 2018, as seen here on 1 January (top left), 25 February (top right), 26 April (bottom left), and 25 June (bottom right). Images with “Natural color” rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Activity resumed in 2020, showing more discolored water in satellite imagery. The first instance occurred on 16 March, where a distinct plume extended from a specific point to the SE. On 25 April a satellite image showed a larger discolored plume in the water that spread over about 30 km2, encompassing the area around Kavachi (figure 21). Another image on 30 April showed a thin ribbon of discolored water extending about 50 km W of the vent.

Figure (see Caption) Figure 21. Sentinel-2 satellite images of a discolored plume (yellow) at Kavachi beginning on 16 March (top left) with a significant large plume on 25 April (right), which remained until 30 April (bottom left). Images with “Natural color” rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Geologic Background. Named for a sea-god of the Gatokae and Vangunu peoples, Kavachi is one of the most active submarine volcanoes in the SW Pacific, located in the Solomon Islands south of Vangunu Island. Sometimes referred to as Rejo te Kvachi ("Kavachi's Oven"), this shallow submarine basaltic-to-andesitic volcano has produced ephemeral islands up to 1 km long many times since its first recorded eruption during 1939. Residents of the nearby islands of Vanguna and Nggatokae (Gatokae) reported "fire on the water" prior to 1939, a possible reference to earlier eruptions. The roughly conical edifice rises from water depths of 1.1-1.2 km on the north and greater depths to the SE. Frequent shallow submarine and occasional subaerial eruptions produce phreatomagmatic explosions that eject steam, ash, and incandescent bombs. On a number of occasions lava flows were observed on the ephemeral islands.

Information Contacts: Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kuchinoerabujima (Japan) — May 2020 Citation iconCite this Report

Kuchinoerabujima

Japan

30.443°N, 130.217°E; summit elev. 657 m

All times are local (unless otherwise noted)


Eruption and ash plumes begin on 11 January 2020 and continue through April 2020

Kuchinoerabujima encompasses a group of young stratovolcanoes located in the northern Ryukyu Islands. All historical eruptions have originated from the Shindake cone, with the exception of a lava flow that originated from the S flank of the Furudake cone. The most recent previous eruptive period took place during October 2018-February 2019 and primarily consisted of weak explosions, ash plumes, and ashfall. The current eruption began on 11 January 2020 after nearly a year of dominantly gas-and-steam emissions. Volcanism for this reporting period from March 2019 to April 2020 included explosions, ash plumes, SO2 emissions, and ashfall. The primary source of information for this report comes from monthly and annual reports from the Japan Meteorological Agency (JMA) and advisories from the Tokyo Volcanic Ash Advisory Center (VAAC). Activity has been limited to Kuchinoerabujima's Shindake Crater.

Volcanism at Kuchinoerabujima was relatively low during March through December 2019, according to JMA. During this time, SO2 emissions ranged from 100 to 1,000 tons/day. Gas-and-steam emissions were frequently observed throughout the entire reporting period, rising to a maximum height of 1.1 km above the crater on 13 December 2019. Satellite imagery from Sentinel-2 showed gas-and-steam and occasional ash emissions rising from the Shindake crater throughout the reporting period (figure 7). Though JMA reported thermal anomalies occurring on 29 January and continuing through late April 2020, Sentinel-2 imagery shows the first thermal signature appearing on 26 April.

Figure (see Caption) Figure 7. Sentinel-2 thermal satellite images showed gas-and-steam and ash emissions rising from Kuchinoerabujima. Some ash deposits can be seen on 6 February 2020 (top right). A thermal anomaly appeared on 26 April 2020 (bottom right). Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

An eruption on 11 January 2020 at 1505 ejected material 300 m from the crater and produced ash plumes that rose 2 km above the crater rim, extending E, according to JMA. The eruption continued through 12 January until 0730. The resulting ash plumes rose 400 m above the crater, drifting SW while the SO2 emissions measured 1,300 tons/day. Ashfall was reported on Yakushima Island (15 km E). Minor eruptive activity was reported during 17-20 January which produced gray-white plumes that rose 300-500 m above the crater. On 23 January, seismicity increased, and an eruption produced an ash plume that rose 1.2 km altitude, according to a Tokyo VAAC report, resulting in ashfall 2 km NE of the crater. A small explosion was detected on 24 January, followed by an increase in the number of earthquakes during 25-26 January (65-71 earthquakes per day were registered). Another small eruptive event detected on 27 January at 0148 was accompanied by a volcanic tremor and a change in tilt data. During the month of January, some inflation was detected at the base on the volcano and a total of 347 earthquakes were recorded. The SO2 emissions ranged from 200-1,600 tons/day.

An eruption on 1 February 2020 produced an eruption column that rose less than 1 km altitude and extended SE and SW (figure 8), according to the Tokyo VAAC report. On 3 February, an eruption from the Shindake crater at 0521 produced an ash plume that rose 7 km above the crater and ejected material as far as 600 m away. As a result, a pyroclastic flow formed, traveling 900-1,500 m SW. The previous pyroclastic flow that was recorded occurred on 29 January 2019. Ashfall was confirmed in the N part of Yakushima Island with a large amount in Miyanoura (32 km ESE) and southern Tanegashima. The SO2 emissions measured 1,700 tons/day during this event.

Figure (see Caption) Figure 8. Webcam images from the Honmura west surveillance camera of an ash plume rising from Kuchinoerabujima on 1 February 2020. Courtesy of JMA (Weekly bulletin report 509, February 2020).

Intermittent small eruptive events occurred during 5-9 February; field observations showed a large amount of ashfall on the SE flank which included lapilli that measured up to 2 cm in diameter. Additionally, thermal images showed 5-km-long pyroclastic flow deposits on the SW flank. An eruption on 9 February produced an ash plume that rose 1.2 km altitude, drifting SE. On 13 February a small eruption was detected in the Shindake crater at 1211, producing gray-white plumes that rose 300 m above the crater, drifting NE. Small eruptive events also occurred during 20-21 February, resulting in gas-and-steam emissions that rose 200 m above the crater. During the month of February, some horizontal extension was observed since January 2020 using GNSS data. The total number of earthquakes during this month drastically increased to 1225 compared to January. The SO2 emissions ranged from 300-1,700 tons/day.

By 2 March 2020, seismicity decreased, and activity declined. Gas-and-steam emissions continued infrequently for the duration of the reporting period. The SO2 emissions during March ranged from 700-2,100 tons/day, the latter of which occurred on 15 March. Seismicity increased again on 27 March. During 5-8 April 2020, small eruptive events were detected, generating ash plumes that rose 900 m above the crater (figure 9). The SO2 emissions on 6 April reached 3,200 tons/day, the maximum measurement for this reporting period. These small eruptive events continued from 13-20 and 23-25 April within the Shindake crater, producing gray-white plumes that rose 300-800 m above the crater.

Figure (see Caption) Figure 9. Webcam images from the Honmura Nishi (top) and Honmura west (bottom) surveillance cameras of ash plumes rising from Kuchinoerabujima on 6 March and 5 April 2020. Courtesy of JMA (Weekly bulletin report 509, March and April 2020).

Geologic Background. A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. All historical eruptions have occurred from Shindake, although a lava flow from the S flank of Furudake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shindake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Soputan (Indonesia) — May 2020 Citation iconCite this Report

Soputan

Indonesia

1.112°N, 124.737°E; summit elev. 1785 m

All times are local (unless otherwise noted)


Minor ash emissions during 23 March and 2 April 2020

Soputan is a stratovolcano located in the northern arm of Sulawesi Island, Indonesia. Previous eruptive periods were characterized by ash explosions, lava flows, and Strombolian eruptions. The most recent eruption occurred during October-December 2018, which consisted mostly of ash plumes and some summit incandescence (BGVN 44:01). This report updates information for January 2019-April 2020 characterized by two ash plumes and gas-and-steam emissions. The primary source of information come from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and the Darwin Volcanic Ash Advisory Center (VAAC).

Activity during January 2019-April 2020 was relatively low; three faint thermal anomalies were observed at the summit at Soputan in satellite imagery for a total of three days on 2 and 4 January, and 1 October 2019 (figure 17). The MIROVA (Middle InfraRed Observation of Volcanic Activity) based on analysis of MODIS data detected 12 distal hotspots and six low-power hotspots within 5 km of the summit during August to early October 2019. A single distal thermal hotspot was detected in early March 2020. In March, activity primarily consisted of white to gray gas-and-steam plumes that rose 20-100 m above the crater, according to PVMBG. The Darwin VAAC issued a notice on 23 March 2020 that reported an ash plume rose to 4.3 km altitude; minor ash emissions had been visible in a webcam image the previous day (figure 18). A second notice was issued on 2 April, where an ash plume was observed rising 2.1 km altitude and drifting W.

Figure (see Caption) Figure 17. Sentinel-2 thermal satellite imagery detected a total of three thermal hotspots (bright yellow-orange) at the summit of Soputan on 2 and 4 January and 1 October 2019. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 18. Minor ash emissions were seen rising from Soputan on 22 March 2020. Courtesy of MAGMA Indonesia.

Geologic Background. The Soputan stratovolcano on the southern rim of the Quaternary Tondano caldera on the northern arm of Sulawesi Island is one of Sulawesi's most active volcanoes. The youthful, largely unvegetated volcano is located SW of Riendengan-Sempu, which some workers have included with Soputan and Manimporok (3.5 km ESE) as a volcanic complex. It was constructed at the southern end of a SSW-NNE trending line of vents. During historical time the locus of eruptions has included both the summit crater and Aeseput, a prominent NE-flank vent that formed in 1906 and was the source of intermittent major lava flows until 1924.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Heard (Australia) — May 2020 Citation iconCite this Report

Heard

Australia

53.106°S, 73.513°E; summit elev. 2745 m

All times are local (unless otherwise noted)


Eruptive activity including a lava flow during October 2019-April 2020

Heard Island is located on the Kerguelen Plateau in the southern Indian Ocean and contains Big Ben, a snow-covered stratovolcano with intermittent volcanism reported since 1910. Due to its remote location, visual observations are rare; therefore, thermal anomalies and hotspots detected by satellite-based instruments are the primary source of information. This report updates activity from October 2019 to April 2020.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed three prominent periods of strong thermal anomaly activity during this reporting period: late October 2019, December 2019, and the end of April 2020 (figure 41). These thermal anomalies were relatively strong and occurred within 5 km of the summit. Similarly, the MODVOLC algorithm reported a total of six thermal hotspots during 28 October, 1 November 2019, and 26 April 2020.

Figure (see Caption) Figure 41. Thermal anomalies at Heard from 29 April 2019 through April 2020 as recorded by the MIROVA system (Log Radiative Power) were strong and frequent in late October, during December 2019, and at the end of April 2020. Courtesy of MIROVA.

Six thermal satellite images ranging from late October 2019 to late March showed evidence of active lava at the summit (figure 42). These images show hot material, possibly a lava flow, extending SW from the summit; a hotspot also remained at the summit. Cloud cover was pervasive during the majority of this reporting period, especially in April 2020, though gas-and-steam emissions were visible on 25 April through the clouds.

Figure (see Caption) Figure 42. Thermal satellite images of Heard Island’s Big Ben showing strong thermal signatures representing a lava flow in the SW direction from 28 October to 17 December 2019. These thermal anomalies are located NE from Mawson Peak. A faint thermal anomaly is also captured on 26 March 2020. Satellite images with atmospheric penetration (bands 12, 11, and 8A), courtesy of Sentinel Hub Playground.

Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben because of its extensive ice cover. The historically active Mawson Peak forms the island's high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported at this isolated volcano, but observations are infrequent and additional activity may have occurred.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 20, Number 07 (July 1995)

Managing Editor: Richard Wunderman

Aira (Japan)

Only one explosive eruption during July

Arenal (Costa Rica)

Crater C continues to emit lavas and Strombolian eruptions

Asosan (Japan)

Water rises and covers the crater floor, minor water and mud ejections

Atmospheric Effects (1995-2001) (Unknown)

Lidar data from Cuba and Germany

Colima (Mexico)

Measurements of SO2 flux, fumarole temperatures, and a lahar channel

Etna (Italy)

Gas-and-ash explosions followed by sustained Strombolian activity in late July

Galeras (Colombia)

Minor gas emissions and seismicity

Kilauea (United States)

Continued collapse of the Pu`u `O`o cone; lava flows and ocean entries

Krakatau (Indonesia)

Unusually loud sounds shown on seismic records

Langila (Papua New Guinea)

Intermittent large explosions

Pinatubo (Philippines)

Lahars force evacuations of 15,000 people

Poas (Costa Rica)

Crater lake rises and continues bubbling along shorelines

Rabaul (Papua New Guinea)

July volcanism and local seismicity both quiet

Semeru (Indonesia)

Hazard status raised; mid-July explosion earthquakes, pyroclastic flows

Soufriere Hills (United Kingdom)

Steam and ash emissions from two vents in the summit crater

Tokachidake (Japan)

For the first time since 1989, monthly seismic events total over 100

Unzendake (Japan)

Increased seismicity, but pyroclastic flows and dome growth absent

Whakaari/White Island (New Zealand)

Rapid inflation, booming noises, and ashfall



Aira (Japan) — July 1995 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Only one explosive eruption during July

Volcanism at Sakura-jima continued at a moderate rate through June, and dwindled in July. Throughout June there were 18 eruptions, 10 which were explosive. The highest ash plume of June reached 2,500 m elevation (2 June). The monthly ashfall accumulation at Kagoshima Meteorological Observatory, 10 km W of Minami-dake crater, was 11 g/m2. Throughout June, 550 earthquakes and 349 tremors were recorded at Station B, 2.3 km NE of Minami-dake crater.

During July, Sakura-jima generated only one explosive eruption. The 18 July ash plume rose 2,100 m above the crater rim. The monthly ash fall accumulated at Kagoshima Observatory measured 5g/m2. An earthquake swarm consisting of ~170 events occurred during 1600-2100 on 31 July. The totals for the numbers of monthly earthquakes and tremors at Station B were 655 and 533, respectively.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan.


Arenal (Costa Rica) — July 1995 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Crater C continues to emit lavas and Strombolian eruptions

During July, craters C and D continued to emit gases, and Crater C generated lava flows and sporadic Strombolian eruptions. The lava flow that started in May continued to move, but during June its SW arm only advanced ~180 m. During June this arm had a 52-m width and terminated at the 760-m elevation with the final 100 m of its length inclined 10-12° downward. A newer flow began to be extruded into a previously active channel and reached ~1,100 m elevation; the front of this flow produced small avalanches. Distance measurements revealed a transitory expansion of the edifice beginning in March 1995 and attaining an average maximum of ~20 ppm on about 25 May. Measurements in early July showed a return to the previous tendency of contraction. Ashfall was again measured W of the crater (table 12).

Table 12. Ash collected 1.8 km W of Arenal's active vent. Courtesy of Gerardo Soto, ICE.

Collection Interval Avg daily ashfall (grams/m2) Ash % 300+µ Ash % less than 300µ
21 Apr-23 May 1995 37.6 51.1 48.9
23 May-29 Jun 1995 15.4 51.2 48.8
29 Jun-27 Jul 1995 17.5 19.3 80.7

Arenal's recent lavas have had basaltic andesite compositions. The volcano lies directly adjacent to Lake Arenal, a dammed reservoir that generates hydroelectric power.

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: E. Fernandez, R. Van der Laat, F. de Obaldia, T. Marino, V. Barboza, W. Jimenez and R. Saenz, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apdo. 86-3000, Heredia, Costa Rica; Mauricio Mora, Escuela Centroamericana de Geologia, Universidad de Costa Rica; Gerardo J. Soto, Observatorio Sismologico y Vulcanologico del Arenal y Miravalles (OSIVAM), Instituto Costarricense de Electricidad (ICE), Apdo. 10032-1000, San José, Costa Rica.


Asosan (Japan) — July 1995 Citation iconCite this Report

Asosan

Japan

32.884°N, 131.104°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Water rises and covers the crater floor, minor water and mud ejections

During June, occasional water ejections took place from a hot water pool at the bottom of Naka-dake Crater 1. The volume of water in the crater increased towards the end of June such that by July Naka-dake's crater was completely covered with hot water. During July, the occasional water ejections were accompanied by the ejection of mud, the highest reaching 10 m.

In July, 791 isolated tremors were recorded at Station A, 800 m W of Crater 1. Continuous tremor occurred through early July, with a maximum amplitude of 8 µm. There were seven natural tremors during July, including four felt at the Aso Weather Station and three earthquakes. Only one large-amplitude tremor was recorded during June.

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Atmospheric Effects (1995-2001) (Unknown) — July 1995 Citation iconCite this Report

Atmospheric Effects (1995-2001)

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


Lidar data from Cuba and Germany

Lidar data from Germany during April-June (table 3) continued to reveal a volcanic aerosol layer centered at 18-20 km altitude. Backscattering ratios again showed a decline from earlier in the year (Bulletin v. 20, no. 2). In Cuba, a volcanic aerosol layer was detected at 20-22 km altitude between 20 May and 28 June. Lidar data (0.53 µm) showed a noticeable decline in both integrated backscattering and backscatter ratios from November-December values (Bulletin v. 20, no. 4).

Table 3. Lidar data from Germany and Cuba, showing altitudes of aerosol layers. Only bases of the layers are shown for Cuba. Backscattering ratios are for the Nd-YAG wavelength of 0.53 µm, with equivalent ruby values (0.69 µm) in parentheses. Integrated values show total backscatter, expressed in steradians^-1, integrated over 300-m intervals from the tropopause to 30 km at Garmisch-Partenkirchen and 16-33 km at Camaguey.

DATE LAYER ALTITUDE (km) (peak) BACKSCATTERING RATIO BACKSCATTERING INTEGRATED
Garmisch-Partenkirchen, Germany (47.5°N, 11.0°E)
03 Apr 1995 10-31 (18.9) 1.26 (1.6) --
24 Apr 1995 cirrus-27 (19.0) 1.20 (1.5) --
02 May 1995 10-24 (18.4) 1.17 (1.4) --
07 May 1995 11-27 (19.1) 1.14 (1.3) --
17 May 1995 cirrus-27 (17.6) 1.26 (1.6) --
22 May 1995 10-30 (18.2) 1.18 (1.4) --
28 May 1995 10-27 (19.7) 1.15 (1.4) --
20 Jun 1995 10-29 (19.4) 1.16 (1.4) --
27 Jun 1995 12-27 (18.1) 1.13 (1.3) --
29 Jun 1995 cirrus-26 (18.3) 1.12 (1.3) --
Camaguey, Cuba (21.2°N, 77.5°W)
20 May 1995 16.0 (20.8) 1.17 1.10 x 10-4
27 May 1995 16.0 (21.7) 1.20 1.39 x 10-4
28 Jun 1995 16.6 (21.1) 1.15 0.99 x 10-4

Geologic Background. The enormous aerosol cloud from the March-April 1982 eruption of Mexico''s El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin thorugh 1989. Lidar data and other atmospheric observations were again published intermittently between 1995 and 2001; those reports are included here.

Information Contacts: Horst Jager, Fraunhofer -- Institut fur Atmospharische Umweltforschung, Kreuzeckbahnstrasse 19, D-8100 Garmisch-Partenkirchen, Germany; Juan Carlos Antuna, Centro Meteorologico de Camaguey, Apartado 134, Camaguey 70100, Cuba.


Colima (Mexico) — July 1995 Citation iconCite this Report

Colima

Mexico

19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)


Measurements of SO2 flux, fumarole temperatures, and a lahar channel

The following report concerns Colima's SO2 flux between 1 April and 31 July 1995, its summit fumarole geochemistry, and a topographic profile of a barranca (steep-walled canyon).

SO2 measurements. Using a Cessna Skyhawk aircraft chartered by the Colima Civil Protection Authorities, a COSPEC survey was made on 30 March 1995. The wind speed and direction were computed for each of the six traverses by a global positioning system (GPS). At an altitude of 3,200 m, the average wind speed was 8.6 ± 1.1 m/s. The corresponding average SO2 flux estimate was 491 ± 104 metric tons/day (t/d).

On 5 July five vehicle-based terrestrial COSPEC transects were made along the Colima-Guadalajara highway, ~19.4 km NE of the summit. The average elevation of the transects was 1,300 m; the transects were oriented perpendicular to the direction of the plume axis. The average SO2 flux was 214 ± 91 t/d. The wind speed, measured at the Guadalajara City International Airport, averaged 7.62 m/s.

A third aerial COSPEC measurement was done on 11 July at an altitude of 3,050 m, ~3.5 km SW of the summit. GPS calculated wind speed averaged 9.26 m/s. The average SO2 flux for the six transects was 159 ± 78.5 t/d.

Field observations. On 28 July, the Colima Volcano Observatory group and J-C. Komorowski measured summit fumarole temperatures for the same three areas reported earlier; in summary the new temperatures had maximum values that were 14 and 43°C lower and 68°C higher than those reported in previous months (Areas I, II, and III, respectively).

Specifically on 28 July, in Area I, E of the summit, the six hottest fumaroles averaged 409°C and had a maximum value of 490°C. Area II, NE of the summit, contained two fumaroles with temperatures of 415 and 447°C. Area III, N of the summit, contained four fumaroles with an average 485°C; the maximum value reached 556°C.

An experimental gas analysis was conducted on an isolated 60°C fumarole (the same one reported in BGVN 20:02). The sampled gases and their concentrations were as follows: SO2, 20 ppm (1 minute sample time); HCl, 3 ppm (1 minute), HF, none detected (5 minutes); and CO2, 1,100 ppm (15 minutes).

An increase in the number of low-temperature fumaroles was seen in the 1987 explosion crater (E part of the summit). Some members of the group noted possible offset in the NE sector of the summit, a displacement identified by ~10-cm-long striations on the base of some big bread-crust blocks.

A topographic profile was measured perpendicular to the Cordoban barranca at the 1,620-m elevation and ~6.5 km SW of the summit, in order to study lahar deposits. Major lahars have been funneled down this barranca since 1991. During the rainy season, lahars have threatened the village of Becerrera (6.1 km downstream). This profile furnished evidence of 5-12 cm of deposition in the barranca during 4-18 July 1995.

Geologic Background. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the high point of the complex) on the north and the historically active Volcán de Colima at the south. A group of late-Pleistocene cinder cones is located on the floor of the Colima graben west and east of the complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, producing thick debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions have destroyed the summit (most recently in 1913) and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: Juan J. Ramirez Ruiz, Carlos Navarro Ochoa, Abel Cortes Cortes, Juan Carlos Gavilanes Ruiz, and Ricardo Saucedo Giron, Colima Volcano Observatory, Univerisidad de Colima.


Etna (Italy) — July 1995 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Gas-and-ash explosions followed by sustained Strombolian activity in late July

Eruptive activity from Etna's summit craters continued in July. Sustained Strombolian activity resumed in Bocca Nuova vent on 29 July. Details will be provided next month.

At Bocca Nuova crater, a degassing vent in the N part of the crater floor produced very frequent gas explosions followed by collapses inside the vent, and then by red ash emissions. Ash emissions started on the morning of 25 July, and ash formed a thick carpet inside the crater. Ash plumes rose ~100 m above the crater rim and caused ashfall on the W flank. A small percentage of juvenile material was identified in the ash. Another vent at the SE margin of the crater floor produced only gas explosions with no ash. The interior of Bocca Nuova had vertical walls and a nearly flat zone in the SE part of the floor, ~100 m below the crater rim, that gently sloped NW. The flat zone occupied 40% of the crater floor, the remaining part being covered by collapse debris. The inner part of the collapsed zone had sub-vertical walls and a floor sloping NE.

In the SW corner of the Northeast Crater floor a vent produced strong gas emissions with occasional inner collapses and red ash expulsions. Samples of ash showed an increase in juvenile component compared to May. Northeast Crater was pit-shaped, with sub-vertical inner walls covered by red ash. The floor was ~150 m deep and had a step oriented NE-SW, which separated the flat zone of the NW sector, gently sloping SE, from the SE portion sloping SW. Activity at the funnel-shaped Voragine (Chasm) consisted of continuous, weak gas emission from the central vent with neither explosions nor ash emissions. Southeast Crater produced only a weak degassing activity.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sonia Calvari, Istituto Internazionale di Vulcanologia, Piazza Roma 2, I-95123 Catania.


Galeras (Colombia) — July 1995 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Minor gas emissions and seismicity

Observations during June-July revealed continued low levels of gas emission from fumaroles and craters in the W sector of the active crater. Long-period seismic events, associated with gas movement, decreased in June compared to previous months. SO2 flux measured by COSPEC was correspondingly low during June, averaging of 100 metric tons/day, and remained low in July. No significant deformation was detected during this period.

Seismicity in June consisted of fracture events from the source 2-6 km NE of the main crater, with a daily average of two events (M <=2.6) at 4-10 km depth. Two earthquakes within 4 minutes late on 17 June (M 3.6 and 3.1), caused by fracturing ~4 km SE of the volcano at ~6 km depth, were felt near the epicenter; small aftershocks were felt over the next few days. The epicenter of these events was near the Azufral river canyon, along which mudflows moved in April.

During 21 hours on 5 July an earthquake swarm of 35 events was centered NNE of the active crater; all events had M <2.3 and depths of 2-7 km. In the same zone on 28 July a M 2.8 volcano-tectonic event occurred that was felt in Pasto. Both the swarm and the 28 July event were associated with rock fracturing from the area active during April and November 1993, and March 1995. Seismicity related to magma movement decreased to six events during July. A significant shallow event on 26 July (figure 78) had similar characteristics to the sporadic events that have been registered since 6 March over the NW area of the caldera margin. These events are thought to be associated with the April 1995 landslide.

Figure (see Caption) Figure 78. Seismogram of the event detected by the Cono Station at Galeras on 26 July 1995. Courtesy of INGEOMINAS.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: Carlos Alberto Rey and Pablo Chamorro, INGEOMINAS - Observatorio Vulcanologico y Sismologico de Pasto, A.A. 1795, San Juan de Pasto, Narino, Colombia (URL: https://www2.sgc.gov.co/volcanes/index.html).


Kilauea (United States) — July 1995 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Continued collapse of the Pu`u `O`o cone; lava flows and ocean entries

Much of the lava starting at the SW flank of Pu`u `O`o was delivered to the ocean via a system of lava tubes. One of the ocean entry points, the Highcastle entry, was continuously active and intermittently explosive throughout July.

On 22 July the lower Highcastle bench and a stranded littoral cone on the upper bench collapsed, an event followed by littoral explosions. The collapse displaced an area ~100 x 15 m in size that dropped into the ocean. Around 21 July a small skylight opened allowing a view into the tube carrying the Highcastle flow. The flow was initially visible in the skylight, but within a week a crust formed over the flow.

Although the Highcastle entry vented lava during 1-14 August, its output seemed variable, perhaps influenced by the fluctuating discharge of flows upslope. For example, mild explosive activity was observed on 7-8 August, an interval when no lava escaped onto the coastal plain. Two pahoehoe flows were noted upslope on 3 August, originating at 660 and 650 m elevation. The upper flow was not active on 11 August; however, that day the lower flow was still active and burning forest at the 590 m elevation. On August 11 observers looked through the skylight at 735 m elevation and measured a stream of lava 15 m wide and 19 m deep.

The volume of lava escaping at the Kamoamoa entry diminished during late-June; on 4 July, lava from the Kamoamoa tube stopped entering the ocean. Lava escaping at the base of the slope called Paliuli fed a flow that intermittently entered the ocean around Lae'apuki. This flow stagnated on 13 July. On 21 July a sheet flow from 375 m elevation burned through the Thanksgiving kipuka, formerly an easily discernible island of vegetated land within the Kamoamoa flow at the base of Paliuli. Having stagnated around 28 July, this flow did not reach the ocean. Active flows were observed on the coastal plain on 23 June and 1 July. They were also sporadically active on the slope of Pulama Pali (390-175 m elevation) and, on 17 July, one flow reached within 100 m of Paliuli.

On 1 August, a flow began escaping from the Kamoamoa tube at ~490 m elevation and cascaded down Pulama Pali. By 3 August the flow had spilt into three distinct parts, including a voluminous flow on the E, a pahoehoe sheet flow with many active streams on the W, and an 1,800-m-long aa-pahoehoe flow following a channel in the middle. By mid-August, the W flow had reached the base of Pulama Pali, the E flow had crossed the flats between Pulama Pali and Paliuli, and the middle flow had stopped moving.

Continued collapse of the Pu`u `O`o cone caused a black dust plume seen on 4 July. On 6 July a new debris deposit was noticed on the crater floor. The active lava pond within the crater of Pu`u `O`o was 90-95 m below the N spillway rim in late June, but was not visible after 4 July. Later in the July, the lava pond remained small and deep, ~95 m from the N spillway rim. The pond at Pu`u `O`o continued to shrink and during the first half of August its surface was over 100 m below the N spillway rim. A sluggishly moving crust had formed over much of the pond, and its only open areas were on the W and N edges.

There were two episodes of "gas-piston" bursts. One episode took place during 3 June-30 July, consisting of intermittent bursts of 1- to 2-minutes duration. Another episode took place during 26-28 July, consisting of frequent bursts of about 1-minute duration.

Tremor on the East Rift Zone during July through mid-August was chiefly of low amplitude. In the interval from 4 to 17 July, tremor bursts and banded tremor were both occasionally seen. During 18-31 July, tremor reached 2x background; bursts on 13-15 July reached to 4-5x background. During 30 June-31 July there was a low number of microearthquakes beneath the summit area and low to average number beneath the East Rift Zone. On 1-2 August the number of microearthquakes increased to high levels, but then decreased through mid-August.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: Tari Mattox and Paul Okubo, USGS Hawaiian Volcano Observatory (HVO), Hawaii Volcanoes National Park, HI 96718, USA.


Krakatau (Indonesia) — July 1995 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 155 m

All times are local (unless otherwise noted)


Unusually loud sounds shown on seismic records

During June there were unofficial reports of unusually loud noises heard on the W coast of Java . . . . On 27 June, GMU scientists visited islands around Anak Krakatau and heard some very loud sounds; only some of which correlated to visual activity at Anak Krakatau. The observers compared their observations to a 1993 visit, when the volcano emitted steam-bearing discharges accompanied by lightning. The eruptions on 27 June 1995 appeared dissimilar because they were ash-rich and without visible steam. In addition, the 27 June eruptions produced string-shaped columns with mushroom-shaped tops; lightning was absent.

The group deployed two seismometers for five hours of observation. A vertical-component long-period seismometer (0.2 Hz cutoff) was put on Panjang Island, 3.6 km W of Anak Krakatau's summit, and a 3-component broadband seismometer was put on Sertung Island, 3.2 km WNW.

Typical seismograms, showing two of the three components recorded on Sertung Island, appear on figure 11. In one case, a low-frequency seismic signal arrived ~8 seconds prior to a sharp onset, reaching amplitudes of 0.6 mm/sec in the vertical component (figure 11). The second seismometer also recorded ~8 seconds of seismic signal before the onset of the air wave. Other events also showed the same 8-second delay between the seismic signal and these air waves. The case shown was correlated with a small eruption that generated a loud sound and ultimately spawned an ash cloud of undisclosed dimension. Assuming a shallow source for the eruption, the travel times for first arrivals of the strong impulsive signals across the 3.2 km source-to-receiver distance were on the order of 10 seconds, roughly the velocity of sound in air (0.33 km/sec). Thus, the strong impulsive signals were probably due to pressure waves transmitted through the air.

Figure (see Caption) Figure 11. Seismic record from Anak Krakatau showing the vertical component for a typical event received on nearby Sertung Island. The data were collected on 27 June 1995 (t = 0.0 sec corresponds to 1049 local time). Approximate arrivals of the seismic and air-wave signals are indicated. Courtesy of Wahyudi and A. Brodscholl.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Wahyudi and A. Brodscholl, GMU.


Langila (Papua New Guinea) — July 1995 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Intermittent large explosions

Moderate eruptive activity continued at Crater 2 throughout July; intermittent large explosions alternated with weaker ash and vapor emissions. The larger explosions rose several hundred meters above the crater rim, dropping ash on the downwind (N-NW) side of the volcano. The sounds from these large explosions ranged from loud detonations to deep rumblings. Crater glow was observed on 1 and 16 July. Activity at Crater 3 remained very low, with only weak white vapor emissions. The seismograph was inoperable throughout the month.

Located on the N coast of western New Britain, Langila consists of four overlapping composite cones. These cones lie on the E side of the inactive Talawe volcano. An extensive lava field extends from the cones toward the coast. Langila is one of New Britain's most active volcanoes.

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: Ben Talai, RVO.


Pinatubo (Philippines) — July 1995 Citation iconCite this Report

Pinatubo

Philippines

15.13°N, 120.35°E; summit elev. 1486 m

All times are local (unless otherwise noted)


Lahars force evacuations of 15,000 people

Continuous and intense rainfall during 28-30 July caused by the passage of a tropical storm triggered moderate to large lahars on the slopes of Mt. Pinatubo along the O'Donnell (NNE), Pasig-Potrero (SE), Santo Tomas-Marella (SW), and Bucao (NW) rivers. Minor lahar deposition along the middle and lower reaches of the O'Donnell, Santo Tomas-Marella, and Bucao river systems was confined to previous lahar-affected areas. Flooding along the inner-side of the secondary dike along the Santo Tomas River and potential isolation forced residents of Barangay Rabanes to move to a temporary evacuation center at Barangay Consuelo, both located in the town of San Marcelino, Zambales.

The greatest impact of the 28-30 July lahars was along the Pasig-Potrero river system. About 30 million cubic meters of lahar debris was deposited over a 12 km2 area (figure 33). About 25% of the sediment volume was derived from erosion of previously emplaced lahar deposits. Twenty three houses were buried under 1-4 m of debris, forcing >15,000 residents from the towns of Porac and Bacolor to evacuate. Lahars also disrupted traffic and resulted in temporary closure of the Angeles-Porac Road and the Olongapo-Gapan National Road. Geomorphologic changes along the Pasig-Potrero River included the incision of a 10-m-deep by 100-m-wide channel extending 5 km downstream from the Delta 5 watchpoint (15.5 km from Pinatubo), and net deposition starting 2 km upstream of the Angeles-Porac Road (20 km from Pinatubo) and extending 15 km downstream.

Figure (see Caption) Figure 33. Map of the recent lahars at Pinatubo, 30 July 1995. Courtesy of PHIVOLCS.

In a 2 August Deutsche Presse-Agentur news report, the director of PHIVOLCS stated that at least US $4 billion would be required to hold back the lahars. This figure was used by Ray Punongbayan to give the local residents a perspective of the total cost to build a properly engineered dike system to manage four active lahar channels. The estimate was based on costs to build concrete dikes in the United States and Japan, at US $1 billion per river system.

The June 1991 eruption left abundant unconsolidated ash deposits that have been mobilized as lahars in each subsequent monsoon season. Lahars occurred in the first half of July, and a secondary explosion 10 km from the crater on 11 July sent a plume to 9-10 km altitude (BGVN 20:06).

Geologic Background. Prior to 1991 Pinatubo volcano was a relatively unknown, heavily forested lava dome complex located 100 km NW of Manila with no records of historical eruptions. The 1991 eruption, one of the world's largest of the 20th century, ejected massive amounts of tephra and produced voluminous pyroclastic flows, forming a small, 2.5-km-wide summit caldera whose floor is now covered by a lake. Caldera formation lowered the height of the summit by more than 300 m. Although the eruption caused hundreds of fatalities and major damage with severe social and economic impact, successful monitoring efforts greatly reduced the number of fatalities. Widespread lahars that redistributed products of the 1991 eruption have continued to cause severe disruption. Previous major eruptive periods, interrupted by lengthy quiescent periods, have produced pyroclastic flows and lahars that were even more extensive than in 1991.

Information Contacts: J.V. Umbal, P.J. Delos Reyes, and N.M. Tungol, Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology (DOST), 5th & 6th Floors Hizon Building, 29 Quezon Avenue, Quezon City, Philippines; Deutsche Presse-Agentur.


Poas (Costa Rica) — July 1995 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Crater lake rises and continues bubbling along shorelines

The volcano's sky-blue colored crater lake remained high, with sulfur stains and a temperature of 39°C. Bubbling at sites along the NW and S shores each had about equal intensity. A new fumarole appeared on the E terrace near the crater wall, producing a 50-m-high gas column. Fumaroles along the S and SE crater walls had temperatures of 94-96°C, and produced gas columns to <50 m height. Winds blew sulfur smells to the park's entrance gate.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: E. Fernandez, R. Van der Laat, F. de Obaldia, T. Marino, V. Barboza, W. Jimenez, and R. Saenz, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apdo. 86-3000, Heredia, Costa Rica; Mauricio Mora, Escuela Centroamericana de Geologia, Universidad de Costa Rica; Gerardo J. Soto, Observatorio Sismologico y Vulcanologico del Arenal y Miravalles (OSIVAM), Instituto Costarricense de Electricidad (ICE), Apdo. 10032-1000, San Jose, Costa Rica.


Rabaul (Papua New Guinea) — July 1995 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


July volcanism and local seismicity both quiet

Activity remained low during July, with only weak-to-moderate fumarolic activity at the summit of Tavurvur, and no reported emissions at Vulcan. Only 11 low-frequency earthquakes originated from the N part of the caldera. There were 7 high-frequency (M <1) earthquakes, mostly from the Namanula Hill and Karavia Bay areas in the NE and SW portions of the caldera.

Two unusual "hybrid" earthquakes occurred in July. The associated signals had very high-frequency impulsive onsets, and low-frequency codas (1.2 Hz) that lasted > 1 minute. At distant stations, only the low-frequency signals were registered. The first earthquake, on 3 July, occurred at 3 km depth off the S shore of Matupit Island close to the area of maximum ground deformation. The second, a much smaller hybrid earthquake, occurred on 25 July and was likely from the Vulcan area. Ground deformation measurements showed little or no change throughout July.

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: Ben Talai, RVO.


Semeru (Indonesia) — July 1995 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Hazard status raised; mid-July explosion earthquakes, pyroclastic flows

Increasing seismicity, avalanches, and pyroclastic flows with runout distances over 3 km began in early June 1995 (figure 6). The local government (Lumajang Regency) issued a warning on 21 June, but on 17 July they raised the hazard status and issued a volcano alert.

Figure (see Caption) Figure 6. Summary of Semeru activity during April-July 1995. Courtesy of VSI.

On 19 July, explosion earthquakes having maximum amplitudes of 35 mm were recorded. On 20 July at 1140, seismographs recorded continuous earthquakes associated with avalanche-type pyroclastic flows. At 1350 on 20 July, the Semeru Volcano Observatory informed local authorities, the Mt. Semeru Project, and the Ministry of Public Works that lava avalanches and pyroclastic flows were descending SE from Semeru's summit along the Kobokan river (figure 7). A warning was sent to local residents near the Kobokan river in the villages of Sumbersari, Renteng, Deli, and Sukosari. The 20 July pyroclastic flows advanced 9.5 km from the summit along the Sumbersari and Lengkong rivers (figure 7). The pyroclastic flows ceased at 1550 on 20 July; no one was reported injured during this most recent episode, although in a previous episode, in February 1994, lava avalanches and pyroclastic flows killed six people in Sumbersari.

Figure (see Caption) Figure 7. Map of Semeru's SE quadrant and 20 July 1995 pyroclastic-flow deposits. Courtesy of VSI.

On 21 July 1995, three pyroclastic avalanches descended along the Kembar river travelling a distance of 2 km. After 22 July, seismic, avalanche, and pyroclastic flow activity decreased somewhat. Still, on 27 and 28 July, pyroclastic avalanches descended the Kembar and Kobokan rivers, reaching lengths of 1 and 2 km, respectively.

A Semeru eruption was mentioned in an aviation alert on 3 August. The alert, which was based on a report from Qantas Airlines, stated that the estimated eruption time was 1500; the column reached ~4,600 m (roughly 900 m above the summit) and was blown W at 22 km/hour. Convective cloud cover prevented the Synoptic Analysis Branch from searching for the plume.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: W. Tjetjep, VSI.


Soufriere Hills (United Kingdom) — July 1995 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Steam and ash emissions from two vents in the summit crater

Soufriere Hills volcano (figures 3 & 4) began erupting on 18 July from a fissure vent (Vent 1) within the summit crater (20:6). The initial small phreatic eruption spread minor ash around the island. The next day the airport on Montserrat issued a NOTAM after a reconnaissance flight at 0745 reported flying through volcanic ash. Seismicity and minor phreatic explosions continued in the following days (20:6).

Figure (see Caption) Figure 3. Map of Montserrat showing selected towns and features.
Figure (see Caption) Figure 4. Shaded topographic map of Soufriere Hills volcano and the city of Plymouth. The summit is located on the SW crater rim at Chances Peak. Modified from the "Tourist Map of Montserrat" and reprinted with the permission of Lands & Survey Department, Plymouth, Montserrat.

Another NOTAM on 26 July renewed the warning to aircraft and reported sporadic ash emissions. A second vent formed on 28 July (figure 5), and a third on 20 August. Gas samples taken in late July from fumaroles at Tar River and Galway's were unchanged from 1989. Samples of ash showed no juvenile components through at least 30 July. Seismicity in late July remained at about the same level as previously. A distinct odor of hydrogen sulfide (H2S) was detected in Plymouth . . . during late July, but sulfur dioxide (SO2) was not detected until 30 July.

Figure (see Caption) Figure 5. Photograph showing Vent 2 within the summit crater of Soufriere Hills volcano, 28 July 1995. View is to the WSW; the S wall of English's Crater is left of the vent. Castle Peak, to the right of the vent, is the youngest dome of the volcano. Courtesy of Mitch Lewis Enterprises and Tom Casadevall, USGS.

Monitoring efforts. Monitoring of the eruptive activity and scientific advice to the Government of Montserrat are being provided by an international team of volcanologists. The first response to the crisis was provided by the Seismic Research Unit (SRU) at the University of the West Indies in Trinidad, which had maintained a seismic network on the island. Their team was later supplemented, at the request of Montserrat, by scientists from the U.S. Geological Survey (USGS), the Guadeloupe Volcano Observatory, and the United Kingdom. French scientists arrived on 25 July to sample gases. The USGS arrived on 26-27 July with additional seismometers, tiltmeters, and a correlation spectrometer (COSPEC).

The USGS team set up a seismic data analysis system to automatically locate earthquakes in near real-time, and made improvements to the existing seismic network. By 30 July, volcanologists were monitoring 10 channels of component signals from eight seismic stations; another station was added soon after. New telemetered tiltmeters at Spring Estate (2.5 km SW of the vents), Amersham (3.7 km WSW), and near Long Ground (2 km NE), were operational by 2 August.

Formation of Vent 2 on 28 July. A volcano-tectonic (VT) earthquake swarm that began at 0854 on 28 July lasted for >2 hours; instruments detected ~ 50 events of M >1. Coincident with this seismicity, a new vent opened SW of Castle Peak (Vent 2), along-strike with the fissure vent that had been intermittently active since 18 July. Vigorous jetting from the new vent at 1814 on 29 July, associated with ~ 22 minutes of tremor and earthquakes, occurred during heavy rainfall and was accompanied by a small mudflow. Following this episode, Vent 2 was estimated to be 1-2 m in diameter and was jetting steam and a small amount of fine ash ~ 100 m high with a loud roaring sound. During an overflight on 30 July Vent 1 was producing only wisps of steam, while Vent 2 continued to jet a large amount of steam and fine ash.

Because of increased steam emissions, on 28 July local authorities ordered an evacuation of the Long Ground area (figure 4). The evacuees returned to their homes the next morning. Two episodes of increased seismicity on 29-30 July caused no observable changes at the vent area. Small (mostly M

Low-level activity in early August. During 1-3 August there were fewer high-frequency, VT earthquakes, plus some long-period (LP) earthquakes. Preliminary locations for the LP events were at depths of 5-6 km, slightly deeper than the VT events. Emergent "cigar-shaped" signals, that probably correspond to vigorous steam venting, occurred a few times each day. Heavy rainfall on 3 August triggered a small, non-destructive mudflow during the night in a stream valley that runs through Plymouth. Normal infiltration of rain water may have been reduced by the relatively impermeable layer of fine ash that had accumulated on the upper slopes of the volcano.

Following 12 hours of unusually low seismicity, vigorous steam and ash emission began at 0852 on 4 August. This phreatic eruption lasted ~10 minutes, producing a dark, ash-laden column visible from most of the island. Seismicity associated with the eruption included several LP events. An aerial inspection revealed that the eruption had enlarged Vent 1 to ~10 m across and 10 m deep.

Concern was heightened after the phreatic eruption on 4 August and the increasing seismicity. As a precautionary measure, the elderly and infirm from the villages of Long Ground, Bramble Village, Bethel, Farms, and Trants were resettled on the N part of the island on 6 August. Aged and infirm in areas from Harris to Gages and N and S of the immediate area around Fort Ghaut in Plymouth, were also relocated to the N. Able-bodied residents of Long Ground were advised to move to shelters at night. Further restrictions may have been enforced during the next week.

Vent 2 was full of water on 5 August, apparently ground water forced from the volcano, and muddy water flowed from it through the Hot River drainage. On 6 August a large steam plume with minor ash rose from the vent area. By 7 August Vent 2 had grown ~ 20 m to the NW, in the direction of the 18 July fissure, the muddy water was gone, and jetting of steam and varying amounts of fine ash continued. The abscence of water emissions from the vent area after 7 August suggested that the volcano may have been "drying out," possibly due to increased heatflow.

Eighteen locatable earthquakes (M

Ground tilt recorded at Long Ground appeared to reverse on 5 August from steady deflation (down toward the vent area) since the station was installed, to apparent inflation (up toward the vent area). Vigorous venting on 6 August caused several microradians of tilt at two tiltmeters. Tiltmeters recorded small tilt events through 7 August, some of which seemed to correlate with periods of strong seismicity. However, there was no consistent pattern, suggesting that any deformation was relatively minor. A small tilt event occurred coincident with the 6-7 August seismic swarm.

Earthquakes declined on 9 August, but tremor caused by steam venting continued. At about 0715-0745 there was a relatively large steam venting episode. Vigorous steaming continued from Vent 2 on 10 August, but tremor intensity decreased and the number of small VT earthquakes increased to 1-2/hour. Most of the earthquakes were centered 2-5 km beneath the vent area. Seismicity was slightly lower during 10-11 August, with seven VT earthquakes, two individual low-frequency events, and three of four periods of continuous tremor lasting ~2 hours. On 10 August tilt appeared stable as measured by titlmeters and along a short leveling line near Broderick's Estate, ~3 km SW of the vent area, that was last measured ~10 years ago.

Reactivation of Vent 1. Vent 1 reactivated on 11 August and seemed to be emitting steam on the 12th. Steady steam emissions continued from both vents through 13 August. Seismicity was slightly lower on 11-12 August, with five small VT earthquakes and two periods of continuous tremor (~2 hours total). Increased gas venting around 1621 on 12 August triggered a swarm of VT events that continued into the next afternoon. The swarm consisted of >134 earthquakes, of which 38 were felt, the largest at around 0221 on 13 August (M ~3.5). Epicenters clustered 2-6 km beneath St. George's Hill (3 km WNW of the summit).

A mudflow from Vent 2 along the Hot River early on 12 August blocked the road for ~1 km between Tar River and Perche's Estates. Steady steam output from Vent 2 continued throughout 14 August. Steam emissions from Vent 1 were intermittent and occasionally changed composition. On 14-15 August there were three VT earthquakes, three B-type events, two low-frequency events, and five degassing episodes followed by tremor.

After three days of consistently lower activity (as of 11 August), daytime occupancy was recommended for able-bodied residents of the evacuated villages. However, the sick and bedridden were to remain at shelters. The reactivation of Vent 1 caused additional evacuations during 12-14 August from the previously mentioned villages, but able-bodied residents returned again on 15 August.

The seismographs recorded sustained low-frequency tremor from noon on 16 August through noon the next day. Degassing from Vent 2 continued at nominal to vigorous rates with occasional increases in acoustic intensity and changes in color of the output. Six of the 13 locatable VT earthquakes on 16-17 August were beneath Soufriere Hills; the others, including one felt strongly in Plymouth at 0143, were scattered within 4 km NE to NW of St. George's Hill. Vent 2 exhibited loud roars and intense venting coincident with heavy rainfall. The morning of 18 August was very overcast and inspection of the vents was not possible, but tremor continued, and there were six locatable VT earthquakes. During 18-19 August there was continuous low-frequency tremor and moderate emissions from Vent 2. Vent 1 was obscured for most of the period, but venting noise was generally low. Several low-amplitude extremely short-duration VT earthquakes on the Gages seismograph were buried within the background tremor signal, locatable events were generally 2-3 km beneath Soufriere Hills.

Tiltmeter observations remained within background noise level between 7 and 19 August. COSPEC measurements of SO2 flux taken from a helicopter after 30 July averaged 300 metric tons/day (t/d) until the morning of 6 August (table 1). After reaching a high of ~1,200 t/d on 6 August, values decreased and stabilized below an average of 200 t/d through 18 August.

Table 1. Summary of SO2 measurements at Soufriere Hills determined by COSPEC, 30 July-18 August 1995. Courtesy of the USGS.

Date COSPEC SO2 (t/d) Comments
30 Jul-03 Aug 1995 200-600 (average 300) First flight on 30 July. Determined that the only plausible source is a degassing magma body.
04 Aug 1995 ~550 Measurements spanned an episode of vigorous venting.
06 Aug 1995 ~1,200 Morning measurement.
06 Aug 1995 ~250-300 Later in the day.
07-09 Aug 1995 ~200 --
10 Aug 1995 ~245 ± 25 --
11 Aug 1995 ~190 ± 30 --
12 Aug 1995 -- Wind not adequate for measurement
14 Aug 1995 ~150 ± 20 --
16 Aug 1995 ~163 ± 25 --
17 Aug 1995 ~111 ± 35 --
18 Aug 1995 ~180 ± 30 --

An ash explosion on the morning of 20 August formed a third vent in the summit crater and prompted evacuations of up to 5,000 people. The observatory location was moved as a result, delaying the daily reports. Because this occurred near our deadline, details will be provided next month.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: VDAP, USGS; Seismic Research Unit, UWI; Montserrat EOC.


Tokachidake (Japan) — July 1995 Citation iconCite this Report

Tokachidake

Japan

43.418°N, 142.686°E; summit elev. 2077 m

All times are local (unless otherwise noted)


For the first time since 1989, monthly seismic events total over 100

Increased seismicity starting on 9 July was recorded 4.3 km NNW of the 1962 crater. The peak daily high for the month took place on 17 July (28 events). During the entire month of July there were 101 events. Not since January 1989, when 179 seismic events were recorded, have >100 events occurred in one month.

Geologic Background. Tokachidake volcano consists of a group of dominantly andesitic stratovolcanoes and lava domes arranged on a NE-SW line above a plateau of welded Pleistocene tuffs in central Hokkaido. Numerous explosion craters and cinder cones are located on the upper flanks of the small stratovolcanoes, with the youngest Holocene centers located at the NW end of the chain. Frequent historical eruptions, consisting mostly of mild-to-moderate phreatic explosions, have been recorded since the mid-19th century. Two larger eruptions occurred in 1926 and 1962. Partial cone collapse of the western flank during the 1926 eruption produced a disastrous debris avalanche and mudflow.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan.


Unzendake (Japan) — July 1995 Citation iconCite this Report

Unzendake

Japan

32.761°N, 130.299°E; summit elev. 1483 m

All times are local (unless otherwise noted)


Increased seismicity, but pyroclastic flows and dome growth absent

Although Unzen's activity has generally waned during the past 7 months, during July the number of earthquakes (measured at Station A, 3.6 km SW of the dome) increased (table 16). For July, the total number of earthquakes was 61, and tremors, 31. On 12 July, 22 micro-earthquakes were recorded beneath the dome. One earthquake was felt at the Unzen Weather Station. Neither pyroclastic flows nor any dome growth were evident throughout July, despite four minor tiltmeter changes associated with the increased seismicity.

Table 16. Summary of Unzen's monthly earthquakes, tremors, and pyroclastic flows during 1995.

Month Total Earthquakes Felt Events Tremors Pyroclastic Flows
Jan 1995 322 4 60 2
Feb 1995 81 -- 16 2
Mar 1995 15 -- 10 0
Apr 1995 29 -- 18 0
May 1995 22 -- 12 0
Jun 1995 33 -- 39 0
Jul 1995 61 1 31 0

Geologic Background. The massive Unzendake volcanic complex comprises much of the Shimabara Peninsula east of the city of Nagasaki. An E-W graben, 30-40 km long, extends across the peninsula. Three large stratovolcanoes with complex structures, Kinugasa on the north, Fugen-dake at the east-center, and Kusenbu on the south, form topographic highs on the broad peninsula. Fugendake and Mayuyama volcanoes in the east-central portion of the andesitic-to-dacitic volcanic complex have been active during the Holocene. The Mayuyama lava dome complex, located along the eastern coast west of Shimabara City, formed about 4000 years ago and was the source of a devastating 1792 CE debris avalanche and tsunami. Historical eruptive activity has been restricted to the summit and flanks of Fugendake. The latest activity during 1990-95 formed a lava dome at the summit, accompanied by pyroclastic flows that caused fatalities and damaged populated areas near Shimabara City.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan.


Whakaari/White Island (New Zealand) — July 1995 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Rapid inflation, booming noises, and ashfall

A small ash eruption from an active vent within Wade Crater occurred around 29-30 June. Deformation and magnetic changes indicated inflation and warming, suggesting a possible progression into another eruptive cycle.

In contrast to recent visits, on 14 June the 1978/90 Crater Complex emitted continuous low-frequency booming noises. Wade Crater's lake had changed from light gray to bright emerald green, with gray slicks in the center near the beach below the fumarole. The lake in TV1 Crater was turquoise and at the same level as Wade Crater lake.

On 1 July a layer of light gray ash covered survey pegs C and J, and the walls of both the 1978/90 Crater Complex and Main Crater. The largest particles were 4-6 mm in diameter. As on 14 June, Wade Crater's lake was still bright emerald green. Following the 1 July observations, rainfall induced several landslides along Main Crater's walls.

Gas and condensate samples were taken from fumaroles ##1 and ##3, and temperatures measured 108 and 100°C, respectively. Both temperatures remained close to those seen over the last two years, although fumarole ##2 rose 6°C since November 1994. Water temperatures at Black Pot (93°C) were unchanged.

Inflation continued, although its center had moved slightly N, and was more symmetrical about Donald Mound with a steep downward gradient towards the TV1-Noisy Nellie area. Inflation rates have increased by 36% on the crater floor over the past 4 months, and by 136% at Donald Mound over the last 3.5 months. The current rates resemble those measured in the 5 years prior to the December 1976 eruption, although the present rate of uplift is 4-5x the rate 12 months prior to the 1976 event.

Ash collected on 6 July consisted of altered detritus and rounded, granular, clastic crystals and glass, an assemblage not directly from a vesiculating magma. This non-juvenile material possibly originated from a young, unaltered, solid andesitic body abraded by high-velocity gas. The sample contained euhedral, coarse-grained gypsum, which probably crystallized in the wet surface deposit near the air interface.

Magnetic surveys showed that since November 1994 there has been shallow cooling under TV1 crater, and heating at 50-100 m depth in the E side of Donald Mound. Similar results have been obtained since late 1993; however, the rate of magnetic change has more than doubled, suggesting that the heating rate has significantly increased.

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: B.J. Scott, Institute of Geological and Nuclear Sciences (IGNS), Private Bag 2000, Wairakei, New Zealand.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports